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ABSTRACT

Achieving alignment between vision and language semantics poses a critical chal-
lenge. Prior works have sought to enhance alignment by incorporating additional
supervision, such as tags or object bounding boxes, as anchors between modal-
ities. However, these methods predominantly concentrate on aligning tangible
entities, disregarding other crucial abstract concepts that elude perception, such as
side by side. To overcome this limitation, we propose a novel approach to Capture
various Concepts through data Comparison (C3) for learning cross-modal repre-
sentations. Specifically, we devise a data mining procedure to uncover intrinsic
information within the database, avoiding the need for external annotations. Fur-
thermore, we distinctly frame model inputs as triplets to better elucidate abstract
semantics in images. Building upon this formulation, we propose two concept-
centric pre-training objectives to signify concept learning. Extensive experiments
demonstrate that models trained within the C3 framework consistently achieve
significant enhancements across a wide range of comprehension and reasoning
benchmarks, whether starting from scratch or fine-tuning from an existing model.

1 INTRODUCTION

side by side upside down
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Figure 1: Examples of concepts mined from the database (Chen et al., [2015). The concepts could
be abstract and shared across different scenes and subjects. The semantics of the concepts become

clear when comparing multiple images carrying the same concept.

Semantic alignment between the domains of vision and language emerges as a crucial concern for
various vision-language (VL) tasks. Consequently, numerous pre-training objectives have been
meticulously designed to investigate the pairing relations between images and texts using large-
scale datasets (Yao et al.,[2022} [Li et al.l 20214; Xue et al.| 2021). However, the information in the
two modalities is often inequivalent for most existing datasets. In other words, textual descriptions
often fall short of providing a comprehensive account of each image 2022). Such a
weakly-aligned relation hinders the effective learning of cross-modal representations. Moreover,
fine-grained alignments across modalities cannot be naturally achieved due to the lack of explicit
annotations between entities and regions.

To alleviate this problem, prior works have sought to leverage additional supervision to bridge the
gap between images and texts. For example, pre-trained object detectors are widely adopted. The
detectors can be used to extract region-based features as visual inputs (Zhou et al,[2022} [Li* et al.}

2022 [Kamath et al] 2021} Xu et all, 2021}, [Su et al., [2020), provide detected tags as additional




Under review as a conference paper at ICLR 2024

inputs to enhance alignments (Li et al.| 2020; |[Zhang et al., [2021)), or create learning targets for
knowledge distillations (Liu et al., [2021). In addition to object detectors, other works attempt to
obtain visual attributes in linguistic form through entity prompter (L1 et al., 2022) or noun phrases
of captions (Fang et al.| [2022). However, prior efforts leveraging additional supervision still have
limitations. Notably, these approaches focus on aligning data with concrete entities such as objects,
regions, or attributes, which lack clear indications for aligning complex concepts that are challenging
to precisely depict in the visual domain, such as “side by side” or “upside down” as shown in Fig.[T]

Another line of research, instead of relying on additional supervision, focuses on enhancing align-
ments through modifications to pre-training objectives or architectures (Fang et al.|[2022; |Kim et al.,
20215 [ Xu et al.l 20215 Yan et al.,|2021; [Huang et al., [2020). For instance, ALBEF (Li et al., [2021al)
adopts an intermediate image-text contrastive loss to align the image and text features before per-
forming cross-modal interactions in later layers. In addition to cross-modal alignments, TCL (Yang
et al.,|2022) further applies contrastive learning for intra-modal alignment by image or text augmen-
tation. Nevertheless, most VL pretrained models still suffer from two issues. First, the supervision
for alignments is limited in terms of diversity and quantity, often relying on the use of external mod-
els or predefined categories. Second, there is a lack of clear indications for learning concepts with
abstract semantics, a critical requirement for tasks that demand comprehension and reasoning.

To tackle these challenges, we present a novel approach called Capture Concept through Compar-
ison (C3). The term “concept”, rooted in psychology, is defined as “the label of a set of things that
have something in common” (Archer}|1966)). Inspired by the definition, we posit that a concept shall
become more evident as more examples are provided. Therefore, the core idea of C3 is to leverage
the data comparison to achieve concept-level alignments, thereby enhancing the comprehension of
abstract semantics. To this end, we first propose a mining procedure to discover the concepts that are
intrinsically shared among the database. Specifically, given an image-text pair, we extract text frag-
ments and compare them with other texts in the training data. A fragment is identified as a concept
if the same fragment appears in other texts. As such, this mining approach enables us to discover a
broader spectrum of concepts without being constrained by external detectors or linguistic grammar.

Equipped with the mined concepts, the next challenge is to harness them for enhancing cross-modal
alignment. An intuitive approach is to employ the concepts directly as language input and adhere to
the conventional VL pre-training pipeline. However, we have discovered that employing an image-
image-text triplet, i.e., two images with a concept text, can further assist models in discerning the
abstract concept intertwined within images. Such a triplet formulation enables our model to learn a
concept by pinpointing the “intersection” between two images, thereby streamlining the information
to be focused in the visual domain and refining the alignment of concepts. With this input formu-
lation, we design two concept-centric learning objectives, Matched Concept Prediction (MCP) and
Matched Concept Contrastive (MCC), to enhance alignments for both cross- and uni-modal repre-
sentations. These objectives offer a direct learning mechanism for the mined concepts.

Finally, we assess our method under two configurations: continual pre-training and pre-training from
scratch. The experimental results demonstrate that our approach can effectively leverage existing
models without full re-training and significantly improve general VL behavioral testing. Further-
more, the experiments of pre-training from scratch highlight the benefits of concept-centric learning
on various downstream tasks. Our main contributions can be summarized as follows: (i) We pro-
pose a novel mining procedure to discover the concepts intrinsic to the database, which is general and
could potentially be leveraged in other studies as the immediate supervision for fine-grained align-
ments; (ii)) We reformulate image-text learning scheme by considering image-image-text triplets,
which facilitates models to identify and learn the abstract semantics in both modalities; (iii) We
design two novel concept-centric objectives, i.e., Matched Concept Prediction (MCP) and Matched
Concept Contrastive (MCC), to learn the matching of triples for better concept-level alignment;
(iv) Extensive experiments and analysis demonstrate that the proposed concept-centric learning can
improve both model capacity and downstream task performances.

2 RELATED WORK

Aligning vision and language representations is a critical challenge in VL pre-training. Recent works
have attempted to address this challenge by leveraging additional supervision beyond traditional
image-text pairs. For instance, Su et al.| (2020) use Faster R-CNN to extract region of interest (Rol)
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features, whileLi et al.|(2020)) introduce object tags as the anchors for alignment. Zhang et al.|(2021)
improve on this approach by enhancing the visual representations via better pre-training of object
detectors. Similarly, |[Xu et al.| (2021) incorporate object detection objectives (Carion et al., [2020)
into a sequence-to-sequence VL model, and [Liu et al.|(2021) rely on external detectors for object
knowledge distillation. Other approaches include leveraging object detectors and phrase generators
to learn hierarchical alignment (L1 et al.l 2022a)) and performing contrastive learning with patch
features and bounding boxes (Zeng et al.| 2022). Additionally, |Gao et al.| (2022) propose aligning
vision and language at different semantic levels, i.e., global image, local region, and ROI features
for vision; summarization, caption, and attributes for language. [Doveh et al.{(2023) propose to teach
VL models structure concepts by manipulating the text input based on pre-defined rules.

