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Abstract
Listeners recognize and integrate words in
rapid and noisy everyday speech by combin-
ing expectations about upcoming content with
incremental sensory evidence. We present
a computational model of word recognition
which formalizes this perceptual process in
Bayesian decision theory. We fit this model to
explain scalp EEG signals recorded as subjects
passively listened to a fictional story, revealing
both the dynamics of the online auditory word
recognition process and the neural correlates
of the recognition and integration of words.

The model reveals distinct neural processing
of words depending on whether or not they can
be quickly recognized. While all words trig-
ger a neural response characteristic of proba-
bilistic integration — voltage modulations pre-
dicted by a word’s surprisal in context — these
modulations are amplified for words which re-
quire more than roughly 150 ms of input to be
recognized. We observe no difference in the
latency of these neural responses according to
words’ recognition times. Our results are con-
sistent with a two-part model of speech com-
prehension, combining an eager and rapid pro-
cess of word recognition with a temporally in-
dependent process of word integration. How-
ever, we also developed alternative models of
the scalp EEG signal not incorporating word
recognition dynamics which showed similar
performance improvements. We discuss po-
tential future modeling steps which may help
to separate these hypotheses.

Psycholinguistic studies at the neural and be-
havioral levels have detailed how listeners ac-
tively predict upcoming content at many levels of
linguistic representation (Kuperberg and Jaeger,
2016), and use these predictions to drive their
behavior far before the relevant linguistic input
is complete (Allopenna et al., 1998). One well-
studied neural correlate of this prediction-driven

Code to reproduce our analyses is available at
github.com/hans/word-recognition-and-integration.

comprehension process is the N400 ERP, a centro-
parietally distributed negative voltage modulation
measured at the scalp by electroencephalogram
(EEG) which peaks around 400 ms after the on-
set of a word. This negative component is am-
plified for words which are semantically incom-
patible with their sentence or discourse context
(Kutas and Hillyard, 1984; Brown and Hagoort,
1993; Kutas and Federmeier, 2011; Heilbron et al.,
2022). This effect has been taken as evidence
that comprehenders actively predict features of up-
coming words (DeLong et al., 2005; Kuperberg
and Jaeger, 2016; Kuperberg et al., 2020). On
one popular account, predictions about upcoming
content are used to pre-activate linguistic repre-
sentations likely to be used when that content ar-
rives. The N400 reflects the integration of a rec-
ognized word with its context, and this integration
is facilitated just when the computational paths
taken by the integration process align with those
already pre-activated by the listener (Kutas and
Federmeier, 2011; Federmeier, 2007).

Despite the extensive research on the N400 and
its computational interpretation, its relationship
with the upstream process of word recognition is
still not well understood. Some authors have ar-
gued that integration processes should be tempo-
rally yoked to word recognition: that is, compre-
henders should continue gathering acoustic evi-
dence as to the identity of a word until they are suf-
ficiently confident to proceed with subsequent in-
tegration processes (Marslen-Wilson, 1987). It is
also possible, however, that integration processes
are insensitive to the progress of word recognition:
that integration is a temporally regular semantic
operation which begins regardless of the listener’s
confidence about the word being spoken (Hagoort,
2008; Federmeier and Laszlo, 2009).

Experimental studies have attempted to assess
the link between these two processes, modeling
the timing of word recognition through an offline
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behavioral paradigm known as gating (Grosjean,
1980): by presenting incrementally longer clips
of speech to subjects and asking them to predict
what word is being spoken, authors estimate the
time point at which there is sufficient information
to identify a word from its acoustic form. Sev-
eral EEG studies have asked whether the N400 re-
sponse varies with respect to this estimate of word
recognition time, but have arrived at contradic-
tory answers to this question (van den Brink et al.,
2006; O’Rourke and Holcomb, 2002).

In this paper, we introduce a computational
model which targets these dynamics of word
recognition, and their manifestation in neural EEG
signals recorded during naturalistic listening. The
model allows us to connect trial-level variation in
word recognition times to aspects of the neural re-
sponse to words. We use the model to address two
cross-cutting questions:

• Onset: Are words integrated only after they
are successfully recognized, or is the timing
of integration insensitive to the state of word
recognition?

• Response properties: Does the shape of the
neural response to words differ based on their
recognition times? If so, this could indicate
distinct inferential mechanisms deployed for
words depending on their ease of recognition.

We jointly optimize the cognitive and neural
parameters of this model to explain EEG data
recorded as subjects listened to naturalistic En-
glish speech. Model comparison results suggest
that semantic integration processes are not tem-
porally yoked to the status of word recognition:
the neural traces of word integration have just the
same temporal structure, regardless of when words
are successfully recognized. However, the neural
correlates of word integration qualitatively differ
based on the status of word recognition: words not
yet recognized by the onset of word integration ex-
hibit significantly different neural responses.

These results suggest a two-part model of word
recognition and integration. First, the success of
our word recognition model in predicting the neu-
ral response to words suggests that there exists
a rapid lexical interpretation process which inte-
grates prior expectations and acoustic evidence in
order to pre-activate specific lexical items in mem-
ory. Second, an independent integration process
composes these memory contents with a model of

Meaning Bounds

γ Recognition threshold (eq. 3) (0, 1)
λ Evidence temperature (eq. 2) (0,∞)
α Scatter point (eq. 4) (0, 1)
αp Prior scatter point (eq. 4) (0, 1)

k∗i Word wi’s recognition point (eq. 3) {0, 1, . . . , |wi|}
τi Word wi’s recognition time (eq. 4) [0,∞)

Table 1: Cognitive model parameters and outputs.

the context, following a clock which is insensitive
to the specific state of word recognition.

