000 QUANTUM ENTANGLEMENT TREES: **OPTIMIZING** 001 QUANTIZED MATRIX QUANTIZATION VIA ELEMENT 002 003 REPLACEMENT AND RESIDUAL CLUSTERING 004

Anonymous authors

Paper under double-blind review

ABSTRACT

The matrix quantization entails representing matrix elements in a more spaceefficient form to reduce storage usage, with dequantization restoring the original matrix for use. We formulate the Quantization Error Minimization (QEM) problem as minimizing the distance between a matrix before and after quantization, under the condition that the quantized matrix occupies the same memory space. Matrix quantization is crucial in various applications, including Large Language Models (LLMs) weight quantization, vector databases, KV cache quantization, graph compression, and image compression. Recent advancements in LLMs, such as GPT-4 and BERT, have highlighted the importance of matrix compression due to the large size of parameters and KV cache, which are stored as matrices.

We propose Quantum Entanglement Trees (QET) to address the QEM problem by leveraging the local orderliness of matrix elements, involving iterative element swapping to form a locally ordered matrix. This matrix is then grouped and quan-024 tized by columns. To enhance QET, we introduce two optimizations: Residual 025 Quantization Optimization (RQO), which reduces MSE by quantizing the residuals between the original and dequantized matrices, and Codebook Quantization Optimization (CQO), which reduces storage requirements by compressing the 028 codebook itself.

> Experimental results demonstrate that QET can effectively reduce MSE to 5.05%, 13.33%, and 11.89% of the current best method on the LLM dataset, K cache, and V cache, respectively. Our contributions include the abstraction of the QEM problem, the design of the QET algorithm, and the proposal of two optimizations to improve accuracy and speed.

034

006

008 009 010

011 012

013

014

015

016

017

018

019

021

026

027

029

031

032

033

1 INTRODUCTION

037

The matrix quantization entails representing the elements of a matrix in a more space-efficient form to reduce its storage usage. Dequantization, on the other hand, is the process during usage where the original matrix is restored from the quantized matrix using a restoration algorithm. We formu-040 late the Quantization Error Minimization (QEM) problem as the task of minimizing the distance 041 between a matrix before and after quantization in high-dimensional space, under the condition that 042 the quantized matrix occupies the same space. 043

044 Matrix quantization is widely employed across diverse applications, including Large Language Models (LLMs) weight quantization (Dettmers et al. (2024); Lin et al. (2024); Shao et al. (2023); Xiao et al. (2023)), vector database (Xu et al. (2018); Jegou et al. (2010)), LLM k-v cache quanti-046 zation (Liu et al. (2024); Zhang et al. (2024); Hooper et al. (2024); Kawakibi Zuhri et al. (2024); 047 Duanmu et al. (2024); Yue et al. (2024); Lee et al. (2024); Adnan et al. (2024)), graph compres-048 sion (Brisaboa et al. (2009); Claude & Ladra (2011)), and image compression (Yu et al. (2018); Ning et al. (2016)). 050

051 Specifically, the recent advancements in Large Language Models (LLMs) have made matrix compression even more critical. Large Language Models (LLMs) have revolutionized the field of natural 052 language processing (NLP), enabling significant advancements in tasks such as machine translation, text generation, and sentiment analysis. These models, characterized by their large-scale neural net054 work architectures and vast training datasets, have shown remarkable capabilities in understanding 055 and generating human language. The advent of LLMs, such as OpenAI's GPT-4 (Achiam et al. 056 (2023)), and BERT (Devlin et al. (2018)) by Google, has pushed the boundaries of what machines can achieve in linguistic tasks, providing near-human performance in various applications. The 058 parameters and KV cache in Large Language Models are very large in size. For instance, GPT-2 contains 1.5 billion parameters (Solaiman et al. (2019)), whereas GPT-3 has expanded to 175 billion parameters (Brown et al. (2020)). Additionally, the KV cache accounts for over 30% of GPU 060 memory during deployment, compared to the 65% occupied by the parameters (Kwon et al. (2023)). 061 Both the parameters and KV cache are stored in the form of matrices. GPTQ (Frantar et al. (2022)) 062 and SqueezeLLM (Kim et al. (2023)) directly address the QEM problem by treating it as the opti-063 mization objective for quantizing parameters and the KV cache. Therefore, the abstracted scientific 064 problem of QEM is highly significant. 065

