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Abstract
Online machine learning systems need to adapt
to domain shifts. Meanwhile, acquiring label at
every timestep is expensive. We propose a surpris-
ingly simple algorithm that adaptively balances
its regret and its number of label queries in set-
tings where the data streams are from a mixture
of hidden domains. For online linear regression
with oblivious adversaries, we provide a tight
tradeoff that depends on the durations and dimen-
sionalities of the hidden domains. Our algorithm
can adaptively deal with interleaving spans of in-
puts from different domains. We also generalize
our results to non-linear regression for hypothesis
classes with bounded eluder dimension and adap-
tive adversaries. Experiments on synthetic and
realistic datasets demonstrate that our algorithm
achieves lower regret than uniform queries and
greedy queries with equal labeling budget.

1. Introduction
Domain shift, the difference between training and testing
distributions, is a major bottleneck for many machine learn-
ing applications (Kouw & Loog, 2018). For example, bio-
imaging model learned from one hospital may not transfer
to machines in another hospital (Xu & Yang, 2011). Even
imperceptible natural distributional shift can cause big drops
in accuracy for many existing models (Recht et al., 2018;
2019; Engstrom et al., 2020). Principled algorithms for do-
main adaptation require strong assumptions on the types of
domain shift (Ben-David et al., 2010). On the other hand,
learning the shift requires strong generative models (Hoff-
man et al., 2017).

Online learning is a classical theoretical framework to deal
with worst-case domain shift (Hazan, 2019). In online learn-
ing, even though the data is assumed to be given adversari-
ally, strong regret bounds are attainable for many problems.
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So far, practical deployments of fully online learning sys-
tems has been somewhat limited, because labels are expen-
sive to obtain; see Strickland (2018) for an example in fake
news detection. Even if a system only acquires a small set
of labels periodically, a label budget linear in time is still a
luxury.

Cesa-Bianchi et al. (2004b) study label-efficient online learn-
ing for prediction with expert advice. Their algorithm
queries the label of every example with a fixed probabil-
ity, which, as they show, achieves minimax-optimal regret
and query complexity for this problem. However, querying
with uniform probability does not take into account the al-
gorithm’s uncertainty on each individual example, and thus
can be suboptimal when the problem has certain favorable
structures. For example, a sequence of online news may
come from the mixture of a few topics or trends, and some
news topics may require more samples to categorize well
compared to others.

We aim to improve label-efficiency in online regression by
exploiting hidden domain structures in the data. We assume
that each input is from one of m potentially overlapping
domains. For each input, the learner makes a prediction,
incurs a loss, and decides whether to query its label. The
regret of the learner is defined as the difference between its
cumulative loss and that of the best predictor in hindsight.
We assume realizability, i.e., there exists a predictor that
is Bayes optimal across all the domains. This is a reason-
able assumption in modern machine learning, since features
can be high-dimensional (so that different domain may rely
on different features), and models are often overparameter-
ized (Zhang et al., 2016). Our goal is to trade off between
regret and query complexity: given a fixed label budget, we
hope to achieve a regret as low as possible.

We propose QuFUR (Query in the Face of Uncertainty for
Regression), a surprisingly simple query scheme based on
uncertainty quantification. We start with online linear re-
gression from Rd to R with an oblivious adversary. In the
realizable setting, with additional regularity conditions, we
provide the following regret guarantee of QuFUR with label
budget B: for any partition of [T ] into domains, I1, . . . , Im,
if for every u in [m], the u-th domain Su = {xt : t ∈ Iu}
has Tu examples and lies in a du-dimensional subspace of
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Rd, the regret is Õ((
∑m
u=1

√
duTu)2/B) (Theorem 2).1

When choosing m = 1 and I1 = [T ], we see that the re-
gret of QuFUR is at most Õ(dT/B), matching minimax
lower bounds (Theorem 7) in this setting. The advantage
of QuFUR’s adaptive regret guarantees becomes signifi-
cant when the domains have heterogeneous time spans and
dimensions. For example, (

∑m
u=1

√
duTu)2 can be substan-

tially less than dT when the Tu/du’s are heterogeneous
across different u’s. As an example, if d = m, d1 = d2 =
. . . = dm = 1, T1 = T − m + 1, T2 = . . . = Tm = 1,
(
∑m
u=1

√
duTu)2 = O

(
T +m2

)
, which is substantially

less than dT = O (mT ) when 1 � m � T . Using
standard online-to-batch conversion (Cesa-Bianchi et al.,
2004a), we also obtain novel results in batch active learning
for regression (Theorem 12). Furthermore, we also define
a stronger notion of minimax optimality, namely hidden
domain minimax optimality, and show that QuFUR is opti-
mal in this sense (Theorem 3), for a wide range of domain
structure specifications.

We generalize our results to online regression with general
hypothesis classes against an adaptive adversary. We ob-
tain a similar regret-query complexity tradeoff, where the
analogue of du is (roughly) the eluder dimension (Russo &
Van Roy, 2013) of the hypotheses class with respect to the
support of domain u (Theorem 4).

Experimentally, we show that our algorithm outperforms
the baselines of uniform and greedy query strategies, in a
synthetic experiment and several LIBSVM datasets (Chang
& Lin, 2011).

2. Related works
Active learning. We refer the readers to Balcan et al.
(2009); Hanneke (2014); Dasgupta et al. (2008); Beygelz-
imer et al. (2010) and the references therein for background
on active learning. For classification, a line of work (Das-
gupta & Hsu, 2008; Minsker, 2012; Kpotufe et al., 2015;
Locatelli et al., 2017) performs hierarchical sampling for
nonparametric active learning. The main idea is to maintain
a hierarchical partitioning over the instance domain (either
a pre-defined dyadic partition or a pre-clustering over the
data), and “zooms” into uncertainty regions whose confi-
dence interval of P (y = 1|x) contains 1/2. For regression,
many works (Fedorov & Hackl, 2012; Chaudhuri et al.,
2015) study the utility of active learning for maximum like-
lihood estimation in the realizable setting. Recent works
also study active linear regression in nonrealizable (Drineas
et al., 2006; Derezinski et al., 2018; Dereziński & Warmuth,
2018; Sabato & Munos, 2014) and heteroscedastic (Chaud-
huri et al., 2017; Fontaine et al., 2019) settings. These

1Throughout this paper, denote by [n] := {1, . . . , n}; nota-
tions Õ and Ω̃ hide logarithmic factors.

works do not consider domain structures except for Sabato
& Munos (2014), who propose a domain-aware active sam-
pling scheme. Their algorithm needs to know the domain
partition a priori, and its performance depends on the quality
of the partition. The empirical works of Rai et al. (2010);
Saha et al. (2011); Xiao & Guo (2013) study stream-based
active learning when inputs comes from pre-specified source
and target domains. Our algorithm handles multiple do-
mains, and does not require knowledge of which domain
the inputs come from.

Active online learning. Earlier works on selective sam-
pling when iid data arrives in a stream and a label querying
decision has to be made after seeing each example (Cohn
et al., 1994; Dasgupta et al., 2008; Hanneke, 2011) implic-
itly provide online regret and label complexity guarantees.
Works on worst-cast analysis of selective sampling for lin-
ear classification (Cesa-Bianchi et al., 2006) provide regret
guarantees similar to that of popular online linear classi-
fication algorithms such as Perceptron and Winnow, but
their label complexity guarantees are runtime-dependent
and therefore cannot be easily converted to a guarantee that
only involves problem parameters defined apriori. Subse-
quent works (Cesa-Bianchi et al., 2009; Dekel et al., 2010;
Cavallanti et al., 2011; Agarwal, 2013) study the setting
where there is a parametric model on P (y|x, θ) with un-
known parameter θ, and the x’s shown can be adversarial.
Under those assumptions, they obtain regret and query com-
plexity guarantees dependent on the fraction of examples
with low margins. Yang (2011) gives a worst-case analy-
sis of active online learning for classification with drifting
distributions, under the assumption that the Bayes optimal
classifier is in the hypothesis class given to the learner. In
contrast, our work gives adaptive regret guarantees in terms
of the hidden domain structure in the data, and focuses on
regression instead of classification.

KWIK model. In the KWIK model (Li et al., 2011), at
each time step, the algorithm is asked to either query the
label (and output “Don’t know”) or predict an output with
at most ε error. In contrast, in our setting, the learner’s goal
is to minimize its cumulative regret, as opposed to making
pointwise-accurate predictions. Cesa-Bianchi et al. (2009)
study linear regression in the KWIK-model, and propose
an algorithm similar to ours; unlike our work, they do not
consider the algorithm’s adaptivity to domain structures.
Szita & Szepesvári (2011) propose an algorithm that works
in an agnostic setting, where the error guarantee at every
round depends on the agnosticity of the problem. A relaxed
KWIK model that allows a prespecified number of mistakes
has been studied in (Sayedi et al., 2010; Zhang & Chaudhuri,
2016).



Active Online Domain Adaptation

Adaptive/Switching Regret. Adaptive regret (Hazan &
Seshadhri, 2007; Daniely et al., 2015) is the excessive loss
of an online algorithm compared to the locally optimal solu-
tion over any continuous timespan. Our algorithm can be
interpreted as being competitive with the locally optimal so-
lution on every domain, even if the timespans of the domains
are not continuous, which is closer to the concept of switch-
ing regret with long-term memory studied in e.g, (Bousquet
& Warmuth, 2002; Zheng et al., 2019). However, typical
bounds for this regret measure have a polynomial depen-
dence on the number of domain switches, which does not
appear in our bounds at all.

Online linear regression. Literature on fully-supervised
online linear regression has a long history (Vovk, 2001;
Azoury & Warmuth, 2001). As is implicit in Cesa-Bianchi
et al. (2004b), we can reduce from fully-supervised online
regression to active online regression by querying uniformly
randomly with a fixed probability. Combining this reduc-
tion with existing online linear regression algorithms (Hazan
et al., 2007), we get Õ(dT/B) regret with O(B) queries for
any B ≤ T . Our bound matches this in the realizable and
oblivious setting when there is one domain, and is poten-
tially better with more domain structures.

3. Setup and Preliminaries
3.1. Setup

Active online learning with squared loss Let F = {f :
X → [−1, 1]} be a hypotheses class. We consider the
realizable setting where yt = f∗(xt) + ξt for some f∗ ∈
F and random noise ξt. The adversary decides f∗ ∈ F
before interaction starts. ξt’s are independent zero-mean,
sub-Gaussian random variables with variance proxy η2.

The learner is given a label budget B. For each t =
1, . . . , T :

• xt is revealed to the learner.

• The learned predicts ŷt = f̂t(xt) using predictor f̂t ∈
F , incurring loss (ŷt − yt)2.

