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Abstract

We propose a novel statistical inference framework
for streaming principal component analysis (PCA)
using Oja’s algorithm, enabling the construction
of confidence intervals for individual entries of
the estimated eigenvector. Most existing works
on streaming PCA focus on providing sharp sin-
squared error guarantees. Recently, there has been
some interest in uncertainty quantification for the
sin-squared error. However, uncertainty quantifica-
tion or sharp error guarantees for entries of the esti-
mated eigenvector in the streaming setting remains
largely unexplored. We derive a sharp Bernstein-
type concentration bound for elements of the es-
timated vector matching the optimal error rate up
to logarithmic factors. We also establish a Central
Limit Theorem for a suitably centered and scaled
subset of the entries. To efficiently estimate the
coordinate-wise variance, we introduce a provably
consistent subsampling algorithm that leverages
the median-of-means approach, empirically achiev-
ing similar accuracy to multiplier bootstrap meth-
ods while being significantly more computationally
efficient. Numerical experiments demonstrate its
effectiveness in providing reliable uncertainty esti-
mates with a fraction of the computational cost of
existing methods.

1 INTRODUCTION
Principal Component Analysis (PCA) [Pearson, 1901,
Ziegel, 2003] is a cornerstone for statistical data analysis
and visualization. Given a dataset {Xi}ni=1, where each
Xi ∈ Rd is independently drawn from a distribution P with
mean zero and covariance matrix Σ, PCA computes the
eigenvector v1 of Σ that corresponds to the largest eigen-
value λ1, and is the direction that explains the most variance
in the data. It has been established [Wedin, 1972, Jain et al.,

2016, Vershynin, 2012] that the leading eigenvector v̂ of
the empirical covariance matrix Σ̂ = 1

n

∑n
i=1 XiX

⊤
i is a

nearly optimal estimator of v1 under suitable assumptions
on the data distribution.

While theoretically appealing, computing the empirical co-
variance matrix Σ̂ explicitly requires O(d2) time and space,
which is expensive in high-dimensional settings when both
the sample size and the dimension are large. Oja’s algo-
rithm [Oja and Karhunen, 1985]— a streaming algorithm
inspired by Hebbian learning [Hebb, 2005]— has emerged
as an efficient and scalable algorithm for PCA. It maintains
a running estimate of v1 similar to a projected stochastic
gradient descent (SGD) update

ui ← ui−1 + ηnXi(X
T
i ui−1), ui ←

ui

∥ui∥2
(1)

for i ∈ [n], where u0 is a random unit vector and ηn > 0 is
the learning rate. The algorithm is single-pass, runs in time
O(nd), and takes only O(d) space. We call the output un

of the above algorithm an Oja vector voja.

Oja’s algorithm has fueled significant research in theo-
retical statistics, applied mathematics, and computer sci-
ence [Jain et al., 2016, Allen-Zhu and Li, 2017, Chen
et al., 2018, Yang et al., 2018, Henriksen and Ward, 2019,
Price and Xun, 2024, Lunde et al., 2021, Monnez, 2022,
Huang et al., 2021, Kumar and Sarkar, 2024a,b]. Despite
the plethora of work on sharp rates for the sin-squared er-
ror sin2 (voja, v1) := 1 − (vT1 voja)

2, entrywise uncertainty
estimation for streaming PCA has received only limited
attention. Since the update rule in Oja’s algorithm is sim-
ilar to a broad class of important non-convex problems,
uncertainty estimation for Oja’s algorithm has potential im-
plications for matrix sensing [Jain et al., 2013], matrix com-
pletion [Jain et al., 2013, Keshavan et al., 2010], subspace
estimation [Balzano, 2022], and subspace tracking [Balzano
et al., 2010]. A notable exception is Lunde et al. [2021], who
show that sin2 (voja, v1) := 1− (vT1 voja)

2 behaves asymp-
totically like a high-dimensional weighted chi-squared ran-
dom variable. A main ingredient in their analysis is the



Hoeffding decomposition of the matrix product Bn. Their
method takes O(bnd) time and O(bd) space, where b is the
number of bootstrap replicas. While Lunde et al. [2021] do
uncertainty estimation of the sin2 error, we are interested in
coordinate-wise uncertainty estimation.

In contrast, in offline eigenvector analysis, there has been
a surge of interest for two-to-infinity (ℓ2→∞) error bounds
for empirical eigenvectors and singular vectors of random
matrices [Eldridge et al., 2018, Mao et al., 2021, Abbe
et al., 2020, Cape et al., 2019a, Abbe et al., 2022, Cape
et al., 2019b]. However, none of these apply directly to the
matrix product structure that arises from the Oja update
in Eq (1). Recent advances on the concentration of matrix
products [Huang et al., 2022, Kathuria et al., 2020] only
provide operator norm or the ℓq moment of the Schatten
norm of the deviation of a matrix product and do not provide
non-trivial guarantees on the coordinates.

Our contributions:

In this paper, we obtain finite sample and high probability
deviation bounds for elements of voja.

1. We show that the deviation of the elements of voja is gov-
erned by a suitably defined limiting covariance matrix V.
Furthermore, for a subset K of [d] of interest, the distribu-
tion of the coordinate voja(k), when suitably centered and
rescaled, is asymptotically normal with variance Vkk.

2. We provide a sharp Bernstein-type concentration bound
to show that uniformly over entries of voja, ∀ k ∈ [d],

|e⊤k (voja − (vT1 voja)v1︸ ︷︷ ︸
:=roja

)| = Õ

(√
Vkk

n

)
. (2)

where ek denotes the kth standard basis vector. This is a
surprising and sharp result because it can be used (see
Lemma 8) to recover the optimal sin2 error up to logarithmic
factors with high probability.

3. We provide an algorithm that couples a subsampling-
based O(nd) time and O(d log(d/δ)) space algorithm with
Median of Means [Nemirovskij and Yudin, 1983] to es-
timate the marginal variances of the elements of roja :=
voja−(vT1 voja)v1. Theorem 2 provides high-probability error
bounds of our variance estimator uniformly over ∀k ∈ [d].

4. We present numerical experiments on synthetic and real-
world data to show the empirical performance of our al-
gorithm and also compare it to the multiplier bootstrap al-
gorithm in Lunde et al. [2021] to show that our estimator
achieves similar accuracy in significantly less time.

The paper is organized as follows: Section 1.1 discusses
related work on streaming PCA, entrywise error bounds on
eigenvectors, and statistical inference for Stochastic Gradi-
ent Descent. Section 2 provides our problem setup, assump-
tions, and necessary preliminaries. Section 3 provides our

main results regarding entrywise concentration, CLT and
our variance estimation algorithm, Algorithm 1. We provide
proof sketches in Section 4 and experiments in Section 5.

1.1 RELATED WORK

Streaming PCA. A crucial measure of performance for
Oja’s algorithm is the sin2 error, which quantifies the dis-
crepancy between the estimated direction and the principal
eigenvector of Σ (the true population eigenvector, v1) and
the Oja vector, voja. Notably, several studies [Jain et al.,
2016, Allen-Zhu and Li, 2017, Huang et al., 2021] have
shown that Oja’s algorithm attains the same error as its of-
fline counterpart, which computes the leading eigenvector
of the empirical covariance matrix directly. More concretely,
it has been shown that for an appropriately defined variance
parameter V (equation (3)),

sin2(v1, voja) := 1− (vT1 voja)
2 = O

(
V

n(λ1 − λ2)2

)
.

ℓ∞ error bounds. There is an extensive body of research
on eigenvector perturbations of matrices. Most traditional
bounds [Davis and Kahan, 1970, Wedin, 1972, Stewart and
Sun, 1990] measure error using the ℓ2 norm or other uni-
tarily invariant norms. However, for machine learning and
statistics applications, element-wise error bounds provide a
better idea about the error in the estimated projection of a
feature in a given direction. This area has recently gained
traction for random matrices. Eldridge et al. [2018], Abbe
et al. [2020], Cape et al. [2019a], Abbe et al. [2022] provide
ℓ2→∞ bounds for eigenvectors and singular vectors of ran-
dom matrices with low-rank structure. Cape et al. [2019a]
show an ℓ2→∞ norm for the error of the singular vectors
of a covariance matrix formed by n i.i.d. Gaussian vectors;
as long as λ1 − λ2 > 0 and v1 satisfies certain incoher-
ence conditions, there exists a w ∈ {−1, 1} such that with
probability 1 − d−2, the top eigenvector v̂1 of the sample
covariance matrix satisfies, up to logarithmic factors,

∥v1 − wv̂1∥∞ ≲

√
Tr (Σ) /λ1

n

(
maxi

√
Σii√

λ1

+
λ2

λ1

)
+

Tr (Σ) /λ1

n

(
1√
d
+

√
λ2

λ1

)
.

The guarantees of Cape et al. [2019a] are offline and provide
a common upper bound on all coordinates. Our algorithm
has error guarantees that scale with the variances of the
coordinates.

Uncertainty estimation for SGD. For convex loss func-
tions, the foundational work of Polyak and Juditsky [1992],
Ruppert [1988], Bather [1989] in Stochastic Gradient De-
scent (SGD) demonstrates that averaged SGD iterates are
asymptotically Gaussian. A significant body of research has
focused on the convex setting. These include notable works



on covariance matrix estimation [Li et al., 2018, Su and
Zhu, 2018, Fang et al., 2018, Chen et al., 2020, Lee et al.,
2022, Zhu et al., 2023]. In comparison, work on uncertainty
estimation for nonconvex loss functions is relatively few [Yu
et al., 2021, Zhong et al., 2023]. Yu et al. [2021] establishes
a Central Limit Theorem (CLT) under relaxations of strong
convexity assumptions. Zhong et al. [2023] weakens the
conditions but relies on online multiplier bootstrap methods
to estimate the asymptotic covariance matrix. Existing meth-
ods for estimating and storing the full covariance matrix
suffer from numerical instability or slow convergence rates
(see Chee et al. [2023]). For convex functions and their re-
laxations, Zhu et al. [2024], Carter and Kuchibhotla [2025]
present computationally efficient uncertainty estimation ap-
proaches that are related but different from ours.

In large-scale, high-dimensional problems, maintaining
numerous bootstrap replicas is computationally expen-
sive. Chee et al. [2023] introduce a scalable method for
confidence intervals around SGD iterates, which are infor-
mative yet conservative under regularity conditions such as
strong convexity at the optima. In their setting, for an appro-
priate initial learning rate, the covariance matrix can be ap-
proximated by a constant multiple of identity (see also Ljung
et al. [1992]). In our setting, such an approximation requires
knowledge of all eigenvalues and eigenvectors of Σ. The
work most relevant to ours is by Lunde et al. [2021]. They
provide asymptotic distributions for the sin-squared error
of the Oja vector and present an online multiplier bootstrap
algorithm to estimate the underlying distribution.

Resampling Methods and Bootstrapping. Nonparametric
bootstrap [Efron, 1979, Hall, 1992, Efron and Tibshirani,
1993] is a resampling method where b resamples of a given
size n dataset are drawn with replacement and treated as b
independent samples drawn from the underlying distribution.
Of these varieties of bootstraps, the one widely used in
SGD inference is the online multiplier bootstrap, where
multiple bootstrap resamples are updated in a streaming
manner by sampling multiplier random variables to emulate
the inherent uncertainty in the data [Ramprasad et al., 2023,
Zhong et al., 2023, Lunde et al., 2021].

A major concern about the bootstrap is its computational
bottleneck. Maintaining many bootstrap replicates is com-
putationally prohibitive if the number of data points n and
the dimension d are large. Some computationally cheaper al-
ternatives to bootstrap are subsampling [Politis et al., 1999,
Politis, 2023, Bertail et al., 1999, Levina and Priesemann,
2017, Chaudhuri et al., 2024, Chua et al., 2024] and m-
out-of-n bootstrap [Bickel et al., 1997, Bickel and Sakov,
2008, Sakov, 1998, Andrews and Guggenberger, 2010] both
of which rely on drawing o(n) with-replacement samples.
These methods are used in Kleiner et al. [2014] to create
n with-replacement samples from smaller subsamples, but
require multiple bootstrap replicates and are not directly
applicable to the streaming setting.