There has been a growing literature on the matrix quantization. The first category of methods fo-066 cuses on independently compressing the elements of a matrix for each specific scenario. Examples of 067 such techniques include LLM.int8 (Ge et al. (2013)), Optimal Brain Damage (LeCun et al. (1989)), 068 GPTQ (Frantar et al. (2022)), AWQ (Lin et al. (2023)), SmoothQuant (Xiao et al. (2023)), and Om-069 niQuant (Shao et al. (2023)). The second category groups matrix elements by columns and then applies quantization to each group. Relevant works in this category include product quantization 071 (PQ) (Jegou et al. (2010)), optimized product quantization (OPQ) (Ge et al. (2013)), locally optimized product quantization (LOPQ) (Kalantidis & Avrithis (2014)), and SqueezeLLM (Kim et al. 073 (2023)). The first category of work can be summarized as utilizing outliers and the importance of 074 elements in specific scenarios to improve the RTN (Round-To-Nearest)¹ (Gray & Neuhoff (1998)) 075 algorithm. The second category focuses on enhancements to PQ algorithms. The primary drawback of the first category is that it does not consider the correlation between elements, instead indepen-076 dently quantizing and storing elements. Conversely, the second category fails to account for the 077 relative order of elements.

- 079 In our research, we observed that the order of elements has a significant impact on the quantization 080
- outcome. Intuitively, consider a matrix $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. To losslessly quantize this matrix (with MSE=0), 081
- 082 two vectors, [1, 2] and [2, 1], are required. However, if the matrix is reordered to $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$, it can be 083 084
- losslessly quantized using just a single vector, [1, 2]. 085

Using these ideas, we propose Quantum Entanglement Trees (QET) to address the QEM problem in matrix quantization. The core idea of QET is to leverage the local orderliness of matrix elements 087 to optimize the QEM problem. The design involves swapping adjacent elements of the matrix to 088 form a new, locally ordered matrix. To cover a broader range, we can perform further element 089 swapping on the initially locally ordered matrix, similar to the approach of receptive field used in convolutional neural networks (LeCun et al. (1998)). This step can be repeated for multiple 091 iterations. The newly ordered matrix is then grouped by columns, with each group being quantized. 092 Additionally, we propose two optimization algorithms based on the basic QET. First, the residuals between the original and quantized matrices can be further quantized to enhance the accuracy of the 093 results. Second, the codebook can be quantized to reduce storage requirements. 094

- We evaluate QET on multiple datasets. Experimental results demonstrate that QET can effectively 096 reduce MSE to 5.05%, 13.33%, and 11.89% of the current best method on the LLM dataset, K 097 cache, and V cache, respectively. Our code has been open-sourced on GitHub (QET (2024)).
- 098 We summarize our contributions below. 099

Abstracted a problem: We abstracted the Quantization Error Minimization (QEM) problems from 100 various application scenarios. 101

102 **Designed an algorithm:** We developed the Quantum Entanglement Trees (QET) algorithm, lever-103 aging the concept of local orderliness to optimize the QEM problem.

104

107

¹RTN (Round-To-Nearest) is an algorithm that quantizes elements by rounding each value to its nearest representable level.

Proposed two optimizations: We introduced residual quantization to reduce MSE and codebook quantization techniques to optimize memory efficiency.

2 PROBLEM SETTING

In this section, we formally define the Quantization Error Minimization (QEM) problem and analyze the impact and feasibility of rearranging matrix elements prior to quantization.