• The learner sets a query indicator qt ∈ {0, 1}. If qt =
1, yt is revealed.

The performance of the learner is measured by its query com-
plexityQ =

∑T
t=1 qt and regretR =

∑T
t=1 (ŷt − f∗(xt))2.

By our realizability assumption, our notion of regret coin-
cides with the one usually used in online learning when
taking expectations; see Appendix D. Our goal is to de-
sign a learner that has low regret R subject to its budget
constraint Q ≤ B.

Oblivious vs. adaptive adversary In the oblivious set-
ting, the adversary decides the sequence {xt}Tt=1 before-
hand. In the adaptive setting, the adversary can choose xt
depending on {x1:t−1, f1:t−1, ξ1:t−1}.

Miscellaneous notations For a vector v ∈ Rd and a pos-
itive semidefinite matrix M ∈ Rd×d, ‖v‖M :=

√
v>Mv.

For vectors {zt}Tt=1 ⊆ Rl, and S = {i1, . . . , in} ⊆ [T ], de-
note by ZS the n×l matrix whose rows are z>i1 , . . . , z

>
in

. De-
fine clip(z) := min(1,max(−1, z)) and η̃ := max{1, η}.

3.2. Baselines

We first study linear regression with oblivious adversary,
and generalize to non-linear case with adaptive adversary
in Section 5. For now, hypothesis class F = {〈x, θ〉 : θ ∈
Rd, ‖θ‖2 ≤ C}. Let the ground truth hypothesis be θ∗, and
input spaceX be a subset of {x ∈ Rd : ‖x‖2 ≤ 1, 〈x, θ∗〉 ≤
1}. 2

Uniform query is minimax-optimal with no domain
structure As a baseline, consider the algorithm that al-
ways queries and returns the regularized least squared
estimator θ̂t = argminθ

∑t−1
i=1 (〈θ, xi〉 − yi)2 + λ‖θ‖2,

where λ = 1/C2. It is well-known (Vovk, 1990;
Azoury & Warmuth, 2001) that this fully-supervised al-
gorithm achieves R = Õ(η̃2d) with Q = T . Con-
sider an active learning extension of the above algorithm
that queries uniformly randomly with probability µ, and
always predicts with the regularized least squared esti-
mator computed based on all queried examples θ̂t =
argminθ

∑
i∈[t−1],qi=1 (〈θ, xi〉 − yi)2 + λ‖θ‖2. We show

that the above uniform querying strategy achieves R =
Õ(η̃2dT/B) with Q = Õ(B) = Õ(µT ) in Appendix A.4.
As shown in Theorem 7, this tradeoff is minimax optimal
if η̃ is a constant. Although this guarantee is optimal in the
worst case, one major weakness is that it is too pessimistic:
as we will see next, when the data has some hidden domain
structure, it is possible to achieve substantially better regret
guarantees than the worst-case ones, if the learner has access
to auxiliary domain information.

Oracle baseline when domain structure is known Sup-
pose the learner is given the following knowledge from an
oracle: there arem domains; for each u in [m], there are a to-
tal of Tu examples from domain u from a subspace of Rd di-
mension du. In addition, for every t, the learner is given the
index of the domain example xt comes from. In this setting,
the learner can use the following domain-aware querying
scheme: for any example in domain u, it queries its label in-
dependently with probability µu ∈ (0, 1]. Within domain u,
the learner incursO(µuTu) queries and Õ(η̃2du/µu) regret.

2The constraint ‖x‖2 ≤ 1 can be relaxed by only increasing the
logarithmic terms in the regret and query complexity guarantees.
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Summing over domains, its achieves a label complexity of
O(
∑m
u=1 µuTu), and a regret of Õ(η̃2

∑m
u=1 du/µu). This

motivates the following optimization problem:

min
µ

m∑
u=1

du/µu, s.t.
m∑
u=1

µuTu ≤ B,µu ∈ [0, 1],∀u ∈ [m].

i.e., we choose domain-dependent query probabilities that
minimize the learner’s regret guarantee, subject to its query
complexity being at most B. When B ≤

∑m
u=1

√
duTu ·

minu
√
Tu/du, the optimal µu is proportional to

√
du/Tu.

This yields a regret guarantee of O(η̃2(
∑
u

√
duTu)2/B).

Although this strategy can sometimes achieve much smaller
regret than uniform query (as we have seen in Section 1,
(
∑
u

√
duTu)2 can be substantially smaller than dT ), it still

has two crucial drawbacks: first, it is not clear if this guar-
antee is always no worse than uniform querying, especially
when

∑m
u=1 du � d; second, the domain membership of

each example is rarely known in practice. We will develop
algorithms that overcome these drawbacks.

4. Active online domain adaptation for linear
regression: algorithms, analysis, and
matching lower bounds

We start by presenting an algorithm parameterized by α
in Section 4.1, which has a natural cost minimization in-
terpretation. We then present a fixed-budget variant of it
in Section 4.2. Section 4.3 shows that our algorithm is
minimax-optimal under a wide range of domain structure
specifications.

4.1. Main Algorithm: Query in the Face of Uncertainty
for Regression (QuFUR)

We propose QuFUR (Query in the Face of Uncertainty for
Regression), namely Algorithm 1. At each time step t, the
algorithm first computes θ̂t, a regularized empirical risk
minimizer on the labeled data obtained so far, then predict
using f̂t(x) = clip(〈θ̂t, x〉). It makes label queries with
probability proportional to a high-probability upper bound
of the instantaneous regret (ŷt − 〈θ∗, xt〉)2, which can also
be interpreted as the uncertainty on xt. Intuitively, when the
algorithm is already confident about the current prediction,
it will save budget for learning from less certain inputs in
the future.

QuFUR measures the uncertainty of xt using ∆t :=

η̃2 min

(
1, ‖xt‖2M−1

t

)
, where Mt = λI +

∑
i∈Qt xix

>
i ,

and Qt is the set of labeled examples seen up to time step
t− 1. We will show in Lemma 1 that with high probability,
the instantaneous regret on xt is at most Õ(∆t). QuFUR
queries the label yt with probability min {1, α∆t}, where
α is a parameter that tradeoffs query complexity and regret.

Algorithm 1 Query in the Face of Uncertainty for Regres-
sion (QuFUR(α))

Require: Total dimension d, time horizon T , θ∗’s norm
bound C, noise level η, parameter α.

1: M ← 1
C2 I , queried dataset Q ← ∅.

2: for t = 1 to T do
3: Compute regularized least squares solution θ̂t ←
M−1X>QYQ.

4: Let f̂t(x) = clip(〈θ̂t, x〉) be the predictor at time t,
and predict ŷt ← f̂t(xt).

5: Uncertainty estimate ∆t ← η̃2 min{1, ‖xt‖2M−1}.
6: With probability min {1, α∆t}, set qt ← 1; other-

wise qt ← 0.
7: if qt = 1 then
8: Query yt. M ←M + xtx

>
t , Q ← Q

⋃
{t}.

Perhaps surprisingly, the simple query strategy of QuFUR
can leverage hidden domain structure, as shown by the fol-
lowing theorem.

Theorem 1. Suppose the example sequence {xt}Tt=1 has the
following structure: [T ] can be partitioned into m disjoint
nonempty subsets {Iu}mu=1, where for each u, |Iu| = Tu,
and {xt}t∈Iu lie in a subspace of dimension du. Suppose

α ∈
[
1/η̃2

(
1/(
∑
u

√
duTu)

)2
, 1/η̃2 minu∈[m] Tu/du

]
.

If Algorithm 1 receives inputs dimension d, time horizon
T , norm bound C, noise level η, parameter α, then, with
probability 1− δ:
1. Its query complexity Q = Õ(η̃ ·

√
α
∑
u

√
duTu).

2. Its regret R = Õ(η̃ ·
∑
u

√
duTu/

√
α).

The proof of the theorem is deferred to Section A.1. We
make a series of remarks below:

Novel notion of adaptive regret. The above tradeoff is
novel in that it holds for any meaningful domain parti-
tion. Our proof actually shows that for any (not nec-
essarily contiguous) subsequence I ⊆ [T ], QuFUR has
Q = Õ(η̃ ·

√
dI |I| ·

√
α) andR = Õ(η̃

√
dI |I|)/

√
α within

I , where dI is the dimension of span({xt : t ∈ I}). This
type of guarantee is stronger than the adaptive regret guar-
antees provided by e.g. (Hazan & Seshadhri, 2007), where
the regret guarantee are only with respect to continuous
intervals.

Matching uniform querying baseline and minimax op-
timality. Our tradeoff is never worse than the uniform
querying baseline; this can be seen by applying the theorem
with the trivial partition {[T ]} yields Q = Õ(η̃

√
αdT ) and

R = Õ(η̃
√
dT/α). Therefore, same as the uniform query

baseline, this guarantee is also minimax optimal for constant
η, in light of Theorem 7 in Appendix B.2.
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Matching oracle baseline. QuFUR matches the domain-
aware oracle baseline even without prior knowledge of do-
main structure. We show in Theorem 3 that in a wide range
of problem specifications, this baseline, as well as QuFUR,
is minimax-optimal in our problem formulation with domain
structure.

Fixed-cost-ratio interpretation. The tradeoff in Theo-
rem 1 can be interpreted in a fixed-cost-ratio formulation.
Suppose a practitioner decides that the cost ratio between
1 unit of loss and 1 label query is c : 1. The performance
of the algorithm is then measured by its total cost cR+Q.
Theorem 1 shows that QuFUR(α) balances the cost incurred
by prediction and the cost incurred by label queries, in that
Q ≈ αR. We show in Appendix C that QuFUR with input
α = c achieves near-optimal total cost, for a wide range of
domain structure parameters.

Dependence on η. Our query complexity and regret
bounds have a dependence on η̃ = max(η, 1). Similar
dependence also appears in online least-squares regression
literature (Vovk, 1990; Azoury & Warmuth, 2001).

Requirements on α. The requirement that α ≥
1/η̃2

(
1/(
∑
u

√
duTu)

)2
is immaterial: if α is smaller

than this threshold, the regret guarantee is at least
Õ(η̃2(

∑
u

√
duTu)2); as η̃2(

∑
u

√
duTu)2 ≥ T , the

above guarantee can in fact be trivially achieved by
an algorithm that performs no label queries and al-
ways predicts ŷt = 0. The requirement that α ≤
1/η̃2 minu∈[m] Tu/du corresponds to a label usage of order

Õ
(∑

u

√
duTu ·minu∈[m]

√
Tu/du

)
, which also matches

the label budget range of the oracle baseline discussed in
Section 3.2.

