
Co-Adaptation of Algorithmic and
Implementational Innovations in

Inference-based Deep Reinforcement Learning

Hiroki Furuta
The University of Tokyo

furuta@weblab.t.u-tokyo.ac.jp

Tadashi Kozuno
University of Alberta

Tatsuya Matsushima
The University of Tokyo

Yutaka Matsuo
The University of Tokyo

Shixiang Shane Gu
Google Research

Abstract

Recently many algorithms were devised for reinforcement learning (RL) with
function approximation. While they have clear algorithmic distinctions, they also
have many implementation differences that are algorithm-independent and some-
times under-emphasized. Such mixing of algorithmic novelty and implementation
craftsmanship makes rigorous analyses of the sources of performance improve-
ments across algorithms difficult. In this work, we focus on a series of off-policy
inference-based actor-critic algorithms – MPO, AWR, and SAC – to decouple
their algorithmic innovations and implementation decisions. We present unified
derivations through a single control-as-inference objective, where we can catego-
rize each algorithm as based on either Expectation-Maximization (EM) or direct
Kullback-Leibler (KL) divergence minimization and treat the rest of specifications
as implementation details. We performed extensive ablation studies, and identified
substantial performance drops whenever implementation details are mismatched
for algorithmic choices. These results show which implementation or code details
are co-adapted and co-evolved with algorithms, and which are transferable across
algorithms: as examples, we identified that tanh Gaussian policy and network sizes
are highly adapted to algorithmic types, while layer normalization and ELU are
critical for MPO’s performances but also transfer to noticeable gains in SAC. We
hope our work can inspire future work to further demystify sources of performance
improvements across multiple algorithms and allow researchers to build on one
another’s both algorithmic and implementational innovations.1

1 Introduction

Deep reinforcement learning (RL) has achieved huge empirical successes in both continuous [36, 18]
and discrete [39, 26] problem settings with on-policy [52, 54] and off-policy [13, 22, 23] algorithms.
Especially in the continuous control domain, interpreting RL as probabilistic inference [60, 61] has
yielded many kinds of algorithms with strong empirical performances [34, 50, 51, 12, 29, 21, 16, 24].

Recently, there has been a series of off-policy algorithms derived from this perspective for learning
policies with function approximations [2, 22, 48]. Notably, Soft Actor Critic (SAC) [22, 23], based
on a maximum entropy objective and soft Q-function, significantly outperforms on-policy [52,
54] and off-policy [36, 18, 13] methods. Maximum a posteriori Policy Optimisation (MPO) [2],

1The implementation is available at https://github.com/frt03/inference-based-rl.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

https://github.com/frt03/inference-based-rl

inspired by REPS [50], employs a pseudo-likelihood objective, and achieves high sample-efficiency
and fast convergence compared to the variety of policy gradient methods [36, 54, 7]. Similar to
MPO, Advantage Weighted Regression (AWR) [48], and its variant, Advantage Weighted Actor-
Critic (AWAC) [42], also employ the pseudo-likelihood objective weighted by the exponential of
advantages, and reports more stable performance than baselines both in online and offline [35]
settings.

While these inference-based algorithms have similar derivations to each other, their empirical perfor-
mances have large gaps among them when evaluated on the standard continuous control benchmarks,
such as OpenAI Gym [6] or DeepMind Control Suite [58]. Critically, as each algorithm has unique
low-level implementation or code design decisions – such as value estimation techniques, action
distribution for the policy, and network architectures – aside from high-level algorithmic choices, it is
difficult to exactly identify the causes of these performance gaps as algorithmic or implementational.

In this paper, we first derive MPO, AWR, and SAC from a single objective function, through either
Expectation-Maximization (EM) or KL minimization, mathematically clarifying the algorithmic
connections among the recent state-of-the-art off-policy actor-critic algorithms. This unified deriva-
tion allows us to precisely identify implementation techniques and code details for each algorithm,
which are residual design choices in each method that are generally transferable to other algorithms.
To reveal the sources of the performance gaps, we experiment with carefully-selected ablations of
these identified implementation techniques and code details, such as tanh-squashed Gaussian policy,
clipped double Q-learning [13], and network architectures. Specifically, we keep the high-level
algorithmic designs while normalizing the implementation designs, enabling proper algorithmic com-
parisons. Our empirical results successfully distinguish between highly co-adapted design choices
and no-co-adapted ones2. We identified that clipped double Q-learning and tanh-squashed policies,
the sources of SoTA performance of SAC, are highly co-adapted, specific to KL-minimization-based
method, SAC, and difficult to transfer and benefit in EM-based methods, MPO or AWR. In contrast,
we discover that ELU [8] and layer normalization [4], the sources of SoTA performance of MPO, are
transferable choices from MPO that also significantly benefit SAC. We hope our work can inspire
more future works to precisely decouple algorithmic innovations from implementation or code details,
which allows exact sources of performance gains to be identified and algorithmic researches to better
build on one another.

2 Related Work

Inference-based RL algorithms RL as probabilistic inference has been studied in several prior
contexts [60, 61, 34, 11, 57, 45], but many recently-proposed algorithms [2, 22, 48] are derived
separately and their exact relationships are difficult to get out directly, due to mixing of algorithmic
and implementational details, inconsistent implementation choices, environment-specific tunings,
and benchmark differences. Our work organizes them as a unified policy iteration method, to clarify
their exact mathematical algorithmic connections and tease out subtle, but important, implementation
differences. We center our analyses around MPO, AWR, and SAC, because they are representative
algorithms that span both EM-based [49, 50, 43, 44, 1, 56, 42] and KL-control-based [59, 51, 12, 29,
21, 33, 32] RL and achieve some of the most competitive performances on popular benchmarks [6, 58].
REPS [50], an EM approach, inspired MPO, AWR, and our unified objective in Eq. 1, while Soft
Q-learning [21], a practical extension of KL control to continuous action space through Liu and Wang
[38], directly led to the development of SAC.