Another research line focuses on aligning solely with image-text pairs through modifications in ob-
jectives or architectures. |Li et al.|(2021a)) introduce an intermediate image-text contrastive loss on
unimodal features to facilitate subsequent cross-modal alignments. Other approaches suggest addi-
tional pre-training objectives, including word-region contrastive loss (Yao et al., 2023} |Jiang et al.,
2023)), pseudo-labeled keyword prediction (Khan et al., 2022), weakly-supervised phrase ground-
ing (Li et al., [2022b), token-wise maximum similarity (Yao et al., [2022), and visual dictionary as
pixel-level supervision (Huang et al.,2021). |Duan et al.|(2022) encode features into a shared coding
space defined by a dictionary of cluster centers for alignment. |Yang et al.| (2022)) introduce intra-
modal contrastive objectives to complement the cross-modal objectives. The integration of learning
across vision, language, and multimodal tasks has been studied in [Singh et al.| (2022). A two-stage
pre-training strategy has also been suggested in Dou et al.| (2022a)), involving initial coarse-grained
training based on image-text data, followed by fine-grained training on image-text-box data.

In summary, the aforementioned approaches, aimed at enhancing alignments between vision and
language, have showcased significant successes across a range of downstream tasks. Nevertheless,
challenges persist in learning intricate concepts that resist easy specification through perceptual
features. Although prior research has utilized additional supervision with respect to tangible entities
like objects, regions, or attributes, these strategies are constrained when dealing with more abstract
concepts. To overcome these limitations, we propose a framework that mines hidden concepts in the
dataset and reformulates input based on the philosophy of the mining procedures, thereby enabling
more effective alignment between vision and language.

3 METHOD

In this section, we propose a learning procedure for enhancing the fundamental abilities of the
VL models, which can be effectively applied to both continual pre-training and pre-training from
scratch. First, Sec. 3.1 describes the model architectures for better illustration. Sec.[3.2]and Sec.[3.3|
introduce concept mining strategy and concept-centric objectives. Fig. [2|depicts an overview of C3.

3.1 OVERALL FRAMEWORK

C3 comprises a text encoder &, an image encoder &, and a cross-modal encoder &, as contem-
porary vision-language models (Kim et al., 2021} L1 et al.| [2021a; [Zhang et al.l |2021). We adopt
such a succinct architecture and focus on studying the proposed concept-centric pre-training. A
text T is tokenized into a sequence of subwords [¢1, 2, ...], and two special tokens t.;s and t., are
respectively prepended and appended to the sequence. The sequence is then passed through & to
obtain the unimodal features. An image [ is first divided into several patches and processed by a
convolutional layer to extract patch features [v1, v, ...]. These patch features are then flattened and
fed into the &, for further feature extraction. We also add a learnable vector v, to aggregate global
information for the vision modality. For fusing the features from unimodal encoders, we apply co-
attention modules (Dou et al., 2022b) as cross-modal encoders ..., for both vision and language.
Finally, for an image-text pair, the vision-language joint representation z is obtained as follows:

Hy = (bt it ] = Exl[ters tr, ), Hy = [h00 BY, o] = Eu([vess, v1, -..]),

cls» cls»
Z = [zf;lsvziv ces Ze1g 215 o] = Ecross ([He, Hy), 2 = [2253’253]-

(D

We pre-train C3 from scratch with the proposed concept-centric objectives (Section [3.3), i.e.,
Matched Concept Prediction (MCP) or Matched Concept Contrastive (MCC), and the widely-
used pair-centric objectives, such as Image Text Matching (ITM) and Masked Language Modeling
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Figure 2: The proposed concept mining procedure (left) and concept-centric pre-training architec-
ture and objectives (right). As shown on the left side, we use the n-grams from the text as the queries
to retrieve images also containing the n-grams in their texts. With the mined n-gram concepts, the
inputs are formulated as triplets for pre-training, shown on the right side.
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(MLM). For the continual pre-training, we insert trainable low-rank residual adapters (LoRA (Hu
et al.;,2022)) into existing models and learn with the MCC objective to further enhance the capacity.

3.2 CONCEPT-CENTRIC LEARNING FORMULATION

Mutual Information Maximization. Existing works (Chen et al.|, 2020; |Dou et al., 2022b; |Kim
et al.| 2021} |Li et al.| 2021a;2020; |Su et al.| |2020; [Zhang et al.,|2021) commonly adopt the combi-
nations of Masked Language Modeling (MLM), Masked Vision Modeling (MVM), and Image-Text
Matching/Contrastive (ITM/ITC) for VL pre-training. Previous work (Li et al} [2021a) shows that
these objectives can be interpreted as the maximization of the mutual information (MI) between
different views of an image-text pair. For example, ITC treats the image and text as two different
views; MLM treats the masked tokens as one view and other tokens with the image as another view.
In other words, these approaches aim to learn the multimodal representations invariant across dif-
ferent views for improving downstream tasks. It is noteworthy that the aforementioned approaches
maximize the MI for each image-text pair independently. Besides, the views are considered either
at the instance-level (ITC) or token-/patch-level (MLM/MVM). However, we argue that models can
be better learned by considering concepts that are cross-data and diverse in granularity. Therefore,
instead of considering only a single image-text pair, we construct a novel learning formulation by
centering a concept that is built from multiple image-text pairs.

Specifically, we define two random variables
c1 and ¢y as two different views of a concept,
where the views correlate to a concept text and
multiple images. We could maximize a lower

Algorithm 1: Concept Mining

Data: Image-text database D = {(I;,T;)} iV=D1 .

Result: Concept database D¢ = {(I;,Z;, Cl)}fVZ'D1 .
for (I;,T;) € Ddo

bound on Ml(c1,co) by minimizing the In-
foNCE loss (L1 et al.,[2021a; |Oord et al., [2018)
defined as follows.

exp(f(c1,c2))
cen oxp(f(e1, )’
@)
where f(-) is a scoring function and B is
a batch containing one positive sample with
other negative samples. To realize this learning
framework, we next elaborate on the proposed
methods for mining concepts in the database.