Running time. The most computationally intensive op-
eration in QuFUR is the d × d matrix inversion in line 8,
which occurs T times. We can apply the same optimization
as in Abbasi-Yadkori et al. (2011), i.e. recompute θ̂t only
when det(Mt) increases by a constant factor. Using this,
onlyO(d log T ) matrix inversions are required; the regret of
the modified algorithm is of the same order as the original
algorithm, up to log factors.

4.2. QuFUR with a fixed label budget

The label complexity bound in Theorem 1 involve param-
eters {du, Tu}mu=1, which may be unknown in advance. In
many practical settings, the learner is given a label budget
B. For such settings, we propose a fixed-budget version of
QuFUR, Algorithm 2, that takes B as input, and achieves
near-optimal regret bound subject to the budget constraint,
under a wide range of domain structure specifications.

Algorithm 2 Fixed-Budget QuFUR

Require: Total dimension d, time horizon T , label budget
B, θ∗’s norm bound C, noise level η.

1: Number of copies k ← d4 log2 T e.
2: for i = 0 to k do
3: Parameter αi ← 2i/T .
4: Initialize M ← 1

C2 I , Q ← ∅.
5: for t = 1 to T do
6: Compute regularized least squares solution θ̂t ←
M−1X>QYQ.

7: Let f̂t(x) = clip(〈θ̂t, x〉) be the predictor at time t,
and predict ŷt ← f̂t(xt).

8: Uncertainty estimate ∆t ← η̃2 min{1, ‖xt‖2M−1}.
9: for i = 0 to k do

10: if
∑t−1
j=1 q

i
j < bB/kc then

11: With probability min {1, αi∆t}, set qit = 1.
12: if

∑
i q
i
t > 0 then

13: Query yt. M ←M + xtx
>
t , Q ← Q

⋃
{t}.

Algorithm 2 is a master algorithm that aggregates over k =
O(log T ) copies of QuFUR (α). Each copy uses a different
value of α lying in an exponentially increasing grid {2i/T 3 :
i = 0, . . . , k}. The grid ensures that each copy still has
label budget bB/kc = Ω̃(B), and there is always a copy
that takes full advantage of its budget to achieve low regret.
The algorithm queries whenever one of the copies issues a
query, and predicts using a model learned on all historical
labeled data. A copy can no longer query when its budget is
exhausted. The regret of the master algorithm is no worse
that of the copy running on a parameter αi that make Θ̃(B)
queries; this insight yields the following theorem.
Theorem 2. Suppose the example sequence {xt}Tt=1 has the
following structure: [T ] can be partitioned into m disjoint
nonempty subsets {Iu}mu=1, where for each u, |Iu| = Tu,
and {xt}t∈Iu lie in a subspace of dimension du. Moreover,
integer B satisfies

B ≤ Õ

(∑
u

√
duTu min

u∈[m]

√
Tu/du

)
. (1)

If Algorithm 2 receives inputs dimension d, time horizon T ,
label budget B, norm bound C, noise level η, then:
1. Its query complexity Q is at most B.
2. With probability 1 − δ, its regret R =
Õ(η̃2(

∑
u

√
duTu)2/B).

The proof of the theorem is deferred to Appendix A.2. We
now compare the guarantee of QuFUR with the that of of
the oracle baseline in Section 3.2: for any budget B ∈
[0, Õ(

∑
u

√
duTu minu

√
Tu/du)], Fixed-Budget QuFUR

achieves a regret guarantee no worse than that of
domain-aware uniform sampling, while being agnostic to
{du, Tu}mu=1 and the domain memberships of the examples.
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4.3. Lower bound

Our development so far establishes domain structure-
aware regret upper bounds R = Õ(η̃2(

∑
u

√
duTu)2/B),

achieved by Fixed-Budget QuFUR and domain-aware uni-
form sampling baseline (the latter requires extra knowledge
about the domain structure and domain membership of each
example, whereas the former does not). In this section,
we study optimality properties of the above upper bounds.
Specifically, we show via Theorem 3 that they are tight up
to logarithmic factors, for a wide range of domain structure
specifications. Its proof can be found in Appendix B.1.

Theorem 3. For any noise level η ≥ 1, set of positive
integers

{
(du, Tu)

}m
u=1

and integer B that satisfy

du ≤ Tu,∀u ∈ [m];

m∑
u=1

du ≤ d; (2)

B ≥
m∑
u=1

√
duTu ·

√
max
u∈[m]

du/Tu, (3)

there exists an oblivious adversary such that:
1. It uses a ground truth linear predictor θ? ∈ Rd such that
‖θ∗‖2 ≤

√
d, and for all t,

∣∣〈θ∗, xt〉∣∣ ≤ 1; in addition, the
noises {ξt}Tt=1 are sub-Gaussian with variance proxy η2.
2. It shows example sequence {xt}Tt=1 such that [T ] can
be partitioned into m disjoint nonempty subsets {Iu}mu=1,
where for each u, |Iu| = Tu, and {xt}t∈Iu lie in a subspace
of dimension du.
3. Any online active learning algorithmA with label budget
B has regret Ω((

∑m
u=1

√
duTu)2/B).

The above theorem is a domain structure-aware refinement
of the Ω(dT/B) minimax lower bound (Theorem 7 in
Appendix B.2), in that it further constrains the adversary
to present sequences of examples with domain structure
parametrized by {du, Tu}mu=1. In fact, Ω(dT/B) minimax
lower bound is a special case of the lower bound of Theo-
rem 3, by taking m = 1, d1 = d, and T1 = T .

To discuss the tightness of the upper and lower bounds we
obtained so far in more detail, we first set up some useful
notations. Denote by E({Tu, du}mu=1) the set of oblivious
adversaries that shows example sequences {xt}Tt=1, such
that [T ] can be decomposed to m subsets {Iu}mu=1, where
for every u in [m], |Iu| = Tu, and examples in subset
{xt : t ∈ Iu} lie in a subspace of dimension du. Addition-
ally, denote by A(B) the set of online active learning al-
gorithms that uses a label budget of B. Finally, for an
algorithm A and an oblivious adversary E , define R(A, E)
as the expected regret of A in the environment induced
by E . Consider the regime when the noise variance proxy
η ∈ [1, O(1)]. In this case, Theorem 3 shows that for all

{du, Tu}mu=1 and B such that 3 holds, we have

min
A∈A(B)

max
E∈E({du,Tu}mu=1)

R (A, E)

≥ Ω


 m∑
u=1

√
duTu

2

/B

 .

On the other hand, Theorem 2 shows that for all
{du, Tu}mu=1 and B such that (1) holds, we have

max
E∈E({du,Tu}mu=1)

R
(
Fixed-Budget QuFUR(B), E

)

≤ Õ


 m∑
u=1

√
duTu

2

/B

 .

This shows that, if η ∈ [1, O(1)], for a wide range of domain
structure specifications {du, Tu}mu=1 and budgets B (i.e.,
B/(

∑
u

√
duTu) ∈ [

√
maxu du/Tu,

√
minu Tu/du]), the

regret guarantee of Fixed-Budget QuFUR is optimal; fur-
thermore, the algorithm requires no knowlege on the domain
structure. We call this property of Fixed-Budget QuFUR its
hidden-domain minimax optimality.

5. Extension to realizable non-linear
regression with adaptive adversary

QuFUR’s design principle, querying with probability pro-
portional to uncertainty estimates of unlabeled data, can
be easily generalized to deal with other active online learn-
ing problems. In summary, QuFUR uses a suitable loss
upper bound to yield query-regret tradeoff adaptive to the
complexities and durations of individual domains. We now
generalize QuFUR to non-linear regression with adaptive
adversaries, extending Russo & Van Roy (2013).

In this section, we require the domain partition {Iu : u ∈
[m]} to have a property we call admissibility.

Definition 1. The partition
{
Iu : u ∈ [m]

}
is admissible,

if the domain membership of the t-th example, ut =
{u : t ∈ Iu} depends on the interaction history up to t− 1
and unlabeled example xt; formally, ut is σ(Ht−1, xt)-
measurable.

Domain complexity measure. Analogous to the dimen-
sion of the support in linear regression, we use d′u =
dimE

u (F , 1/T 2
u), the eluder dimension of F with respect to

domain u ∈ [m] with support Xu ⊆ X . Formally,

Definition 2. An input x ∈ X is ε-dependent of on an-
other set of inputs {xi}ni=1 ⊆ X with respect to F if for
all f1, f2 ∈ F ,

√∑n
i=1 (f1(xi)− f2(xi))2 ≤ ε =⇒

f1(x)− f2(x) ≤ ε.



Active Online Domain Adaptation

Algorithm 3 QuFUR(α) for Nonlinear Regression

Require: Hypothesis set F , time horizon T , parameters
α, δ, η.

1: Labeled dataset Q ← ∅.
2: for t = 1 to T do
3: Predict f̂t ← argminf∈F

∑
i∈Q (f(xi)− yi)2.

4: Confidence set Ft ← {f ∈ F :∑
i∈Q (f(xi)− f̂t(xi))2 ≤ β|Q|(F , δ)},

5: where βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) +
2k/T 2(16 +

√
2η2 ln (16k2/δ)).

6: Uncertainty ∆t = supf1,f2∈Ft
∣∣f1(xt)− f2(xt)

∣∣2.
7: With probability min {1, α∆t}, set qt = 1.
8: if qt = 1 then
9: Query yt. Q ← Q

⋃
{t}.

Definition 3. The ε-eluder dimension of F with respect
to support Xu, dimE

u (F , ε), is defined as the length of the
longest sequence of elements inXu such that for some ε′ > ε,
every element is ε′-independent of of its predecessors.

The above domain-dependent eluder dimension notion cap-
tures how effective the potential value of acquiring a new
label can be estimated from labeled examples in domain u.3

The Algorithm. The master algorithm, Algorithm 4 in
Appendix A.3, runs O(log T ) copies of Algorithm 3. At
round t, Algorithm 3 predicts using the empirical risk
minimizer f̂t based on all previously queried examples.
Same as Algorithm 1, Algorithm 3 queries with probabil-
ity min {1, α∆t}, where ∆t is an uncertainty measure of
the algorithm on example xt. To compute the uncertainty
measure, it constructs a confidence set Ft, so that with
high probability, the ground truth f∗ ∈ Ft for all t. The
uncertainty measure ∆t is the squared maximum disagree-
ment between two hypotheses in Ft on xt. It can be seen
that with high probability, its regret and query complexity
are bounded by O(

∑T
t=1 ∆t) and O(

∑T
t=1 min {1, α∆t}),

respectively.

We can bound the regret of the algorithm on example from
domain u, in terms of domain complexity measure Ru =
Õ(η̃2d′u logN (F , T−2, ‖ · ‖∞)). Here N (F , ε, ‖ · ‖∞) is
the ε-covering number of F with respect to ‖ · ‖∞. Specifi-
cally, we have the following theorem.