Meta analyses of RL algorithms While many papers propose novel algorithms, some recent works
focused on meta analyses of some of the popular algorithms, which attracted significant attention due
to these algorithms’ high-variance evaluation performances, reproducibility difficulty [9, 28, 65], and
frequent code-level optimizations [25, 63, 10, 3]. Henderson et al. [25] empirically showed how these
RL algorithms have inconsistent results across different official implementations and high variances
even across runs with the same hyper-parameters, and recommended a concrete action item for the
community – use more random seeds. Tucker et al. [63] show that high performances of action-
dependent baselines [19, 17, 37, 20, 67] were more directly due to different subtle implementation
choices. Engstrom et al. [10] focus solely on PPO and TRPO, two on-policy algorithms, and discuss

2We here regard as co-adaptation the indispensable implementation or code decisions that do not stem
directly from the conceptual algorithmic development, but from empirical considerations.

2

Method Algorithm
Implementation

πq update πp update G G estimate πθ

MPO EM Analytic + TR SG + TR Qπp Retrace(1) πp = N (µθ(s),Σθ(s))

AWR EM Analytic Mixture + SG Aπ̃p TD(λ) πp = N (µθ(s),Σ)
AWAC EM Analytic Mixture + SG Qπp TD(0) πp = N (µθ(s),Σθ)
SAC KL SG (Fixed to Unif.) Q

πq

soft TD(0) + TD3 πq = Tanh(N (µθ(s),Σθ(s)))

PoWER EM Analytic Analytic η logQπp TD(1) πp = N (µθ(s),Σθ(s))
RWR EM Analytic SG η log r – πp = N (µθ(s),Σ)
REPS EM Analytic πq Aπp TD(0) πp = Softmax
UREX EM Analytic SG Qπp TD(1) πp = Softmax
V-MPO EM Analytic + TR SG + TR Aπp n-step TD πp = N (µθ(s),Σθ(s))
TRPO KL TR πq Aπp TD(1) πq = N (µθ(s),Σθ)
PPO KL SG + TR πq Aπp GAE πq = N (µθ(s),Σθ)

DDPG∗ KL SG (Fixed) Qπq TD(0) πq = µθ(s)
TD3∗ KL SG (Fixed) Qπq TD(0) + TD3 πq = µθ(s)

Table 1: Taxonomy based on the components of inference-based off-policy algorithms: MPO [2], AWR [48],
AWAC [42], SAC [22], and other algorithms (see Appendix B). We follow the notation of Sec. 3 & 4. We
characterize them with the algorithm family (EM or KL), how policies are updated (πq and πp; SG stands for
stochastic-gradient-based, and TR stands for trust-region-based), the choice of G(·), how G is estimated, and the
parameterization of the policy. While the advantage function just can be interpreted as Q-function with baseline
subtraction, we explicitly write Aπ when the state-value function is parameterized, not Q-function. (∗Note that
DDPG and TD3 are not “inference-based”, but can be classified as KL control variants.)

how code-level optimizations, instead of the claimed algorithmic differences, actually led more to
PPO’s superior performances. Andrychowicz et al. [3] describes low-level (e.g. hyper-parameter
choice, and regularization) and high-level (e.g. policy loss) design choices in on-policy algorithms
affects the performance of PPO by showing results of large-scale evaluations.

In contrast to those prior works that mainly focus on a single family of on-policy algorithms, PPO
and TRPO, and evaluating their implementation details alone, our work focuses on two distinct
families of off-policy algorithms, and more importantly, presents unifying mathematical connections
among independently-proposed state-of-the-art algorithms. Our experiments demonstrate how some
implementation choices in Table 1 and code details are co-evolved with algorithmic innovations
and/or have non-trivial effects on the performance of off-policy inference-based methods.

3 Preliminaries

We consider a Markov Decision Process (MDP) defined by state space S, action space A, state
transition probability function p : S × A× S → [0,∞), initial state distribution p1 : S → [0,∞),
reward function r : S ×A → R, and discount factor γ ∈ [0, 1). Let Rt denote a discounted return∑∞
u=t γ

u−tr(su, au). We assume the standard RL setting, where the agent chooses actions based on
a parametric policy πθ and seeks for parameters that maximize the expected return Eπθ [R1]. Value
functions for a policy π are the expected return conditioned by a state-action pair or a state, that
is, Qπ(st, at) := Eπ[Rt|st, at], and V π(st) := Eπ[Rt|st]. They are called the state-action-value
function (Q-function), and state-value function, respectively. The advantage function [5] is defined
as Aπ(s, a) := Qπ(s, a) − V π(s). The Q-function for a policy π is the unique fixed point of the
Bellman operator T π defined by T πQ(s, a) = r(s, a) +

∫
π(a′|s′)p(s′|s, a)Q(s′, a′) ds′da′ for

any function Q : S × A → R. We denote a trajectory or successive state-action sequence as
τ := (s1, a1, s2, a2, . . .). We also define an unnormalized state distribution under the policy π by
dπ(s) =

∑∞
t=1 γ

tp(st = s|π).

Inference-based Methods For simplicity, we consider a finite-horizon MDP with a time
horizon T for the time being. As a result, a trajectory τ becomes a finite length: τ :=
(s1, a1, . . . , sT−1, aT−1, sT).