It is necessary to moderate these conclusions,
however: we also develop alternative models of
the neural correlates of word integration which im-
prove beyond the performance of our baselines,
without incorporating facts about the dynamics of
word recognition. We discuss in Section 4 how
more elaborate neural linking theories will be nec-
essary to better separate these very different cog-
nitive pictures of the process of word recognition
and its neural correlates.

1 Model

Our model consists of two interdependent parts: a
cognitive model of the dynamics of word recogni-
tion, and a neural model that estimates how these
dynamics drive the EEG response to words.

1.1 Cognitive model

We first design a cognitive model of the dynamics
of word recognition in context, capturing how a
listener forms incremental beliefs about the word
they are hearing wi as a function of the linguistic
context C and some partial acoustic evidence I≤k.
We formalize this as a Bayesian posterior (Norris
and McQueen, 2008):

P (wi | C, I≤k) ∝ P (wi | C) P (I≤k | wi) (1)

which factorizes into a prior expectation of the
word wi in context (first term) and a likelihood
of the partial evidence of k phonemes I≤k (sec-
ond term). This model thus asserts that the con-
text C and the acoustic input I≤k are conditionally
independent given wi. We parameterize the prior
P (wi | C) = P (wi | w<i) using a left-to-right
neural network language model. The likelihood is
a noisy-channel phoneme recognition model:

P (I≤k | wi) ∝
∏

1≤j≤k

P (Ij | wij)
1
λ (2)



where per-phoneme confusion probabilities are
drawn from prior phoneme recognition studies
(Weber and Smits, 2003) and reweighted by a tem-
perature parameter λ.

We evaluate this posterior for every word with
each incremental phoneme, from k = 0 (no in-
put) to k = |wi| (conditioning on all of the word’s
phonemes). We define a hypothetical cognitive
event of word recognition which is time-locked to
the phoneme k∗i where this posterior first exceeds
a confidence threshold γ:

k∗i = min
0≤k≤|wi|

{k | P (wi | C, I≤k) > γ} (3)

We define a word’s recognition time τi to be a frac-
tion α of the span of the k∗i -ith phoneme. In the
special case where k∗i = 0 and the word is confi-
dently identified prior to acoustic input, we take τi
to be a fraction αp of its first phoneme’s duration
(visualized in Figure 1a):

τi =

{
onsi(k∗i ) + α duri(k∗i ) if k∗i > 0

αp duri(1) if k∗i = 0
(4)

where onsi(k) and duri(k) are the onset time
(relative to word onset) and duration of the k-th
phoneme of word i, and α, αp are free parameters
fitted jointly with the rest of the model.

1.2 Neural model
We next define a set of candidate linking models
which describe how the dynamics of the cognitive
model (specifically, word recognition times τi) af-
fect observed neural responses. These models are
all variants of a temporal receptive field model
(TRF; Lalor et al., 2009; Crosse et al., 2016),
which predicts scalp EEG data over S sensors and
T samples, Y ∈ RS×T , as a convolved set of lin-
ear responses to lagged features of the stimulus:

Yst =
∑
f

τf∑
∆=0

Θf,s,∆ ×Xf,t−∆ + ϵst (5)

where τf is the maximum expected lag (in sec-
onds) between the onset of a feature f and its cor-
relates in the neural signal; and the inner sum is
accumulated in steps of the relevant neural sam-
pling rate. This deconvolutional model estimates a
characteristic linear response linking each feature
of the stimulus to the neural data over time. The
model allows us to effectively uncover the neural
response to individual stimulus features in natu-
ralistic data, where stimuli (words) arrive at a fast

Model name Onset Response properties

Baseline 0 unitary linear response
Shift τi (eq. 4) unitary linear response
Variable 0 independent linear re-

sponses for early-, mid-, and
late-recognized words

Prior-variable 0 independent linear responses
for low-, mid-, and high-
surprisal words

Table 2: Neural linking models with different commit-
ments about the temporal onset of word features (rela-
tive to word onset) and the flexibility of the parameters
linking word features to neural response.

rate, and their neural responses are likely highly
convolved as a consequence (Crosse et al., 2016).

We define a feature time series Xt ∈ Rdt×T

containing dt features of the objective auditory
stimulus, such as acoustic and spectral features,
resampled to match the T samples of the neural
time series. We also define a word-level feature
matrix Xv ∈ Rdw×nw for the nw words in the
stimulus. Crucially, Xv contains estimates of each
word’s surprisal (negative log-probability) in con-
text. Prior studies suggest that surprisal indexes
the peak amplitude of the naturalistic N400 (Frank
et al., 2015; Gillis et al., 2021; Heilbron et al.,
2022).

We assume that Xt causes a neural response in-
dependent of word recognition dynamics, while
the neural response to features Xv may vary as a
function of recognition dynamics. These two fea-
ture matrices will be merged together to yield the
design matrix X in Equation 5.