Theorem 4. Suppose the example sequence {xt}Tt=1 has
the following structure: [T ] has an admissible partition{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and the

eluder dimension of F w.r.t. {xt}t∈Iu is d′u. Then, given
label budget B ≤ Õ(

∑
u

√
RuTu minu

√
Ru/Tu), Algo-

rithm 4 satisfies:

3Appendix D in Russo & Van Roy (2013) gives eluder dimen-
sion bounds for common function classes.

1. It has query complexity Q ≤ B;
2. With probability 1 − δ, its regret R =
Õ((
∑
u

√
RuTu)2/B).

The proof of the theorem can be found in Section A.3.
Specializing the theorem to linear hypothesis class F =
{〈x, θ〉 : θ ∈ Rd, ‖θ‖2 ≤ 1}, if Xu is a subset of a du-
dimensional subspace of Rd, we have dimE

u (F , 1/T 2
u) =

Õ(du), logN (F , 1/T 2
u , ‖ · ‖∞) = Õ(d), implying

Ru = Õ(η̃2dud), which in turn implies that R =
Õ(η̃2d(

∑
u

√
duTu)2/B). Compared to Theorem 2, the

additional factor d is due to increased difficulty with adap-
tive adversary.

6. Experiments
We test the query-regret tradeoffs of QuFUR, the uniform
query baseline (Section 3.2), and naive greedy query (i.e., al-
ways querying until labeling budget is exhausted) on several
linear regression tasks.

Figure 1. Total regret vs. total number of queries in synthetic
dataset (left), cpu-small dataset (middle), and Abalone dataset
(right), averaged across 5 runs. QuFUR is best and has more
advantage on cpu-small potentially due to latent domain structure,
whereas Abalone is more homogeneous.

Datasets We create a synthetic dataset with 20 domains.
Each domain has either Tu = 100 and du = 6, or Tu = 50
and du = 3. Inputs from each domain spans a random
subset of du out of d = 40 dimensions, with potential
overlap between domains. θ∗ is a random vector on the unit
sphere in Rd, as are xi’s from domain u in Rdu . Noise ξt’s
are iid zero-mean Gaussian with variance η2 = 0.1.

We also experiment on two real-world LIBSVM
datasets (Chang & Lin, 2011) cpu-small and Abalone. cpu-
small uses 12 features, such as system reads/writes per sec-
ond, to predict portion of time that cpu runs in user mode.
Abalone uses 8 features (physical measurements) to predict
animal ages.

Results We run QuFUR(α) for α ∈ [1/400, 400] and uni-
form queries with probability µ ∈ [0.01, 1]. Figure 1 shows
that QuFUR achieves the lowest total regret under the same
labeling budget across all 3 datasets. Notably, QuFUR’s
advantage is more significant on cpu-small. We conjecture
that this task has underlying domain structure, as differ-
ent CPU usage modes may be predicted from a subset of
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metrics. QuFUR potentially exploits this latent structure
without knowledge of its existence.

7. Conclusion
We formulate a novel task of active online learning with
latent domain structure. We propose a surprisingly simple
algorithm that adapts to domain shifts, and give matching
upper and lower bounds in a wide range of domain structure
specifications for linear regression. The strategy is readily
generalizable to other problems, as we did for non-linear
regression, simply relying on a suitable uncertainty estimate
for unlabeled data. We believe that our problem and solution
can spur future work on making active online learning more
practical.
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A. Proofs for upper bounds
A.1. Proof of Theorem 1

We provide the proof of Theorem 1 in this section. We focus on regret and query complexity bounds on one domain Iu,
and sum over domain u to obtain Theorem 1. Recall that we define the interaction history between the learner and the
environment up to time t be Ht = {x1:t, f1:t, ξ1:t}; we abbreviate E[·|xt, Ht−1] as Et−1[·].

The following lemma upper bounds the regret with sum of uncertainty estimates, ∆t = η̃2 min

(
1, ‖xt‖2M−1

t

)
. A similar

lemma has appeared in Cesa-Bianchi et al. (2009, Lemma 1).
Lemma 1. In the setting of Theorem 1, with probability 1− δ

2 , for all t ∈ [T ], (ŷt − 〈θ∗, xt〉)2 = Õ (∆t).

Proof of Lemma 1. Denote the value of M,Q at the beginning of round t as Mt,Qt. Let λ = 1/C2, Vt = Mt − λI =∑
s∈Qt xsx

>
s . Therefore, θ̂t = M−1t (

∑
s∈Qt xsys) = M−1t (Vtθ

∗ +
∑
s∈Qt ξsxs), and

〈xt, θ̂t − θ∗〉 =
∑
s∈Qt

ξs(x
>
t M

−1
t xs)− λx>t M−1t θ∗. (4)

The first term is a sum over a set of independent sub-Gaussian random variables, so it is (ησ)2-sub-Gaussian with
σ2 =

∑
s∈Qt x

>
t M

−1
t xsx

>
s M

−1
t xt ≤ x>t M−1t xt. Define event

Et =


∣∣∣∣∣∣
∑
s∈Qt

ξs(x
>
t M

−1
t xs)

∣∣∣∣∣∣ ≤ η
√

2 ln
4T

δ
‖xt‖M−1

t

 .

By standard concentration of subgaussian random variables, we have P(Et) ≥ 1 − δ
2T . Define E = ∩Tt=1Et. By union

bound, we have P(E) ≥ 1− δ
2 . We henceforth condition on E happening, in which case the first term of Equation (4) is

bounded by η
√

2 ln (4T/δ)‖xt‖M−1
t

at every time step t.

Meanwhile, the second term of Equation (4) can be bounded by Cauchy-Schwarz:∣∣∣λx>t M−1t θ∗
∣∣∣ = λ

∣∣∣〈M−1/2t xt,M
−1/2
t θ∗〉

∣∣∣ ≤ λ‖xt‖M−1
t
‖θ∗‖M−1

t
≤
√
λ‖θ∗‖2‖xt‖M−1

t
,

which is at most ‖xt‖M−1
t

, since ‖θ∗‖2 ≤ C and λ = 1/C2. Using the basic fact that (A+B)2 ≤ 2A2 + 2B2,

(〈xt, θ̂t〉 − 〈xt, θ∗〉)2 ≤ (4η2 ln (4T/δ) + 2)‖xt‖2M−1
t
.

Since ŷt = clip(〈xt, θ̂t〉) ∈ [−1, 1] and
∣∣〈xt, θ∗〉∣∣ ≤ 1, we also trivially have (ŷt − 〈θ∗, xt〉)2 ≤ 4. Therefore,

(ŷt − 〈θ∗, xt〉)2 ≤ min
(

4, (4η2 ln (4T/δ′) + 2)‖xt‖2M−1
t

)
≤ (4η2 ln (2T/δ′) + 4) ·min

(
1, ‖xt‖2M−1

t

)
≤ Õ

(
η̃2 min

(
1, ‖xt‖2M−1

t

))
= Õ(∆t).

The following lemma bounds the sum of uncertainty estimates for k queried examples in a domain:
Lemma 2. Let a1, . . . , ak be k vectors in Rd. For i ∈ [k], define Ni = λI +

∑i−1
j=1 aja

>
j . Then, for any S ⊆ [k],∑

i∈S min

(
1, ‖ai‖2N−1

i

)
≤ ln(det(λI +

∑
i∈S aia

>
i )/ det(λI)).

Proof of Lemma 2. We denote by Ni,S = λI +
∑
j∈S:j≤i−1 aja

>
j . As S is a subset of [k], we have that Ni,S � Ni.

Consequently, ‖ai‖N−1
i
≤ ‖ai‖N−1

i,S
. Therefore,

∑
i∈S

min
(

1, ‖ai‖2N−1
i

)
≤
∑
i∈S

min

(
1, ‖ai‖2N−1

i,S

)
≤ ln

(
det(λI +

∑
i∈S aia

>
i )

det(λI)

)
,
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where the second inequality is well-known (see e.g. Lattimore & Szepesvári, 2018, Lemma 19.4).

Proof of Theorem 1. Let pt = min(1, α∆t) be the learner’s query probability at time t; it is easy to see that Et−1 [qt] = pt.

Let random variable Zt = qt∆t. We have the following simple facts:

1. Zt ≤ η̃2,

2. Et−1Zt = pt∆t,

3. Et−1Z2
t ≤ η̃2 · Et−1Zt ≤ η̃2pt∆t.

For every u ∈ [m], define event

Fu =


∣∣∣∣∣∣
∑
t∈Iu

pt∆t −
∑
t∈Iu

qt∆t

∣∣∣∣∣∣ ≤ O
η̃√∑

t∈Iu

pt∆t ln
T

δ
+ η̃2 ln

T

δ


 . (5)

Applying Freedman’s inequality to {Zt}t∈Iu (see e.g. Bartlett et al., 2008, Lemma 2), we have that P(Fu) ≥ 1− δ
4m .

Similarly, define

G =


∣∣∣∣∣∣
T∑
t=1

pt −
T∑
t=1

qt

∣∣∣∣∣∣ ≤ O

√√√√ T∑

t=1

pt ln
T

δ
+ ln

T

δ


 . (6)

Applying Freedman’s inequality to {qt}t∈Iu , we have that P(G) ≥ 1− δ
4 .

Furthermore, define H = E ∩ (∩mu=1Fu) ∩ G, where E is the event defined in the proof of Lemma 1. By union bound,
P(H) ≥ 1− δ. We henceforth condition on H happening.

By the definition of Fu, Solving for
∑
t∈Iu pt∆t in Equation (5), we get that

∑
t∈Iu

pt∆t = Õ

∑
t∈Iu

qt∆t + η̃2

 . (7)

Using Lemma 2 with {ai}ki=1 = {xt}t∈QT , and S = Iu ∩QT , we get that

∑
t∈Iu

qt∆t ≤ η̃2 · ln det

I + C2
∑

t∈Iu∩QT

xtx
>
t


≤ 2η̃2du ln

(
1 + C2Tu/du

)
= Õ(η̃2du).

In combination with Equation (7), we have
∑
t∈Iu pt∆t = Õ(η̃2du).

We divide the examples in domain u into high and low risk subsets with index sets Iu,+ and Iu,− (abbrev. I+ and I−
hereafter). Formally,

I+ = {t ∈ Iu : α∆t > 1}, I− = I − I+.

We consider bounding the regrets and the query complexities in these two sets respectively:

1. For every t in I+, as pt = 1, label yt is queried, so∑
t∈I+

∆t =
∑
t∈I+

qt∆t ≤
∑
t∈Iu

qt∆t = Õ(η̃2du).