2 PROBLEM SETUP AND
PRELIMINARIES

Notation. Let [n] = {1, . . . , n} for all positive integers n.
For a vector v, ∥v∥ = ∥v∥2 denotes its ℓ2 norm. For a matrix
A, ∥A∥ = ∥A∥op is the operator norm, ∥A∥F is the Frobe-
nius norm, and ∥A∥p is the Schatten p-norm of A, which is
the ℓp norm of the vector of singular values of A. We define
the two-to-infinity norm ∥A∥2←∞ := sup∥x∥2=1 ∥Ax∥∞.
For a random matrix M and p, q ≥ 1, we define the norm
|||M |||p,q := E[∥M∥qp]1/q . Let I ∈ Rd×d be the identity ma-
trix with ith column ei. Define the inner product of matrices
as ⟨A,B⟩ = Tr(ATB). We use Õ and Ω̃ for bounds up to
logarithmic factors and use a ≲ b to mean a ≤ Cb for some
universal constant C. diag (a1, . . . , ad) denotes the diago-
nal matrix with entries a1, . . . , ad. For a vector v ∈ Rd and
S ⊆ [d] with |S| = k, v[S] ∈ Rk is the “sub-vector” of v
with its coordinates indexed by S.

Data. Let {Xi}i∈[n] be independent and identically dis-
tributed (i.i.d. ) mean-zero vectors sampled from the distri-
bution P over Rd with covariance matrix Σ := E

[
XiX

T
i

]
.

Let Ai := XiX
⊤
i . Let v1, v2, . . . , vd denote the eigenvec-

tors of Σ with corresponding eigenvalues λ1 > λ2 ≥ . . . ≥
λd. Let V⊥ := [v2, v3, . . . , vd] ∈ Rd×(d−1).

We operate under the following assumptions unless other-
wise specified.
Assumption 1. For any Xi ∼ P, Ai = XiX

⊤
i , we assume

the following moment bounds, where
√
V ≤M2 ≤M4:∥∥∥E

[
(Ai − Σ)

2
]∥∥∥

op
≤ V (3)

E
[
∥Ai − Σ∥2op

] 1
2 ≤M2 E

[
∥Ai − Σ∥4op

] 1
4 ≤M4.

(4)

Assumption 2. There exists a universal constant κ > 5 such
that d = o (nκ) and n

log(n) ≥ 2max
{
κ,

κ2M4
2 log(d)

(λ1−λ2)
4

}
.

Assumption 1 provides a suitable moment bound on the
iterates Ai, and Assumption 2 shows that we can handle the
dimension d growing polynomially with the sample size n,
while requiring a mild base number of samples for conver-
gence. We note that the constraint κ > 5 is arbitrary and our
algorithm works as long as d = poly(n). These assumptions
are commonly used in the streaming PCA literature (see for
e.g. Jain et al. [2016]).

Oja’s Algorithm with constant learning rate. With a con-
stant learning rate, ηn, and initial vector, u0, Oja’s algorithm
[Oja, 1982] (denoted as Oja

(
{Xt}t∈[n] , ηn, u0

)
) performs

the updates in Eq (1). Define ∀t ∈ [n],

Bt :=

t−1∏
i=0

(
I + ηnXt−iX

T
t−i
)
; B0 = I. (5)

such that ut = Btu0/ ∥Btu0∥2.



3 MAIN RESULTS
Recall the definition of Oja’s algorithm with a constant
learning rate, as defined in Section 2. For i.i.d. data
Dn :=

{
Xi;Xi ∈ Rd

}
i∈[n], the learning rate ηn defined

in Lemma 9, and a random initial vector u0 := g/ ∥g∥
where g ∼ N (0, Id), define the Oja vector

voja(Dn) := Oja(Dn, ηn, u0). (6)

This is a random vector, with randomness over the data Dn

as well as the initial vector u0. While there are a myriad of
works on the sin-squared error 1 − (vT1 voja)

2, there is, to
our knowledge, no existing analysis on the concentration
of the elements of the recovered vector around their popu-
lation counterparts. One exception is [Kumar and Sarkar,
2024b], who showed that for sparse PCA, the elements of
the Oja vector in the support of the true eigenvector are
large, whereas those outside are small. However, these guar-
antees do not show concentration in our setting. We start
our analysis with the Hoeffding decomposition of the matrix
product (also see Lunde et al. [2021], van der Vaart [2000]).
The Hoeffding decomposition is a powerful tool that allows
one to write the residual of the Oja vector as

roja := voja −
(
v⊤1 voja

)
v1 = Ψn,1 + Resn (7)

where Ψn,1 is ηn times a sum of independent but non-
identically distributed random vectors and the residual Resn
is negligible compared to Ψn,1 (see Lemma 2 for details).

First, we show that the covariance matrix E[Ψn,1Ψ
T
n,1] of

the dominant term in the residual converges to V when
suitably scaled. Later, in Proposition 1 we will show that the
distribution of the entries of roja is asymptotically normal
with covariance matrix E[Ψn,1Ψ

T
n,1]/(ηn (λ1 − λ2)).

Lemma 1 (Asymptotic variance). Let

M̃ := E
[
V ⊤⊥ (A1 − Σ) v1v

⊤
1 (A1 − Σ)V⊥

]
,

dk := 1−
(
λ1 − λk+1

1 + ηnλ1

)
ηn.

Then, the matrix R(n) ∈ R(d−1)×(d−1) with entries

R
(n)
k,l :=

M̃kl

(1 + ηnλ1)2

(
1− (dkdl)

n

1− dkdl

)
,

satisfies E
[
Ψn,1Ψ

⊤
n,1

]
= η2nV⊥R

(n)V ⊤⊥ .

Define the matrices R0 ∈ R(d−1)×(d−1) and V ∈ Rd×d as

(R0)k,l :=
M̃kℓ

2λ1 − λk+1 − λℓ+1
; V :=

1

λ1 − λ2
V⊥R0V

T
⊥ .

(8)

then,∥∥∥∥ 1

ηn (λ1 − λ2)
E[Ψn,1Ψ

T
n,1]− V

∥∥∥∥
F

≲
ηnλ1M2

2

(λ1 − λ2)
2 . (9)

This shows that suitably scaled, E[Ψn,1Ψ
T
n,1] converges to

the matrix V. Note that the scaling factor ηn (λ1 − λ2) =
α logn

n is independent of model parameters for the choice of
ηn defined in Lemma 9.

The next result establishes a Central Limit Theorem (CLT)
for the subset of elements in the residual vector roja with
sufficiently large limiting variance.
Proposition 1 (CLT for a suitable subset of entries).
Let {Xi}ni=1 be independent mean-zero random vectors
with covariance matrix Σ such that E

[
exp(v⊤X1)

]
≤

exp
(
σ2 v⊤Σ v

2

)
for all v ∈ Rd and σ > 0 is some constant.

For all i ∈ [n], let

Hi :=
sign

(
v⊤1 u0

)
(1 + ηnλ1)

V⊥ Λn−i
⊥ V ⊤⊥

(
Ai − Σ

)
v1,

Let b > 0 be a constant, and let J ⊆ [d] be the set of
coordinates with Vjj ≥ b. Let p := |J |.

Let Yi ∈ Rp be independent mean-zero Gaussian vectors
with covariance matrix

E[YiY
⊤
i ] =

nηn
λ1 − λ2

E[Hi[J ]Hi[J ]
⊤],

and let SY :=
∑n

i=1 Yi.

Suppose the learning rate ηn, set according to Lemma 9,
satisfies M

2
2λ1ηn

(λ1−λ2)
2 ≲ b. Then,

sup
A∈Are

∣∣∣∣P( roja[J ]√
(λ1 − λ2) ηn

∈ A
)
− P

( SY√
n
∈ A

)∣∣∣∣
= Õ

((
M4

λ1 − λ2

)1/3

n−1/6 +

(
M2

λ1 − λ2

)1/2

n−1/8

)
,

where Are is the collection of all hyperrectangles in Rp, i.e,
sets of the form A = {u ∈ Rp : aj ≤ uj ≤ bj for j =
1, . . . , p} and each aj and bj belongs to R ∪ {−∞,∞}.
Here, Õ hides logarithmic factors in n, d, and polynomial
factors in b and in model parameters λ1, λ1−λ2,M2,M4.
Remark 1. Note that the first n−1/6 term in the conver-
gence rate arises from the high-dimensional CLT result
by Chernozhukov et al. [2017a] applied to Ψn,1. The main
bottleneck is the n−1/8 term, resulting from the higher-order
terms of the Hoeffding decomposition (Resn in equation 7).
We note that the second term may be tightened by using
better concentration bounds. We point the reader to Propo-
sition 2 in the Appendix for a complete statement and proof.

Proposition 1 establishes a Gaussian approximation of suit-
ably scaled roja[J ], where J is a set of elements with
large enough asymptotic variance. Our proof uses results
from Chernozhukov et al. [2017b] on the Hájek projec-
tion (7) and bounds the effect of the remainder term by
using Nazarov’s Lemma [Nazarov, 2003] (Theorem 4). We
use this to derive concentration bounds for all coordinates.



The lower bound on the variance is crucial and comes from
Nazarov’s inequality. It is also a condition of the results
in Chernozhukov et al. [2017b]. A simple observation here
is that when bk is zero, i.e. v1(k) = 1, then Vkk = 0. Here,
CLT may not hold since the Hájek projection is zero, and
the perturbation arises from some of the smaller error terms
in the error decomposition.
Theorem 1. Let the learning rate ηn be set according
to Lemma 9. Further, for Xi ∼ P, Ai = XiX

⊤
i , let

∥Ai − Σ∥op ≤ M almost surely. Then, with probability
at least 3/4, uniformly for all k ∈ [d],∣∣e⊤k roja∣∣√

ηn (λ1 − λ2)
≲
√

Vkk log (d) + Cbk

√
log n

n
,

where bk :=
∥∥e⊤k V⊥∥∥2, V is defined in Eq 8, and C is a

constant that depends on λ1, λ1 − λ2,M2, andM.
Remark 2. The limiting marginal variances Vkk also ap-
pear in the finite-sample bound for the elements of the resid-
ual vector. Estimating these variances enables us to quantify
the uncertainty associated with each component of v̂1, even
when the sample size is finite.

In Appendix C, we provide a complete result with arbitrary
failure probability δ in Lemma 28. The above guarantee
can be boosted to a high probability one using geometric
aggregation (see e.g. Alg. 3 in Kumar and Sarkar [2024b]).

3.1 UNCERTAINTY ESTIMATION

Proposition 1 shows that the asymptotic variance of ele-
ments of the residual roja(i) is governed by the variance of
the entries E[(eTi Ψn,1)

2] of Ψn,1. We cannot directly get to
Ψn,1 since we only observe voja. If we could estimate roja,
it would give us an idea of the error. However, we do not
know v1, and so cannot directly access roja. We alleviate
this difficulty by using the following high-accuracy estimate
of v1 constructed using N samples,

ṽ ← Oja(DN , ηN , u0), (10)

where N satisfies the bounds of Theorem 2.

We now provide a subsampling-based approach (Alg. 1) to
estimate E[(eTi Ψn,1)

2] with high probability, allowing us
to provide confidence intervals around the eigenvector ele-
ments. Algorithm 1 takes as input the data {Xi ∈ Rd}i∈[n],
a failure probability δ, and the proxy unit vector ṽ. The
n samples are split into m1 batches with n/m1 samples
each. Then, the ℓth batch of n/m1 samples is further split
into m2 batches of size B := n/(m1m2) each. Oja vectors
{v̂ℓ,j}j∈[m2]

are computed on each of these m2 batches, and
the variance of the kth coordinate is estimated as

σ̂2
k,ℓ :=

∑
j∈[m2]

(
e⊤k
(
v̂ℓ,j − (ṽ⊤v̂ℓ,j)ṽ

))2
m2

. (11)

We will show that with a constant success probability, σ̂2
k,ℓ

is close to the true variance of the corresponding coordinate.
This is essentially the variance of a smaller dataset with scale
ηB . To obtain a bound over all coordinates with an arbitrary
failure probability, we take a median of the m1 variances.
For the final estimate of the diagonal elements Vkk of V, the
median is scaled by a factor 1/ηB (λ1 − λ2). In Theorem 2,
we show that γ̂k concentrates around Vkk (see (14)). For
elements with large Vkk, appropriate sample size N and
batch size B, Theorem 2 also provides multiplicative error
guarantees for the variance estimate (see (15)).
Remark 3. We are using an estimate of E[(eTkΨn,1)

2] to
provide the confidence interval around v̂1(k). Algorithm 1
requires an estimate ṽ of v1 for computing the estimates σ̂2

ℓ,k

in Line 11, which is provided as an input to the algorithm
and assumed to satisfy ṽ ← Oja (DN , ηN , z/ ∥z∥2) for
z ∼ N (0, I). For large N , this error of approximating v1
by ṽ is small. In our experiments, we choose N = n and
obtain ṽ by running the algorithm on the entire data.