We enumerate several possible classes of neu-
ral models which describe different ways that a
word’s recognition time τi may affect the neural
response. Each model class constitutes a differ-
ent answer to our framing questions of onset and
response properties (Table 2 and Figure 1b), by
specifying different featurizations of word-level
properties Xv in the TRF design matrix X:

1. Unitary response aligned to word onset
(baseline model): All words exhibit a uni-
tary linear neural response to recognition and
integration, time-locked to the word’s onset
in the stimulus. This baseline model, which
does not incorporate the cognitive dynamics
of recognition in any way, is what has been
assumed by prior naturalistic modeling work.

This model asserts that each word’s features
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(a) Computation of recognition time τi for a recognition point
after phoneme k∗

i = 2 (left) or recognition prior to input,
k∗
i = 0 (right) for a spoken word fish /fIS/. See eq. 4.

1 = 0.08 2 = 0.1 3 = 0.2

Shift :  Unitary response, aligned to recognition time
w1
w2
w3

Variable :  Variable response, aligned to word onset
Recognition time

early {w1, w2}
late {w3}
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Time since word onset (s)

Baseline :  Unitary response, aligned to word onset
w1
w2
w3

(b) Candidate neural model logic linking three words’ recog-
nition times τi to neural modulations by surprisal.

Figure 1: Sketches of model logic.

Xvi trigger a neural response beginning at the
onset of word i, and that this neural response
can be captured by a single characteristic re-
sponse to all words.

2. Unitary response aligned to recognition time
(shift model): All words exhibit a unitary lin-
ear neural response to recognition and inte-
gration, time-locked to the word’s recogni-
tion time τi.

This model asserts that each word’s features
Xvi trigger a neural response beginning at τi
seconds after word onset, and that this neural
response can be captured by a single charac-
teristic response to all words.

3. Variable response by recognition time,
aligned to word onset (variable model):
Words exhibit a differential neural response
to recognition and integration based on their
recognition time. The temporal onset of
these integration processes is insensitive to
the progress of word recognition.

We account for variable responses by defin-
ing a quantile split Q : τ → N on the in-
ferred recognition times τi. We then estimate
distinct TRF parameters for the features of

words in each quantile.

This model thus asserts that it is possible to
group words by their recognition dynamics
such that they have a characteristic neural
response within-group, but differ freely be-
tween groups.

4. Variable response by word surprisal, aligned
to word onset (prior-variable model): This
model is identical to the above variable
model, except that words are divided into
quantiles based on their surprisal in context
rather than their recognition time.

This model instantiates the hypothesis that
the shape of the neural response to words
varies based on listeners’ expectations, but
only those driven by the preceding linguis-
tic context. On this reading, words are pre-
activated according to their prior probability,
rather than their rapidly changing posterior
probability under some acoustic input.1

For a set of recognition time predictions τi,
we estimate within-subject TRFs under each of
these linking models, yielding per-subject pa-
rameters Θj , describing the combined neural re-
sponse to objective stimulus features and word-
level features. This estimation procedure allows
for within-subject variation in the shape of the
neural response.

2 Methods and dataset

We jointly infer2 across-subject parameters of the
cognitive model (Table 1) and within-subject pa-
rameters of the neural model in order to minimize
regularized L2 loss on EEG data, estimated by
4-fold cross-validation. We then compare the fit
models on held-out test data, containing 25% of
the neural time series data for each subject. For
each comparison of models m1,m2, we compute
the Pearson correlation coefficient r between the
predicted and observed neural response for each
subject at each EEG sensor s. We then use paired
t-tests to ask whether the within-subject difference

1This reading is compatible with pre-activation theories
(e.g. Brothers and Kuperberg, 2021). At their present level
of specificity, it is unclear whether this focus on prior prob-
ability is a substantive commitment, or simply a choice of
modeling expediency.

2We conduct tree-structured Parzen estimator random
search (Bergstra et al., 2011) with Optuna (Akiba et al.,
2019).



in r pooled across sensors significantly differs be-
tween m1 and m2:

1

S

S∑
s=1

r
(
Ys, Ŷm1,s

)
?
>

1

S

S∑
s=1

r
(
Ys, Ŷm2,s

)
(6)

Dataset We analyze EEG data recorded as 19
subjects listened to Hemingway’s The Old Man
and the Sea, published in Heilbron et al. (2022).
The 19 subjects each listened to the first hour of
the recorded story while maintaining fixation. We
analyze 5 sensors distributed across the centro-
parietal scalp: one midline sensor and two lateral
sensors per hemisphere at central and posterior po-
sitions. The EEG data were acquired using a 128-
channel ActiveTwo system at a rate of 512 Hz, and
down-sampled offline to 128 Hz and re-referenced
to the mastoid channels. We follow the authors’
preprocessing method, which includes band-pass
filtering the EEG signal between 0.5 and 8 Hz, vi-
sual annotation of bad channels, and removal of
eyeblink components via independent component
analysis.3 The dataset also includes force-aligned
annotations for the onsets and durations of both
words and phonemes in these time series.

We generate a predictor time series Xt aligned
with this EEG time series (Appendix B), ranging
from stimulus features (features of the speech en-
velope and spectrogram) to sublexical cognitive
features (surprisal and entropy over phonemes).
By including these control features in our mod-
els, we can better understand whether or not there
is a cognitive and neural response to words dis-
tinct from responses to their constituent properties
(see Section 4.2 for further discussion). We gener-
ate in addition a set of word-level feature vectors
Xv ∈ R3×nw , consisting of an onset feature and

1. word surprisal in context, computed with
GPT Neo 2.7B (Black et al., 2021),4 and

2. word unigram log-frequency, from SUB-
TLEXus 2 (Brysbaert and New, 2009).