QEM Problem: we denote the matrix to be quantized as X, the quantized matrix as X^q , and the matrix obtained by dequantizing X^q as X'. Both X and X' are $n \times d$ dimensional, but the dimensions of X^q depend on the quantization algorithm. The elements of these matrices are denoted as $x_{(i,j)}, x_{(i,j)}^q$, and $x'_{(i,j)}$, respectively. The memory occupied by a matrix is denoted as memory(), and the memory constraint as mem_constrain.

Definition 1 (Quantization Error Minimization (QEM) Problem). The Quantization Error Minimization (QEM) problem is defined as the task of minimizing the combined objective of the Mean Squared Error (MSE) and the memory size of the quantized matrix:

minimize
$$MSE(X, X') + \lambda \cdot memory(X^q)$$
,

126 where

111

112 113

114

115

124 125

127 128

132 133

134

$$MSE(X, X') = \frac{1}{n \cdot d} \sum_{i,j} \left(x_{(i,j)} - x'_{(i,j)} \right)^2,$$

129 λ is a regularization parameter that balances the trade-off between minimizing the MSE and the 130 memory usage of the quantized matrix. 131

Subject to the condition that the quantized matrix occupies the same space:

 $\operatorname{memory}(X^q) \leq \operatorname{mem_constrain},$

Rearranging matrix elements: Our idea is to rearrange the matrix elements before quantization. Let the quantization algorithm be denoted as quant() and the rearrangement algorithm as rearrange(). Previously, the quantized matrix was obtained as $X^q = quant(X)$, whereas in our rearrangement approach, it is obtained as $X^q = quant(rearrange(X))$. Therefore, the rearrangement algorithm only affects the quantization if the quantization method is order-sensitive.For instance, order-insensitive algorithms like RTN do not benefit from rearrangement because RTN processes each element independently, while order-sensitive algorithms like PQ can be optimized through rearrangement.

However, finding the optimal arrangement requires exploring a large search space. Specifically, for an $n \times d$ matrix, there are $(n!)^d$ possible rearrangements. Therefore, searching the entire space is impractical, and we need heuristic algorithms to prioritize exploring more promising regions of the search space.

- 3 METHODS
- 147 148

146

The core idea of Quantum Entanglement Trees (QET) is to leverage the local orderliness of matrix
elements by rearranging adjacent elements to optimize the matrix quantization algorithm. Additionally, multiple iterations are used to expand the algorithm's swapping field. We begin by describing
the basic version of this idea and then propose two optimizations for the basic algorithm.

- 153
- 154 3.1 BASIC ALGORITHM

The steps and design of the QET algorithm are illustrated in Figure 1. The figure provides a conceptual overview of the Quantum Entanglement Trees (QET) algorithm.

On the left side of the figure, the process of rearranging matrix elements through multiple iterations in the QET is depicted. This iterative procedure involves comparing adjacent elements and ensuring that adjacent elements are not placed in the same matrix. This separation of adjacent elements into different matrices is conceptually similar to quantum entanglement, hence the name "Quantum Entanglement Trees." The QET algorithm performs multiple iterations, with each iteration comparing

Figure 1: QET algorithm.

adjacent elements and splitting them based on their values. This approach is based on two observations. First, the local orderliness of the matrix can enhance the regularity of matrix elements, thereby improving compression efficiency. Second, multiple iterations allow the orderliness to cover a larger number of elements. For instance, adjacent elements after the first iteration might be non-adjacent in the original matrix. This iterative process, similar to that of convolutional neural networks, extends the "receptive field" to cover more elements.

On the right side of the figure, the QET compression process is shown. After the elements have been rearranged, the algorithm groups the sub-matrices, followed by clustering to determine the centroids. These centroids are used to quantize the matrix. The final quantized matrix, codebook, and indicator maps are the outputs of the QET algorithm. This divide-and-conquer compression method is based on an observation: by splitting the matrix, the expressive power can be increased under a fixed storage constraint. For example, if the matrix is divided into m blocks, each with c centroids, the entire matrix can express c^m centroids while only storing $c \times m$ centroids. Without splitting, storing c^m centroids would be required.