As in previous works motivated by probabilistic inference [34, 2], we introduce to the standard
graphical model of an MDP a binary event variable Ot ∈ {0, 1}, which represents whether the action
in time step t is optimal or not. To derive the RL objective, we consider the marginal log-likelihood
log Pr(O = 1|πp), where πp is a policy. Note that O = 1 means Ot = 1 for every time step. As is

3

well known, we can decompose this using a variational distribution q of a trajectory as follows:

log Pr (O = 1|πp) = Eq
[
log Pr(O = 1|τ)− log

q(τ)

p(τ)
+ log

q(τ)

p(τ |O = 1)

]
= J (p, q) +DKL(q(τ) || p(τ |O = 1)),

where J (p, q) := Eq [log Pr(O = 1|τ)]−DKL(q(τ) || p(τ)) is the evidence lower bound (ELBO).
Inference-based methods aim to find the parametric policy which maximizes the ELBO J (p, q).

There are several algorithmic design choices for q and Pr(O = 1|τ). Since any q is valid, a popular
choice is the one that factorizes in the same way as p, that is,

p(τ) = p(s1)
∏
t

p(st+1|st, at)πp(at|st), q(τ) = p(s1)
∏
t

p(st+1|st, at)πq(at|st),

where πp is a prior policy, and πq is a variational posterior policy. We may also choose which policy
(πp or πq) to parameterize. As for Pr(O = 1|τ), the most popular choice is the following one
[21, 22, 2, 34, 48]:

Pr(O = 1|τ) ∝ exp
(∑T

t=1 η
−1G(st, at)

)
,

where η > 0 is a temperature, and G is a function over S ×A, such as an immediate reward function
r, Q-function Qπ, and advantage function Aπ. While we employ exp(·) in the present paper, there
are alternatives [46, 47, 55, 66]: for example, Siegel et al. [55] and Wang et al. [66] consider an
indicator function f : x ∈ R 7→ 1[x ≥ 0], whereas Oh et al. [46] consider the rectified linear unit
f : x ∈ R 7→ max{x, 0}.
Incorporating these design choices, we can rewrite the ELBO J (p, q) in a more explicit form as;

J (πp, πq) =

T∑
t=1

Eq
[
η−1G(st, at)−DKL(πq(·|st) || πp(·|st))

]
.

In the following section, we adopt this ELBO and consider its relaxation to the infinite-horizon setting.
Then, starting from it, we derive MPO, AWR, and SAC.

4 A Unified View of Inference-based Off-Policy Actor-Critic Algorithms

In Sec. 3, we provided the explicit form of the ELBO J (πp, πq). However, in practice, it is difficult
to maximize it as the expectation Eq depends on πq. Furthermore, since we are interested in a
finite-horizon setting, we replace

∑
t∈[T] Eq with Edπ(s). Note that the latter expectation Edπ(s) is

taken with the unnormalized state distribution dπ under an arbitrary policy π. This is commonly
assumed in previous works [2, 22]. This relaxation leads to the following optimization:

max
πp,πq

J (πp, πq) s.t.
∫
dπ(s)

∫
πp(a|s) dads = 1 and

∫
dπ(s)

∫
πq(a|s) dads = 1 , (1)

where J (πp, πq) = Edπ(s)[η−1G(s, a)−DKL(πq || πp)] . With this objective, we can regard recent
popular SoTA off-policy algorithms, MPO [2], AWR [48], and SAC [22] as variants of a unified
policy iteration method. The components are summarized in Table 1. We first explain how these
algorithms can be grouped into two categories of approaches for solving Eq. 1, and then we elaborate
additional implementation details each algorithm makes.

4.1 Unified Policy Iteration: Algorithmic Perspective

Eq. 1 allows the following algorithmic choices: how or if to parameterize πp and πq; what optimizer
to use for them; and if to optimize them jointly, or individually while holding the other fixed. We
show that the algorithms in Table 1 can be classified into two categories: Expectation-Maximization
control (EM control) and direct Kullback-Leibler divergence minimization control (KL control).

4

4.1.1 Expectation-Maximization (EM) Control

This category subsumes MPO [2] (similarly REPS [50]), AWR [48], and AWAC [42], and we term it
EM control. At high level, the algorithm non-parametrically solves for the variational posterior πq
while holding the parametric prior πp = πθp fixed (E-Step), and then optimize πp holding the new πq
fixed (M-Step). This can be viewed as either a generic EM algorithm and as performing coordinate
ascent on Eq. 1. We denote θp and πq after iteration k of EM steps by θ(k)p and π(k)

q , respectively.

In E-step at iteration k, we force the variational posterior policy π(k)
q to be close to the optimal

posterior policy, i.e., the maximizer of the ELBO J (π
θ
(k−1)
p

, πq) with respect to πq. EM control
converts the hard-constraint optimization problem in Eq. 1 to solving the following Lagrangian,

J (πq, β) =

∫
dπ(s)

∫
πq(a|s)η−1G(s, a) dads

−
∫
dπ(s)

∫
πq(a|s) log

πq(a|s)
π
θ
(k−1)
p

(a|s)
dads+ β

(
1−

∫
dπ(s)

∫
πq(a|s) dads

)
. (2)

We analytically obtain the solution of Eq. 2,

π(k)
q (a|s) = Z(s)−1π

θ
(k−1)
p

(a|s) exp
(
η−1G(s, a)

)
,

where Z(s) is the partition function.

In M-Step at iteration k, we maximize the ELBO J (π
(k)
q , πp) with respect to πp. Considering the

optimization with respect to πp in Eq. 1 results in forward KL minimization, which is often referred
to as a pseudo-likelihood or policy projection objective,

max
θp

E
dπ(s)π

(k)
q (a|s)

[
log πθp(a|s)

]
= max

θp
Edπ(s)π

θ
(k−1)
p

(a|s)

[
log πθp(a|s)

Z(s)
exp

(
η−1G(s, a)

)]
,

(3)
where we may approximate Z(s) ≈ 1

M

∑M
j=1 exp(η−1G(s, aj)) with aj ∼ πθ(k−1)

p
(·|s) in practice.