Likelihood estimation Our cognitive model re-
quires an estimate of the confusability between
English phonemes (Equation 2). We draw on
the experimental data of Weber and Smits (2003),

3See Appendix E for further details on our choice of band-
pass filter width.

4Preliminary experiments using our baseline model
showed that surprisal estimates from GPT Neo 2.7B best ex-
plained held-out EEG signals, compared among other sizes of
GPT Neo and OpenAI GPT-2 models (Radford et al., 2019;
Brown et al., 2020).
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Figure 2: Distribution of inferred recognition times
(relative to word onset) for all words, as predicted by
the optimal cognitive model parameters. Salmon ver-
tical lines indicate a tertile partition of words by their
recognition time; light yellow regions indicate the me-
dian duration of phonemes at each integer position
within a word. An example stimulus word, occasional,
is aligned with phoneme duration regions above the
graph.

who estimated patterns of confusion in phoneme
recognition within English consonants and vow-
els by asking subjects to transcribe spoken sylla-
bles. Their raw data consists of count matrices
ψc, ψv for consonants and vowels, respectively,
where each cell ψ[ij] denotes the number of times
an experimental subject transcribed phoneme j as
phoneme i, summing over different phonologi-
cal contexts (syllable-initial or -final) and differ-
ent levels of acoustic noise in the stimulus pre-
sentation. We concatenate this confusion data into
a single matrix, imputing a count of 1 for unob-
served confusion pairs, and normalize each col-
umn to yield the required conditional probability
distributions.

3 Results

We first evaluate the baseline model relative to a
TRF model which incorporates no word-level fea-
tures Xv except for a word onset feature, and find
that this model significantly improves in held-out
prediction performance (t = 4.91, p = 0.000113).
The model recovers a negative response to word
surprisal centered around 400 ms post word on-
set (Figure 6), which aligns with recent EEG stud-
ies of naturalistic language comprehension in both
listening (Heilbron et al., 2022; Gillis et al., 2021;
Donhauser and Baillet, 2020) and reading (Frank
et al., 2015).

We next separately infer optimal model parame-
ters for the shift and variable models, and evaluate
their error on held-out test data. We find that the
variable model significantly exceeds the baseline
model (t = 5.15, p = 6.70×10−5), while the shift
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Figure 3: Modulation of scalp voltage at a centro-parietal site by surprisal for words with early (< 64 ms, blue),
middle (< 159 ms, orange), or late (> 159 ms, green) recognition times. Lines denote inferred coefficients of word
surprisal in averaged over subjects for the sensor highlighted in the inset. Error regions denote s.e.m. (n = 19).
Inset: spatial distribution of surprisal modulations averaged for each recognition time quantile within vertical gray
regions, where less saturated colors denote more negative response. The surprisal response peaks ∼400 ms post
onset, amplified for late-recognized words (green).

model does not (t = 2.23, p = 0.039).5 This sug-
gests that neural responses to words are not simply
temporally yoked to their recognition times.

We next investigate the parameters of the opti-
mal variable model. Figure 2 shows the distribu-
tion of predicted word recognition times τi under
the optimal variable model on stimulus data from
the held-out test set, charted relative to the onset
of a word. Our model predicts that one third of
words are recognized prior to 64 ms post word on-
set, another third are recognized between 64 ms
and 159 ms, and a long tail are recognized after
159 ms post word onset. This entails that at least
a third of words are recognized prior to any mean-
ingful processing of acoustic input. This predic-
tion aligns with prior work in multiple neuroimag-
ing modalities, which suggests that listeners pre-
activate features of lexical items far prior to their
acoustic onset in the stimulus (Wang et al., 2018;
Goldstein et al., 2022).

These inferred recognition times maximize the
likelihood of the neural data under the linking vari-
able model parameters Θ. Figure 3 shows the vari-
able model’s parameters describing a neural re-
sponse to word surprisal for each of three recog-
nition time quantiles, time locked to word onset.
We see two notable trends in the N400 response

5A direct comparison of the variable model and shift
model performance also favors the variable model (t =
5.49, p = 3.24× 10−5).

which differ as a function of recognition time:

1. Figure 3 shows word surprisal modulations
estimated at a centro-parietal site for the three
recognition time quantiles. Words recog-
nized late (159 ms or later post word on-
set) show an exaggerated modulation due to
word surprisal. The peak negative amplitude
of this response is significantly more nega-
tive than the peak negative response to early
words (fig. 3, green line peak minus blue
line peak in the shaded region; within-subject
paired t = −5.23, p = 5.71 × 10−5). This
modulation is spatially distributed similarly
to the modulation for early-recognized words
(compare the green inset scalp distribution to
that of the blue and orange scalps).

2. There is no significant difference in the la-
tency of the N400 response for words recog-
nized early vs. late. The time at which the
surprisal modulation peaks negatively does
not significantly differ between early and late
words (fig. 3, green line peak time minus
blue line peak time; within-subject paired
t = 2.17, p = 0.0440).

These model comparisons and analyses of opti-
mal parameters yield answers to our original ques-
tions about the dynamics of word recognition and
integration:



Response properties: Neural modulations
due to surprisal are exaggerated for words recog-
nized late after their acoustic onset.