Since for every t in I−, ∆t > 1/α, we have
∑
t∈I+ ∆t > |I+|/α. This implies that

∑
t∈I+ pt = |I+| = Õ(αη̃2du).
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2. For every t in I−, pt = α∆t. Therefore,
∑
t∈I− α∆2

t =
∑
t∈I− pt∆t ≤

∑
t∈Iu pt∆t = Õ(η̃2du). By Cauchy-

Schwarz, and the fact that|I−| ≤ Tu, we get that
∑
t∈I− ∆t ≤

√
|I−| · (

∑
t∈I− ∆2

t ) = Õ(η̃
√
duTu/α).

Consequently,
∑
t∈I− pt =

∑
t∈I− α∆t ≤ Õ(η̃

√
αduTu).

Summing over the two cases, we have∑
t∈Iu

pt ≤ Õ
(
αη̃2du + η̃

√
αduTu

)
,
∑
t∈Iu

∆t ≤ Õ
(
η̃2du + η̃

√
duTu/α

)
,

By the assumption that α ≤ 1
η̃2 minu

Tu
du

, for every u, we have αη̃2du ≤ η̃
√
αduTu. Therefore, the above bounds can be

simplified to ∑
t∈Iu

pt ≤ Õ
(
η̃
√
αduTu

)
,
∑
t∈Iu

∆t ≤ Õ
(
η̃
√
duTu/α

)
. (8)

For the query complexity, from the definition of event G, applying AM-GM inequality on Equation (6), we also have

Q =

T∑
t=1

qt = Õ

 T∑
t=1

pt + 1

 = Õ

η̃ m∑
u=1

√
αduTu + 1

 = Õ

η̃ m∑
u=1

√
αduTu

 .

where in the last equality we use the assumption that α ≥ 1
η̃2 ·

1
(
∑
u

√
duTu)2

.

For the regret guarantee, we have by the definition of event E and Lemma 1 that

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 ≤ Õ

 T∑
t=1

∆2
t

 = Õ

 m∑
u=1

∑
t∈Iu

∆2
t


 .

Using the second inequality of Equation (8), we get

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 ≤ Õ

η̃ m∑
u=1

√
duTu/α

 .

The theorem follows.

A.2. Proof of Theorem 2

Before going into the proof, we set up some useful notations. Define I = {0, 1, . . . , k} as the index set of the αi’s of interest.
Recall the number of copies k = 1 + d4 log T e ≤ 2 + 4 log T . Recall also that B′ = bB/kc is the label budget for each
copy.

Let pit = min(1, αi∆t) be the intended query probability of copy i at time step t; let rit ∼ Bernoulli(pit) be the attempted
query decision of copy i at time step t; let Ait = 1

[∑t−1
j=1 r

i
j < B′

]
, i.e. the indicator that copy i has not reached its budget

limit at time step t. Using this notation, the actual query decision of copy i, qit, can be written as ritA
i
t.

We have the following useful observation that gives a sufficient condition for copy i to be within its label budget:

Lemma 3. Given i ∈ [k], if
∑T
t=1A

i
tr
i
t < B′, the following items hold:

1.
∑T
t=1 r

i
t < B′.

2. For all t ∈ [T ], Ait = 1, i.e. copy i does not run of label budget throughout.
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Proof. Suppose for the sake of contradiction that
∑T
t=1 r

i
t ≥ B′. Consider the first B′ occurrences of rij = 1; call them

J = {j1, . . . , jB′}. It can be seen that for all j ∈ J , Aij = 1. Therefore,

T∑
t=1

Aitr
i
t ≥

∑
j∈J

Aijr
i
j ≥|J | = B′,

which contradicts with the premise that
∑T
t=1A

i
tr
i
t < B′.

The second item immediately follows from the first item, as
∑T
j=1 r

i
j < B′ implies that

∑t−1
j=1 r

i
j < B′ for every t ∈ [T ].

Complementary to the above lemma, we can also see that for every i ∈ [k],
∑T
t=1A

i
tr
i
t =

∑T
t=1 q

i
t ≤ B′ is trivially true.

We next give a key lemma that generalizes Theorem 1, and upper bounds
∑T
t=1A

i
tr
i
t for all i’s beyond the above trivial B′

bound.

Lemma 4. There exists C = polylog(T, 1δ ) ≥ 1, such that with probability 1− δ/2,

T∑
t=1

Ait∆t ≤ C · η̃
∑
u

√
duTu/

√
αi, and

T∑
t=1

Aitr
i
t ≤ C · η̃

√
αi
∑
u

√
duTu,

for every i ∈ I such that αi ∈

[
1
η̃2

(
1∑

u

√
duTu

)2

, 1
η̃2 minu∈[m]

Tu
du

]
.

Proof. Applying Freedman’s inequality to the martingale difference sequence {Ait(rit−pit)}Tt=1, we get that with probability
1− δ/4,

T∑
t=1

Aitr
i
t = Õ

 T∑
t=1

Aitp
i
t + 1

 . (9)

Applying Freedman’s inequality to {Ait(rit − pit)∆t1[t ∈ Iu]}Tt=1, and take a union bound over all u ∈ [m], we get that
with probability 1− δ/4, ∑

t∈Iu

Aitp
i
t∆t = Õ

∑
t∈Iu

Aitr
i
t∆t + η̃2

 .

Using Lemma 2 with {ai}ki=1 = {xt}t∈QT , and S = Iu ∩ QT we get that, deterministically,
∑
t∈Iu A

i
tr
i
t∆t ≤∑

t∈Iu qt∆t = Õ(η̃2du). So with probability 1− δ/4,∑
t∈Iu

Aitp
i
t∆t = Õ(η̃2dI). (10)

We henceforth condition on Equations (9) and (10) occuring, which happens with probability 1− δ/2 by union bound. Let
I+ = {t ∈ Iu : αi∆j > 1}, and I− = Iu − I+.

1. For I+, by Equation (10),
∑
t∈I+ A

i
j∆j = Õ(η̃2du) =⇒

∑
j∈I+ A

i
jp
i
j = Õ(αiη̃

2du).

2. For I−, by Equation (10),
∑
j∈I− A

i
jαi∆

2
j =

∑
j∈I− A

i
jpj∆j = Õ(η̃2du); this implies that

∑
j∈I− A

i
j∆j =

Õ(η̃
√
duTu/αi). In this event, we also have

∑
j∈I− A

i
jp
i
j =

∑
j∈I− A

i
jαi∆j = Õ(η̃

√
duTuαi).

Summing over the two cases, we have∑
t∈Iu

Aitp
i
t ≤ Õ(αη̃2du + η̃

√
αiduTu),

∑
t∈Iu

Ait∆t ≤ Õ(η̃2du + η̃
√
duTu/αi),
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By the assumption that αi ≤ 1
η̃2 minu

Tu
du

, for every u, we have, αiη̃2du ≤ η̃
√
αiduTu. This implies that∑

t∈Iu

Aitp
i
t ≤ Õ(η̃

√
αiduTu),

∑
t∈Iu

Ait∆t ≤ Õ(η̃
√
duTu/αi). (11)

Summing over u ∈ [m], we get

T∑
t=1

Aitp
i
t ≤ Õ(η̃

m∑
u=1

√
αiduTu),

T∑
t=1

Ait∆t ≤ Õ(η̃

m∑
u=1

√
duTu/αi).

Therefore, using Equation (9), we have

T∑
t=1

Aitr
i
t ≤ Õ

 T∑
t=1

Aitp
i
t + 1

 ≤ Õ
η̃ m∑

u=1

√
αiduTu + 1

 ≤ Õ
η̃ m∑

u=1

√
αiduTu

 ,

where the last inequality uses the assumption that αi ≥ 1
η̃2

(
1∑

u

√
duTu

)2

. The lemma follows.

We are now ready to prove Theorem 2.

Proof of Theorem 2. First, the query complexity of Fixed-Budget QuFUR is B by construction, as the algorithm maintains
k copies of QuFUR, and each copy consumes at most B′ = bB/kc labels.

We now bound the regret of Fixed-Budget QuFUR. We consider B = Ck(
∑
u

√
duTu) · minu∈[m]

√
Tu/du =

Õ
(∑

u

√
duTu) ·minu∈[m]

√
Tu/du

)
, where C = polylog(T, 1δ ) ≥ 1 is defined in Lemma 4. We will show that if

B ∈ (0, B], with probability 1− δ, the regret of Fixed-Budget QuFUR is at most Õ
(
η̃2(

∑
u

√
duTu)

2

B

)
.

If B < 2Cη̃2, the regret of the algorithm is trivially upper bounded by 4T , which is clearly Õ
(
η̃2(

∑
u

√
duTu)

2

B

)
. Therefore,

throughout the rest of the proof, we consider B ∈ [2Cη̃2, B].

Recall that I =
{

2i

T 3 : i ∈ {0, 1, . . . , k}
}

. We denote by αmin = 1
T 3 the minimum element of I , and αmax = 2k

T 3 ≥ T the
maximum element of I .

Denote by

iB = max

i ∈ I : Cη̃
√
αi

m∑
u=1

√
duTu < B′

 = max

i ∈ I : αi <

(
B′

Cη̃
∑
u

√
duTu

)2
 .

As B ∈ [2Cη̃2, B], we have
(

B′

Cη̃
∑
u

√
duTu

)2

∈ (αmin, αmax]. Indeed,
(

B′

Cη̃
∑
u

√
duTu

)2

≤
(

B
Ckη̃

∑
u

√
duTu

)2

≤ T ≤

αmax,
(

B′

Cη̃
∑
u

√
duTu

)2

≥
(

η̃∑
u

√
duTu

)2

> αmin, as
∑
u

√
duTu ≤

∑
u Tu = T .

Therefore, by the definition of iB , we have

αiB ∈

1

2

(
B′

Cη̃
∑
u

√
duTu

)2

,

(
B′

Cη̃
∑
u

√
duTu

)2
 (12)

Again by our assumption on B, 1
2

(
B′

Cη̃
∑
u

√
duTu

)2

≥ η̃2
(

1∑
u

√
duTu

)2

≥ 1
η̃2

(
1∑

u

√
duTu

)2

,
(

B′

Cη̃
∑
u

√
duTu

)2

≤
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B

Ckη̃
∑
u

√
duTu

)2

≤ 1
η̃2 minu∈[m]

Tu
du

. Therefore,

αiB ∈

 1

η̃2

(
1∑

u

√
duTu

)2

,
1

η̃2
min
u∈[m]

Tu
du

 .
Hence, the premises of Lemma 4 is satisfied for i = iB ; this gives that with probability 1− δ/2,

T∑
t=1

AiBt ∆t ≤ C · η̃
∑
u

√
duTu/

√
αiB , (13)

and
T∑
t=1

AiBt r
iB
t ≤ C · η̃

√
αiB

∑
u

√
duTu. (14)

Now from Equation (14) and the definition of iB , we have

T∑
t=1

AiBt r
iB
t ≤ C · η̃

√
αiB

∑
u

√
duTu < B′.