4.1.2 Direct Kullback-Leibler (KL) Divergence Minimization Control

In contrast to the EM control in Sec. 4.1.1, we only optimize the variational posterior πq while
holding the prior πp fixed. In this scheme, πq is parameterized, so we denote it as πθq . This leads to
KL control [59, 62, 51, 12, 29, 21].

Equivalent to E-step in Sec. 4.1.1, we force the variational posterior policy πθq to be close to the
optimal posterior policy, i.e, the maximizer of J (πp, πq) with respect to πq. The difference is that
instead of analytically solving J (πp, πq) for πq, we optimize J (πp, πθq) with respect to θq, which
results in the following objective,

max
θq

Edπ(s)πθq (a|s)
[
η−1G(s, a)− log

πθq (a|s)
πp(a|s)

]
.

4.1.3 “Optimal” Policies of EM and KL Control

While we formulate EM and KL control in a unified framework, we note that they have a fundamental
difference in their definition of “optimal” policies. KL control fixes πp and converges to a regularized-
optimal policy in an exact case [15, 64]. In contrast, EM control continues updating both πp and πq ,
resulting in convergence to the standard optimal policy in an exact case [51]. We also note that EM
control solves KL control as a sub-problem; for example, the first E-step exactly corresponds to a KL
control problem, except for the policy parameterization.

4.2 Unified Policy Iteration: Implementation Details

In this section, we explain the missing pieces of MPO, AWR, and SAC in Sec. 4.1. Additionally, we
also describe the details of other algorithms [30, 49, 50, 41, 56, 36, 13, 52, 54] from the EM and KL
control perspective. See Appendix B for the details.

5

4.2.1 MPO

Algorithm MPO closely follows the EM control scheme explained in Sec. 4.1.1, wherein πp = πθp
is parametric, and πq is non-parametric.

Implementation [πq Update] This corresponds to the E-step. MPO uses a trust-region (TR)
method. Concretely, it replaces the reverse KL penalty (second term) in the Lagrangian (Eq. 2) with
a constraint and analytically solves it for πq. As a result, η is also optimized during the training by
minimizing the dual of Eq. 2, which resembles REPS [50]:

g(η) = ηε+ η logEdπ(s)π
θ
(k−1)
p

(a|s)

[
exp

(
η−1Q

π
θ
(k−1)
p (s, a)

)]
.

[πp Update] This corresponds to the M-step. MPO uses a combination of Stochastic Gradi-
ent (SG) ascent and trust-region method based on a forward KL divergence similarly to TRPO
[52]. Concretely, it obtains θ(k)p by maximizing the objective (Eq. 3) with respect to θp subject to
Edπ(s)[DKL(π

θ
(k−1)
p

(·|s) || πθp(·|s))] ≤ ε. MPO further decompose this KL divergence to two
terms, assuming Gaussian policies; one term includes only the mean vector of πθp(·|s), and the
other includes only its covariance matrix. Abdolmaleki et al. [2] justify this as a log-prior of MAP
estimation, which is assumed as a second-order approximation of KL divergence.

[G and G Estimate] MPO uses the Q-function of π
θ
(k−1)
p

as G in the k-th E-step. It originally uses
the Retrace update [40], while its practical implementation [27] uses a single-step Bellman update.

[πθ] For a parameterized policy, MPO uses a Gaussian distribution with state-dependent mean
vector and diagonal covariance matrix. The trust-region method in MPO’s M-step heavily relies on
this Gaussian assumption. Since a Gaussian distribution has an infinite support, MPO has a penalty
term in its policy loss function that forces the mean of the policy to stay within the range of action
space.

4.2.2 AWR and AWAC

Algorithm AWR slightly deviates from the EM control. In the M-step, AWR simply set Z(s) to 1.

Implementation [πq Update] This corresponds the E-step. AWR and AWAC analytically solves
the Lagrangian (Eq. 2). In contrast to MPO, they don’t use trust-region method.

[πp Update] This corresponds to the M-step. At iteration k, AWR uses an average of all previous
policies π̃pk := 1

k

∑k−1
j=0 πθ(j)p

instead of π
θ
(k−1)
p

(cf. Eq. 3). In practice, the average policy π̃pk is
replaced by samples of actions from a replay buffer, which stores action samples of previous policies.

[G and G Estimate] AWR uses the advantage function of π̃pk as G in the k-th E-step, and learns
the state-value function of π

θ
(k−1)
p

with TD(λ) [53]. Due to its choice of π̃pk , this avoids importance
corrections [40]. In contrast, AWAC estimates the advantage via the Q-function with TD(0).

[πθ] For a parameterized policy, both AWR and AWAC use a Gaussian distribution with state-
dependent mean vector and state-independent diagonal covariance matrix (a constant one for AWR).
As in MPO, they uses a penalty term to keep the mean of the policy within the range of action space.

4.2.3 SAC

Algorithm Contrary to MPO and AWR, SAC follows the KL control scheme explained in Sec. 4.1.2,
wherein the variational posterior policy πq = πθq is parameterized, and the prior policy πp is fixed to
the uniform distribution over the action space A. SAC uses as G a soft Q-function:

Q
πθq
soft (st, at) := r(st, at) + γEπθq

[
V
πθq

soft (st+1)
]
,

V
πθq

soft (st) := V πθq (st) + Eπθq
[∑∞

u=t γ
u−tηH(πθq (·|st))

∣∣st] ,
withH(πθq (·|st)) being −Eπθq [log πθq (at|st)|st].