Onset: The variable model, which asserted
integration processes are initiated relative to
words’ onsets rather than their recognition times,
demonstrated a better fit to the data. The opti-
mal parameters under the variable model further
showed that while word recognition times seem to
affect the amplitude of neural modulations due to
surprisal, they do not affect their latency.

3.1 Prior-variable model

We compute a surprisal-based quantile split over
words in the training dataset. The first third of
low-surprisal words had a surprisal lower than
1.33 bits, while the last third of high-surprisal
words had a surprisal greater than 3.71 bits.

We next estimate the prior-variable neural
model parameters, which describe independent
neural responses to words in low-, mid-, and high-
surprisal quantiles. This model also significantly
exceeds the baseline model (t = 7.78, p = 3.64×
10−7; see Appendix C for inferred model param-
eters). Figure 4 shows a comparison of the way
the prior-variable model and the variable model
sorted words into different quantiles. While the
two models rarely made predictions at the oppo-
site extremes (labeling a low-surprisal word as
late-recognized, or a high-surprisal word as early-
recognized; bottom left and upper right black cor-
ners in fig. 4a), there were many disagreements in-
volving sorting words into neighboring time bins
(off-diagonal in fig. 4a). Figures 4b and 4c show
some meaningful cases in which the models dis-
agree to be due to differences in the relevant
phonological neighborhood early in the onset of
a word. Figure 4c shows the recognition model’s
posterior belief over words (eq. 1) given the incre-
mental phonetic input at the top of the graph. The
left panel of Figure 4c shows how the word disgust
is recognized relatively late due to a large num-
ber of contextually probable phonological neigh-
bors (such as dismay and despair); the right panel
shows how the word knelt is recognizable rela-
tively early, since most of the contextually prob-
able completions (took, had) are likely to be ruled
out after the presentation of a second phone.

The variable model’s generalization perfor-
mance is not significantly different than that of this
prior-variable model (t = −0.422, p = 0.678).

Future work will need to leverage other types of
neural data to distinguish these models. We dis-
cuss this further in Section 4 and the Limitations
section.

4 Discussion

This paper presented a cognitive model of word
recognition which yielded predictions about the
recognition time of words in context τi. A sec-
ond neural linking model, the variable model, es-
timated the neural response to words recognized at
early, intermediate, and late times according to the
cognitive model’s predictions. This latter model
significantly improved in held-out generalization
performance over a baseline model which did not
allow for differences in the neural signal as a func-
tion of a word’s recognition time. We also found,
however, that a neural model which estimated dis-
tinct shapes of the neural response to words based
on their surprisal — not their recognition times —
also improved beyond our baseline, and was indis-
tinguishable from the variable model. More elabo-
rate neural linking theories describing how words’
features drive the neural response will be neces-
sary to distinguish these models (see e.g. the en-
coding model of Goldstein et al., 2022).

Our positive findings are consistent with a two-
part model of auditory word recognition and in-
tegration, along the lines suggested by van den
Brink et al. (2006) and Hagoort (2008, §3c). In
this model, listeners continuously combine their
expectations with evidence from sensory input in
order to load possible lexical interpretations of the
current acoustic input into a memory buffer. Our
model’s prediction of a word’s recognition time τi
measures the time at which this buffer resolves in
a clear lexical inference.

A second integration process reads out the con-
tents of this buffer and merges them with repre-
sentations of the linguistic context. Our latency
results show that the timing of this process is
independent of a listener’s current confidence in
their lexical interpretations, instead time-locked
to word onset. This integration process thus ex-
hibits two distinct modes depending on the lis-
tener’s buffer contents: one standard, in which the
buffer is clearly resolved, and one exceptional, in
which the buffer contents are still ambiguous, and
additional inferential or recovery processes must
be deployed in order to proceed with integration.
Future work could spell out this distinction mech-
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(b) Examples of disagreements in word labeling between the prior-
only model and the recognition model.

0.0 0.2 0.4 0.6 0.8 1.0
Evidence for word

d sg st
d sm
d sp

d sb lif
ð

W
or

d

d sg

0.0 0.2 0.4 0.6 0.8 1.0
Evidence for word

n lt
t k

hæd
d d
w z

W
or

d

n

(c) Example posterior predictive distributions for words recognized
late due to a dense neighborhood (left); and early due to a sparse
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Figure 4: Differing predictions of the word recognition model and the prior-variable (surprisal-based) model.

anistically in order to explain how buffers in the
“exceptional” state elicit these distinct neural re-
sponses.

4.1 What determines integration timing?

Our findings on the stable timing of the natural-
istic N400 align with some prior claims in the ex-
perimental ERP literature (Federmeier and Laszlo,
2009, §5).6 These results strengthen the notion
that, even in rapid naturalistic environments, the
timing of the early semantic integration of word
meanings is driven not by when words are recog-
nized, but rather by the tick of an external clock.