Algorithm 1 OjaVarEst({Xi ∈ Rd}i∈[n], δ, ṽ, λ1 − λ2)

1: Input: Data Dn := {Xi ∈ Rd}i∈[n], failure probability
δ ∈ (0, 1), unit vector ṽ, eigengap λ1 − λ2

2: Output: Estimates {γ̂k}k∈[d] of {Vkk}k∈[d]
3: m1 ← 8 log(d/δ), m2 ← log n, B ← n/(m1m2).
4: for ℓ ∈ [m1] do
5: for j ∈ [m2] do
6: Dℓ,j ←

{
XB(m2(ℓ−1)+(j−1))+t

}
t∈[B]

7: g ← N (0, I), u← g/ ∥g∥2
8: v̂ℓ,j ← Oja (Dℓ,j , ηB , u0)
9: end for

10: for k ∈ [d] do

11: σ̂2
ℓ,k ←

∑
j∈[m2](e

⊤
k (v̂ℓ,j−(ṽ

⊤v̂ℓ,j)ṽ))
2

m2

12: end for
13: end for
14: for k ∈ [d] do

15: γ̂k ← 1
ηB(λ1−λ2)

Median

({
σ̂2
ℓ,k

}
ℓ∈[m1]

)
16: end for
17: return {γ̂k}k∈[d]

Theorem 2. Let K be the set of indices in [d] that satisfy

N = Ω̃
(
B/c2k

)
and (12)

B = Ω̃

((
bk
ck

)2( M2

λ1 − λ2

)2
)

+ Ω̃

((
bk
ck

)4(M4

M2

)4

+
λ1

c2k (λ1 − λ2)

)
, (13)

where bk :=
∥∥e⊤k V⊥∥∥, ck :=

√
E
[
(e⊤k ΨB,1)

2
]

ηB

λ1−λ2

M2
2

, and
B,N are respectively the batch size and the number of
samples used for the proxy estimate ṽ in Algorithm 1.



Then, with probability at least 1− δ, the output {γ̂k}k∈[d]
of Algorithm 1 satisfies

|γ̂k − Vkk| ≲
Vkk√
m

+ Õ

(
B

N
+

1

B1/2

)
∀k ∈ [d], and

(14)

|γ̂k − Vkk| ≲
Vkk√
m
∀k ∈ [K]. (15)

Remark 4. The output of Algorithm 1 rescales the median
of the variances by the quantity ηB (λ1 − λ2) = α logB

B .
This is consistent with the entrywise concentration bounds
in Theorem 1 (which shows that the error in the jth en-
try is

√
ηn (λ1 − λ2)Vkk, up to logarithmic terms) for a

sufficiently large sample size and with Proposition 1 and
Lemma 1 (which show that the limiting variance of suitable
entries of roja is ηn (λ1 − λ2)Vkk).
Remark 5. Theorem 1 provides bounds about entries of
the leading eigenvector. We believe our techniques can be
generalized to provide uncertainty estimates for entries of
top-k eigenvectors using deflation-based approaches (see
e.g Jambulapati et al. [2024]).

Equation (14) holds for all coordinates k ∈ [d] and we show
in the Appendix (see Remark 7) that for the choice of B and
N in Theorem 2, the higher order terms are indeed o

(
1√
m

)
.

Moreover, for any coordinate k for which equations (12)
and (13) hold, the lower order terms of equation (14) are
O(Vkk/

√
m). This implies an O(1/

√
log n)-multiplicative

guarantee on the error of γ̂k like equation (15).

4 PROOF TECHNIQUES
Let voja ∼ Oja (Dℓ,j , ηn, u0) for uniform unit vector u0 and
ṽ ∼ Oja (Dℓ,j , ηN , u0). To estimator the uncertainty of the
estimator, the residual vector r̃oja := voja − (ṽ⊤voja)ṽ is
decomposed as the sum of five terms, as stated in Lemma 2.
Proposition A.1 in Lunde et al. [2021] shows that Bn, de-
fined in (5), can be written as

Bn =

n∑
k=0

Tn,k, (16)

where

Tn,k :=
∑

S⊆[n],|S|=k

n∏
i=1

MS,n+1−i, and (17)

MS,i :=

{
ηn
(
XiX

⊤
i − Σ

)
if i ∈ S,

I + ηnΣ if i /∈ S.
(18)

The term Tn,1 is called the Hájek projection of the random
variable Bn on the random variables X1, . . . , Xn. Tn,1 is
the best approximation to Bn among the estimators that can
be written as the sum of independent random vectors and
satisfy certain integrability conditions. Moreover,

• Tn,k and Tn,j are uncorrelated for all k ̸= j, and

• the summands in Tn,k are also pairwise uncorrelated.

We exploit this structure of the Hoeffding decomposition to
decompose the residual vector r̃oja.
Lemma 2. [Error Decomposition of voja] Let voja, ṽ be
defined as in (6) and (10) respectively. Then,

voja − (ṽ⊤voja)ṽ = Ψn,0 +Ψn,1 +Ψn,2 +Ψn,3 +Ψn,4,
(19)

where

Ψn,0 := (v⊤1 voja)v1 − (ṽ⊤voja)ṽ,

Ψn,1 :=
V⊥V

⊤
⊥ Tn,1v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,2 :=
V⊥V

⊤
⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,3 := V⊥V
⊤
⊥ Bnu0

(
1

∥Bnu0∥2
− 1∣∣v⊤1 u0

∣∣ (1 + ηλ1)n

)
,

Ψn,4 :=
V⊥V

⊤
⊥ BnV⊥V

⊤
⊥ u0∣∣v⊤1 u0

∣∣ (1 + ηλ1)n
. (20)

We bound the variance of each of these terms separately. The
dominating term Ψn,1 corresponding to the Hájek projection
Tn,1 has the largest variance. Recall from Lemma 1 that∣∣∣E [(e⊤k Ψn,1

)2]− ηnλ1Vkk

∣∣∣ ≤ Õ

(
1

n2

)
.

A finer analysis is needed for this term than the other resid-
ual terms in (20). To do this, we bound the variance of(
e⊤k Ψn,1

)2
. Lemma 3 shows that

√
Var((e⊤k Ψn,1)2) is a

constant factor within E[(e⊤k Ψn,1)
2] = Õ(1/n) up to an

additive error term Õ(1/n3/2) which depends polynomially
on model parameters.
Lemma 3 (Variance of the Hájek projection). Let Ψn,1 be
defined as in Lemma 2. Then,√

Var
(
(e⊤k Ψn,1)2

)
≤
√
2E
[(
e⊤k Ψn,1

)2]
+ Õ

(
1

n3/2

)
.

The three terms Ψn,2,Ψn,3, and Ψn,4 are lower order terms.

Lemma 4 (Bound on lower order terms). Let Ψn,2, Ψn,3,
and Ψn,4 be defined as in Lemma 2. Then,

E
[(
e⊤k Ψn,2

)2
+
(
e⊤k Ψn,3

)2
+
(
e⊤k Ψn,4

)2]
= Õ

(
1

n2

)
.

The bound on the error term e⊤k Ψn,2 stems from a more gen-
eral analysis of the terms Tn,k in the Hoeffding decomposi-
tion of Bn. Lemma 5 is shown by exploiting the Martingale
structure of Tn,k and using norm inequalities [Huang et al.,
2022] to compare the operator norm with the |||.|||p,q norm.



Lemma 5. Let Tn,k be as defined in equation (17). Let
for any 2 ≤ q ≤ 4 log d, Mq be defined such that
E [∥Ai − Σ∥q]1/q ≤ Mq and ηnMq

√
n log d ≲ 1. Then,

for any j ∈ [n], δ ∈ (0, 1), with probability at least 1− δ∥∥∥∥∥∥
∑
k≥j

Tn,k

∥∥∥∥∥∥ ≤ 3(1 + ηnλ1)
n
(
ηnMq

√
4n log d

)j
δ

1
4 log d

Proof sketch. Let Sn,k be the set of subsets of [n] of size k.

Tn,k = (I + ηnΣ)Tn−1,k + ηn(An − Σ)Tn−1,k−1.

Proposition 4.3. of Huang et al. [2022] implies

|||Tn,k|||2p,q ≤ |||(I + ηnΣ)Tn−1,k|||2p,q
+ (p− 1)|||ηn(An − Σ)Tn−1,k−1|||2p,q.

as long as E [ηn(An − Σ)Tn−1,k−1|(I + ηnΣ)Tn−1,k] =
0, which is true due to A1, A2, . . . , An being mutually inde-
pendent. Solving the recurrence shows the bound.

The term Ψn,0 arises in the decomposition (20) because we
use ṽ as a proxy to v1 in Algorithm 1.
Lemma 6 (Variance of Approximating v1). Let Ψn,0 be

defined as in Lemma 2. Then, E
[(
e⊤k Ψn,0

)2]
= Õ

(
1
N

)
,

where ṽ (Eq 10) uses N samples.

Theorem 2 follows by combining all these bounds. See
Appendix B.2.6 for a complete argument.

5 EXPERIMENTS
In this section, we provide experiments on synthetic and
real-world data to validate our theory. For all experiments,
we estimate variance of the entries of roja (see Eq 7) by
scaling the output of Algorithm 1 by ηB (λ1 − λ2).

5.1 SYNTHETIC DATA EXPERIMENTS

We provide numerical experiments to compare Algorithm 1
(OjaVarEst) with the multiplier bootstrap based algorithm
proposed in Lunde et al. [2021]. As discussed in Sec-
tion 3.1, given a dataset Dn := {Xi}i∈[n], we choose ṽ for
OjaVarEst as ṽ := Oja (Dn, ηn, z/ ∥z∥2) for z ∼ N (0, I)
and set m1 = 3, m2 = log (n), N = n. Given a variance
estimate, σ̂2

OjaVarEst, we construct a (1− α)-confidence in-
terval as ṽ ± zα

2
σ̂OjaVarEst.

For the bootstrap algorithm, using Algorithm 1 in the afore-
mentioned paper, we use b bootstrap samples to generate
estimates v∗(1), · · · , v∗(b) and measure the empirical vari-
ance by computing the average squared residual with ṽ.
Again, given a variance estimate, σ̂2

BootstrapOja, we construct
a (1− α)-confidence interval as ṽ ± zα

2
σ̂BootstrapOja.

We also use the data generation process proposed in
Lunde et al. [2021] for our experiments. Specifically,

we begin by generating independent samples Zij ∼
Uniform(−

√
3,
√
3) for indices i ∈ [n] and j ∈ [d]. Next,

we define a positive semidefinite matrix K with entries
Kij = exp(−c |i − j|) using the constant c = 0.01.
With this matrix, we construct a covariance matrix Σ via
Σij = K(i, j)σi σj , where the scaling factors are specified
by σi = 5 i−β for β ∈ {0.2, 1}. We finally transform the
samples as Xi = Σ1/2Zi.

Figure 1: Time taken by the bootstrap methods and the
OjaVarEst algorithm. Experiments verify that our proposed
algorithm is as fast as bootstrap with b = 1.

The first experiment (see Figure 1) compares the computa-
tional performance of OjaVarEst with bootstrap to measure
variance, varying the number of bootstrap samples, b, and
recording performance for different values of d with a fixed
n = 5000 and β = 1. We note that the performance of our
algorithm is computationally at par with bootstrap when
using only 1 bootstrap sample, and is substantially better
if the number of bootstrap samples increase. This is to be
expected since for our algorithm, only two passes over the
entire dataset suffice, whereas for bootstrap, b bootstrap vec-
tors are required to be maintained, which slows computation
by a factor of b. Furthermore, it also requires b times as
much space to maintain b different iterates, which may be
costly in context of training large models.