196 197

199

200

181

182

183

185

186

187

3.2 QET QUANTIZATION

The proposed QET Algorithm is designed to optimize the quantization of a matrix $X \in \mathbb{R}^{n \times d}$ by leveraging local orderliness. The algorithm proceeds in four key steps, as shown in Algorithm 2:

Step 1: Initial Partitioning. The algorithm starts by comparing each adjacent pair of elements $(x_{i,j}, x_{i,j+1})$ in the input matrix X. Based on the comparison of these elements, the smaller value is placed into matrix S and the larger into matrix L. Concurrently, an Indicator Map I is generated, where a 0 denotes that the smaller element is on the left and a 1 denotes it is on the right. This process results in the creation of two matrices, S and L, which collectively represent the initial partitioning of the original matrix X.

Step 2: Recursive Partitioning. Following the initial partitioning, the algorithm undertakes a recursive partitioning process. Starting from k = 1, the matrices S_k^i and $L_k^{i\,2}$ derived from the previous iteration (for $i = 1, 2, ..., 2^{k-1}$) are further partitioned based on their sizes. In each iteration, a new Indicator Map I_{k+1} is generated and then merged with the existing Indicator Maps. This recursive process continues until the predefined number of iterations l is reached. The resulting Indicator Maps $I_1, I_2, ..., I_l$ are stored in the set IM. The final matrices S_l and L_l are combined to form a new matrix X^* , which represents a locally ordered version of the original matrix.

²Since each level has multiple S and L matrices, we use the subscript to denote the iteration number and the superscript to denote the sequence within each iteration.

216 217 218 Step 3: Subspace Grouping. After constructing the matrix X^* , it is divided into subspaces $\{G_i\}$, where i = 1, 2, ..., m. This division is based on the local ordering of elements, which facilitates more effective clustering and quantization in the subsequent steps.

Step 4: Clustering and Quantization. In the final step, each subspace G_k (for k = 1, 2, ..., m) is clustered to determine a set of centroids $C_k = \{c_j\}$. Each vector g_i within the subspace is then quantized by assigning it to the nearest centroid. This process results in the quantized matrix X^q . The output of the algorithm includes the quantized matrix X^q , the codebook C containing the centroids, and the Indicator Maps IM.

225 QET Dequantization is the inverse process of QET Quantization. We provide the detailed description 226 in Appendix A.1.

Algorithm 1 QET Quantization Algorithm

227

228

263

264

1: Input: Matrix $X \in \mathbb{R}^{n \times d}$, m is the number of subspaces for quantization, l is the number of 229 230 OET iterations. 2: **Output:** Quantized matrix $X^q = \{X_{i,k}^q\}$ where $i = 1, \ldots, d$ and $k = 1, \ldots, m$, Codebook 231 $\mathbf{C} = \{C_i\}$ where $i = 1, \dots, m$, and Indicator Maps $IM = \{I_i\}$ where $i = 1, \dots, l$ 232 3: Initialize IM and X^q as empty 233 4: Step 1: Initial Partitioning 234 5: for each adjacent pair $(x_{i,j}, x_{i,j+1})$ in X do 235 if $x_{i,j} > x_{i,j+1}$ then 6: 236 $\tilde{S}_{i,j} \leftarrow \tilde{x}_{i,j+1}, L_{i,j} \leftarrow x_{i,j} \\ I\left(\frac{i}{2}, j\right) \leftarrow 0$ 7: 237 8: 238 9: else 239 $S_{i,j} \leftarrow x_{i,j}, L_{i,j} \leftarrow x_{i,j+1}$ $I\left(\frac{i}{2}, j\right) \leftarrow 1$ 10: 240 11: 241 end if 12: 242 13: end for 243 14: Step 2: Recursive Partitioning 244 15: $k \leftarrow 1$ 16: while $k \neq l$ do 245 for i = 1 to 2^{k-1} do 246 17: Apply size-based partitioning to S_{k}^{i} and L_{k}^{i} 18: 247 Generate and merge new Indicator Maps into I_{k+1} for each partition 19: 248 20: end for 249 $k \leftarrow k+1$ 21: 250 22: end while 251 23: Store I_1, I_2, \ldots, I_l into IM252 24: $X^* \leftarrow S_l^1 \cup L_l^1 \cup S_l^2 \cup L_l^2 \cup \cdots \cup S_l^{2^{l-1}} \cup L_l^{2^{l-1}} \triangleright$ Combine the locally ordered parts from the 253 final layer *l* 254 25: Step 3: Subspace Grouping 255 26: Group the matrix X^* into subspaces $\{G_i\}$ where i = 1, 2, ..., m256 27: Step 4: Clustering and Quantization 257 28: Apply clustering to find centroids $C_k = {\mathbf{c}_j}$ for G_k 29: for each vector \mathbf{g}_i in G_k (for k = 1, 2, ..., m) do 258 $X_{i,k}^q \leftarrow \arg\min_{\mathbf{c}_j} \|\mathbf{g}_{\mathbf{i}} - \mathbf{c}_j\|$ > Quantize to nearest centroid within group 30: 259 31: end for 260 32: **Return** Quantized matrix X^q , Codebook C, and Indicator Maps IM 261 262