6

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps(1e6)

0

500

1000

1500

2000

2500

3000

3500

4000

cu
m

ul
at

iv
e

re
wa

rd
s

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000

cu
m

ul
at

iv
e

re
wa

rd
s

Walker2d-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

2500

5000

7500

10000

12500

15000

17500

cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

1000

2000

3000

4000

5000

6000

7000

cu
m

ul
at

iv
e

re
wa

rd
s

Ant-v2

0 2 4 6 8 10
Training Steps(1e6)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Steps(1e6)

0

20

40

60

80

100

120

140

cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer-v2

SAC AWR AWAC MPO

Figure 1: Benchmarking results on OpenAI Gym MuJoCo locomotion environments. All methods are run with
10 random seeds. SAC seems to perform consistently better.

Implementation [πq and πp Update] SAC performs stochastic gradient (SG) ascent updates of
only πq , where the objective function is shown in Eq. 1. SAC has no operation equivalent to M-step
in MPO and AWR, since it keeps the prior policy πp to the uniform distribution.

Similar to the temperature tuning in MPO, Haarnoja et al. [23] consider the dual function of entropy-
constrained Lagrangian and treat the temperature η as a Lagrange multiplier, which results in,

g(η) = −ηH̄ − ηEdπ(s)πθq (a|s)
[
log πθq (a|s)

]
,

where H̄ is the target entropy to ensure that the entropy of the policy should be larger than it.

[G and G Estimate] SAC uses Q
πθq
soft as G, and TD(0)-like algorithm based on this soft Q-function.

In policy evaluation, clipped double Q-learning [13], which retains multiple Q-functions (typically
two) and takes the minimum, is employed to suppress the overestimation of Q value.

[πθ] The policy of SAC is a squashed Gaussian distribution: SAC first samples a random variable
u from a Gaussian distribution N (µθ(s),Σθ(s)) with state-dependent mean vector and diagonal
covariance; then, it applies the tanh function to u and obtain the action a ∈ [−1, 1]|A|. (If a dimension
of the action space is not [−1, 1], an appropriate scaling and shift by an affine function is applied
after the squashing.) Tanh squashing prevents out-of-bounds action.

4.3 Empirical Comparison

To evaluate the empirical performance of these off-policy algorithms (MPO, AWR, AWAC, and SAC),
we compare their performances on Open AI Gym MuJoCo environments, namely, Hopper, Walker2d,
HalfCheetah, Ant, Humanoid, and Swimmer, following Haarnoja et al. [23]. We reproduce all
algorithms based on pytorch RL library [14], referring their original implementations [22, 48, 42, 27].
Figure 1 shows that SAC outperforms others in four environments (Hopper, Walker2d, HalfCheetah,
and Humanoid), while MPO in Ant and AWR in Swimmer achieves the best performance. Generally,
SAC seems to perform consistently better. We extensively evaluate MPO, AWR, and SAC on the 28
tasks on DeepMind Control Suite and 3 MuJoCo manipulation tasks. See Appendix C and D for the
details.

5 Evaluation on Implementational Choices

In Sec. 4.3, SAC shows notable results in most environments, while we revealed that the derivation
and formulation of those methods resemble each other. To specify the effect of each implementational

7

SAC (D) SAC (S) AWAC (D) AWAC (S) MPO (D) MPO (S)
Hopper-v2 3013± 602 1601± 733 2329± 1020 2540± 755 2352± 959 2136± 1047
Walker2d-v2 5820± 411 1888± 922 3307± 780 3662± 712 4471± 281 3972± 849
HalfCheetah-v2 15254± 751 15701± 630 7396± 677 7226± 449 12028± 191 11769± 321
Ant-v2 5532± 1266 1163± 1326 3659± 523 3008± 375 7179± 190 6584± 455
Humanoid-v2 8081± 1149 768± 215 5243± 200 2738± 982 6858± 373 5709± 1081
Swimmer-v2 114± 21 143± 3 35± 8 38± 7 69± 29 70± 40

Table 2: Ablation of Clipped Double Q-Learning. (D) denotes algorithms with clipped double Q-learning, and
(S) denotes without it. We test original SAC (D), AWAC (D), MPO (S) and some variants; SAC without clipped
double Q (S), AWAC (S), and MPO with clipped double Q (D). SAC (S) beats SAC (D) in HalfCheetah and
Swimmer, while it fails in Hopper, Walker, Ant and Humanoid, which implies that SAC (S) obtains a highly
exploratory policy, since it fails in termination environments. The learning curves are shown in Appendix F.

or code detail on the performance, we experiment with extensive and careful one-by-one ablations on;
(1) clipped double Q-learning, (2) action distribution for the policy, (3) activation and normalization,
and (4) network size. The former two correspond to implementation details (the choice of G estimate
and the parameterization of the policy), and the latter two correspond to code details (see Appendix G
for further experiments on other implementation details, such as πp update or the choice of G). We
also conclude several recommendations for the practitioners (Table 6).

5.1 Clipped Double Q-Learning

We hypothesize that clipped double Q-learning has a large effect on the notable performance of SAC,
and could be transferable in EM control methods. To verify this, we test the effect of clipped double
Q-learning. Instead of AWR, here we evaluate AWAC since it uses Q-function. Table 2 shows that
single-Q SAC outperforms original one in HalfCheetah and Swimmer that do not have the termination
of the episode, while struggles to learn in Hopper, Walker, Ant and Humanoid that have the episodic
termination conditions. A hypothesis is that single-Q SAC obtains a more exploratory policy due
to larger overestimation bias, which can help in environments where explorations are safe, but hurt
in environments where reckless explorations lead to immediate terminations. In contrast, clipped
double Q-learning does not help MPO or AWAC as significantly as SAC; most results do not change
or lead to slight improvements over the originals. This suggests that clipped double Q-learning might
be a co-dependent and indispensable choice to KL control methods.