The next experiment (Table 1) compares the quality of the
variance estimates of our algorithm, σ̂2

OjaVarEst with that of
bootstrap σ̂2

BootstrapOja for different number of bootstrap sam-
ples, b, and distributions, β. We record the average coverage
rate, which is the proportion of times the confidence interval
provided by the algorithm contains the coordinate of the true
eigenvector, for a target coverage probability of 95% for the
first two coordinates of the eigenvector. OjaVarEst performs
similarly to Bootstrap with b = 20. However, as shown in
Figure 1, the bootstrap method is 20 times slower. The time
taken by bootstrap with b = 1 is similar to OjaVarEst but
has a significantly worse average coverage rate.

Our final experiment compares the Algorithm 1 with m1 =
3 to using just the mean (m1 = 1). Even with the choice
m1 = 3, the uncertainty in variance estimation is reduced.

5.2 REAL-WORLD DATA EXPERIMENTS

We provide experiments on two real-world datasets in this
section. For each dataset, we show the 95% confidence



Dist. 1 (β = 1), Coordinate 1 Dist. 1 (β = 1), Coordinate 2

(n, d) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20)

2e3, 2e3 96.50% 65.00% 93.00% 95.00% 94.00% 69.50% 91.00% 91.50%
5e3, 2e3 95.50% 73.00% 91.50% 94.00% 95.50% 73.00% 89.00% 92.00%
1e4, 2e3 96.00% 69.00% 93.50% 94.50% 96.00% 71.50% 93.50% 96.00%

Dist. 2 (β = 0.02), Coordinate 1 Dist. 2 (β = 2), Coordinate 2

(n, d) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20)

2e3, 2e3 94.50% 74.00% 87.00% 93.50% 94.00% 75.00% 86.50% 92.00%
5e3, 2e3 96.00% 71.00% 87.50% 92.00% 96.50% 72.50% 87.00% 93.00%
1e4, 2e3 94.00% 65.00% 95.00% 94.00% 94.50% 66.50% 94.50% 93.50%

Table 1: Coverage statistics for our algorithm, OjaVarEst, and the Bootstrap(BS) estimator, with varying bootstrap samples
(b = 1, 10, 20), data distributions (β = 1, 0.02) and sample sizes (n = 2000, 5000, 10000) with a fixed dimension d = 2000.

(a) Mean (with m1 = 1)

(b) Median (with m1 = 3)

Figure 2: Comparison of Median and Mean in Algorithm 1
for n = 5000, d = 2000, β = 1, b = 10.

intervals and plot the top 20 coordinates of the true offline
eigenvector (red dot), used as a proxy for the ground truth.

Time series+missing data: The Human Activity Recogni-
tion (HAR) Dataset [Anguita et al., 2013] contains smart-
phone sensor readings from 30 subjects performing daily ac-
tivities (walking, sitting, standing, etc.). Each data instance
is a 2.56-second window of inertial sensor signals repre-
sented as a feature vector. Here, n = 7352 and d = 561.
For each datum, we also replace 10% of features randomly
by zero to simulate missing data. Even in this setting, which
we do not analyze theoretically, most of the top 20 coor-
dinates of the offline eigenvector are inside the 95% CI
returned by our algorithm (see Figure 3).

(a)

(b)

Figure 3: Uncertainty Estimation for HAR dataset (n =
7352, d = 561). The sin2 error of Oja’s algorithm is equal
to 0.057 for this dataset. (a) plot of the eigenvector with 95%
confidence interval for all coordinates and (b) the same plot
zoomed in on indices 170-310 for exposition.

Image data: We use the MNIST dataset [LeCun et al., 1998]
of grayscale images of handwritten digits (0 through 9).
Here, n = 60, 000, d = 784, with each image normalized
to a 28× 28 pixel resolution. We see (Figure 4) that for the
classes where Oja’s algorithm converges (small sin2 error in
Table 2), most of the top 20 coordinates are inside their con-
fidence intervals (CIs). Notable exceptions are classes 3 and
4, where several of the top 20 coordinates are not contained
inside the corresponding CIs. This is expected because our
theory is applicable when Oja’s algorithm converges.



Class 0 1 2 3 4 5 6 7 8 9

sin2 error 0.12 0.07 0.18 0.32 0.53 0.18 0.08 0.09 0.20 0.17

Table 2: sin2 of the angle between the offline eigenvector and the subsampling eigenvector output by our algorithm, computed
separately after filtering the MNIST data for each class.

(0) (1)

(2) (3)

(4) (5)

(6) (7)

(8) (9)

Figure 4: Uncertainty Estimation for MNIST dataset. The
sin2 error of Oja’s algorithm for each class is provided in
Table 2.

6 CONCLUSION
In this work, we develop a novel statistical inference frame-
work for streaming PCA using Oja’s algorithm. We de-
rive finite-sample and high-probability deviation bounds
for the coordinates of the estimated eigenvector, establish a

Bernstein-type concentration bound on the residual of the
Oja vector, establish a Central Limit Theorem for suitable
subsets of entries, and devise an efficient subsampling-based
variance estimation algorithm. By leveraging the structure
of the Oja updates, we provide entrywise confidence in-
tervals, bypassing expensive resampling techniques such
as bootstrapping. Our theoretical results are supported by
extensive numerical experiments, indicating that our pro-
posed estimator achieves accuracy similar to the multiplier
bootstrap method while requiring significantly less time.

We believe that our subsampling algorithm can be adapted
to any SGD problem where the covariance matrix of the
estimator θ̂n scales as cn times some scale-free matrix V,
where cn is known. This structure aligns with subsampling
and m-out-of-n bootstrap methods, where the variance es-
timated from a subsample of size m is scaled by m/n to
approximate the variance of the full sample estimator. Our
findings also highlight the potential for improved uncer-
tainty quantification techniques in streaming non-convex
optimization problems beyond PCA, since Oja-type updates
can be found in many important non-convex optimization
algorithms such as matrix sensing, matrix completion, and
subspace estimation. Further directions include deflation-
based methods to apply our method to variance estimation
for top k eigenvectors.
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The Appendix is organized as follows:

1. Section A provides some useful results used in subsequent analyses

2. Section C provides high probability Entrywise Error Bounds on the entries of voja

3. Section B has the Bias and Concentration calculation of our estimator designed in Algorithm 1

4. Section D provides a Central Limit Theorem for the entries of the Oja vector, voja, which ties the results developed in
Section B to provide confidence intervals

A UTILITY RESULTS
Lemma 7. For any integer n ≥ 2, real ϵ ∈ (0, 1), and reals {ai}i∈[n],

(1− ϵ)a21 −
n− 1

ϵ

n∑
i=2

a2i ≤
( n∑
i=1

ai

)2
≤ (1 + ϵ)a21 +

2(n− 1)

ϵ

n∑
i=2

a2i .

Proof. We begin by writing

(
a1 +

n∑
i=2

ai

)2
= a21 + 2a1

( n∑
i=2

ai

)
+
( n∑
i=2

ai

)2
. (21)

By Cauchy-Schwarz inequality,

0 ≤
( n∑
i=2

ai

)2
≤ (n− 1)

n∑
i=2

a2i . (22)

The cross-term can be bounded using the inequality

−ϵx2 − 1

ϵ
y2 ≤ 2xy ≤ ϵx2 +

1

ϵ
y2

with x = a1 and y =
∑n

i=2 ai to get

2a1

( n∑
i=2

ai

)
≥ −ϵa21 −

1

ϵ

( n∑
i=2

ai

)2
≥ −ϵa21 −

n− 1

ϵ

n∑
i=2

a2i ,

and

2a1

( n∑
i=2

ai

)
≤ ϵa21 +

1

ϵ

( n∑
i=2

ai

)2
≤ ϵa21 +

n− 1

ϵ

n∑
i=2

a2i .

The proof follows by using the above inequalities in (21) followed by another application of (22).

Lemma 8. Let V be the asymptotic variance matrix defined in Lemma 1, and let voja be the Oja vector as defined in (6). If
the coordinate-wise bound

∣∣e⊤i (voja − (v⊤1 voja) v1)∣∣ ≲ Cd,n

√
Vkk

n

holds for every i ∈ [d], where C2
d,n hides logarithmic factors in d, n, then

sin2 (voja, v1) =
∑
i∈[d]

(
e⊤i
(
voja −

(
v⊤1 voja

)
v1
))2

≲ C2
d,n

V
(λ1 − λ2)

2
n
,

where V is the matrix variance statistic defined in Assumption 1.



Proof. By the definitions of V and R0 as in Lemma 1,

∑
i∈[d]

(
e⊤i
(
voja −

(
v⊤1 voja

)
v1
))2

≲ C2
d,n

Tr (V)
n
≤

(
C2

d,n

λ1 − λ2

)
Tr (R0)

n
=

(
C2

d,n

λ1 − λ2

)
1

n

∑
2≤k≤d

M̃kk

2 (λ1 − λk)

≤
C2

d,n

(λ1 − λ2)
2

Tr
(
E
[
V⊥ (A− Σ) v1v

⊤
1 (A− Σ)V ⊤⊥

])
n

=
C2

d,n

(λ1 − λ2)
2

E
[
Tr
(
V⊥ (A− Σ) v1v

⊤
1 (A− Σ)V ⊤⊥

)]
n

=
C2

d,n

(λ1 − λ2)
2

v⊤1 E
[
(A− Σ)V⊥V

⊤
⊥ (A− Σ)

]
v1

n

≤
C2

d,n

(λ1 − λ2)
2

v⊤1 E
[
(A− Σ)

2
]
v1

n
≤ C2

d,n

V
(λ1 − λ2)

2
n
.

Lemma 9 (Choice of learning rate). Let ηn := α log(n)
n(λ1−λ2)

for α > 1. Then, under Assumptions 1 and 2

1. nd exp (−ηnn (λ1 − λ2)) = o (1).

2. max
{
ηn,

log(d)
λ1−λ2

}
M4

2

λ1−λ2
η2n = o (1).

3. nη2n(2λ
2
1 +M2

2) ≤ 1

Proof. The above conditions on ηn imply Corollary 1 in Lunde et al. [2021]. Let’s start with the first condition. We have

nd exp (−ηnn (λ1 − λ2)) ≤ nd exp (−α log (n)) =
d

nα−1 = o(1), using the bound on d

For the second condition, we first note that for n ≥ α log (n) provided by Assumption 2,

ηn ≤
log (d)

(λ1 − λ2)

Now for the second condition, we require,

α2M4
2 log

2 (n) log (d)

n2 (λ1 − λ2)
4 = o(1)

which is again ensured by the condition on n in Assumption 2.

Lemma 10. Let t be a positive integer, δ ∈ (0, 1), and let I be an interval in R. Suppose a1, a2, . . . , at are independent
random variables such that P (ai ∈ I) ≥ 3/4. Then, for t ≥ 8 log (1/δ),

P
(
Median

(
{ai}i∈[t]

)
∈ I
)
≥ 1− δ.

Proof. Since I is an interval, the median does lies in I if at least half the ai are in I . Let bi be the indicator that ai /∈ I ,
and let B =

∑
i∈[t] bi. Then, b1, b2, . . . , bt are independent Bernoulli random variables each with mean at most 1/4. By

Hoeffding’s inequality,

P
(
Median

(
{ai}i∈[t]

)
/∈ I
)
≤ P (B > t/2) ≤ exp

(
−2(t/2− E [B])2/t

)
≤ exp (−t/8) ≤ δ.



B ESTIMATOR CONCENTRATION
Lemma 2. [Error Decomposition of voja] Let voja, ṽ be defined as in (6) and (10) respectively. Then,

voja − (ṽ⊤voja)ṽ = Ψn,0 +Ψn,1 +Ψn,2 +Ψn,3 +Ψn,4, (19)

where

Ψn,0 := (v⊤1 voja)v1 − (ṽ⊤voja)ṽ,

Ψn,1 :=
V⊥V

⊤
⊥ Tn,1v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,2 :=
V⊥V

⊤
⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,3 := V⊥V
⊤
⊥ Bnu0

(
1

∥Bnu0∥2
− 1∣∣v⊤1 u0

∣∣ (1 + ηλ1)n

)
,

Ψn,4 :=
V⊥V

⊤
⊥ BnV⊥V

⊤
⊥ u0∣∣v⊤1 u0

∣∣ (1 + ηλ1)n
. (20)

Proof. We have,

voja = (v⊤1 voja)v1 + V⊥V
⊤
⊥ voja

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ Bnu0

∥Bnu0∥2

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ Bnu0

cn
+Ψn,3

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ Bnv1sign(v

⊤
1 u0)

(1 + ηnλ1)n
+Ψn,3 +Ψn,4

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ (Bn − E [Bn])v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
+Ψn,3 +Ψn,4

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ (
∑

k≥1 Tn,k)v1sign(v
⊤
1 u0)

(1 + ηnλ1)n
+Ψn,3 +Ψn,4, using Theorem A.1 Lunde et al. [2021]

= (ṽ⊤voja)ṽ +Ψn,0 +Ψn,1 +Ψn,2 +Ψn,3 +Ψn,4.