3.3 THEORETICAL GUARANTEES OF QET

In this section, we will first prove that the MSE of our QET algorithm is lower than that of PQ. Then, we will compare the time complexity of the algorithms.

Theorem 1. For the QET algorithm without optimization, where matrix elements are independently sampled from a normal distribution $x_{(i,j)} \sim \mathcal{N}(\mu, \sigma^2)$, the Mean Squared Error (MSE) is:

$$MSE_{QET} = 0.682 \times MSE_{PQ}$$

The detailed proof can be found in Appendix A.2.

Theorem 2. (Time Complexity for Quantization) The QT of QET is reduced compared to PQ by a factor of approximately 2^{Δ} . Specifically, the ratio of QT is

274

274 275 276

277

289

where QT_{QET} represents the quantization time for QET, while QT_{PQ} represents the quantization time for PQ.

 $\frac{QT_{\rm QET}}{QT_{\rm PQ}}\approx 2^{-\Delta},$

The detailed proof can be found in Appendix A.3.

Theorem 1 shows that when the matrix elements follow a normal distribution, the MSE is reduced to 0.682 times its original value. For any distribution, as long as the variance of the matrix elements is reduced, the MSE will also decrease (Theorem 1 in Appendix A.2). Theorem 1 demonstrates that our algorithm has a shorter quantization time. Furthermore, according to Theorem 3 in Appendix A.4, the dequantization time increases.

285 3.4 OPTIMIZATIONS

In this section, we propose three optimizations: Residual Quantization Optimization (RQO) and
 Codebook Quantization Optimization (CQO).

290 3.4.1 RESIDUAL QUANTIZATION OPTIMIZATION

Residual Quantization Optimization (RQO) is grounded in our observation that the data range of the quantized matrix is significantly reduced after applying the QET algorithm. As shown in Table 1, our experiments indicate that at a compression ratio³ of 12, the data range of the quantized matrix
is reduced to 9.2% of the original matrix's range.

 Table 1: Range Ratios, and Codebook(CB)

 Proportions in different compression ratios.

Compression Ratio	4.0	8.0	12.0
Range Ratio (%)	1.6	4.0	9.2
CB Proportion (%)	87.5	78.1	71.8

Moreover, with a compression ratio of 4, the data range of the quantized matrix is reduced to approximately 1.6% of the original matrix's range.

Matrix quantization algorithms are more efficient at compressing matrix with a smaller data range; therefore, we propose Residual Quantization Optimization (RQO). The RQO begins with the quantization of the original matrix to produce a quantized matrix. This matrix is then dequantized to yield a dequantized matrix, which is subtracted from the original matrix to form a residual matrix. The residual matrix typically exhibits a significantly reduced data range, making it easier to compress. This residual matrix is then quantized using a chosen matrix quantization algorithm, such as RTN or QET.

During the dequantization process, the quantized residual is dequantized, and this dequantized residual is added back to the initially dequantized matrix to produce a revised dequantized matrix.