Applying Lemma 3, we deduce that for all t in [T ], AiBt = 1. Plugging this back to Equation (13), we have

T∑
t=1

∆t =

T∑
t=1

AiBt ∆t

≤C · η̃
∑
u

√
duTu/

√
αiB

≤Õ

(
η̃2(
∑
u

√
duTu)2

B

)
.

where the second inequality is from the lower bound of αiB in Equation (12).

Combining the above observation with Lemma 1, along with the union bound, we get that with probability 1− δ,

R =

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 = Õ

 T∑
t=1

∆t

 = Õ

(
η̃2(
∑
u

√
duTu)2

B

)
.

A.3. Proof of Theorem 4

Recall that we define

βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +
√

2η2 ln (16k2/δ)),

and
Ru :=

Tu
T 2

+ 4 min(d′u, Tu) + 4d′uβT lnTu = Õ
(
η2d′u logN (F , T−2, ‖ · ‖∞)

)
.

Analogous to Theorem 1, the following theorem provides the query and regret guarantees of of Algorithm 3.

Theorem 5. Suppose the example sequence {xt}Tt=1 has the following structure: [T ] has an admissible partition{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and the eluder dimension of F w.r.t. {xt}t∈Iu is d′u. Suppose

α ≥ η̃2 maxu∈[m]Ru/Tu. With probability 1− δ, Algorithm 3 satisfies:
1. Its query complexity Q = Õ(η̃ ·

√
α
∑
u

√
RuTu).

2. Its regret R = Õ(η̃ ·
∑
u

√
RuTu)/

√
α.
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We shall prove Theorem 4 directly below; the proof of Theorem 5 follows as a corollary, using the same argument in the proof
of Theorem 2; we note that the admissibility condition on domain partition {Iu}mu=1 ensures that {Ait(rit − pit)1[t ∈ I]}Tt=1

and {Ait(rit − pit)∆t1[t ∈ I]}Tt=1 are still martingale difference sequences in our proof.

Proof of Theorem 4. We focus on proving the analogues of Lemma 1 and Lemma 2; the rest of proof follows the same
argument as the proof of Theorem 2 and is therefore omitted.

Lemma 5 (Analogue of Lemma 1). With probability 1− δ/2, R ≤
∑T
t=1 ∆t.

Proof. Recall that the confidence set at time t is Ft = {f ∈ F :
∑
i∈Qt (f(xi)− f̂t(xi))2 ≤ β|Qt|(F , δ)}. By Russo &

Van Roy (2013, Proposition 2), we have that with probability 1− δ/2, f∗ ∈ Ft, for all t ∈ [T ].

Meanwhile, if f∗ ∈ Ft, for all t ∈ [T ], (f̂t(xt)− f∗(xt)) ≤ supf1,f2∈Ft(f1(xt)− f2(xt))
2 = ∆t. This implies that the

regret is bounded by R ≤
∑T
t=1 ∆t.

Lemma 6 (Analogue of Lemma 2).
∑
t∈Iu qt∆t ≤ Ru.

Proof. Let k = |Iu ∩QT | and write d = d′u as a shorthand. Let (D1, . . . , Dk) be {∆t : t ∈ Iu ∩ QT } sorted in
non-increasing order. We have

∑
t∈Iu∩QT

∆t =

k∑
j=1

Dj =

k∑
j=1

Dj1[Dj ≤ 1/T 4] +

k∑
j=1

Dj1[Dj > 1/T 4].

Clearly,
∑k
j=1Dj1[Dj ≤ 1/T 4] ≤ Tu

T 2 .

We know for all j ∈ [k], Dj ≤ 4. In addition, Dj > ε2 ⇐⇒
∑
t∈Iu∩QT 1[∆t > ε2] ≥ j. By Lemma 7 below, this can

only occur if j < (4βT /ε
2 + 1)d. Thus, when Dj > ε2, j < (4βT /ε

2 + 1)d, which implies ε2 < 4βT d
j−d . This shows that if

Dj > 1/T 4, Dj ≤ min
{

4, 4βT dj−d

}
. Therefore

∑
j Dj1[Dj > 1/T 4] ≤ 4d+

∑k
j=d+1

4βT d
j−d ≤ 4d+ 4dβT log Tu.

Consequently, ∑
t∈Iu

qt∆t =
∑

t∈Iu∩QT

∆t ≤ min

{
4Tu,

Tu
T 2

+ 4d′u + 4d′uβT log Tu

}
≤ Ru.

The following lemma generalizes Russo & Van Roy (2013, Proposition 3), in that it considers a subsequence of examples
coming from a subdomain of X . We define dimE

I as the eluder dimension of F with respect to support {xt : t ∈ I}. It can
be easily seen that dimE

Iu ≤ dimE
u .

Lemma 7. Fix I ⊆ [T ]. If {βt ≥ 0}Tt=1 is a nondecreasing sequence and Ft := {f ∈ F :
∑
i∈Qt (f(xi)− f̂t(xi))2 ≤

β|Qt|(F , δ)}, then

∀ε > 0,
∑

t∈I∩QT

1[∆t > ε2] <

(
4βT
ε2

+ 1

)
dimEI (F , ε).

Proof. Let k = |I ∩QT |, (a1, . . . , ak) = (xt : t ∈ I ∩ QT ), and (b1, . . . , bk) = (∆t : t ∈ I ∩ QT ). First, we show that
if bj > ε2 then aj is ε-dependent on fewer than 4βT /ε

2 disjoint subsequences of (a1, . . . , aj−1), for j ≤ k. If bj > ε2

and aj = xt, there are f1, f2 ∈ Ft such that f1(aj) − f2(aj) > ε. By definition, if aj is ε-dependent on a subsequence
(ai1 , . . . , aip) of (a1, . . . , aj−1), then

∑p
l=1 (f1(ail)− f2(ail))

2 > ε2. Thus, if aj = xt is ε-dependent on K subsequences
of (a1, . . . , aj−1), then

∑
i∈Qt (f1(xi)− f2(xi))

2 > Kε2. By the triangle inequality,√∑
i∈Qt

(f1(xi)− f2(xi))2 ≤
√∑
i∈Qt

(f1(xi)− f∗(xi))2 +

√∑
i∈Qt

(f2(xi)− f∗(xi))2 ≤ 2
√
βT .
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Algorithm 4 Fixed-budget QuFUR for general function class

Require: Hypotheses set F , time horizon T , label budget B, parameter δ, noise level η.
1: Labeled dataset Q ← ∅.
2: Number of copies k ← 4dlog2 T e.
3: for i = 0 to k do
4: Parameter αi ← 2i/T 2.
5: for t = 1 to T do
6: Predict f̂t ← argminf∈F

∑
i∈Q (f(xi)− yi)2.

7: Confidence set Ft ← {f ∈ F :
∑
i∈Q (f(xi)− f̂(xi))

2 ≤ β|Q|(F , δ)},
8: where βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +

√
2η2 ln (16k2/δ)).

9: Uncertainty estimate ∆t = supf1,f2∈Ft
∣∣f1(xt)− f2(xt)

∣∣2.
10: for i = 0 to k do
11: if

∑t−1
j=1 q

i
j < bB/kc then

12: With probability min {1, αi∆t}, set qit = 1.
13: if

∑
i q
i
t > 0 then

14: Query yt. Q ← Q
⋃
{t}.

Thus, K < 4βT /ε
2.

Next, we show that in any sequence of elements in I , (c1, . . . , cτ ), there is some cj that is ε-dependent on at least τ/d− 1
disjoint subsequences of (c1, . . . , cj−1), where d := dimE

I (F , ε). For any integer K satisfying Kd+ 1 ≤ τ ≤ Kd+ d, we
will construct K disjoint subsequences C1, . . . , CK . First let Ci = (ci) for i ∈ [K]. If cK+1 is ε-dependent on C1, . . . , CK ,
our claim is established. Otherwise, select a Ci such that cK+1 is ε-independent and append cK+1 to Ci. Repeat for all
j > K + 1 until cj is ε-dependent on each subsequence or j = τ . In the latter case

∑
|Ci| ≥ Kd, and|Ci| = d. In this case,

cτ must be ε-dependent on each subsequence, by the definition of dimE
I .

Now take (c1, . . . , cτ ) to be the subsequence (at1 , . . . , atτ ) of (a1, . . . , ak) consisting of elements aj for which bj > ε2.
We proved that each atj is ε-dependent on fewer than 4βT /ε

2 disjoint subsequences of (a1, . . . , atj−1). Thus, each cj
is ε-dependent on fewer than 4βT /ε

2 disjoint subsequences of (c1, . . . , cj−1). Combining this with the fact that there is
some cj that is ε-dependent on at least τ/d− 1 disjoint subsequences of (c1, . . . , cj−1), we have τ/d− 1 < 4βT /ε

2. Thus,
τ < (4βT /ε

2 + 1)d.

A.4. Analysis of uniform query strategy for online active linear regression with oblivious adversary

Theorem 6. With probability 1 − δ, the uniformly querying strategy with probability µ achieves E[R] = Õ
(
η̃2d
µ

)
and

E[Q] = µT .

Proof sketch. As Q =
∑T
t=1 qt is a sum of T iid Bernoulli random variables with means µ, E[Q] = µT .

We now bound the regret of the algorithm. We still define ∆t = η̃2 min{1, ‖xt‖2M−1
t

}.

Using Lemma 2 with {ai}ki=1 = {xt}Tt=1, and S = QT ,
∑
t qt∆t = Õ(η̃2d). Let Zt = qt∆t. We have Zt ≤ ∆t ≤ η̃2,

Et−1Zt = µ∆t, and Et−1Z2
t ≤ η̃2µ∆t. Applying Freedman’s inequality, with probability 1− δ/2,

T∑
t=1

µ∆t −
T∑
t=1

qt∆t = O

η̃
√√√√ T∑

t=1

µ∆t ln (lnT/δ) + η̃2 ln (lnT/δ))

 .

The above inequality implies that
∑T
t=1 ∆t = Õ

(
η̃2d
µ

)
. Now, applying Lemma 1 and take the union bound, we have that
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with probability 1− δ,

R = Õ

 T∑
t=1

∆t

 = Õ

(
η̃2d

µ

)
.

Use the basic relationship between the expectation and tail probability E[R] =
∫∞
0

P(R ≥ a)da, we conclude that

E[R] = Õ
(
η̃2d
µ

)
.