Recommendation Use clipped double Q-learning as a default choice, but you can omit it in EM
control methods or non-terminal environments, such as HalfCheetah or Swimmer.

5.2 Action Distribution for the Policy

Another hypothesis is that the tanh-squashed policy (last column in Table 1) is an important and
transferable design choice. We compare SAC without tanh transform (with MPO action penalty
instead) to the original one, which results in drastic degradation (Table 3). This can be caused by the
maximum entropy objective that encourages maximizing the covariance. These observations suggest
that the high performance of SAC seems to highly depend on the implementational choice of the policy
distribution. In contrast, MPO and AWR with tanh squashing don’t enjoy such large performance
gain, or achieve worse cumulative rewards. This also suggests that tanh-squashed policy might be
highly co-adapted in SAC and less transferable to EM control methods. Note that for EM control, we
must clip the actions to keep them within the supports of distributions; a ∈ [−1 + ε, 1− ε]|A|. We
found that no clipping cause significant numerical instability. See Appendix H for the details.

Recommendation Use the original distributions for each algorithm. If you use the tanh-squashed
Gaussian in EM control methods, clip the action to be careful for the numerical instability.

5.3 Activation and Normalization

The implementation of MPO [27] has some code-level detailed choices; ELU activation [8] and
layer normalization [4]. We hypothesize that these, sometimes unfamiliar, code details in practical
implementation stabilize the learning process, and contribute to the performance of MPO most.

8

SAC (w/) SAC (w/o) AWR (w/) AWR (w/o) MPO (w/) MPO (w/o)
Hopper-v2 3013± 602 6± 10 2709± 905 3085± 593 2149± 849 2136± 1047
Walker2d-v2 5820± 411 −∞ 3295± 335 4717± 678 3167± 815 3972± 849
HalfCheetah-v2 15254± 751 −∞ 3653± 652 5742± 667 9523± 312 11769± 321
Ant-v2 5532± 1266 −∞ 445± 106 1127± 224 2880± 306 6584± 455

Humanoid-v2 8081± 1149 108± 82† 2304± 1629† 5573± 1020 6688± 192 5709± 1081
Swimmer-v2 114± 21 28± 11 121± 3 128± 4 110± 42 70± 40

Table 3: Ablation of Tanh transformation (†numerical error happens during training). We test SAC without tanh
squashing, AWR with tanh, and MPO with tanh. SAC without tanh transform results in drastic degradation of
the performance, which can be caused by the maximum entropy objective that encourages the maximization
of the covariance. In contrast, EM Control methods don’t enjoy the performance gain from the tanh-squashed
policy, which seems a less transferable choice. The learning curves are shown in Appendix F.

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
SAC 3013± 602 5820± 411 15254± 751 5532± 1266 8081± 1149 114± 21
SAC-E+ 2337± 903 5504± 431 15350± 594 6457± 828 8196± 892 146± 7
SAC-L+ 2368± 179 5613± 762 13074± 2218 7349± 176 8146± 470 99± 18
SAC-E+L+ 1926± 417 5751± 400 12555± 1259 7017± 132 7687± 1385 143± 9
MPO 2136± 1047 3972± 849 11769± 321 6584± 455 5709± 1081 70± 40
MPO-E− 2700± 879 3553± 1145 11638± 664 5917± 702 4870± 1917 108± 28
MPO-L− 824± 250 2413± 1352 6064± 4596 2135± 2988 5039± 838 −∞
MPO-E−L− 843± 168 1708± 663 −1363± 20965 807± 2351 5566± 787 −∞
AWR 3085± 593 4717± 678 5742± 667 1127± 224 5573± 1020 128± 4
AWR-E+ 1793± 1305 4418± 319 5910± 754 2288± 715 6708± 226 128± 4
AWR-L+ 2525± 1130 4900± 671 5391± 232 639± 68 5962± 376 129± 2
AWR-E+L+ 3234± 118 4906± 304 6081± 753 2283± 927 6041± 270 130± 1

Table 4: Incorporating ELU/layer normalization into SAC and AWR. E+/L+ indicates adding, and E−/L−

indicates removing ELU/layer normalization. Introducing layer normalization or ELU into SAC improves the
performances in Ant (beating MPO), Swimmer (beating AWR), HalfCheetah, and Humanoid. AWR also shows
the improvement in several tasks. MPO removing layer normalization largely drops its performance. Both
code-level details seems transferable between EM and KL control methods.

Especially in Ant (Sec. 4.3), MPO significantly outperforms SAC. To investigate this much deeper,
we add them into SAC or AWR and remove them from MPO, while maintaining the rest of the
implementations. Table 4 shows that layer normalization can contribute to a significantly higher
performance of SAC in Ant, and replacing ReLU with ELU also improves performance a lot in
Swimmer, where AWR is the best in Figure 1. In contrast, the performance of MPO drastically
collapsed when we just removed ELU and layer normalization. This observation suggests that these
code-level choices are not only indispensable for MPO, but transferable and beneficial to both KL
and EM control methods. Additionally, we tested incorporating ELU and layer normalization to SAC
in 12 DM Control tasks where MPO outperformed SAC, and observed that they again often benefit
SAC performances substantially. See Appendix C for the details.