Lemma 11. Let Ψn,1 be as defined in Lemma 2. Then,

Ψn,1 := ηnYn, for Yn :=

n∑
j=1

Xn
j and Xn

j :=
sign

(
v⊤1 u0

)
1 + ηnλ1

V⊥Λ
n−j
⊥ V ⊤⊥ (Aj − Σ) v1

where Λ⊥ ∈ R(d−1)×(d−1) is a diagonal matrix with entries Λ⊥(i, i) =
1+ηnλi+1

1+ηnλ1
.

Let {Ai}i∈[n] be symmetric independent matrices satisfying E [Ai] = Σ,
∥∥∥E
[
(Ai − Σ)

2
]∥∥∥

2
≤ V and ∥Ai − Σ∥2 ≤ M.

Define,

∀j ∈ [n], Xn
j := V⊥Λ

n−j
⊥ V ⊤⊥ (Aj − Σ) v1, and Yn :=

∑
j∈[n]

Xn
j



B.1 ESTIMATOR BIAS

Proof of Lemma 1. Using the definitions of Yn and Xn
j from Lemma 11, we have

1

η2n
E
[
Ψn,1Ψ

⊤
n,1

]
= E

[
YnY

⊤
n

]
=
∑

j,k∈[i]

E
[
Xn

j X
n⊤
k

]
=
∑
j∈[n]

E
[
Xn

j X
n⊤
j

]
, since Aj , Ak are independent for j ̸= k

=
1

(1 + ηnλ1)
2

∑
j∈[n]

V⊥Λ
n−j
⊥ V ⊤⊥ E

[
(Aj − Σ) v1v

⊤
1 (Aj − Σ)

]
V⊥Λ

n−j
⊥ V ⊤⊥

=
1

(1 + ηnλ1)
2V⊥

∑
j∈[n]

Λn−j
⊥ V ⊤⊥ E

[
(Aj − Σ) v1v

⊤
1 (Aj − Σ)

]
V⊥︸ ︷︷ ︸

:=M̃

Λn−j
⊥

V ⊤⊥ .

Recall R(n) := 1
(1+ηnλ1)

2

∑
j∈[n] Λ

n−j
⊥ M̃Λn−j

⊥ and consider (k, l)th entry of R(n).

R
(n)
kl =

1

(1 + ηnλ1)
2 e
⊤
k

∑
j∈[n]

Λn−j
⊥ M̃Λn−j

⊥ el =
1

(1 + ηnλ1)
2 M̃kl

n∑
j=1

(dkdl)
n−j

=
1

(1 + ηnλ1)
2 M̃kl

(
1− (dkdl)

n

1− dkdl

)
.

Let R0(k, l) = M̃kℓ/(2λ1 − λk+1 − λℓ+1). Note that

1− dkdl =
ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1
− η2n (λ1 − λk+1) (λ1 − λl+1)

(1 + ηλ1)
2

=
ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1

[
1− ηn (λ1 − λk+1) (λ1 − λl+1)

(1 + ηλ1) (λ1 − λk+1 + λ1 − λl+1)

]
≥ ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1

[
1− ηn (λ1 − λk+1) (λ1 − λl+1)

(λ1 − λk+1 + λ1 − λl+1)

]
≥ ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1
[1− ηn min {λ1 − λk+1, λ1 − λl+1}]

≥ ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1
[1− ηnλ1]

≥ ηn (2λ1 − λk+1 − λl+1) (1−O (ηnλ1))

Then,

R
(n)
kl −R0(k, l)/ηn =

M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)

(1 +O(ηnλ1))

(1 + ηnλ1)
2 − M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)

=
M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)
(1 +O(ηnλ1))−

M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)

=
M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)
O(ηnλ1)

So we have:

ηnR
(n)
kl −R0(k, l)

R0(k, l)
= O(ηnλ1)

Finally, we have:

∥ηnR(n) −R0∥F ≤
ηnλ1

λ1 − λ2
∥M̃∥F /2

Note that

∥M̃∥2F ≤ E
[∥∥(Ai − Σ)v1v

⊤
1 (Ai − Σ)

∥∥] ≤ E
[
∥Ai − Σ∥2

]
≤M2

2.



B.2 ESTIMATOR CONCENTRATION

In this section, we estimate the bias of the variance estimate output by Algorithm 1. In the entirety of this section, we assume
that the vector ṽ is “good”, i.e sin2 (ṽ, v1) ≲

log(1/δ)
δ3

ηNM2
2

(λ1−λ2)
, which happens with probability at least 1 − δ. Recall that

ṽ ← Oja(DN , ηN , u0) is the high accuracy estimate of v1. We present all results using a general n number of i.i.d. samples
per split, which will later be replaced by n/(m1m2) as required by Algorithm 1. We denote sn := log(1/δ)

δ3
ηnM2

2

(λ1−λ2)
to be the

upper bound on the sin2 error of the Oja vector due to Jain et al. [2016]. While our results henceforth are written using sn
and sn is not guaranteed to be smaller than 1, it is straightforward to replace it by min {sn, 1} since the sin2 error between
any two vectors is always at most 1.

B.2.1 Ψn,0 Tail Bound

Lemma 12. Let Ψn,0 be defined as in Lemma 2 for voja defined in (6). Let
{
Ψ

(i)
n,0

}
i∈[m]

and
{
v
(i)
oja

}
i∈[m]

be m iid instances

of Ψn,0 and voja respectively. Then, for any k ∈ [d],

P

∑
i∈[m]

(
e⊤k Ψ

(i)
n,0

)2
m

≤
C log

(
1
δ

)
δ3

ηNM2
2

(λ1 − λ2)

 ≥ 1− δ.

Proof. For any i ∈ [m],∣∣∣e⊤k Ψ(i)
n,0

∣∣∣ = ∣∣∣e⊤k (v1v⊤1 − ṽṽ⊤
)
v
(i)
oja

∣∣∣ ≤ ∥∥v1v⊤1 − ṽṽ⊤
∥∥ =
√
2 |sin (ṽ, v1)| .

The result now follows from Corollary 1 of Lunde et al. [2021], which states that with probability at least 1− δ,

sin2 (ṽ, v1) ≤
C log

(
1
δ

)
δ3

ηNM2
2

(λ1 − λ2)
.

for some universal constant C > 0.

B.2.2 Ψn,1 (Hajek Projection) Concentration

Lemma 13. Let Ψn,1 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let
{
Ψ

(i)
n,1

}
i∈[m]

and
{
g(i)
}
i∈[m]

be

m i.i.d. instances of Ψn,1 and g respectively. Then, for any δ ∈ (0, 1) and k ∈ [d], with probability at least 1− δ,∣∣∣∣∣∣∣
∑

i∈[m]

(
e⊤k Ψ

(i)
n,1

)2
m

− E
[(
e⊤k Ψn,1

)2]∣∣∣∣∣∣∣ ≤
√
2E
[(
e⊤k Ψn,1

)2]
+ η2nb

2
kM2

4

√
n

√
mδ

.

where bk :=
∥∥V ⊤⊥ ek

∥∥
2
.

Proof. Recall the notations Xn
j = V⊥Λ

n−j
⊥ V ⊤⊥ (Aj − Σ) v1 and Yn =

∑n
j=1 X

n
j from Lemma 1. Since V⊥V

⊤
⊥ Xn

j = Xn
j

and Tn,1 = ηn
∑n

i=1 X
n
j , e⊤k Ψn,1 can be written as

e⊤k Ψn,1 =
e⊤k V⊥V

⊤
⊥ Tn,1v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
=

ηnsign(v
⊤
1 u0)

(1 + ηnλ1)

n∑
j=1

e⊤k V⊥V
⊤
⊥ Xn

j =
ηnsign(v

⊤
1 u0)

1 + ηnλ1
e⊤k Yn. (23)

Next, we bound the variance of (e⊤k Yn)
2.

(e⊤k Yn)
2 =

n∑
j=1

(
e⊤k X

n
j

)2
+ 2

∑
j<j′

(
e⊤k X

n
j

) (
e⊤k X

n
j′
)
.

Most pairs of summands are uncorrelated.



• Cov
(
(e⊤k X

n
j )

2, (e⊤k X
n
j′)

2
)
= 0 for any distinct j, j′ ∈ [n].

• Cov
(
(e⊤k X

n
ℓ )

2, (e⊤k X
n
j )(e

⊤
k X

n
j′)
)
= 0 for any ℓ ∈ [n] and 1 ≤ j < j′ ≤ n.

• Cov
(
(e⊤k X

n
j )(e

⊤
k X

n
j′), (e

⊤
k X

n
ℓ )(e

⊤
k X

n
ℓ′)
)
= 0 for any 1 ≤ j < j′ ≤ n and 1 ≤ ℓ < ℓ′ ≤ n such that (j, j′) ̸= (ℓ, ℓ′).

It follows that
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(
(e⊤k Yn)

2
)
=

n∑
j=1

Var
(
(e⊤k X

n
j )

2
)
+ 4

∑
j<j′

Var
(
(e⊤k X

n
j )(e

⊤
k X

n
j′)
)
. (24)

We bound both terms separately. By Lemma 1, the second term can be bounded as

4
∑
j<j′

Var
(
(e⊤k X

n
j )(e

⊤
k X

n
j′)
)
= 4

∑
i<j

E
[
(e⊤k X

n
j )

2
]

E
[
(e⊤k X

n
j′)

2
]

≤ 2

n∑
j=1

n∑
j′=1

E
[
(e⊤k X

n
j )

2
]

E
[
(e⊤k X

n
j′)

2
]
= 2E

[
(e⊤k Yn)

2
]2

. (25)

Next, we bound the first term of Equation (24). For any j ∈ [n],∣∣e⊤k Xn
j

∣∣ = ∣∣∣e⊤k V⊥Λn−j
⊥ V ⊤⊥ (Ai − Σ)v1

∣∣∣ ≤ ∥∥e⊤k V⊥∥∥∥∥∥Λn−j
⊥

∥∥∥∥∥V ⊤⊥ (Aj − Σ)v1
∥∥ ≤ bk ∥Aj − Σ∥ ,

which implies

n∑
j=1

Var
(
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n
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2
)
≤

n∑
j=1

E
[
(e⊤k X

n
j )

4
]
≤

n∑
j=1

E
[
b4k ∥Aj − Σ∥4

]
≤ b4kM4

4n. (26)

Combining equations (24), (25), and (26) and using equality (23),

Var
(
(e⊤k Ψn,1)

2
)
≤ 2E

[(
(e⊤k Ψn,1)

2
)]2

+
η4n

(1 + ηnλ1)4
b4kM4

4n.

By Chebyshev’s inequality, for any t > 0,

P

(∣∣∣∣∣ 1m
m∑
i=1

(
e⊤k Ψ

(i)
n,1

)2
− E

[(
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)2]∣∣∣∣∣ ≥ t

)
≤

Var
((
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mt2

≤
2E
[(
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2
)]2

+
η4
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b4kM4
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.

The result follows by setting t =
√
2E[((e⊤k Ψn,1)

2)]+η2
nb

2
kM

2
4

√
n

√
mδ

.

Remark 6. Note that in Lemma 13, one can always provide a uniform bound on all elements using a Bernstein-type
tail inequality rather than a Chebyshev bound. This is possible because we can use our concentration inequality in
Lemma 26. However, there are two pitfalls of this approach; first, for failure probability δ, the errors of the lower order
terms (Ψn,2,Ψn,3,Ψn,4) still depend polynomially on the 1/δ (see Lemma 17, 19, 21), which limits the sample complexity
of our estimator to have a poly(1/δ) factor, and secondly, Lemma 26 requires a stronger a.s. upper bound on Ai − Σ for
i ∈ [n]. However, we can get both a uniform bound over all coordinates k ∈ [d], and a log(1/δ) dependence on the sample
complexity, using our median of means based algorithm (Algorithm 1).