309 310

319

320

3.4.2 CODEBOOK QUANTIZATION OPTIMIZATION

The codebook occupies a significant portion of the space in the QET algorithm. As shown in Table 1, our experiments indicate that when the compression ratio is 12, the codebook occupies 71.8% of the total space, and when the compression ratio is 4, the codebook occupies 87.5% of the total space. Therefore, compressing the codebook can significantly reduce the space used by the algorithm. We proposed Codebook Quantization Optimization (CQO). Our optimization mainly employs the RTN method to compress the codebook.

317 318 4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset: To evaluate the effectiveness of our proposed algorithm, we conducted experiments using three synthetic datasets and two real-world datasets: the synthetic normal distribution datasets, LLM

 $^{^{3}}$ Compression ratio = $\frac{\text{Space occupied by the matrix before quantization}}{\text{Space occupied by the matrix after quantization}}$

353 354

weight dataset and KV cache dataset. Below, we provide a detailed description of each dataset.
 Each element in the matrix is represented with 32 bits, except for the KV cache dataset, where each element is represented with 16 bits.

(1) Synthetic normal distribution dataset: This dataset was generated by drawing each element of the matrix from a truncated normal distribution with a mean of 0.5 and a standard deviation of 0.16. Additionally, one out of every ten thousand elements was replaced with an outlier value, randomly chosen between -100 and 100. For the synthetic normal distribution dataset, we generated three types of matrices of different sizes: synthetic dataset 1: 1024 × 128 matrices, synthetic dataset 2: 1024 × 512 matrices, and synthetic dataset 3: 1024 × 1024 matrices.

(2) LLM weight dataset: This dataset comprises weight matrices extracted from the large language model (LLM) LLaMA2 (Touvron et al. (2023)). The sizes of the LLM weight matrices are 11008 × 4096.

(3) KV cache dataset: The KV cache dataset is derived from the key-value pairs stored in the cache during inference in KV Quant (Hooper et al. (2024)). The key and value are stored in matrices, respectively. In the KV cache dataset, the sizes of both the K matrices and the V matrices are 4096 × 4096.

Platform and implementation: We conducted our algorithm evaluations on a high-performance
 server equipped with an Intel Xeon Platinum 6462C (Sapphire Rapids) processor, featuring 16 vir tual CPUs (vCPUs), operating at a base frequency of 3.3 GHz, with a maximum turbo frequency
 of 3.9 GHz. The server also includes 64GB of memory, providing robust computational capabili ties. All algorithms were implemented and executed on this server environment to ensure optimal
 performance for our experimental evaluations.

Metrics: We primarily measure the accuracy and time consumption of the algorithm. We use MAE
 (Mean Absolute Error), MRE (Mean Relative Error), and MSE (Mean Squared Error) as accuracy
 metrics. Below, we introduce these metrics in detail.

Let $x_{(i,j)}$ denote the elements of the original matrix to be quantized, and $x'_{(i,j)}$ denote the elements of the dequantized matrix.

$$MAE = \frac{1}{n \cdot d} \sum_{i,j} \left| x_{(i,j)} - x'_{(i,j)} \right|, \ MSE = \frac{1}{n \cdot d} \sum_{i,j} \left(x_{(i,j)} - x'_{(i,j)} \right)^2$$

³⁵⁵ For time efficiency, we use Quantization Time (QT) and DeQuantization Time (DQT) as the metrics.