Lnce = —Ep(e,,e0) log 5

Initial C; and Z; as empty sets; k = 0;
Obtain n-grams G from T; forn € [N, ..., 1];
for G € G do
Random sample a subset D from D;
Initial Z}, as empty sets;
for (I;,T;) € D, do
if G € T and |Zj| < K, then
| Assign Gto Cy; Add I to Zy;
end
if 7y, is not empty and |Z;| < Ko then
| AddCptoCi; Add Ty to Tz k+=1;
end

end
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Concept Mining. Drawing inspiration from the field of psychology, which defines a concept “as
the label of a set of things that have something in common” (Archer, [1966), we propose to mine
the concepts by exploring the commonality between pairs of data. Our approach is based on the
identification of overlapping n-grams (Jarvelin et al.| 2007; [Wang et al,, [2007) between pairs of
data, specifically image-text pairs in a database D = {(I;, T; = {ti1,ti2,...}) };5. In each iteration
1, we extract all n-grams in the associated text T; as {(¢;1, ..., tin), (ti2y ooy ting1), -} Next, we
treat each n-gram as a query to retrieve images carrying the same n-gram in their texts. If there
is any matching, the n-gram is defined as a concept shared across these data. We retrieve at most
K pairs for a concept and early terminate the current iteration if K5 pairs are obtained for 7;. To
allow for concepts of varying granularity, we consider different n € [1, N] and mine the concepts
with a descending order of n since the longer concept covers the shorter one. In the end, each image
may involve multiple concepts, and each concept correlates to multiple different images. Let C; and
T, = {I; } respectively denote the matched concept set for i-th sample and the matched image set
of k-th concept C;;. Accordingly, the concept database is constructed as follows:

c C;
D* = {{(Iiﬂzikvcik)}L:‘l fV:Dl (3)
The mining procedure is further presented in Algorithm T]

3.3 CONCEPT-CENTRIC PRE-TRAINING

Based on the concept database, we propose to maximize the mutual information across an n-gram
concept and two corresponding images. The input formulation is therefore transformed from pair-
based (i.e., image-text) to triplet-based (i.e., image-image-text). In the following, we present two
concept-centric objectives to explore this formulation.

Matched Concept Prediction (MCP). Different from prior works, MCP takes a concept text and
a pair of images as the input. This objective aims to predict whether the concept C' is shared be-
tween the two images (I;, I;), which provides explicit supervision to learn the semantics of concepts
across modalities. An image could encapsulate numerous concepts in different granularity, and the
contrasts of two images help capture and identify the specified concept more efficiently. For a triplet
(1i, I, C), we divide it into (/;, C) and (I;,C) to encode them respectively. Let zf; denote the
concatenation of joint representations from (I;, C') and (I;, C'). To obtain the negative examples for
learning, we investigate two strategies. The first one is to replace one of the images in a positive
triplet with a mismatched image [}, i.e., (/;, [}, C), while the other is to replace the concept with
another concept C’, i.e., (I;, I;,C"). As such, we could define the objective as:
eXPWTZiCj)

,C"eB eXP(wTZiCJ,'/)

where ¢ is a learnable matrix. However, since the objective utilizes multimodal representations,
it requires forwarding all triplets in a batch independently despite some images or concepts be-
ing shared, making the optimization memory-intensive in practice. Therefore, we adopt the local
NCE (Gutmann & Hyvirinen, |2010; Gutmann & Hyvirinen, 2012) to approximate the loss (Kong
et al.,[2020; Liu et al.l [2022) as:

Lyvce = —Ey(r,,1;,0 Wi 10g dmep (27;) + (1 — y5;) log(1 — dmer(2i;))], (5)
where y;; is the label and ¢mcp is a network producing a value as probability. This formulation in
another way leverages a binary classifier to distinguish matched samples from the noisy ones.

Lnmcp = —Ep1,,1,,0)[log D s “4)
(1

Matched Concept Contrastive (MCC). Apart from utilizing cross-modal representations for learn-
ing the alignment of concepts, we could extend such an idea with the unimodal ones. Specifically,
we use the outputs of the image and text encoders to learn the matching of triplets before the cross-
modal layers. This strategy could be beneficial for the cooperated objectives to leverage the aligned
representation in an early stage. The objective is presented as:

exp(s(¥ his 9 hy))
(1.ceB exp(s(t i hiy bl )

where s(-) is cosine similarity, h; = hiz’s We = dmce(hS,), and ¢mce is an MLP-based network.
In this formulation, we use the concept to generate a projection matrix 1. that transforms the two
images into a space that is conditioned on the concept. This operation is inspired by the general
conditioning methods proposed in Perez et al.| (2018)).

Lyvice = —Epyi1,.1,,0)[log 5 s (6)
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Benchmarks. We conduct pre-training on four image-caption datasets: COCO (Chen
et al.l 2015), Visual Genome (VG) (Krishna et al.,[2017), Conceptual Captions (CC) (Sharma et al.,
2018), and SBU Captions (Ordonez et al., [2011). Our model evaluations encompass a range of
vision-language benchmarks, including vision-language behavior assessment (VL-Checklist (Zhao
et al 2022)), visual entailment (SNLI-VE (Xie et all 2019)), natural language visual reasoning
(NLVR#(Suhr et al.| [2019)), and image-text retrieval (Flickr30k(Plummer et al., 2015)).

Training Configurations. We evaluate our methods in two configurations: continual pre-training
and pre-training from scratch. In the case of continual pre-training, our goal is to assess the ad-
vantages of applying concept-centric learning to existing models without necessitating a full model
re-training. Leveraging pre-trained knowledge can prove both effective and cost-efficient. Specif-
ically, we select CLIP (Radford et al., [2021) as our base model, which has undergone pre-training
on 400 million image-text pairs and has been applied to a wide range of tasks. In this context, we
introduce LoRA (Hu et al.; 2022)) to enhance the base model’s capacity while keeping all base model
parameters fixed, allowing only the parameters of LoRA to be trainable. For the pre-training from
scratch scenario, we follow the setup of METER (Dou et al.|[2022b)), given its relatively manageable
pre-training scale, utilizing 4.0 million images and 5.1 million image-text pairs for pre-training.

Implementation Details. For continual pre-training, we initialize the model with CLIP-ViT-B/32 or
CLIP-ViT-B/16 and train it for 1 epoch using COCO, VG, CC, and SBU, respectively. The trainable
parameters constitute approximately 1.2% of the entire model. The concept mining procedure is
executed within each dataset, considering n-grams with n ranging from 1 to 5 as concept candidates.
To ensure comprehensive coverage, we set the hyperparameters K7 and K5 to S and 80, respectively.
In the case of pre-training from scratch, our model undergoes training for 50k steps on COCO, VG,
CC, and SBU, which is half the number of learning steps compared to our baseline METER (Dou
et al.,2022b) (pre-trained with 100k steps). For ablation and analysis purposes, we train the models
from scratch for 2.6k steps on COCO, enabling extensive experimentation. All images are resized
to 224 x 224 through center-cropping during the pre-training process.