If this integration process is not sensitive to
the status of word recognition, then what drives
its dynamics? Federmeier and Laszlo (2009) ar-
gue that this regularly timed integration process is
language-external, functioning to bind early rep-
resentations of word meaning with existing cog-
nitive representations of the context via temporal
synchrony (see also Kutas and Federmeier, 2011).
However, other language-internal mechanisms are
also compatible with the data. Listeners may adapt
to low-level features of the stimulus, such as their
counterpart’s speech rate or prosodic cues, manip-
ulating the timing of integration to maximize the

6This is a claim about the within-subject consistency of
N400 timing, despite substantial between-subject variability,
for example, by age and language experience (Federmeier
and Laszlo, 2009).

chances of success in the expected case.7

Alternatively, listeners may use the results of
the word recognition process to schedule upcom-
ing attempts at word integration. After recogniz-
ing each word wi, listeners may form an expecta-
tion about the likely onset time of word wi+1, us-
ing knowledge about the form ofwi and the speech
rate. Listeners could instantiate a clock based
on this prediction, counting down to a time some
fixed distance from the expected onset of wi+1, at
which semantic integration would be most likely
to succeed on average. Such a theory could ex-
plain how word recognition and integration are at
least approximately optimal given limited cogni-
tive resources (Simon, 1955; Lieder and Griffiths,
2020): they are designed to successfully process
linguistic inputs in expectation, under the archi-
tectural constraint of a fixed integration clock.

4.2 Words as privileged units of processing
Our results suggest that words exist at a privi-
leged level of representation and prediction dur-
ing speech processing. This is not a necessary
property of language processing: it is possible
that word-level processing effects (neural or be-
havioral responses to word-level surprisal) could
emerge as an epiphenomenon of lower-level pre-

7See Verschueren et al. (2022, Figure 6 and Table 4)
for evidence against this point, demonstrating that controlled
variation in stimulus speech rate does not affect the latency
of the N400 response.



diction and integration of sublexical units, e.g.,
graphemes or phonemes. Smith and Levy (2013,
§2.4) illustrate how a “highly incremental” model
which is designed to predict and integrate sublex-
ical units (grapheme- or phoneme-based predic-
tion) but which is measured at higher levels (in
word-level reading times or word-level neural re-
sponses) could yield apparent contrasts that are
suggestive of word-level prediction and integra-
tion. On this argument, neural responses to word-
level surprisal are not alone decisive evidence for
word-level prediction and integration (versus the
prediction and integration of sub-lexical units).

Our results add a critical orthogonal piece of ev-
idence in favor of word-level integration: we char-
acterized an integration architecture whose timing
is locked to the appearance of word units in the
stimulus. While the present results cannot iden-
tify the precise control mechanism at play here
(section 4.1), the mere fact that words are the tar-
get of this timing process indicates an architecture
strongly biased toward word-level processing.

4.3 Prospects for cognitive modeling

The cognitive model of word recognition intro-
duced in this paper is an extension of Shortlist B
(Norris and McQueen, 2008), a race architecture
specifying the dynamics of single-word recogni-
tion within sentence contexts. We used neural net-
work language models to scale this model to de-
scribe naturalistic speech comprehension. While
we focus here on explaining the neural response
to words, future work could test the predictions of
this model in behavioral measures of the dynamics
of word recognition, such as lexical decision tasks
(Tucker et al., 2018; Ten Bosch et al., 2022).

5 Conclusion

This paper presented a model of the cognitive and
neural dynamics of word recognition and inte-
gration. The model recovered the classic N400
integration response, while also detecting a dis-
tinct treatment of words based on how and when
they are recognized: words not recognized until
more than 150 ms after their acoustic onset ex-
hibit significantly amplified neural modulations by
surprisal. Despite this processing difference, we
found no distinction in the latency of integration
depending on a word’s recognition time.

However, we developed an alternative model of
the neural signal not incorporating word recog-

nition dynamics which also exceeded baseline
models describing the N400 integration response.
More substantial linking hypotheses bridging be-
tween the cognitive state of the word recognition
model and the neural signal will be necessary to
separate these distinct models.

Limitations

There are several important methodological limi-
tations to the analyses in this paper.

We assume for the sake of modeling expedi-
ency that all listeners experience the same word
recognition dynamics in response to a linguistic
stimulus. Individual differences in contextual ex-
pectations, attention, and language knowledge cer-
tainly modulate this process, and these differences
should be accounted for in an elaborated model.

We also assume a relatively low-dimensional
neural response to words, principally asserting
that the contextual surprisal of a word drives the
neural response. This contrasts with other re-
cent brain mapping evaluations which find that
high-dimensional word representations also ex-
plain brain activation during language compre-
hension (Goldstein et al., 2022; Caucheteux and
King, 2022; Schrimpf et al., 2021). A more
elaborate neural linking model integrating higher-
dimensional word representations would likely al-
low us to capture much more granular detail at the
cognitive level, describing how mental representa-
tions of words are retrieved and integrated in real
time. Such detail may also allow us to separate the
two models (the variable and prior-variable mod-
els) which were not empirically distinguished by
the results of this paper.

Acknowledgments

We thank Aixiu An, Jacob Andreas, Canaan
Breiss, Trevor Brothers, Tyler Brooke Wilson,
Samer Nour Eddine, Evelina Fedorenko, Micha
Heilbron, Shailee Jain, Peng Qian, Cory Shain,
Jakub Szewczyk, and Josh Tenenbaum for com-
ments on earlier versions of this paper. We thank
Micha Heilbron, Marlies Gillis, and Tamar Regev
for invaluable advice on EEG data analysis, and
for sharing analysis code and data. JG grate-
fully acknowledges support from the Open Philan-
thropy Project and RPL gratefully acknowledges
support from a Newton Brain Science Research
Seed Award.



References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Paul D Allopenna, James S Magnuson, and Michael K
Tanenhaus. 1998. Tracking the time course of spo-
ken word recognition using eye movements: Evi-
dence for continuous mapping models. Journal of
memory and language, 38(4):419–439.
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model is stated at the computational level and is
thus not directly comparable in this respect. Fu-
ture modeling work can instantiate specific repre-
sentational alternatives within this predictive word
recognition model and explore how their predic-
tions might settle these questions.