Recommendation It is worth considering to replace the activation function from ReLU to ELU
and incorporate the layer normalization, to achieve the best performance in several tasks. Both of
them are transferable between EM and KL control methods.

5.4 Network Size

While on-policy algorithms such as PPO and TRPO can use the common network architecture as in
prior works [10, 25], the architecture that works well in all the off-policy inference-based methods
is still not obvious, and the RL community does not have agreed upon default choice. To validate
the dependency on the networks among the inference-based methods, we exchange the size and
number of hidden layers in the policy and value networks. We denote the network size of MPO ((256,
256, 256) for policy and (512, 512, 256) for value) as large (L), of SAC ((256, 256) for policy and
value) as middle (M), and of AWR ((128, 64) for policy and value) as small (S) (see Appendix A
for the details). Table 5 illustrates that SAC with large network seems to have better performance.
However, as shown in Appendix F (Figure 8), the learning curve sometimes becomes unstable. While
the certain degree of robustness to the network size is observed in SAC, EM control methods, MPO

9

Hopper-v2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v2
SAC (L) 2486± 746 3188± 2115 16528± 183 7495± 405 8255± 578 118± 26
SAC (M) 3013± 602 5820± 411 15254± 751 5532± 1266 8081± 1149 114± 21
SAC (S) 3456± 81 4939± 284 12241± 400 3290± 691 7724± 497 59± 11
MPO (L) 2136± 1047 3972± 849 11769± 321 6584± 455 5709± 1081 70± 40
MPO (M) 661± 79 1965± 1426 −∞ 5192± 538 6015± 771 81± 28
MPO (S) 430± 99 2055± 990 5003± 1567 3587± 957 4745± 1428 59± 28
AWR (L) 3221± 193 4688± 648 4360± 542 35± 43 665± 54 133± 3
AWR (M) 2816± 910 4826± 547 5538± 720 413± 117 3849± 1647 133± 2
AWR (S) 3085± 593 4717± 678 5742± 667 1127± 224 5573± 1020 128± 4

Table 5: The performance of each algorithm with different network size. (S) stands for the small network size
from AWR, (M) for the middle network size from SAC, and (L) for the large network size from MPO. Generally,
SAC, a KL control method seems more robust to the network size than EM control methods; MPO and AWR.

and AWR, seem fragile and more dependent on the specific network size. This trend is remarkable
in MPO. AWR (M) or (L) also struggles to learn in high-dimensional state tasks, such as Ant (111
dim), or Humanoid (376 dim). The results also imply that, in contrast to on-policy methods [3], the
network size in the off-policy inference-based methods seems a less transferable choice.

Recommendation For SAC, use medium size network. Large size will also work, but the learning
curve might be unstable. For MPO, we strongly recommend to stick to large size, because it is
very sensitive to the network size. For AWR, using small size is a better choice, especially in
high-dimensional state tasks, such as Ant, or Humanoid.

6 Conclusion

MPO AWR SAC
Clipped Double Q [5.1] 4 4 ©
Tanh Gaussian [5.2] 4 4 ©
ELU & LayerNorm [5.3] © © ©
Large Network [5.4] © 4 ©
Medium Network [5.4] × 4 ©
Small Network [5.4] × © 4

Table 6: Intuitive summary of the ablations.
© stands for indispensable choice,© stands
for recommended choice, 4 stands for not
much different or worse choice than expected,
and × stands for un-recommended choice.
See Recommendation for the details.

In this work, we present a taxonomy of inference-based
algorithms, and successfully identify algorithm-specific
as well as algorithm-independent implementation details
that cause substantial performance improvements. We first
reformulated recent inference-based off-policy algorithms
– such as MPO, AWR and SAC – into a unified mathemat-
ical objective and exhaustively clarified the algorithmic
and implementational differences. Through precise ab-
lation studies, we empirically show that implementation
choices like tanh-squashed distribution and clipped double
Q-learning are highly co-adapted to KL control methods
(e.g. SAC), and difficult to benefit in EM control methods
(e.g. MPO or AWR). As an example, the network archi-
tectures of inference-based off-policy algorithms, especially EM controls, seem more co-dependent
than on-policy methods like PPO or TRPO, which therefore have significant impacts on the overall
algorithm performances and need to be carefully tuned per algorithm. Such dependence of each
algorithmic innovation on specific hand-tuned implementation details makes accurate performance
gain attributions and cumulative build-up of research insights difficult. In contrast, we also find
that some code-level implementation details, such as ELU and layer normalization, are not only
indispensable choice to MPO, but also transferable and beneficial to SAC substantially. We hope
our work can encourage more works that study precisely the impacts of algorithmic properties and
empirical design choices, not only for one type of algorithms, but also across a broader spectrum of
deep RL algorithms.

Acknowledgements

We thank Yusuke Iwasawa, Masahiro Suzuki, Marc G. Bellemare, Ofir Nachum, and Sergey Levine
for many fruitful discussions and comments. This work has been supported by the Mohammed bin
Salman Center for Future Science and Technology for Saudi-Japan Vision 2030 at The University of
Tokyo (MbSC2030).

10

References
[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez, Yuval Tassa, Dan Belov,

Nicolas Heess, and Martin Riedmiller. Relative entropy regularized policy iteration. arXiv preprint
arXiv:1812.02256, 2018.

[2] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

[3] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier Bachem.
What matters for on-policy deep actor-critic methods? a large-scale study. In International Conference on
Learning Representations, 2021.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] Leemon C Baird III. Advantage updating. Technical report, WRIGHT LAB WRIGHT-PATTERSON AFB
OH, 1993.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. Journal of
Machine Learning Research, 2020.

[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). In International Conference on Learning Representations, 2016.

[9] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, 2016.