4.2 VISION-LANGUAGE BEHAVIORAL TESTING

We first assess the fundamental vision-language capability of C3 from different angles with the VL-
Checklist benchmark. The comparison with the base model under different configurations is shown
in Table|l} The results reveal that directly continuing the pre-training may deteriorate performance,
while our methods can significantly and consistently improve the VL capability across diverse as-
pects. Notably, the enhancement in the object aspect is evident across various data sources. This
could result from the fact that most concepts would naturally involve objects, contributing more to
this aspect. Besides, the improvement in the attribute aspect is particularly pronounced in COCO,
signifying that COCO includes more attributed-related descriptions, such as the size, color, and ma-
terial, which C3 can effectively identify and leverage. VG includes abundant region descriptions,
which enables C3 to grab the concept of objects and their relations by comparing data even without
using the structured annotations in this dataset, which is hard to learn by image-caption pairs. The
diverse characteristics of data sources also underscore the idea that different data sources may cover
different concepts, which can be successfully exploited by C3 to enhance the model’s overall capa-
bilities. Importantly, our methods prove beneficial for both continual pre-training and pre-training
from scratch settings, highlighting the generalizability of the proposed approach.

4.3 VISION-LANGUAGE REASONING

To compare with prior works, C3 uses the same framework architecture as our primary baseline
model, METER. Given the resource-intensive nature of VL pre-training, learning efficiency is of
utmost importance. Therefore, we compare C3 with models of similar data scales and learning steps.
Our goal is to achieve state-of-the-art performance with fewer training steps, as the model tends to
improve with increased data and learning steps (Rae et al., |2021). As shown in Table [2| C3 attains

"More implementation details for pre-training and fine-tuning are provided in the appendix.
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Table 1: Performance comparison on VL-Checklist (Zhao et al.l 2022). C/V/O/S refers to the
CC/VG/COCO/SBU dataset. For CLIP architecture, the model w/o C3 is an ablation of MCC.

VL-Checklist
Base Model Dataset Attribute Object Relation Average A
w/oC3 —-w/C3 woC3—-w/C3 woC3—-wC3 woC3—-wC3 woC3—w/C3
Continual Pre-training
- 69.09 81.94 63.30 71.44 -
S 69.09 — 70.87 81.24 — 81.99 60.62 — 63.68 70.32 — 72.18 -1.12 = 0.74
CLIP-ViT-B/32 C 68.63 — 71.18 80.32 — 82.04 53.75 — 55.72 67.57 — 69.65 -3.87 — -1.79
! v 71.59 — 72.31 87.28 — 87.16 62.86 — 64.77 7391 — 74.75 247 — 331
o 71.43 — 75.26 85.38 — 87.36 57.66 — 61.11 71.49 — 74.58 0.05 — 3.14
- 70.37 82.94 61.98 71.76 -
S 70.68 — 71.13 82.85 — 83.40 61.52 — 62.64 71.68 — 72.39 -0.08 — 0.63
CLIP-ViT-B/16 C 69.66 — 70.18 81.54 — 87.56 55.86 — 62.86 69.02 — 73.53 274 — 1.77
v \Y 68.40 — 69.98 87.34 — 87.75 60.80 — 62.98 72.18 — 73.57 0.42 — 1.81
(0} 71.30 — 75.87 86.94 — 88.48 53.98 — 61.75 70.74 — 75.37 -1.02 — 3.61
Pre-training from Scratch
METER C+V+0+S | 81.65 — 84.28 84.72 — 89.04 71.94 — 73.90 79.44 — 82.41 2.97

Table 2: Performance comparison on SNLI-VE (Xie et al.,[2019) and NLVR? (Suhr et al.}[2019).

SNLI-VE NLVR?

Model Images Iters Params dev test dev test
ALBEF(14M) (Li et al.,2021a) 14M 420M 500M 80.80 80.91 82.55 83.14
SimVLMpuuce (Wang et al | [2022) 1.8B 4.1B 632M 86.21 86.32 84.53 85.15
BEIT-3 (Wang et al.||2023) 36M 6.1B 1.9B - - 91.51 92.58
PixeIBERT (Huang et al.,[2020) 207K 8.3M 170M - - 76.5 772
Visual Parsing (Xue et al.||2021) 221K 8.8M 308M - - 77.61 78.05
OSCAR| arce (Li et al.}|2020) 4M 512M 380M - - 79.12 80.37
ViLT (Kim et al.[|2021) 4M 819M 114M - - 75.70 76.13
UNITERarGE (Chen et al.|[2020) 4M - 343M 79.39 79.38 79.12 79.98
VILLALarGE (Gan et al.[[2020) 4M - 343M 80.18 80.02 79.76 81.47
UNIMOgask (Li et al.}[2021b) 5. 7™M 1.5B 165M 80.00 79.10 - -
VinVLgasg (Zhang et al.|[2021) 5.M 1B 290M - - 82.05 83.08
CLIP-ViL (Shen et al.[[2022) 4M 184M 330M 80.61 80.20 - -
ALBEF(4M) (Li et al.|[2021a) 4M 154M 500M 80.14 80.30 80.24 80.50
METER (Dou et al.[|[2022b) 4M 410M 384M 80.86 81.19 82.33 83.05
C3 (our) 4M 205M 384M 81.30 81.34 82.36 83.35

superior performance in NLVR? and SNLI-VE, requiring fewer training iterations than METER,
and surpasses ALBEF. These results suggest that learning concepts through image comparison can
enhance a model’s inference capabilities

4.4 ABLATION STUDY

Pre-training Objectives. We investigate diverse pre-training settings by restricting the learning
steps to 2.6k and using CLIP-ViT-224/32 as the vision encoder. Table [3| demonstrates that incor-
porating MCP (row 4) enhances all tasks compared to the METER baseline (row 1), particularly
for image-text retrieval and the VL-Checklist, owing to the improved representations learned with
multi—%rained concept alignment. Furthermore, our approach naturally meets the requirements of
NLVR“, where models must assess the accuracy of descriptions between two images, bringing in
additional benefits. Notably, the ablation study demonstrates that I'TM is critical for retrieval tasks
and the VL-Checklist but not for semantic inference tasks (row 3), while MLM greatly impacts the
performance of the reasoning task (row 2). Thus, each objective covers distinct aspects, and the best
performance can be achieved by combining them.

Training Sample Formation. We investigate the impacts of two methods for constructing negative
samples of MCP (row 4 & row 5-6). We refer to the misaligned image method as type-1-negative and
the misaligned concept method as rype-2-negative. Results indicate that type-2-negative is relatively

2 Additionally, we evaluate C3 on the zero-shot and fine-tuned image-text retrieval tasks to assess cross-
modal representation quality, as shown in the appendix.
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Table 3: Ablation study of C3. The first row is METER (Dou et al., [2022b). All models are trained
for 2.6k steps on 224 x224 images with patch size 32. I/C refers to constructing negative samples
by misaligned images/concepts. PW refers to the pairwise formulation for the MCP objective.