B Model featurization

We use a subset of the sublexical features from
Heilbron et al. (2022) in our TRF models (named
as Xt in Section 1.2). These features are shared
across all models tested in our main and baseline
analysis:

• onset features for each phoneme in the audio
stimulus;

• phoneme-onset aligned features:

– acoustic control features, averaged
within the span of a phoneme: average
variance in the broadband envelope,
and spectral power measures averaged
within eight bins spaced evenly on a
log-mel scale

– the entropy over a next-phoneme distri-
bution P (pj | wi,<j) and the surprisal of
the ground-truth phoneme, using the hi-
erarchical predictive model of Heilbron
et al. (2022) (see below).

B.1 Phoneme probability estimator
The phoneme model of Heilbron et al. (2022),
whose surprisal and entropy measures we use as
control predictors, combines a word-level lan-
guage model prior and a cohort-based likelihood.
For some prior phoneme sequence p1, . . . , pt−1

and some incoming phoneme pt in a linguistic
context C, we define

P (pt | p1, . . . , pt−1, C)

∝
∑
w∈V

P (w | C, p1, . . . , pt−1)P (pt | w)

=
∑
w∈V

P (w | C)1{w ∈ Coh(p1, . . . , pt−1, pt}

(7)

where V is a vocabulary of all possible word
forms, and Coh(p1, . . . , pt) denotes the cohort of a
phoneme sequence p1, . . . , pt — i.e., all the words
which share the given prefix of phonemes.

This model thus effectively renormalizes a lan-
guage model’s word-level prior P (w | C) among

words which are exactly phonologically compat-
ible with an observed prefix. See Heilbron et al.
(2022) for further details on the model specifica-
tion.

C Inferred neural response under the
prior-variable model

Figure 5 shows the inferred neural response to
words of different surprisal quantiles under the
prior-variable model described in Section 3.1. We
see an amplified negative peak in high-surprisal
words, similar to that in Figure 3 for late-
recognized words.

D Baseline estimates of the neural
response to surprisal

Figure 6 shows the baseline model’s estimated re-
sponse to a word’s surprisal. The model recov-
ers the standard broad negative response centered
around 400 ms post word onset, which aligns with
recent EEG studies of naturalistic language com-
prehension in both listening (Heilbron et al., 2022;
Gillis et al., 2021; Donhauser and Baillet, 2020)
and reading (Frank et al., 2015).

Figure 7 shows estimates of the neural response
to phoneme surprisal from both the baseline model
and the optimal variable model. All models tested
in this paper included this phoneme surprisal pre-
dictor; the main results of the paper thus tar-
get neural activity above and beyond what is ex-
plained by phoneme-level responses. See Sec-
tion 4.2 for further discussion.

E Choice of band-pass filter

A critical preprocessing step in our data analy-
sis is to band-pass filter the raw EEG signal, re-
taining signals within a frequency window of 0.5–
8 Hz. This choice of filter parameters is similar to
that of other recent studies of naturalistic language
comprehension which use temporal receptive field
models (see e.g. Gillis et al., 2021; Heilbron et al.,
2022). A reviewer points out, however, that this
filter window is substantially narrower than that
of classic controlled studies of the evoked N400
based on trial-averaging ERP analyses (e.g. Ku-
tas and Hillyard, 1984; Brown and Hagoort, 1993;
Brothers et al., 2023). This choice of narrow filter
parameters for our temporal receptive field analy-
sis has several motivations:

1. We wish to focus on evoked responses time-
locked to events (e.g. onsets of words and
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Figure 6: Modulation of scalp voltage by word sur-
prisal in the baseline model at a central posterior sen-
sor, highlighted in inset figure. Error regions denote
s.e.m. (n = 19). Inset: spatial distribution of sur-
prisal modulations averaged within vertical gray re-
gion, where less saturated colors denote more negative
response.

phonemes, and changes in cognitive state due
to those stimuli) with rates around this fre-
quency range. Including a wider spectrum
adds variance to the signal which we cannot
explain using our features of interest,

2. A high low-cut (more aggressive high-pass
filter) allows us to account for signal drift;
while this is handled through baselining and
detrending in classic ERP analyses, temporal
receptive field models have no equivalent ca-
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Figure 7: Modulation of scalp voltage at the same cen-
tral parietal sensor used in Figure 3 by phoneme sur-
prisal, estimated in the baseline model and the optimal
variable model. Error regions denote s.e.m. (n = 19).

pacity to explain drift in the signal.

However, it is possible that this choice of fil-
ter parameters could introduce artifacts in the fil-
tered signal which affect the outcomes of our
N400-focused analysis. In particular, Tanner et al.
(2015) point out that aggressive high-pass filters
(∼ 0.5 Hz and above) can conflate evoked N400
responses with later ERPs such as the P600, and
yield inflated estimates of N400 amplitude.