B.2.3 Ψn,2 tail bound

We start by providing a tail bound on higher order terms in the Hoeffding decomposition of Bn − E [Bn], which may be
of independent interest. Let Sn,k := {{i1, . . . , ik} : 1 ≤ i1 < · · · < ik ≤ n}. Consider a general product of n matrices,
where all but k of the matrices are constant, and k indexed by the subset S are mean zero independent random matrices.



With slight abuse of notation, let MS,i denote a constant matrix Mi with ∥Mi∥ =: mi when i ̸∈ S and Wi when i ∈ S,
EWi = 0, Wi, i = 1, . . . , n are mutually independent.

Tn,k :=
∑

S∈Sn,k

n∏
i=1

MS,n+1−i (27)

Let Tn,k be a scaled version of the kth term in the Hoeffding projection of the matrix product Bn :=
∏n

i=1(I + ηnAi). Let
Wi = Ai − Σ. We want a tail bound for

∑
k≥2 Tn,k.

Lemma 14. For S ∈ Sn,k, denote a function MS,i := ηn(Ai − Σ) when i ∈ S and I + ηnΣ when i ̸∈ S. Suppose q ≥ 2

andMq are such that E [∥Ai − Σ∥q]1/q ≤Mq . Then, for any 1 ≤ j ≤ n and any p ≥ q,∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥j

Tn,j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,q

≤ 2d1/p(1 + ηnλ1)
n

(
ηnMq

√
np

1 + ηnλ1

)j

,

as long as 2ηnMq
√
np

1+ηnλ1
< 1.

Proof. We start by deriving a recurrence relation for Tn,k as follows:

Tn,k =
∑

S∈Sn,k

n∏
i=1

MS,n+1−i

=
∑

S∈Sn,k,n/∈S

n∏
i=1

MS,n+1−i +
∑

S∈Sn,k,n∈S

n∏
i=1

MS,n+1−i

=
∑

S∈Sn−1,k

(I + ηnΣ)

n∏
i=2

MS,n+1−i +
∑

S∈Sn−1,k−1

ηn(An − Σ)

n∏
i=2

MS,n+1−iMS,n+1−i

= (I + ηnΣ)

 ∑
S∈Sn−1,k

n−1∏
i=1

MS,n−i

+ ηn(An − Σ)

 ∑
S∈Sn−1,k−1

n−1∏
i=1

MS,n−i


= (I + ηnΣ)Tn−1,k + ηn(An − Σ)Tn−1,k−1.

Next, we apply Proposition 4.3. of Huang et al. [2022] to bound |||Tn,k|||p,q. To apply the proposition, we require
E [ηn(An − Σ)Tn−1,k−1|(I + ηnΣ)Tn−1,k] = 0. Indeed, by independence of A1, A2, . . . , An,

E [ηn(An − Σ)Tn−1,k−1|(I + ηnΣ)Tn−1,k] = E [ηn(An − Σ)]E [Tn−1,k−1|(I + ηnΣ)Tn−1,k] = 0.

Therefore, the proposition implies that

|||Tn,k|||2p,q ≤ |||(I + ηnΣ)Tn−1,k|||2p,q + (p− 1)|||ηn(An − Σ)Tn−1,k−1|||2p,q.

From Equation 4.1. and Equation 5.3. of Huang et al. [2022],

|||(I + ηnΣ)Tn−1,k|||p,q ≤ ∥I + ηnΣ∥op |||Tn−1,k|||p,q, and

|||ηn(An − Σ)Tn−1,k−1|||p,q ≤ ηnE [∥An − Σ∥q]1/q |||Tn−1,k−1|||p,q.

Plugging these bounds into the recurrence yields

|||Tn,k|||2p,q ≤ (1 + ηnλ1)
2|||Tn,k−1|||2p,q + η2nM2

q(p− 1)E [∥An − Σ∥q]2/q |||Tn−1,k−1|||2p,q.

Letting fn,k := |||Tn,k|||2p,q , we have the following recurrence for all n ≥ k ≥ 1:

fn,k ≤ (1 + ηnλ1)
2fn−1,k + η2nM2

q(p− 1)fn−1,k−1.



Defining an,k :=
fn,k

(1+ηnλ1)2(n−k)(η2
nM2

q(p−1))k
, we recover an inequality resembling Pascal’s identity:

an,k ≤ an−1,k + an−1,k−1.

Moreover, an,k = 0 for all n < k and an,0 = (1 + ηnλ1)
−2n|||(I + ηnΣ)

n|||2p,q ≤ d2/p. Inducting on n and k shows

an,k ≤ d2/p
(
n

k

)
.

Translating this back to the bound on the norm of Tn,k, we conclude

|||Tn,k|||p,q ≤

√
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q(p− 1)
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Since norms are sub-additive and ηnMq
√
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< 1

2 ,∣∣∣∣∣∣
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∣∣∣∣∣∣
∑
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√
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.

Lemma 15. For S ∈ Sn,k, denote a function MS,i := ηn(Ai − Σ) when i ∈ S and I + ηnΣ when i ̸∈ S. Then, for any
1 ≤ j ≤ n, and 2 ≤ q ≤ 4 log d,

P

∥∥∥∥∥∥
∑
k≥j

Tn,k

∥∥∥∥∥∥ ≥ 3(1 + ηnλ1)
n
(
ηnMq

√
4n log d

)j
δ

1
4 log d

 ≤ δ,

as long as 4ηnMq

√
n log d < 1.

Proof. Let p = 4 log d; note that the assumption 2ηnMq
√
np

1+ηnλ1
< 1 holds. By Markov’s inequality, Equation 4.2. of Huang

et al. [2022], and Lemma 14,

P

∥∥∥∥∥∥
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for all t > 0. The lemma follows by setting t = 3
(
ηnMq

√
4n log d

)j
δ

−1
4 log d .

Lemma 16. Let Ψn,2 be as defined in Lemma 2 with u0 = g/ ∥g∥2. Then, for any δ ∈ (0, 1),

P

(
∥Ψn,2∥ ≤

12η2nM2
2n log d√
δ

)
≥ 1− δ.



Proof. By Lemma 15, with probability at least 1− δ,∥∥∥∥∥∥
∑
k≥2

Tn,k

∥∥∥∥∥∥ ≤ 3(1 + ηnλ1)
n
(
ηnM2

√
4n log d

)2
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1
4 log d

<
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δ
.

Conditioned on this event,

∥Ψn,2∥ =

∥∥∥V⊥V ⊤⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

∥∥∥
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.

Lemma 17. Let Ψn,2 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let
{
Ψ

(i)
n,2

}
i∈[m]

and
{
g(i)
}
i∈[m]

be

m i.i.d. instances of Ψn,2 and g respectively, and let δ ∈ (0, 1). Then, with probability at least 1− δ,

∑
i∈[m]

(
e⊤k Ψ

(i)
n,2

)2
m

≤ 144b2kη
4
nM4

2n
2 log2 d

δ
,

for all k ∈ [d], where bk :=
∥∥V ⊤⊥ ek

∥∥
2
.

Proof. We have

∣∣e⊤k Ψn,2

∣∣ =
∣∣∣e⊤k V⊥V ⊤⊥ (

∑
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⊤
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∣∣∣
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.

By Lemma 16, for each i ∈ [m], with probability at least 1− δ
m ,∣∣∣e⊤k Ψ(i)

n,2

∣∣∣ ≤ 12bkη
2
nM2

2n log d√
δ/m

.

By a union bound, the above holds for all i ∈ [m] with probability at least 1− δ. Under this event,

∑
i∈[m]

(
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)2
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∑
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12bkη
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144b2kη
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B.2.4 Ψn,3 tail bound

Lemma 18. Let Ψn,3 be as defined in Lemma 2 with u0 = g/ ∥g∥2. Let ηn be set according to Lemma 9. Fix δ ∈ (0, 1).
Then for any ϵ > 0 we have with probability at least 1− δ,

∥Ψn,3∥2 ≲
√
sn

d exp
(
−2ηnn (λ1 − λ2) + η2nn

(
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1 +M2

2
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 1
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+
√
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ηn
√
nM2 log (d)

δ
1
2

.

where sn :=
C log( 1

δ )
δ3

ηnM2
2

(λ1−λ2)
for a universal constant C > 0.



Proof. Let cn = (1 + ηnλ1)
n|uT

0 v1|. We first note that

∥Ψn,3∥2 =

∥∥∥∥V⊥V ⊤⊥ Bnu0
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∥Bnu0∥2
− 1
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− 1

∣∣∣∣ . (28)

We bound each of the two multiplicands separately. The first term corresponds to the sin error between voja and v1:∥∥∥∥V⊥V ⊤⊥ Bnu0

∥Bnu0∥2

∥∥∥∥2
2

= 1−
(
v⊤1 Bnu0

)2
∥Bnu0∥22

= sin2 (voja, v1) .

By Corollary 1 of Lunde et al. [2021],
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)
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)
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It follows that for any ϵ > 0,
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)
. (31)

To bound the second term, we adapt the proof of Lemma B.2 in Lunde et al. [2021]. Letting a1 =
∣∣v⊤1 u0
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For the first summand, using Eq 5.6 of Huang et al. [2022] with q = 2 and by Markov’s inequality,
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For the second summand of equation (32), define the event
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.

By Proposition B.6 of Lunde et al. [2021], P (G) ≥ 1− δ where C > 0 is some universal constant. Since P (A|B)P (B) =
P (A ∩B) ≤ P (A), Markov’s inequality together with Lemma 5.2 of Jain et al. [2016] with V ≤M2

2 yields
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where the last bound follows from Lemma 9.

Finally, define the error ϵ as

ϵ :=

C
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

ηnM2
2

(λ1−λ2)

δ3(1− δ) log−1(1/δ)

 1
2

+
ηn
√
nM2 log (d)

δ
1
2
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Substituting ϵ in equations (36) and (33), and combining with equation (32),
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From equations (31) and (39), we conclude

P
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√
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)
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Lemma 19. Let Ψn,3 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let ηn be set according to Lemma 9.

Let
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}
i∈[m]

and
{
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}
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for a universal constant C > 0.

Proof. Using Lemma 18, for any fixed i ∈ [m], with probability at least 1− δ,
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Furthermore, note that ∣∣∣e⊤k Ψ(i)
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(41)

The result then follows by a union bound over all i ∈ [m] for the event in (40) and using (41).



B.2.5 Ψn,4 tail bound

Lemma 20. Let Ψn,4 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let ηn be set according to Lemma 9.
For any δ ∈ (0, 1), with probability at least 1− δ,

∥Ψn,4∥ ≤
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(
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

eη3nnM4
2 (1 + 2 log (d))

2 (λ1 − λ2) + ηn (λ2
1 − λ2

2 −M2
2)

)1/2

.

Proof. Recall that

∥Ψn,4∥ =
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⊤
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∥∥
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⊤
⊥ g
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|v⊤1 g|(1 + ηnλ1)n
.

To bound this quantity, we will bound its square instead. Using Markov’s inequality, with probability at least 1− δ/2,
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⊤
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δ
E
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δ
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E
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.

By Lemma B.3 of Lunde et al. [2021],

E
[
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⊤
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.

Also, with probability at least 1− δ/2, |v⊤1 g| ≥ δ/2 (see Proposition 7 from Lunde et al. [2021] for anticoncentration of
gaussians). Combining the two bounds yields the result.

Lemma 21. Let Ψn,4 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let ηn be set according to Lemma 9.

Let
{
Ψ

(i)
n,4

}
i∈[m]

and
{
g(i)
}
i∈[m]

be m i.i.d. instances of Ψn,4 and g respectively. Fix δ ∈ (0, 1). Then, conditioned on E ,
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for all k ∈ [d], where bk :=

∥∥V ⊤⊥ ek
∥∥
2
.