VL-Checklist Flickr30K-ZS NLVR? SNLI-VE
ITM MLM MCP | 5/ Obj / Rel A IR/TR A dev / test A dev / test A
n-gram

Vv - | 5413/7345/5480 -62 | 5582/62.17 -52 | 7283/7435 -12 | 7698/7731 05
v - v | 6257777015320 25 | 60.55/6749  -0.1 | 6947/71.47 -44 | 7641/7658 1.1
- v v | 5070/4677/4538 -194 | 295/623  -59.6 | 73.79/7478 0.6 | 77.62/7757 0.0
v v v | 6452/7653/6005 00 | 60.45/67.87 00 | 7427/7540 00 | 77.55/77.67 00
v v 1 | 6121/7698/57.86  -1.7 | 5898/6487 22 | 7401/7449 -0.6 | 7731/77.53 02
v v C | 6166/7730/5726  -16 | 60.07/6620 -0 | 7333/74.52 -09 | 77.47/77.66 0.0
v v PW | 6144/7748/5823 -13 | 5887/6567 -19 | 73.91/7490 -0.4 | 77.16/7746 0.1

noun phrase

v ' v | 62.03/77.22/53.74 27 | 58.50/64.53 2.6 | 7397/7525 02 | 77.23/7752 02

effective since it is more challenging, forcing models to learn semantics without relying on spurious
clues. Comparatively, type-1-negative is formed by replacing the matched image with a random
one, where the image pairs mostly do not have clearly shared concepts. Therefore, models might be
able to make predictions solely by comparing visual features. Nevertheless, the combination of both
types still yields the best performance. Furthermore, to understand the effectiveness of the triplet
input formulation, we compare it with pairwise input. By altering the input from triplet to pairwise,
the MCP objective aims to predict whether a concept is present in an image. The results (row 7)
show that triplet training still outperforms pairwise training across all metrics. This is likely because
an image can contain multiple concepts, making direct alighment via pairwise training ambiguous
and inefficient. In contrast, triplet training explicitly provides two references for each mined con-
cept, reducing the number of potential concepts to be considered in the visual domain and enabling
more precise alignment. Additionally, pairwise training still improves upon the baseline model (row
1), highlighting the efficacy of learning with concepts.

Concept Mining Strategy. We propose extracting overlapped n-grams to form concepts, which can
identify a wider range of concepts compared to previous works limited to specific scopes such as ob-
ject tags (Li et al.,2020) or verb-/adj-nouns (Kamath et al.|[2022). To evaluate the benefits, we learn
a baseline model on a restricted concept database by performing the proposed mining procedure but
only considering noun phrases. As shown in the bottom row of Table[3] the results demonstrate that
our approach (row 4) outperforms the baseline across all tasks, indicating that the proposed mining
procedure is critical and can serve as a general method for exploring concepts in learning.

4.5 ANALYSIS FOR DIFFERENT SEMANTIC COMPLEXITY

The proposed C3 model aligns concepts to
enhance inter-modality semantic relationships, =

. . . . g . 75.0 - -
thereby improving its reasoning capabilities for | W
. . . - + + P ]
complex semantics. To validate the claim, we  7of — musmun 289
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tently demonstrates that the C3 model’s per-

formance is negatively correlated with seman-
tic complexity across all three definitions and experimental settings. Furthermore, our proposed
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matched concept prediction shows to be particularly effective for challenging instances, highlight-
ing its practical value.

4.6 VISUALIZATION

For a more intuitive understanding, we visualize the attention maps generated by the final attention
layer within the cross-modal encoder. To gain insights into the models’ comprehension of challeng-
ing concepts, we randomly select concepts with 4- or 5-gram attributes from the validation dataset.
Figure [ displays these visualizations for both C3 and our baseline model, METER. Notably, the
results illustrate that C3 exhibits the ability to focus on specific regions in accordance with the text
fragments, while METER tends to distribute attention more evenly across the entire space. This
divergence may arise from the difficulty in perceiving sentence fragments due to distribution differ-
ences between concept texts and captions. However, through concept-specific learning, models find
it easier to identify meaningful regions for sentence fragments, thus enhancing their overall capacity.

Examples a & b, as well as examples ¢ & d, demonstrate that C3 adapts its attention to different
regions according to the input concepts. Furthermore, C3 outperforms METER in appropriately
attending to regions for ambiguous phrases, as exemplified in examples e, f, and g. These visu-
alizations suggest that C3 holds significant potential for tasks involving visual-linguistic ground-
ing (Kazemzadeh et al.l 2014} Mao et all,[2016; [Yu et al, 2016)), opening up promising avenues for
future research. Additional examples can be found in the appendix.

o)
O

(a) using a cell phone (b) looking at a cell phone  (c) looking at a bird  (d) other side of a window (e) a trunk is towing a (f) desk nextto a (g) ready to hit a ball

Figure 4: Visualization of attention maps for abstract concepts randomly selected from examples
containing 4- or 5-gram concepts, providing insight into the model’s understanding of abstract se-
mantic relationships. Examples a & b and examples ¢ & d show that C3 can attend to different
regions depending on the input concepts. Examples e, f, and g show that C3 can process ambiguous
sentence fragments.

5 CONCLUSION

This paper presents Capture Concepts through Comparison (C3), a novel framework designed to
enhance the core capabilities of vision-language (VL) models by strengthening the semantic align-
ment between the realms of vision and language. To begin, we introduce a mining procedure aimed
at uncovering latent concepts within the database, all without the need for predefined scopes or
external annotations. Building upon these mined concepts, we put forth two innovative learning
objectives tailored for different architectural choices for the model, where inputs are formulated as
triplets comprising a concept and images. These settings align with the psychological insight that
concepts are shaped by shared characteristics. Finally, our comprehensive experiments conclusively
demonstrate that C3 effectively boosts model capacity and enhances performance on downstream
tasks, both in the context of continual pre-training and pre-training from scratch. These findings
underscore the efficacy and versatility of our concept-centric learning approach.
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A IMPLEMENTATION DETAILS

Pre-training Dataset. Table 4| shows the statistics of our pre-training datasets. VG and CC have
more concepts than the others due to their larger number of captions. The average length of concepts
reflects the diversity across databases, where a shorter one could suggest less overlapping tokens or
more diverse images.

Table 4: The statistics of concept database D°.

| coco VG SBU CcCc

# Images 113K 108K 867K  3.0IM
# Captions 567K 54IM 867K  3.0IM
# Unique concepts 494K 742K 513K 965K
Avg. length of concepts 3.98 4.62 3.71 3.89
Avg. # of concepts per image 19.71 22.02 3.43 3.14

Avg. # matched image per image 59.26 82.63 10.22 9.19

Pre-training Settings for Improving Off-the-shelf Models. We choose CLIP (Radford et al.,
2021) as our base model initialized by the pre-trained weights from OpenAIﬂ To effectively leverage
the pre-trained knowledge, we finetune the CLIP models by inserting parameter-efficient finetuning
layers, LoRA (Hu et al.,[2022; [Mangrulkar et al., 2022}, and optimize the models with the contrastive
learning objective and MCC objective jointly. The dimension of the low-rank matrics is set to 8, and
the scaling factor is 32. The dropout probability of the LoRA layers is 0.1.