E.1 Stability of the baseline model
We thus conducted a post-hoc stability analysis to
better understand the sensitivity of this paradigm



Low cut High cut Result

0.5 Hz 8 Hz t = 4.91, p = 0.000113
0.3 Hz 8 Hz t = 3.26, p = 0.00435
0.1 Hz 20 Hz t = 1.95, p = 0.0666
0.1 Hz 8 Hz t = 1.84, p = 0.0826

Table 3: Post-hoc stability checks on the baseline
model comparison with respect to the low- and high-
cut of the band pass filter.

to our choice of band-pass filter parameters. We
first repeated our initial model comparison on
EEG data preprocessed with different band-pass
filter parameters. This model comparison evalu-
ates the improvement in predictive performance
of a temporal receptive field model which in-
corporates control acoustic-phonetic features and
word-level features (word surprisal and frequency)
above a model which does not include these word-
level features. (This is the same model comparison
described in the beginning of Section 3.) Table 3
shows the results of this evaluation.

We find that the predictive power of these word-
level features diminishes as we decrease the low-
cut frequency: beneath 0.3 Hz, this model compar-
ison no longer shows a significant improvement in
prediction due to word-level features. We do not
take this result to invalidate the claim that word
surprisal yields an evoked EEG response in nat-
uralistic comprehension, since this has been sup-
ported in other studies of naturalistic comprehen-
sion with classic trial-averaging methods (Frank
et al., 2015).

However, it is important to check whether the
central finding of this paper — which rests on
an inflated N400 amplitude in response to some
types of words — is sensitive to these parameter
changes. In the next section, we reproduce our
main qualitative findings for those preprocessing
parameters which yield a clear positive baseline
outcome of the evoked N400 response to surprisal.

E.2 Stability of our main findings

The argument of Tanner et al. (2015) would pre-
dict that the inflated N400 amplitude we observe
in response to late-recognized words could be ex-
plained away as an artifact of the high-pass fil-
ter, which could confound the N400 with a later
evoked response (such as the P600). If this finding
were purely artifactual, then if we were to relax
this high-pass filter, we should see an attenuation

of the inflated N400 response and an amplification
of a P600 response.

We thus re-fit the temporal receptive field pa-
rameters of the optimal variable model described
in this paper on EEG data preprocessed with a
low-cut of 0.3 Hz, the lowest frequency cut at
which the baseline model clearly establishes that
an evoked surprisal response is readable in the sig-
nal. Figure 8 shows the estimated neural modula-
tion by word surprisal in these preprocessed data.

We found that this variable model displayed
the same qualitative patterns in neural parameters.
Quantitatively, we found a similar effect size of in-
flated N400 amplitude (fig. 8 green line peak mi-
nus blue line peak in the shaded region; within-
subject paired t = −5.03, p = 8.71× 10−5).8

These supplementary analyses suggest that our
main findings are stable to different parameteriza-
tions of a high-pass filter in EEG preprocessing.

F Reproducibility information

We jointly estimated the parameters of the cogni-
tive model together with the hyperparameters and
parameters of the neural linking model using mul-
tivariate tree-structured Parzen estimator random
search (Bergstra et al., 2011) with Optuna (Akiba
et al., 2019). For subjects i = 1, . . . , N , sensors
s = 1, . . . , S, and held-out EEG time series data
for subject i at sensor s Yi,s, we maximized the
value V :

V =
1

N

N∑
i=1

(
max

s∈{1,...,S}
r(Yi,s, Ŷi,s)

)
(8)

which is the average across subjects of the maxi-
mal Pearson correlation of predicted and observed
EEG response among all sensors. Table 4 shows
the precise bounds for each parameter and hyper-
parameter in this search procedure. We evaluated
20 trials (random settings of parameters) for the
baseline model (which only incorporated the L2
coefficient), and 500 trials for all other models.
The model results presented in this paper (in vi-
sualizations and statistical tests) correspond to the
highest-performing outcome of each grid search.

Table 5 shows the total count of free parameters
under optimization. These counts do not include
the parameters of the language model used to com-
pute word surprisal, or the word recognition model

8Our latency foundings also held null (green line peak
time minus blue line peak time; within-subject paired t =
2.17, p = 0.043).
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Figure 8: Modulation of scalp voltage at a centro-parietal site by surprisal for words of different recognition time
quantiles (according to the variable model of Figure 3), estimated on EEG data band-pass filtered with a low-cut
of 0.3 Hz.

(Hyper)Parameter Bounds Notes

Regression L2 coefficient [102, 107] Logarithmic space. Bounds manually
selected and restricted based on early
runs of each model in order to reduce
total runtime

γ (recognition threshold) (0, 1)
λ (evidence temperature) [0.1, 3]
α (scatter point) [0, 1]
αp (prior scatter point) [0, 1]

Table 4: Specifications for parameter and hyperparameter bounds in random search. For details on the meaning of
these parameters, see Table 1.

likelihood parameters, since these were kept fixed
during optimization.

All temporal receptive field models were fit
with a receptive field ranging from 0 ms to 750
ms post word onset.

We implemented all training and inference with
GPU operations in PyTorch. Due to the large
memory requirements of the EEG time series data
and the lagged regression computations, we de-
ployed each model fit on two NVIDIA A100
GPUs. Each of the model fits completed in two
days or fewer.



Model class Parameter count Decomposition

Baseline 138,226 138,225 TRF parameters + 1 hyperparameter
Shift 147,446 147,440 TRF parameters + 5 cognitive parameters + 1 hy-

perparameter
Variable 230,381 230,375 TRF parameters + 5 cognitive parameters + 1 hy-

perparameter
Prior-variable 230,375 230,374 TRF parameters + 1 hyperparameter

Table 5: Number of free parameters in all fitted models.