Proof. Note that
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Let Φ(i)
n correspond to the ith instance of the random variable Φn. Then, for any k ∈ [d],
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m
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Φ(i)
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Define the event E :=
{
|v⊤1 g| ≥ δ

m

}
and let E(i), i ∈ [m] be the ith instance of this event. First, observe that:

E[Φn|E ] = E
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[
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⊤
⊥ B⊤n V⊥

)]
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(43)

Now, using Markov’s inequality conditioned on
⋂

i∈[m] E(i), we have with probability at least 1− P(
⋂

i∈[m] E(i)),

1

m

∑
i∈[m]

Φ(i)
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δ
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1

δ
E

[
Φ(i)

n

∣∣∣∣E(i)] = 1

δ
E[Φn|E ]
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E
[
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(44)

The last step uses Eq 43. Using Lemma B.3 from Lunde et al. [2021], we have

E
[
Tr
(
V ⊤⊥ BnV⊥V

⊤
⊥ B⊤n V⊥

)]
(1 + ηnλ1)2n

≤ d exp
(
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+

eη3nnM4
2 (1 + 2 log (d))

2 (λ1 − λ2) + ηn (λ2
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2 −M2
2)
(45)

Finally, we note that using Proposition 7 from Lunde et al. [2021], we have

∀i ∈ [m],P
(
E(i)
)
≥ 1− δ

m
=⇒ P


 ⋂

i∈[m]

E(i)
∁
 ≤ ∑

i∈[m]

P
(
E∁i
)
≤
∑
i∈[m]

δ

m
= δ (46)

The result follows by substituting (45) in (44) and then using (42), along with the union-bound provided in (46).

B.2.6 Total Variance Bound

We now put together the results from Lemmas 12, 13, 17, 19, and 21 to provide a high probability bound on the error of the
variance estimator Algorithm 1.

Figure 5 summarizes how the variance estimation algorithm works. The algorithm first computes an Oja vector ṽ using N
samples. Then, n samples are divided into m1 batches, with each batch containing n/m1 samples. These n samples need not
be disjoint from the N samples used to compute the high-accuracy estimate ṽ. Then, the ℓth batch of n/m1 samples is split
into m = m2 batches of size B := n/m1m2 each. Oja vectors {v̂j}j∈[m2]

are computed on each of these m2 batches, and

σ̂2
k,ℓ :=

∑
j∈[m2]

(
e⊤k
(
v̂j − (ṽ⊤v̂j)ṽ

))2
m2

. (47)

for all k ∈ [d]. The overall estimate for the variance of the kth coordinate is Median
(
{σ̂k,ℓ}ℓ∈[m1]

)
. Since this variance

scales with the inverse of the learning parameter ηB , we define the scale-free γ̂k := Median
(
{σ̂k,ℓ}ℓ∈[m1]

)
/(ηB (λ1 − λ2)).

For each k ∈ [d], define the quantities

bk :=
∥∥e⊤k V⊥∥∥ , ck :=

√√√√E
[(
e⊤k ΨB,1

)2]
ηB

λ1 − λ2

M2
2

.



Figure 5: Schematic picture of Algorithm 1

Under this setting, we show that each σ̂2
k,ℓ approximates the true variance with at least 3/4 probability. We assume that the

learning rate ηB satisfies

ηB ≤
1

2λ1
+

λ1 − λ2

2M2
2

. (48)

It can be verified that this assumption is satisfied by the bounds on B provided in (56).
Lemma 22. For any ℓ ∈ [m1] and under assumption 48, with probability at least 3/4,

∣∣σ̂2
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⊤
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)
. (49)

Proof. Drop the index ℓ for convenience of notation. Let δ0 := 1/20. By triangle inequality,∣∣σ̂2
k − ηB (λ1 − λ2) e

⊤
k Vek
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⊤
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and by Lemma 1,
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By equation (19) and Lemma 7, for any ϵ ∈ (0, 1),

∣∣∣σ̂2
k − E
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. (52)

Set ϵ = 2/
√
m. By Lemmas 12, 17, 19, and 21, along with Lemma 9 to bound nd exp (−ηnn (λ1 − λ2)) = o (1), we have



with probability at least 1− 4δ0
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where we used Assumption 48 to bound the last term. By Lemma 13, with probability 1− δ0,∣∣∣∣∣∣∣
∑
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We now combine equations (51), (52), (53), and (54) in (50) to conclude that with probability at least 1− 5δ0 = 3/4,
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which simplifies to the lemma statement.

Next, assume that the following relations hold:
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c2k logB
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. (55)
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B ≳ max

(
m

(
bk
ck
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log2 B,
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These assumptions on N and B subsume the assumption on the learning rate ηB in equation 48.

Using equation 51 and the relation

E
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)2]
m

=
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2
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2
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. (58)

and comparing it with each term in the smaller order error of Lemma 22 yields the following Lemma.
Lemma 23. Under assumptions 55, 56, and 57, we have the following upper bound on the R.H.S of Eq 49 in Lemma 22.
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(59)

It follows that a stronger multiplicative guarantee holds for any coordinate k that satisfies the above assumptions:
Lemma 24. For any coordinate k that satisfies Lemma 22 and assumptions 55, 56, and 57,
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.



Given a per-coordinate guarantee that succeeds with probability 3/4, we can boost the probability of success and give a
uniform guarantee over all coordinates k ∈ [d] using the median procedure described in Lemma 10.
Lemma 25. Let {γ̂k}k∈[d] be the output of Algorithm 1. Under assumption (48), with probability 1− δ, for all k ∈ [d],

|γ̂k − Vkk| ≤ 8

(
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Moreover, let K be the set of indices in [d] that satisfy assumptions (55), (56), and (57). Then, for all k ∈ K,∣∣γ̂k − e⊤k Vek
∣∣ = O

(
Vkk√
m

)
.

Proof. By Lemma 22, the bound for any k ∈ [d], the bound of equation (49) holds with probability 3/4. By Lemma 10 and
the choice m1 = 8 log(d/δ), the estimate γ̂k satisfies the equation with probability at least 1− δ/d. The Lemma follows by
a union bound over the indices in [d].

Remark 7. The first term of the error of Lemma 25 is O (Vkk/
√
m), where m = log n. We verify that the other terms are

smaller asymptotically in n. Since m = log n and m2 = 8 log(20d) where d = poly(n),
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.
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N logB . Note that 1 ≤ log d ≤ 5 log n, B = Θ̃(n) and logB = Θ(log n). Therefore,
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C ENTRYWISE ERROR BOUNDS

Lemma 26. Let the learning rate, ηn, be set according to Lemma 9. Further, for Xi ∼ P, Ai = XiX
⊤
i , let ∥Ai − Σ∥op ≤

M almost surely. Then, for δ ∈ (0, 1), with probability at least 1− δ, we have for all k ∈ [d],
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Therefore, using the fact that αj are independent of each other, along with Bernstein’s inequality, (see e.g. Proposition 2.14
and the subsequent discussion in Wainwright [2019]), we have with probability at least 1− δ,
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Furthermore, considering a union bound over k ∈ [d], we have for all k ∈ [d],
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Finally, using Lemma 1, we have
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which completes our proof.

Lemma 27. Let the learning rate, ηn, be set according to Lemma 9. Then, for δ ∈ (0, 1), with probability at least 1− δ, we
have
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√
snηn

√
nM2 log (d)√
δ

+ bk
log
(
1
δ

)
δ3

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)

where Ψn,2,Ψn,3,Ψn,4 are as defined in Lemma 2, bk :=
∥∥V ⊤⊥ ek

∥∥
2

and sn :=
C log( 1

δ )
δ3

ηnM2
2

(λ1−λ2)
for a universal constant

C > 0.

Proof. We have

∥Ψn,2 +Ψn,3 +Ψn,4∥2 ≤
∣∣e⊤k Ψn,2

∣∣+ ∣∣e⊤k Ψn,3

∣∣+ ∣∣e⊤k Ψn,4

∣∣ (60)



Using Lemma 16, we have for all k ∈ [d], with probability at least 1− δ
3 ,

∥Ψn,2∥ ≤
12η2nM2

2n log d√
δ/3

≤ 21η2nM2
2n log d√
δ

. (61)

Using Lemma 18 , along with the definition of ηn in Lemma 9, with probability at least 1− δ
3 ,

∥Ψn,3∥2 ≲

√
sn

√
log
(
1
δ

)
δ

3
2

(√
d exp (−ηnn (λ1 − λ2)) +

√
ηnM2√
λ1 − λ2

)
+
√
sn

ηn
√
nM2 log (d)√

δ

≲

√
log
(
1
δ

)
δ

3
2

√d exp (−ηnn (λ1 − λ2)) +

√
C log(1/δ)

δ3
ηnM2

2

λ1 − λ2
·
√
ηnM2 log d√
λ1 − λ2


≲

log
(
1
δ

)
δ3

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)
, (62)

where the second inequality used sn ≤ 1. Using Lemma 20, along with the definition of ηn in Lemma 9, with probability at
least 1− δ

3 ,

∥Ψn,4∥2 ≲
1

δ
3
2

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)
(63)

The first result follows by a union bound over (61), (62), (63) and substituting in (60). Finally, note that using Lemma 2,
∃xn, yn, zn ∈ Rd−1 such that of Ψn,2 = V⊥V

⊤
⊥ xn, Ψn,3 = V⊥V

⊤
⊥ xn, Ψn,4 = V⊥V

⊤
⊥ xn. Therefore,∣∣e⊤k (Ψn,2 +Ψn,3 +Ψn,4)

∣∣ = ∣∣e⊤k V⊥V ⊤⊥ (xn + yn + zn)
∣∣

=
∣∣e⊤k V⊥V ⊤⊥ V⊥V

⊤
⊥ (xn + yn + zn)

∣∣
≤
∥∥e⊤k V⊥V ⊤⊥ ∥∥2 ∥∥V⊥V ⊤⊥ (xn + yn + zn)

∥∥
2

= bk ∥Ψn,2 +Ψn,3 +Ψn,4∥2

which completes the proof of the second result.

Now we are ready to prove a detailed version of Theorem 1.
Lemma 28. Let the learning rate, ηn, be set according to Lemma 9. Further, for Xi ∼ P, Ai = XiX

⊤
i , let ∥Ai − Σ∥op ≤

M almost surely. Define roja := voja −
(
v⊤1 voja

)
v1. Then, with probability at least 1− δ, for all k ∈ [d],

∣∣e⊤k roja∣∣ ≲
√

ηn
(
e⊤k V⊥R0V ⊤⊥ ek

)
log

(
d

δ

)
+ ηnbk

(
M log

(
d

δ

)
+M2

√
λ1

λ1 − λ2

√
log

(
d

δ

))

+ bk
log
(
1
δ

)
δ3

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)

+
bkη

2
nnM2

2 log d√
δ

+
bk
√
snηn

√
nM2 log (d)√
δ

where bk :=
∥∥V ⊤⊥ ek

∥∥
2
, sn :=

C log( 1
δ )

δ3
ηnM2

2

(λ1−λ2)
, M̃ := E

[
V ⊤⊥ (Aj − Σ) v1v

⊤
1 (Aj − Σ)

⊤
V⊥

]
and R0 ∈ R(d−1)×(d−1)

with entires

R0(k, l) =
M̃kℓ

2λ1 − λk+1 − λℓ+1
, k, l ∈ [d− 1]

.

Proof. Using Lemma 2, we have

e⊤k roja := e⊤k Ψn,1 + e⊤k Ψn,2 + e⊤k Ψn,3 + e⊤k Ψn,4



Therefore, ∣∣e⊤k roja∣∣ ≤ ∣∣e⊤k Ψn,1

∣∣+ ∣∣e⊤k Ψn,2 + e⊤k Ψn,3 + e⊤k Ψn,4

∣∣
The result then following by a union bound over the events defined in Lemma 26 and Lemma 27.

D CENTRAL LIMIT THEOREM FOR ENTRIES OF THE OJA VECTOR
We consider the following setup from Chernozhukov et al. [2017a]. Let Are denote the class of all hyperrectangles in Rp.
That is, Are consists of all sets A of the form:

A = {w ∈ Rp : aj ≤ wj ≤ bj for all j = 1, . . . , p} (64)

for some real values aj and bj satisfying −∞ ≤ aj ≤ bj ≤ ∞ for each j = 1, . . . , p.

Consider

SX
n =

1√
n

n∑
i=1

Xi.

where Xi, i ∈ [n] ∈ Rp are independent random vectors with E[Xij ] = 0 and E[X2
ij ] <∞, for i ∈ [n], j ∈ [p]. Consider

the following Gaussian approximation to SX
n . Define the normalized sum for the Gaussian random vectors:

SY
n =

1√
n

n∑
i=1

Yi,

where Y1, . . . , Yn be independent mean zero Gaussian random vectors in Rp such that each Yi has the same covariance
matrix as Xi. We are interested in bounding the quantity

ρn (Are) := sup
A∈Are

∣∣P (SX
n ∈ A

)
− P

(
SY
n ∈ A

)∣∣
Let Cn ≥ 1 be a sequence of constants possibly growing to infinity as n→∞, and let b, q > 0 be some constants. Assume
that Xi satisfy,

(M.1) n−1
∑n

i=1 E[X2
ij ] ≥ b for all j = 1, . . . , p,

(M.2) n−1
∑n

i=1 E[|Xij |2+k] ≤ Ck
n for all j = 1, . . . , p and k = 1, 2.