Pre-training Settings for Comparing with Prior Arts. We utilize a 12-layer language transformer
initialized with RoBERTa-base (Liu et al.| [2019)) as the text encoder, denoted by &;. Similarly, we
employ a 12-layer visual transformer initialized with CLIP-ViT-224/16 (Dosovitskiy et al.,|2021)) as
the image encoder, denoted by &,. To combine the features from the single-modal encoders, we uti-
lize 6-layer co-attention modules (Dou et al.,[2022b)) as cross-modal encoders &£.,.,ss for both vision
and language. The C3 model has 396M pre-training parameters in total. We jointly train the model
with ITM, MLM, and MCP for 50k steps with batch size 4096. We adopt the AdamW (Loshchilov
& Hutter], [2019) and pre-train on COCO, VG, SBU, and CC. During pre-training, all images are
resized to 224 x 224 through center-cropping. The pre-training learning rates for the single-modal
and cross-modal layers are respectively set to le-5 and 5e-5, and the warm-up ratio is set to 10%.
The default masking ratio of MLM is 0.3.

Pre-training Settings for Ablation Study and Analysis. For ablation and analysis purposes, we
pre-train the models for 2.6k steps on COCO to facilitate extensive experimentation. The default
image encoder &, is initialized with CLIP-ViT-224/32 (Dosovitskiy et al., 2021)).

Fine-tuning Settings. The learning rate of Flickr30K fine-tuning is set to Se-6 with image size 288
and trained for 5 epochs. The learning rate of NLVR fine-tuning is set to 1e-5 with image size 288
and trained for 10 epochs. The learning rate of SNLI-VE fine-tuning is set to 2e-6 with image size
384 and trained for 5 epochs. The learning rate of VQAV2 fine-tuning is set to Se-6 with image size
512 and trained for 10 epochs. The warm-up ratios for all experiments are set to 10%. We notice
that increasing the image size is more critical for the visual question-answering task than for the
image-text retrieval and reason tasks.

3We initialize the CLIP-Vit-B/32 with https://huggingface.co/openai/
clip-vit-base-patch32, and initialize CLIP-Vit-B/16 with https://huggingface.co/
openail/clip-vit-base-patchle.
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B PERFORMANCE ON DOWNSTREAM TASKS

Table [5] and Table [6] shows that C3 achieves exceptional performance with fewer training iterations
on retrieval tasks, indicating that the concept-centric learning framework contributes to cross-modal
feature fusion. Notably, despite ALBEF’s designed objectives for retrieval tasks, C3 performs com-
parably. Table[7] presents the performance comparison of C3 and various baselines on VQAv2. The
results reveal that C3 performs on par with METER. We attribute this similarity to the comparatively
lower demands for abstract or complex concept understanding in VQAv?2 questions. Besides, we do
not perform a hyper-parameter search for C3 during VQAv2 finetuning, while METER reported
results obtained through grid searches over the learning rates {le-6,2e-6,5¢-6,1e-5} and a higher
image 576. Thus, To ensure a fair comparison and better understand the advantage of C3, we con-
duct an ablation study in the next section, where all models are trained with identical configurations.

Table 5: Performance comparison of fine-tuned image-text retrieval on Flickr30K.

Flickr30K

Model Images Iters Params Image Retrieval Text Retrieval

R@l R@5 R@I10 R@1 R@5 R@I0
ALBEF(14M) (Li et al., 2021a) 14M  420M  500M 85.6 97.5 98.9 95.9 99.8 100.0
BEIT-3 (Wang et al., 2023) 36M  6.1B 1.9B 90.3 98.7 99.5 98.0  100.0  100.0
SOHO (Huang et al.}[2021) 221K 8.8M 84M 72.5 92.7 96.1 86.5 98.1 99.3
Visual Parsing (Xue et al.| 2021) 221K 8.8M 308M 73.5 93.1 96.4 87.0 98.4 99.5
UNITERgAsE (Chen et al.} 2020) 4M - 126M 7252 9236  96.08 8590 97.10  98.80
UNITERargE (Chen et al.[[2020) 4M - 343M 75.56 9408 96.76 87.30 98.00  99.20

VILLAarGE (Gan et al.[[2020) 4M - 343M 76.26  94.4 96.84 8790 9750  98.80
ERNIE-ViLparge (Yu et al.|[2021) 4M 358M 480M 76.66 94.16 96.76  89.20 98.50  99.20
UNIMOp argk (Li et al.}[2021b) 57M 1.5B 395M 78.04 9424 97.12 89.40 9890  99.80
ViLT (Kim et al.[[2021) 4M 819M 114M 64.4 88.7 93.8 83.5 96.7 98.6
ALBEF(4M) (Li et al.|[2021a) 4M 120M 500M 82.8 96.7 98.4 94.3 99.4 99.8
METER (Dou et al.|[2022b) 4M 410M 384M 8222 9634 9836 94.30 99.60  99.90
C3 (our) 4M 205M 384M 82.64 9652 9842 9421 99.50 99.80

Table 6: Performance comparison of zero-shot image-text retrieval on Flickr30K.

Flickr30K-ZS
Model Images Iters Params Image Retrieval Text Retrieval
R@l R@5 R@I0 R@! R@5 R@10

CLIP (Radford et al.|[2021) 400M 12.8B 151IM 68.7 90.6 95.2 88.0 98.7 99.4
ALBEF(I4M) (Li et al.;[2021a) 14M  420M 500M 82.8 96.3 98.1 94.1 99.5 99.7
BEIT-3 (Wang et al.}|2023) 36M  6.1B 1.9B 81.5 95.6 97.8 94.9 99.9 100.0
UNITERg4sE (Chen et al.} 2020) M - 126M 66.16 88.40 9294 80.70 95.70  98.00
UNITERparcE (Chen et al.}[2020) 4M - 343M 68.74 89.20 93.86 83.60 95.70 97.70
ViLT (Kim et al.{[2021) 4AM 819M 114M 55.0 82.5 89.8 73.2 93.6 96.5
ALBEF(4M) (L1 et al.|[2021a) 4AM 120M 500M 76.8 93.7 96.7 90.5 98.8 99.7
METER (Dou et al.{|2022b) 4AM 410M 384M 79.60 9496 97.28 9090 9830  99.50
C3 (our) 4M 205M 384M 77.80 95.34 97.72 87770 9890  99.50

C ABLATION STUDY

We provide the details of Flickr30K in Table Moreover, to better understand the behavior of the C3
model, we also conduct the ablation study on the in-domain dataset, COCO, which is used for pre-
training. Table [0]demonstrates the results of image-text retrieval on the COCO dataset. The overall
model performance is consistent with the results observed in Flickr30K, NLVR?, and SNLI-VE. For
in-domain testing, the correlation between pre-training and testing is vital. Therefore, optimizing
the cross-modal features might be more effective than optimizing the single-modal features. Never-
theless, our model still achieves the best performance when incorporating all pre-training objectives
(row 4), indicating the effectiveness of learning with concepts.
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Table 7: Performance comparison on VQAV2.