[10] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In International
Conference on Learning Representations, 2019.

[11] Matthew Fellows, Anuj Mahajan, Tim GJ Rudner, and Shimon Whiteson. Virel: A variational inference
framework for reinforcement learning. In Advances in Neural Information Processing Systems, 2019.

[12] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates. In
Conference on Uncertainty in Artificial Intelligence, 2016.

[13] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, 2018.

[14] Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl: A deep reinforce-
ment learning library. Journal of Machine Learning Research, 2021.

[15] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision processes.
In International Conference on Machine Learning, 2019.

[16] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning, 2020.

[17] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropagation through
the void: Optimizing control variates for black-box gradient estimation. arXiv preprint arXiv:1711.00123,
2017.

[18] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning, 2016.

[19] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, and Sergey Levine. Q-Prop:
Sample-efficient policy gradient with an off-policy critic. In International Conference on Learning
Representations, 2017.

[20] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Bernhard Schölkopf, and Sergey
Levine. Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2017.

11

[21] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In International Conference on Machine Learning, 2017.

[22] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

[23] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

[24] Danijar Hafner, Pedro A Ortega, Jimmy Ba, Thomas Parr, Karl Friston, and Nicolas Heess. Action and
perception as divergence minimization. arXiv preprint arXiv:2009.01791, 2020.

[25] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. In AAAI Conference on Artificial Intelligence, 2017.

[26] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

[27] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Nor-
man, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov,
Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang,
Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed reinforcement learning.
arXiv preprint arXiv:2006.00979, 2020.

[28] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked
deep reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133, 2017.

[29] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E Turner, and
Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. In
International Conference on Machine Learning, 2017.

[30] Jens Kober and Jan Peters. Policy search for motor primitives in robotics. In Advances in neural information
processing systems, 2008.

[31] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. In Advances in Neural Information Processing Systems, 2019.

[32] Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overestimation
bias with truncated mixture of continuous distributional quantile critics. In International Conference on
Machine Learning, 2020.

[33] Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. In Advances in Neural Information Processing Systems,
2020.

[34] Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

[35] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[36] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

[37] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent control
variates for policy optimization via stein’s identity. arXiv preprint arXiv:1710.11198, 2017.

[38] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. arXiv preprint arXiv:1608.04471, 2016.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

12

[40] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, 2016.

[41] Ofir Nachum, Mohammad Norouzi, and Dale Schuurmans. Improving policy gradient by exploring
under-appreciated rewards. In International Conference on Learning Representations, 2017.

[42] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[43] Gerhard Neumann et al. Variational inference for policy search in changing situations. In International
Conference on Machine Learning, 2011.

[44] Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. In Advances In Neural
Information Processing Systems, 2016.

[45] Brendan O’Donoghue, Ian Osband, and Catalin Ionescu. Making sense of reinforcement learning and
probabilistic inference. In International Conference on Learning Representations, 2020.

[46] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, 2018.

[47] Masashi Okada and Tadahiro Taniguchi. Variational inference mpc for bayesian model-based reinforcement
learning. In Conference on Robot Learning, 2019.

[48] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-Weighted Regression: Simple
and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[49] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In Proceedings of the 24th international conference on Machine learning, 2007.

[50] Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In AAAI Conference on
Artificial Intelligence, 2010.

[51] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforcement
learning by approximate inference. In International Joint Conference on Artificial Intelligence, 2012.

[52] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region policy
optimization. In International Conference on Machine Learning, 2015.

[53] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In International Conference on Learning
Representations, 2016.

[54] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[55] Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin A. Riedmiller. Keep doing what worked: Behavioral modelling
priors for offline reinforcement learning. In International Conference on Learning Representations, 2020.

[56] H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W. Rae,
Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin Riedmiller, and
Matthew M. Botvinick. V-mpo: On-policy maximum a posteriori policy optimization for discrete and
continuous control. In International Conference on Learning Representations, 2020.

[57] Yunhao Tang and Alp Kucukelbir. Hindsight expectation maximization for goal-conditioned reinforcement
learning. arXiv preprint arXiv:2006.07549, 2020.

[58] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

[59] Emanuel Todorov. Linearly-solvable markov decision problems. In Advances in Neural Information
Processing Systems, 2006.

[60] Emanuel Todorov. General duality between optimal control and estimation. In IEEE Conference on
Decision and Control, 2008.

13

[61] Marc Toussaint. Robot trajectory optimization using approximate inference. In International Conference
on Machine Learning, 2009.

[62] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state markov
decision processes. In International conference on Machine learning, 2006.

[63] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin Ghahramani, and Sergey Levine.
The mirage of action-dependent baselines in reinforcement learning. In International Conference on
Machine Learning, 2018.

[64] Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in rl. In Advances in Neural Information Processing
Systems, 2021.

[65] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi Zhang,
Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement learning. arXiv
preprint arXiv:1907.02057, 2019.

[66] Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak Shahriari,
Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

[67] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade, Igor
Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent factorized
baselines. arXiv preprint arXiv:1803.07246, 2018.

[68] Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement Learning. arXiv
preprint arXiv:1911.11361, 2019.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We added the failure cases of ablations that
end up the insufficient coverage and the unclear insights in Appendix H.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Actually, we
conducted exhaustive evaluations through the enormous experiments, which might lead to force
the future research to spend much computing resources. We hope our empirical observations and
recommendations help the practitioners to explore the explosive configuration space.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] We open-source the codebase at
https://github.com/frt03/inference-based-rl.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] See Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] Our experimental results were averaged among 10 random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the authors of the
codebase in Sec. 4.3.

(b) Did you mention the license of the assets?
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]

14

https://github.com/frt03/inference-based-rl

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

15