Further, the authors consider examples where one of the following conditions also holds:

(E.1) E[exp(|Xij |/Cn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p,

(E.2) E[(max1≤j≤p |Xij |/Cn)
q] ≤ 2 for all i = 1, . . . , n.

Let

D(1)
n =

(
C2

n log
7(pn)

n

)1/6

, D(2)
n,q =

(
C2

n log
3(pn)

n1−2/q

)1/3

.

Now we present Proposition 2.1 [Chernozhukov et al., 2017a].
Theorem 3 (Proposition 2.1 [Chernozhukov et al., 2017a]). Suppose that conditions (M.1) and (M.2) are satisfied. Then
under (E.1), we have

ρn(Are) ≤ CD(1)
n ,

where the constant C depends only on b; while under (E.2), we have

ρn(Are) ≤ C{D(1)
n +D(2)

n,q},

where the constant C depends only on b and q.

Next, we will need the following result cited by Chernozhukov et al. [2017b].



Theorem 4 (Nazarov’s inequality [Nazarov, 2003], Theorem 1 in [Chernozhukov et al., 2017a]). Let Y = (Y1, . . . , Yp)
T be

a centered Gaussian random vector in Rp such that

E[Y 2
j ] ≥ σ2, for all j = 1, . . . , p,

for some constant σ > 0. Then, for every y ∈ Rp and δ > 0,

P(Y ≤ y + δ)− P(Y ≤ y) ≤ δ

σ
(
√

2 log p+ 2).

Here, for vector y ∈ Rp, y + δ denotes the vector constructed by adding δ to each entry of y.

Now we are ready to state our main result in Proposition 2,
Proposition 2 (CLT for a suitable subset of entries). Suppose the learning rate ηn, set according to Lemma 9, satisfies
M2

2λ1ηn

(λ1−λ2)
2 ≤ C0b

2 for some b > 0 and a small universal constant C0. Let {Xi}ni=1 ∈ Rd be i.i.d. mean-zero random vectors

with covariance matrix Σ such that for all vectors v ∈ Rd, we have

E
[
exp

(
vTX1

)]
≤ exp

(
σ2vTΣv

2

)
.

Let roja := voja − (v⊤1 voja)v1. Consider the set J := {j : Vjj ≥ b}, and let p := |J |. Let Hi :=
sign(uT

0 v1)
1+ηnλ1

V⊥Λ
n−i
⊥ V ⊤⊥

(
XiX

⊤
i − Σ

)
v1. Let Yi ∈ Rp be independent mean zero normal vectors such that

E[YiY
T
i ] =

nηn
λ1 − λ2

E[Hi[J ]Hi[J ]
T ].

Then,

sup
A∈Are

∣∣∣∣∣P
(

roja[J ]√
(λ1 − λ2) ηn

∈ A

)
− P

(∑
i Yi√
n

∈ A

)∣∣∣∣∣ = Õ

(
max

((
M4

λ1 − λ2

)1/3

n−1/6,

(
M2

λ1 − λ2

)1/2

n−1/8

))
,

where Õ hides logarithmic factors in n, p, and constants depending on b.

Proof of Proposition 2. Consider the error decomposition of the Oja vector in Lemma 2. We have roja = Ψn,1 +Ψn,2 +
Ψn,3 +Ψn,4, where Ψn,1,Ψn,2,Ψn,3,Ψn,4 are defined in Equation (19). Let R := Ψn,2 +Ψn,3 +Ψn,4.

For any δ ∈ (0, 1), ∃ϵ > 0 such that from Lemma 27 we have,

P((ηn (λ1 − λ2))
−1/2∥R∥2 ≥ ϵ) ≤ δ

we will specify ϵ as needed in the proof.

For all i ∈ [n], let

Ui :=
√
nηn/ (λ1 − λ2)︸ ︷︷ ︸

cn

Hi (65)

We show that U1, U2, . . . , Un satisfy conditions (M.1) and (M.2) with suitable constants.

For (M.1), using equation (19),

n∑
i=1

Hi = Ψn,1. (66)

By Lemma 1 (equation (9)), there exists a universal constant C0 such that∣∣∣∣∣e⊤j
(

ηn
λ1 − λ2

n∑
i=1

E
[
HiH

⊤
i

]
− V

)
ej

∣∣∣∣∣ ≤ ηnλ1M2
2

C0 (λ1 − λ2)
2 ≤

b

2
≤ Vjj

2
.



for all j ∈ J , where the last two inequalities follow by assumption and definition of J . This implies for all j ∈ J ,

ηn
λ1 − λ2

n∑
i

E
[
H2

ij

]
≥ Vjj/2 ≥ b/2 ⇐⇒ 1

n

∑
i

E[U2
ij ] ≥ Vjj/2 ≥ b/2

To show (M.2), by Lyapunov’s inequality and Assumption 1:

E
[
∥U2+k

ij ∥2
]
= E

[
c2+k
n |Hij |2+k

]
≤ 2(cnM4)

2+k

for k ∈ {1, 2}, where Cn := 2cnM4.

We now check condition E.1. Now note that for any unit vector u ∈ Rd, uTHi is subexponential with parameter σ2λ1

(Proposition 2.7.1. of [Vershynin, 2018]). Hence, there exists a constant C > 0 such that

E[exp(|Hij |/Cλ1σ
2)] ≤ 2

Therefore,

E[exp(|Uij |/Cλ1cnσ
2)] ≤ 2.

Now we set Cn := max(2cnM4, Cλ1cnσ
2).

Using Eq 66,

1√
(λ1 − λ2)ηn

Ψn,1[J ] =
√

ηn/ (λ1 − λ2)
∑
i

Hi[J ] =
1√
n

∑
i

Ui[J ],

the random variables Ui[J ], i ∈ [n] satisfy conditions (M.1), (M.2) and (E.1). By Theorem 3,

ρ(Are) ≤ C

(
C2

n log
7(pn)

n

)1/6

Recall from the statement of the proposition that Yi, i ∈ [n] are mean zero independent Gaussian vectors in Rp with the
same covariance structure as Ui[J ], i.e, E

[
YiY

⊤
i

]
= E

[
Ui[J ]Ui[J ]

⊤].
Let SW be the random variable

∑
i Wi for any collection W of n random variables W1,W2, . . . ,Wn. Consider the vector

SW [J ] to be the projection of W on the set J , defined as e⊤i SW [J ] = e⊤i SW for i ∈ J .

Recall that

eTi roja := e⊤i

 n∑
j=1

ηnHj +R

 .

Let A := {u ∈ Rp|ui ∈ [ai, bi], i ∈ J}. Let A+
ϵ := {X|Xi ∈ [ai−ϵ, bi+ϵ], i ∈ [p]} and A−ϵ := {X|Xi ∈ [ai+ϵ, bi−ϵ], i ∈

J}.

Let SR[J ] :=
∑

i∈J eTi roja. Then, we have SR[J ] = ηnSH [J ] +R[J ].

We will use the following identity for vectors G1, G2 ∈ Rp.

P(G1 ∈ A−ϵ , ∥G2∥ ≤ ϵ) ≤ P(G1 +G2 ∈ A, ∥G2∥ ≤ ϵ) ≤ P (G1 ∈ A+
ϵ , ∥G2∥ ≤ ϵ)

So,

P(G1 +G2 ∈ A) ≤ P(G1 ∈ A+
ϵ , ∥V ∥ ≤ ϵ) + P (∥V ∥ ≥ ϵ)

P(G1 +G2 ∈ A) ≥ P (G1 ∈ A−ϵ , ∥G2∥ ≤ ϵ)



Using G1 = SU [J ]/
√
n and G2 = (ηn (λ1 − λ2))

−1/2R, we have:

P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(SY /

√
n ∈ A)

≤ P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A, (ηn (λ1 − λ2))

−1/2∥R∥ ≤ ϵ) + P((ηn (λ1 − λ2))
−1/2∥R∥2 ≥ ϵ)

− P(SY /
√
n ∈ A)

≤ P(SU [J ]/
√
n ∈ A+

ϵ ) + P((ηn (λ1 − λ2))
−1/2∥R∥2 ≥ ϵ)− P(SY /

√
n ∈ A) =: γA.

Note that γA can be written as

γA ≤ |P(SU [J ]/
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A+

ϵ )|+ |P(SY /
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A)|+ P((ηn (λ1 − λ2))

−1/2∥R∥ ≥ ϵ).

Similarly,

P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(SY /

√
n ∈ A) ≥ ωA,

where

ωA := P(SU [J ]/
√
n ∈ A−ϵ , (ηn (λ1 − λ2))

−1/2∥R∥ ≥ ϵ)− P(SY /
√
n ∈ A)

≥ P(SU [J ]/
√
n ∈ A−ϵ )− P((ηn (λ1 − λ2))

−1/2∥R∥ ≥ ϵ)− P(SY /
√
n ∈ A−ϵ ) + P(SY /

√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

Therefore, we have by Theorem 3 that for some constant C ′ that depends only on b,

sup
A∈Are

|γA| ≤ C ′
(
C2

n log
7(pn)

n

)1/6

+
∣∣P(SY /

√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A)

∣∣+ δ (67)

Similarly,

sup
A∈Are

|ωA| ≤ C ′
(
C2

n log
7(pn)

n

)1/6

+
∣∣P(SY /

√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

∣∣+ δ (68)

For P(SY /
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A), we will use Nazarov’s inequality (Lemma 4):

∣∣P(SY /
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A)

∣∣ ≤ √2ϵ
b1/2

(
√

2 log p+ 2) (69)

For bounding the terms concerning A−ϵ , we need to be a little careful because if bi − ai ≤ 2ϵ, then A−ϵ has measure zero
under the Gaussian distribution. If A−ϵ is nonempty, then we have the same bound as Eq 69. However, in case that is not true,
note that there must be some i ∈ [p] such that bi − ai ≤ 2ϵ. Hence∣∣P(SY /

√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

∣∣ = P(SY /
√
n ∈ A)

= P(SY [i]/
√
n ∈ [ai, bi])

≤ 2ϵ√
πb1/2

(70)

So overall, ∣∣P(SY /
√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

∣∣ = P(SY /
√
n ∈ A)

= P(SY [i]/
√
n ∈ [ai, bi])

≤ max

(
2ϵ√
πb1/2

,

√
2ϵ

b1/2
(
√

2 log p+ 2)

)
(71)

Putting Eqs 67, 68, 69 and 71 together, we have, for some absolute constant C1:

sup
A∈Are

|P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(n−1/2SY ∈ A)| ≤ max( sup

A∈Are

|γA|, sup
A∈Are

|ωA|)

≲

(
C2

n log
7(pn)

n

)1/6

+
C1ϵ

b1/2

√
log p+ δ (72)



We invoke Lemma A.2.3 in Kumar and Sarkar [2024a] to see that:M4 ≤ λ1 + σ2trace (Σ). Therefore, for some constant
C ′′ > 0,

Cn = max(2cnM4, Cλ1cnσ
2) ≤ C ′′

√
nηn

(λ1 − λ2)
M4

From Lemma 27 and the assumption on the learning rate (Lemma 9),

√
ηn (λ1 − λ2)ϵ ≲

η2nnM2
2 log d√
δ

+

√
snηn

√
nM2 log (d)√
δ

+
log
(
1
δ

)
δ3

(√
η3nnM2

2 log (d)√
λ1 − λ2

)
(73)

Substituting the bound on ϵ from equation (73) into equation (72) and optimizing over δ yields

δ = Õ

((
log p

b

)1/8√ M2

λ1 − λ2
n−1/8

)
. (74)

Substituting the choice of δ from equation (74) in (72), we conclude

sup
A∈Are

|P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(n−1/2SY ∈ A)|

= Õ

(
max

((
M4

λ1 − λ2

)1/3

n−1/6,

(
M2

λ1 − λ2

)1/2

n−1/8

))
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