VQAv2

Model ‘ Images Iters Params test-dev  teststd
ALBEF(14M) (2021a) 14M  420M  500M 75.84 76.04
SimVLMpuyce(1.8M (2022) 1.8B 41B  632M 80.03 80.34
BEIT-3 (Wang et al.}[2023) 36M 6.1B 1.9B 84.19 84.03
UNIMOLarGE 5.M 15B  395M 75.06 75.27
VinVLiarce [Zhang et al | 5.7M 1B 520M 76.52 76.60
OSCARargE |Li et al[(2020 aM 512M  380M 73.61 73.82
UNITERLARGE 4M - 343M 73.82 74.02
VILLA; ArGe |[Gan et al | 4M - 343M 74.69 74.87
ViLT |Kim et al[(2021] 4am 819M  114M 71.26 -

ALBEF( M) Li a 4M 120M  500M 74.54 74.70
METERgsE D . 4M 410M  384M 77.68 77.64

C3 (our) 4M 205M 384M 77.32 77.38

Table 8: Ablation study of C3 on Flickr30K. The first row is the METER 2022b). All
results are trained for 2.6k steps on 224 x224 images with patch size 32. I/C refers to constructing
negative samples by misaligned images/concepts. PW refers to the pairwise formulation for the
MCEP objective.

Flickr30K-ZS

ITM MIM  MCP | @1 [R@5 IR@I0 TR@I TR@5 TR@I0 A

n-gram
v v - 31.32 61.78 74.36 39.20 68.20 79.10 -5.16
v - v 36.18 67.30 78.18 44.88 73.00 84.60 -0.13
- v v 0.80 2.92 5.14 2.30 6.30 10.10 -59.56
v v v 36.68 67.00 77.66 46.90 73.50 83.20 0.00
v v I 35.04 64.76 77.14 42.10 70.60 81.90 -2.23
v v C 36.80 66.22 77.20 43.30 72.60 82.70 -1.02
v v PW 34.44 65.84 76.32 41.90 72.50 82.60 -1.89
noun phrase
v v v | 3410 64.78 76.62 40.40 71.80 81.40 -2.64

Table 9: Ablation study of C3 on COCO. The first row is the METER (Dou et al., 2022b). All
results are trained for 2.6k steps on 224 x224 images with patch size 32. I/C refers to constructing
negative samples by misaligned images/concepts. PW refers to the pairwise formulation for the
MCP objective.

COCO-ZS (5k)

ITM  MIM  MCP | pe1 [R@5 IR@I0 TR@I TR@5 TR@I0 A

n-gram
v v - 24.89 53.02 66.56 32.58 61.00 72.50 -3.80
v - v 2791 57.05 69.87 34.06 63.36 74.96 -1.02
- v v 0.41 1.77 3.23 0.64 3.18 5.88 -53.04
v v v 29.17 57.83 70.70 35.70 64.16 75.80 0.00
v v I 27.56 56.50 69.47 33.08 62.30 74.52 -1.65
v v C 29.15 57.96 70.77 34.26 63.76 75.62 -0.31
v v PW 27.86 56.84 69.72 33.78 63.44 75.86 -0.98
noun phrase
v v v 2132 56.02 69.18 32.72 61.64 73.56 -2.15
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D VISUALIZATION

Fig. [p] provides more visualization for C3 and METER. For each image, we provide two concepts
for comparison.

dog sits on the onaty a giraffe sticking its head avery tall two giraffes look two giraffes are standing coming out of the a yellow and

are skiing on the snow skiers lined up a passenger jet in flying in the sky a train track during the day group of birds in the next to her

Original

METER

C3 (our)

of suitcases in stacked on top holding a hot dog take a bite of a parked on the sidewalk in front of a building a boy wearing on playing wii

Figure 5: More visualization examples for METER and C3.
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E CONCEPT DATABASE ANALYSIS

E.1 EXAMPLES OF CONCEPTS

In this section, we present the findings of our investigations into mined concepts utilizing the pro-
posed n-gram strategy and the baseline noun-phrase strategy, which are showcased in Table
Our analysis reveals that the n-gram approach provides a higher degree of diversity in the captured
concepts as compared to the baseline noun-phrase strategy. Specifically, in the first example (row
1), the n-gram approach identifies a greater range of concepts, including “to swing a baseball bat”
and “while standing on top of,” whereas the baseline strategy is more limited. Similarly, in the sec-
ond example (row 2), the n-gram approach identifies the concept of “a grassy field,” which is not
captured by the baseline approach. The greater diversity of concepts captured through our n-gram
approach enhances our model’s ability to learn concept-level alignments without being confined to
pre-defined categories or part-of-speech. These examples underscore the potential of the n-gram
strategy as a powerful tool in the mining of concepts in the vision-language domain.

Table 10: Concept examples from COCO (Chen et al.,[2015). An example includes five captions for

each image.

Image

Captions

‘ Concepts by n-gram mining

Concepts by noun phrase
mining

(1) An old picture of a base-
ball player holding a baseball
bat. (2) A black and white im-
age depicting a man preparing
to swing a baseball bat. (3) A
man holding a bat while stand-
ing on top of a field. (4) An
old fashioned picture shows
a baseball batter in uniform.
(5)A black and white picture
of a baseball player.

black and white picture of, a
black and white picture, old
picture of a baseball, an old
fashioned picture shows, a bat
while standing on, holding a
bat while standing, a black and
white image, picture of a base-
ball player, to swing a base-
ball bat, baseball player hold-
ing a baseball, player holding
a baseball bat, a man preparing
to swing, man holding a bat
while, man preparing to swing
a, a man holding a bat, while
standing on top of

a black and white picture, a
black and white image, a base-
ball bat, an old picture, a bat

(1) In a grassy field is a puppy
and a cat who are rubbing
noses. (2) A small puppy
standing next to a small kitten.
(3) The puppy and kitten are in
a field of grass. (4) A dog and
a cat that are standing in the
grass. (5) A kitten is touching
noses with a puppy outside.