B. Proofs for lower bounds
B.1. Proof of Theorem 3

We restate a slightly strengthened version of Theorem 3 here: the assumption B ≥
∑m
u=1

√
duTu ·

√
maxu∈[m] du/Tu is

weakened to B ≥
∑m
u=1 du.

Theorem 3. For any η ≥ 1, any set of positive integers
{

(du, Tu)
}m
u=1

and integer B that satisfy

du ≤ Tu,∀u ∈ [m],

m∑
u=1

du ≤ d, B ≥
m∑
u=1

du,

there exists an oblivious adversary such that:
1. It uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤

√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1; in addition, the noises {ξt}Tt=1

are sub-Gaussian with variance proxy η2.
2. It shows example sequence {xt}Tt=1 such that [T ] can be partitioned into m disjoint nonempty subsets {Iu}mu=1, where
for each u, |Iu| = Tu, and {xt}t∈Iu lie in a subspace of dimension du.
3. Any online active learning algorithm A with label budget B has regret Ω((

∑m
u=1

√
duTu)2/B).

Proof. Our proof is inspired by Vovk (2001, Theorem 2). For u ∈ [m] and i ∈ [du], define cu,i = e∑u−1
v=1 dv+i

, where ej
denotes the j-th standard basis of Rd. It can be easily seen that all cu,i’s are orthonormal. In addition, for a vector θ ∈ Rd,
denote by θu,i = θ∑u−1

v=1 dv+i
.

For task u, we construct domain Xu = span(cu,i : i ∈ [du]). The sequence of examples shown by the adversary is
the following: it is divided to m blocks, where the u-th block occupies a time interval Iu = [

∑u−1
v=1 Tv + 1,

∑u
v=1 Tv];

Each block is further divided to du subblocks, where for i ∈ [du − 1], subblock (u, i) spans time interval Iu,i =

[
∑u−1
v=1 Tv + (i− 1)bTu/duc+ 1,

∑u−1
v=1 Tv + ibTu/duc], and subblock (u, du) spans time interval Iu,du = [

∑u−1
v=1 Tv +

(du − 1)bTu/duc+ 1,
∑u−1
v=1 Tv + Tu]. At block u, examples from domain Xu are shown; furthermore, for every t in Iu,i,

i.e. in the (u, i)-th subblock, example cu,i is repeatedly shown to the learner. Observe that (u, i)-th subblock contains at
least bTudu c ≥

Tu
2du

examples, as Tu ≥ du.

We first choose θ∗ from distribution Dθ, such that for every coordinate j ∈ [d], θ∗i ∼ Beta(1, 1), which is also the
uniform distribution over [0, 1]. Given θ∗, the adversary reveals labels using the following mechanism: given xt, it draws
yt ∼ Bernoulli(〈θ∗, xt〉) independently and optionally reveals it to the learner upon learner’s query. Specifically, given θ∗,
if t ∈ Iu,i, yt ∼ Bernoulli(θ∗u,i). By Hoeffding’s Lemma, ξt = yt − θ∗u,i is zero mean subgaussian with variance proxy
1
4 ≤ η

2.

Denote by Nu,i(t) =
∑
s∈Iu,i:s≤t qs the number of label queries of the learner in domain (u, i) up to time t. Because the

learner satisfies a budget constraint of B under all environments, we have

E

 m∑
u=1

du∑
i=1

Nu,i(T ) | θ∗
 ≤ B.

Adding 2
∑m
u=1 du on both sides and by linearity of expectation, we get

m∑
u=1

du∑
i=1

E
[
(Nu,i(T ) + 2) | θ∗

]
≤ B + 2

m∑
u=1

du ≤ 3B. (15)
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On the other hand, we observe that the expected regret of the algorithm can be written as follows:

E [R] = E

 m∑
u=1

du∑
i=1

∑
t∈Iu,i

(ŷt − θ∗u,i)2
 ,

where the expectation is with respect to both the choice of θ∗ and the random choices of A.

We define a filtration {Ft}Tt=1, where Ft is the σ-algebra generated by
{

(xs, qs, ysqs)
}t
s=1

, which encodes the informative
available to the learner up to time step t.4 We note that ŷt is Ft−1-measurable. Denote by N+

u,i(t) =
∑
s∈Iu,i:s≤t qs ·

1 (ys = 1), which is the number of 1 labels seen on example cu,i by the learner up to round t − 1. Observe that both
N+
u,i(t− 1) and Nu,i(t− 1) are Ft−1-measurable.

Observe that conditioned on the interaction logs (xs, qs, ysqs)
t−1
s=1, the posterior distribution of θ∗u,i is Beta(1 +N+

u,i(t−

1), 1 + Nu,i(t − 1) − N+
u,i(t − 1)). Therefore, define random variable ŷ∗t = E

[
θ∗u,i | Ft−1

]
=

1+N+
u,i

2+Nu,i
, we have by

bias-variance decomposition,

E
[
(ŷt − θu,i)2 | Ft−1

]
= E

[
(ŷ∗t − θ∗u,i)2 | Ft−1

]
+ (ŷt − ŷ∗t )2

≥ E
[
(ŷ∗t − θ∗u,i)2 | Ft−1

]
Summing over all time steps, we have

E [R] ≥ E

 m∑
u=1

du∑
i=1

∑
t∈Iu,i

(ŷ∗t − θ∗u,i)2
 .

On the other hand, from Lemma 8, we have for all t ∈ Iu,i,

E
[
(ŷt − θ∗u,i)2 | Nu,i(T ), θ∗

]
≥

f(θ∗u,i)

2(Nu,i(T ) + 2)
,

where f(γ) = min(γ · (1− γ), (2γ − 1)2).

By the tower property of conditional expectation and conditional Jensen’s inequality, we have

E
[
(ŷt − θu,i)2 | θ∗

]
≥ E

[
f(θ∗u,i)

Nu,i(T ) + 2
| θ∗
]
≥

f(θ∗u,i)

2(E
[
Nu,i(T ) | θ∗

]
+ 2)

.

Summing over all t in Iu,i, and then summing over all subblocks (u, i) : u ∈ [m], i ∈ [du], and using the aforementioned
fact that the (u, i) subblock has at least Tu

2du
examples, we have

E
[
R | θ∗

]
=

m∑
u=1

du∑
i=1

∑
t∈Iu,i

E
[
(ŷt − θu,i)2 | θ∗

]

≥
m∑
u=1

du∑
i=1

Tu/du · f(θ∗u,i)

4(E
[
Nu,i(T ) | θ∗

]
+ 2)

. (16)

4This notion should be distinguished from the history notion Ht defined before, in that it does not include the labels not queried by the
learner up to time step t. For s in [t], we use ysqs to indicate the labeled data information acquired at time step s; if qs = 1, ysqs = ys,
encoding the fact that the learner has access to label ys; otherwise qs = 0, ysqs is always 0, meaning that the learner does not have label
ys available.
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Combining the above inequality with Equation (15), we have:

3B · E
[
R | θ∗

]
≥

 m∑
u=1

du∑
i=1

Tu/du · f(θ∗u,i)

4(E
[
Nu,i(T ) | θ∗

]
+ 2)

 ·
 m∑
u=1

du∑
i=1

E
[
(Nu,i(T ) | θ∗

]
+ 2)


≥ 1

4

 m∑
u=1

du∑
i=1

(√
Tu/du ·

√
f(θ∗u,i)

)2

.

where the second inequality is from Cauchy-Schwarz. Now taking expectation over θ, using Jensen’s inequality and
Lemma 9 that E

√
f(θ∗u,i) ≥ 1

25 , and some algebra yields

3B · E [R] ≥ 1

2

 m∑
u=1

du∑
i=1

(√
Tu/du · E

[√
f(θ∗u,i)

])2

≥ 1

2500

 m∑
u=1

√
duTu

2

.

In conclusion, we have

E [R] ≥

(∑m
u=1

∑du
i=1

√
Tu/du

)2
7500 ·B

.

As the above expectation is over θ∗ chosen randomly from Dθ, there must exists an θ∗ from supp(Dθ) = [0, 1]d such that

E
[
R | θ∗

]
≥

(∑m
u=1

∑du
i=1

√
Tu/du

)2
7500 ·B

holds. This θ∗ has `2 norm at most
√∑d

j=1(θ∗j )2 ≤
√
d.

Lemma 8. If t is in Iu,i, then

E
[
(ŷ∗t − θ∗u,i)2 | Nu,i(T ), θ∗

]
≥

f(θ∗u,i)

2(Nu,i(T ) + 2)
,

where f(γ) = min
(
γ(1− γ), (2γ − 1)2

)
.

Proof. We condition on Nu,i(T ) = m, and a value of θ∗. Recall that ŷ∗t =
1+N+

u,i

2+Nu,i
=

1+N+
u,i

2+m , where N+
u,i can be seen as

drawn from the binomial distribution Bin(m, θ∗u,i).

E
[
(ŷ∗t − θ∗u,i)2 | Nu,i(T ) = m, θ∗

]
=E

(1 +N+
u,i

2 +m
− θ∗u,i

)2

| Nu,i(T ) = m, θ∗


=
mθ∗u,i(1− θ∗u,i)

(m+ 2)2
+

(2θ∗u,i − 1)2

(m+ 2)2

≥ m+ 1

(m+ 2)2
f(θ∗u,i) ≥

f(θ∗u,i)

2(m+ 2)
.

Lemma 9. Suppose Z ∼ Beta(1, 1). Then E
[√

f(Z)
]
≥ 1

25 .

Proof. We observe that

E
[√

f(Z)
]

=

∫
[0,1]

√
f(z)dz ≥

∫
[ 15 ,

2
5 ]

√
f(z)dz,

Now, for all z ∈ [ 15 ,
2
5 ],
√
f(z) ≥

√
1
25 = 1

5 , which implies that the above integral is at least 1
25 .
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B.2. Lower bound for unstructured domains

We have the following lower bound in the case when there is no domain structure.

Theorem 7. For any set of positive integers d, T,B such that d ≤ T and d ≤ B, there exists an oblivious adversary such
that:

1. it uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1.

2. any online active learning algorithm A with label budget B has regret at least Ω
(
dT
B

)
.

Proof. This is an immediate consequence of Theorem 3, by setting m = 1, d1 = d, T1 = T , and the label budget equal to
B.

C. The c-cost model for online active learning
We consider the following variant of our learning model, which models settings where the cost ratio between a unit of
square loss regret and a label query is c to 1. In this setting, the interaction protocol between the learner and the environment
remains the same, with the goal of the learner modified to minimizing the total cost, formally C = cR +Q. We call the
above model the c-cost model. We will show that Algorithm 1 achieves optimal cost up to constant factors, for a wide range
of values of η and c.