that are standing in the, stand-
ing next to a small, are stand-
ing in the grass, in a grassy
field, field is a, are in a field
of, in a field of grass, a grassy
field is, a small kitten, a small
puppy, a cat that are, a dog and
a cat, and a cat that

a small kitten, a puppy, who,
the puppy, noses

(1) A couple of cars driving
through a snow covered street.
(2) Vehicle traffic on a city
street in a snow storm. (3)
Some cars in the street covered
with snow. (4) A night time
view of a snowy city street.
(5) a group of cars that are on
some Snow

cars that are on some, a night
time view of, of cars that are
on, a group of cars that, night
time view of a, driving through
a, some cars in, on a city street
in, in a snow storm, vehicle
traffic on a, in the street, traffic
on a city street, through a snow
covered, a city street in a, view
of a snowy city, of cars driv-
ing through, a snow covered
street, group of cars that are,
couple of cars driving, cars in
the, a couple of cars, the street
covered with snow, of a snowy
city street, are on some snow

the street, some snow, a SNOwWy
city street, a group, a snow
storm, a couple, a snow cov-
ered street, vehicle traffic,
snow, some cars, that, a city
street
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E.2 ABSTRACTION DEGREE FOR CONCEPTS

To gain further insights into the mined concepts in our database, we propose a methodology to quan-
tify their abstraction degree using the attention maps generated by a trained C3 model. Specifically,
we define two measurements, namely the dispersion degree (DD) and salient density (SD), which
provide a comprehensive understanding of the abstractness of the concepts. We consider that a con-
cept tends to be more abstract when the model’s attention disperses around the visual space, which
indicates that the concept is abstract and the model struggles to focus on a specific location. To mea-
sure the dispersion tendency, we calculate the entropy of the attention maps. Furthermore, we posit
that an abstract concept might involve more salient spots or areas to express the idea. To determine
the salient area, we perform connected component analysis E| on the attention maps, removing the
background components (without attention scores) and normalizing the sum of the areas of each at-
tended component to the entire image. The resulting scatter plot of the concepts in terms of DD and
SD (Fig.[64) suggests that the concepts in the top right are more abstract than the ones in the bottom
left Pl We observe that DD and SD have a positive correlation with each other. Additionally, we
analyze the correlation between the abstraction degree and text length El, as shown in the box plots
of DD and SD against text length in Fig.[6b] Our findings indicate that DD has a higher correlation
with text length than SD. Finally, we provide the visualization examples for three different types of
concepts in Fig. |Z|, which are (a) high DD & high SD, (b) high DD & low SD, and (c) low DD &
low SD. These examples correspond to three corners of the scatter plot in Fig.[6a] Interestingly, we
notice that the concepts in (c) tend to contain more concrete entities than those in (a) or (b).

Text Length
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(a) The scatter plot for the dispersion degree and salient density.
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(b) The box plots for the dispersion degree, salient density and text length.

Figure 6: The analysis for the concept abstraction degree in the concept database by the dispersion
degree and the salient density.

*We use connectedComponentsWithStats() in the OpenCV to find each component from attention maps,
where we set the connectivity to 8.

SFor each concept, the score of dispersion degree and salient density are averaged over 12 attention heads.

SWe count the text length after tokenizing the concept text with the tokenizer of |https://
huggingface.co/facebook/bart-base.
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of men standing around a skateboards on a teaching a boy how to a giraffe is standing near fumiture in the 2 living room with wood bench next to an skiers lined up

(a) Examples of data with high dispersion degree and high salient density.

Origi

3 (our)

birthday cake with candles  clock tower in the background - a skateboard down an empty 2 bunch of zebras yellow fire hydrant that is sticking its head out of a costume talking on a 2 giraffe leaned over

(b) Examples of data with high dispersion degree and low salient density.

Original

€3 (our)

is carrying a is surfing a small wave 2 boy and a girl in his hand tooth brush and street signs on a pole holding a white and ata table cutting

(c) Examples of data with low dispersion degree and low salient density.

Figure 7: Ilustration for the concepts with various abstraction degrees defined by dispersion degree
and salient density.

Table 11: The zero-shot performance on Flickr30K under different data selection strategies for two
models. All models are trained for 2.6k steps on 224 x 224 images with patch size 32.

Flickr30K-ZS
Model Data Size Selection Strategy Image Retrieval Text Retrieval

R@l R@5 R@I0 R@I R@5 Relo | Averae
METER 567K } 3132 6178 7436 3920 6820  79.10 | 58.99
c3 567K . 37.96  67.62 7822 4610 7390  83.80 | 64.60
METER 280K Random 28.14 5808 69.82 3650 6500 7540 | 5549

METER 280K Low Abstraction Degree | 27.04  57.58  70.14  37.60 6430 7470 55.23
METER 280K High Abstraction Degree | 31.02 6144  73.04  40.10 67.60  78.70 58.65

C3 280K Random 33.60  63.26 75.48 4350  71.90 81.60 61.56
C3 280K Low Abstraction Degree 3390  63.72 75.44 4230  69.80 80.30 60.91
C3 280K High Abstraction Degree | 37.60  67.68 77.80 4580  74.80 83.40 64.51

In order to understand the impact of text abstraction level on vision-language representation learning,
we conduct a deliberate selection of data with different abstraction degrees |'| for pre-training and
compared it with a randomly selected dataset. Specifically, we conduct an ablation study using

7 Abstraction degree is calculated based on image captions.
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only half of the COCO dataset for pre-training, which is constructed based on data with the top
50% high or low abstraction degree. Our results, as presented in Table reveal that pre-training
on data with a high abstraction degree significantly improves data representation quality and even
yields competitive performance compared to using the full COCO dataset. Besides, C3 can better
increase the benefits compared to METER. These results suggest that the degree of text abstraction
is an important factor in vision-language representation learning and that selecting data with a higher
abstraction degree can enhance the effectiveness of pre-training.
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F ANALYSIS OF MASKING RATIO

In this section, we investigate the model behavior under different masking ratios. We utilize the
CLIP-ViT-224/16 as our visual encoder. We first pre-train our models using ITM and MLM objec-
tives and evaluate their performance on the zero-shot Flickr30K dataset. Our findings reveal that the
commonly used masking ratio of 0.15 may not always be optimal, and Figure [§] demonstrates that
the ideal masking ratio ranges from 0.3 to 0.6. Furthermore, we observe that the performance of the
C3 model improves at higher masking ratios, as illustrated in Table[T2] The results suggest that the
choice of masking ratio is crucial for achieving optimal performance across different pre-training
settings.

——I[TM + MLM

0.8

IR@1+TR@1

0.15 0.3 0.45 0.6 0.75
MASKING RATIO FOR MLM

Figure 8: The zero-shot performance on Flickr30K under different masking ratios. We find that
increasing the masking ratio to a certain degree improves the performance.

Table 12: The zero-shot performance on Flickr30K under different masking ratios for two models.
All models are trained for 2.6k steps on 224 x 224 images with patch size 16.

Flickr30K-ZS
Model Masking Ratio Image Retrieval Text Retrieval
R@1 R@5 R@I10 Re@l R@5 R@10
METER 0.3 38.74  70.16 80.58 51.00  78.20 85.60
METER 0.6 39.08  70.84 81.28 51.50  76.50 86.20
C3 0.3 45.10  76.02 85.38 56.60  81.40 90.10
C3 0.6 4692 76.76 85.66 57.70  82.80 90.20
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