Theorem 8. For any η ≥ 1, set of positive integers
{

(du, Tu)
}m
u=1

such that du ≤ Tu,∀u ∈ [m],
∑m
u=1 du ≤ d, cost ratio

c ≥ maxu
du
Tu

, there exists an oblivious adversary such that:

1. it uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1; in addition, the subgaussian
variance proxy of noise is η2.

2. it shows example sequence {xt}Tt=1 such that [T ] can be partitioned into m disjoint nonempty subsets {Iu}mu=1, where
for each u, |Iu| = Tu, and {xt}t∈Iu lie in a subspace of dimension du.

3. any online active learning algorithm A has total cost Ω
(√

c · (
∑m
u=1

√
duTu)

)
.

Proof. Consider any algorithm A. Same as in the proof of Theorem 3, we will choose θ∗ randomly where each of its
coordinates is drawn independently from the Beta(1, 1) distribution, and show the exact same sequence of instances {xt}Tt=1

and reveals the labels the same say as in that proof. It can be seen that the ηt’s are subgaussian with variance proxy 1, which
is also subgaussian with variance proxy η2.

As A can behave differently under different environments, we define E
[
Q | θ∗

]
as A’s query complexity conditioned on the

adversary choosing ground truth linear predictor θ∗.

We conduct a case analysis on the random variable E
[
Q | θ∗

]
:

1. If there exists some θ∗ ∈ [0, 1]d, E
[
Q | θ∗

]
≥
√
c
(∑m

u=1

√
duTu

)
, then we are done: under the environment

where the ground truth linear predictor is θ∗, the total cost of A, E
[
C | θ∗

]
, is clearly at least E

[
Q | θ∗

]
≥

Ω

(
√
c
(∑m

u=1

√
duTu

))
.

2. If for every θ∗ ∈ [0, 1]d, E
[
Q | θ∗

]
≤
√
c
(∑m

u=1

√
duTu

)
, A can be viewed as an algorithm with label budget

B =
√
c
(∑m

u=1

√
duTu

)
. By the premise that c ≥ maxu

du
Tu

, we get that B ≥
∑m
u=1

√
duTu ·

√
du
Tu

=
∑m
u=1 du.

Therefore, from the proof of Theorem 3, we get that there exists a θ∗ in [0, 1]d, such that

E
[
R | θ∗

]
≥

(
∑
u

√
duTu)2

B
≥ Ω

 1√
c

(∑
u

√
duTu

) ,



Active Online Domain Adaptation

which implies that the total cost of A, under the environment where the ground truth linear predictor is θ∗, E
[
C | θ∗

]
,

is at least c · E
[
R | θ∗

]
≥ Ω

(
√
c
(∑

u

√
duTu

))
.

In summary, in both cases, there is an oblivious adversary that uses θ∗ in [0, 1]d, under which A has a expected cost of

Ω

(
√
c
(∑

u

√
duTu

))
.

In the theorem below, we discuss the optimality of Algorithm 1 in the c-cost for a range of problem parameters.

Theorem 9. Suppose η ∈ [1, O(1)]; in addition, consider a set of
{

(Tu, du)
}m
u=1

, such that minu Tu/du ≥ η. Fix
c ∈ [maxu

du
Tu
, 1
η2 minu

Tu
du

]. We have

1. Under all environments with domain dimension and duration
{

(Tu, du)
}m
u=1

, such that ‖θ∗‖ ≤ C and
maxt∈[T ]

∣∣〈θ∗, xt〉∣∣ ≤ 1, QuFUR(c) (with the knowledge of norm bound C) has the guarantee that

C ≤ Õ

(
√
c ·
∑
u

√
Tudu

)
,

2. For any algorithm, there exists an environment with domain dimension and duration
{

(Tu, du)
}m
u=1

such that ‖θ∗‖ ≤√
d and maxt∈[T ]

∣∣〈θ∗, xt〉∣∣ ≤ 1, under which the algorithm must have the following cost lower bound:

C ≥ Ω

(
√
c ·
∑
u

√
Tudu

)
,

Proof. We show the two items respectively:

1. As c ≤ η̃2 minu
Tu
du

, and c ≥ maxu
du
Tu
≥ 1

η̃2 ( 1
(
∑
u

√
duTu)2

), applying Theorem 1, we have that QuFUR(c) achieves
the following regret and query complexity guarantees:

Q ≤ O

(
η̃
√
c
∑
u

√
Tudu

)
, R ≤ O

(
η̃
∑
u

√
Tudu/

√
c

)
.

This implies that

C = cQ+R ≤ O

(
η̃
∑
u

√
Tudu ·

√
c

)
= O

(
√
c ·
∑
u

√
Tudu

)
.

2. By the condition that c ≥ maxu
du
Tu

, applying Theorem 8, we get the item.

D. The regret definition

Recall that in the main text, we define the regret of an algorithm as R =
∑T
t=1(ŷt − f∗(xt))2. This is different from the

usual definition of regret in online learning, which measures the difference between the loss of the learner and that of the
predictor θ∗: Reg =

∑T
t=1(ŷt − yt)2 −

∑T
t=1(f∗(xt)− yt)2.

We show a standard a result in this section that the expectation of these two notions coincide.

Theorem 10. E[R] = E[Reg].

Proof. Denote by Ft−1 be the σ-algebra generated by all observations up to time t− 1, and xt. As a shorthand, denote by
Et−1[·] = E[· | Ft−1].
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Let Zt = (ŷt − yt)2 − (f∗(xt)− yt)2; we have

Et−1Zt = Et−1
[
(ŷt − f∗(xt) + f∗(xt)− yt)2 − (f∗(xt)− yt)2

]
= Et−1

[
(f∗(xt)− ŷt)2 + 2(ŷt − f∗(xt))(f∗(xt)− yt)

]
= (f∗(xt)− ŷt)2

where the last inequality uses the fact that Et−1(f∗(xt) − yt) = 0 and ŷt − f∗(xt) is Ft−1-measurable. Consequently,
EZt = E(f∗(xt)− ŷt)2. The theorem is concluded by summing over all time steps t from 1 to T .

E. Online to batch conversion
In this section we show that by an standard application of online to batch conversion (Cesa-Bianchi et al., 2004a) on QuFUR,
we obtain new results on active linear regression under the batch learning setting.

First we recall a standard result on online to batch conversion; for completeness we provide its proof here.

Theorem 11. Suppose online active learning algorithm A sequentially receives a set of iid examples (xt, yt)
T
t=1 drawn

from D, and at every time step t, it outputs predictor f̂t : X → Y . In addition, suppose ` : Y × Y → R is a loss function.
Define regret Reg =

∑T
t=1 `(f̂t(xt), yt)−

∑T
t=1 `(f

∗(xt), yt), and define `D(f) = E(x,y)∼D`(f(x), y). If E [Reg] ≤ R0,
then,

E
[
Ef∼uniform(f̂1,...,f̂T )

`D(f)
]
− `D(f∗) ≤ R0

T
.

Proof. As Reg =
∑T
t=1 `(f̂t(xt), yt)−

∑T
t=1 `(f

∗(xt), yt), We have

R0 ≥ E [Reg] =

T∑
t=1

E
[
`D(f̂t)

]
− E

 T∑
t=1

`(f∗(xt), yt)


= T ·

 1

T

T∑
t=1

E
[
`D(f̂t)

]
− E(x,y∼D`(f

∗(x), y).


The theorem is proved by dividing both sides by T and recognizing that

1

T

T∑
t=1

E
[
`D(f̂t)

]
= Ef∼uniform(f̂1,...,f̂T )

`D(f).

Combining Theorem 11 with Theorem 2, we have the following adaptive excess loss guarantee of Fixed-Budget QuFUR
(Algorithm 2) when run on iid data with hidden domain structure.

Theorem 12. Suppose the unlabeled data distribution DX is a mixture distribution: DX =
∑m
u=1 puDu, where Du

is a distribution supported on a subspace of Rd of dimension du and is a subset of
{
x : ‖x‖2 ≤ 1,

∣∣〈θ∗, x〉∣∣ ≤ 1
}

. The

conditional distribution of y given x is y = 〈θ∗, x〉 + ξ where ξ is a subgaussian with variance proxy η2. In addition,

suppose we are given integer B, T0 such that T0 ≥ Ω

(
max

(
B∑

u

√
dupu·minu

√
pu
du

, lnm
minu pu

))
. If Algorithm 2 is given

dimension d, time horizon T ≥ T0, label budget B, norm bound C, noise level η as input, then:
1. It uses T unlabeled examples.
2. Its query complexity Q is at most B.
3. Denote by `(ŷ, y) = (ŷ − y)2 the square loss. We have,

E
[
Ef∼uniform(f̂1,...,f̂T )

`D(f)
]
− `D(f∗) ≤ O

(
η̃2(
∑
u

√
dupu)2

B

)
.
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Proof sketch. From Theorem 11 it suffices to show that

E [Reg] ≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

By Theorem 10, E [Reg] = E [R], it therefore suffices to show that

E [R] ≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

We first show a high probability upper bound of R. Given a sequence of unlabeled examples {xt}Tt=1, we denote by Su the
subset of examples drawn from component Du, and denote by Tu the size of Su. From the assumption of Du, we know that
Su all lies in a subspace of dimension du.

Define event E as follows:

E =

{
∀u ∈ [m] � Tu ∈

[
Tpu

2
, 2Tpu

]}
.

From the assumption that T ≥ T0 ≥ Ω( lnm
minu pu

), we have that by Chernoff bound and union bound, P(E) ≥ 1− 1
T 2 .

Conditioned on event E happening, we have that by the assumption that T ≥ T0 ≥ B∑
u

√
dupu·minu

√
pu
du

,

B ≤ Õ

(
T ·
∑
u

√
dupu min

u

√
pu
du

)
≤ Õ

(∑
u

√
duTu min

u

√
Tu
du

)
.

Therefore, applying Theorem 2, we have that conditioned on event E happening, with probability 1− 1
T 2 over the draw of

{yt}Tt=1,

R ≤ O

(
η̃2 · (

∑
u

√
duTu)2

B

)
≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

Combining the above two equations and using union bound, we conclude that with probability 1− 2
T 2 ,

R ≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

Observe that with probability 1, ŷt ∈ [−1, 1] and 〈θ∗, xt〉 ∈ [−1, 1]. Therefore, R =
∑T
t=1(ŷt − 〈θ∗, xt〉)2 ∈ [0, 4T ].

Hence,

E[R] ≤
(

1− 2

T 2

)
·O

(
η̃2T · (

∑
u

√
dupu)2

B

)
+

2

T 2
· 4T = O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

The theorem follows.