356 Comparative Algorithms: For the abstract Quantization Error Minimization (QEM) problem, our 357 comparative algorithms fall into two main categories. The first category involves independently 358 compressing the elements of a matrix for each specific scenario, which can be abstracted as the 359 RTN (Round-To-Nearest) algorithm. The second category groups matrix elements by columns and 360 then applies quantization to each group. Related algorithms in this category include PQ, OPQ, and 361 LOPQ. Therefore, our comparative algorithms are as follows: RTN (Round-To-Nearest) (Gray & 362 Neuhoff (1998)), PQ (Product Quantization) (Jegou et al. (2010)), OPQ (Optimized Product Quan-363 tization) (Ge et al. (2013)), and LOPQ (Locally Optimized Product Quantization) (Kalantidis & Avrithis (2014)). 364

365 **Parameter Selection:** We first introduce the parameter settings of the QET algorithm. For an $n \times d$ 366 matrix with a bit per element, we perform a quantization operation with a compression ratio of θ . 367 The QET algorithm iterates l rounds. For residual optimization, we perform r residual iterations. 368 During the *i*th residual step, the number of clusters for centroids is k_i , and the number of groups 369 during the grouping operation is m. For codebook quantization optimization, the bit length of the codebook after compression is a' bit. R_i denotes the ratio of the space occupied by the codebook 370 and the quantized matrix to the total space excluding the indicator maps during the *i*th iteration of 371 residual optimization. To ensure that the total memory usage remains within the available memory 372 limits, we have the following constraints on the parameters of the QET algorithm. 373

$$\begin{cases} 374\\ 375\\ 776 \end{cases} \quad k_i \times d \times a' + 2a + n \times m \times \log_2(k_i) \le \left[\frac{n \times d \times a}{\theta} - 0.5 \times n \times d \times l\right] \times R_i, \end{cases}$$

Given the parameters $d, a', a, n, m, \theta, l$, and R_i , we calculate the value of k_i using the bisection method. Unless otherwise specified, the QET parameters are configured as follows: n, d, and a

for i = 1, ..., r.

are determined by the input matrix. We perform a standard QET and one residual QET, both with codebook quantization. r = 2, the first QET has 3 iterations, and the second QET does not perform matrix permutation (l = 3). Additionally, d/m = 8, a' = 10, $R_1 = 70\%$, and $R_2 = 30\%$.

381 For RTN, PQ, OPQ, and LOPQ, under the same space constraints, we use the same common param-382 eters as our algorithm, while other parameters are set according to the recommended configurations 383 from their respective papers. We define the names of different versions of the algorithm as follows: 384 Vanilla refers to the basic QET algorithm without any optimizations. Vanilla_CQO refers to the 385 Vanilla algorithm with codebook quantization optimization, where the codebook is quantized using 386 the RTN algorithm. Vanilla_RQO indicates the Vanilla algorithm with residual optimization, where 387 the residuals are processed using the QET algorithm. Finally, **QET** is the Vanilla algorithm with 388 both residual optimization and codebook quantization optimization (including all optimizations), where the codebook is quantized using the RTN algorithm and the residuals are processed using the 389 QET algorithm. 390

391 392

393 394

395

396

397

398

399

400

401 402

4.2 MATRIX QUANTIZATION RESULT

In this section, we provide a comprehensive comparison of the accuracy and computational efficiency of the proposed QET algorithm against other benchmark methods. We will first discuss the precision metrics (MAE and MSE) across different datasets and compression ratios, followed by an analysis of the time metrics (QT and DQT) to evaluate the efficiency of each algorithm. Some algorithms are unable to run on certain datasets or at specific compression ratios. For instance, in the case of square matrices, the rotation matrices for OPQ and LOPQ become as large as the original matrix, making compression impossible. In such cases, we observe missing data points or curves in the corresponding figures where the algorithms could not produce results.

Figure 2: MAE and MSE of different datasets.

MAE and MSE: In our experiments, we evaluated the performance of our quantization algorithm across multiple datasets using MAE and MSE. These metrics provide a comprehensive understanding of the algorithm's accuracy at different compression ratios, ranging from 2 to 16. The average MSE of RTN for the synthetic dataset 1, synthetic dataset 2, synthetic dataset 3, LLM dataset, K cache dataset, and V cache dataset is 71.74 times, 334.59 times, 247.39 times, 12.56 times, 10.57 times, and 7.69 times that of QET, respectively. Therefore, we do not include RTN in the figures for comparison.

For synthetic dataset 1: As shown in Figures 2a and 2b, our QET algorithm consistently outperforms the baseline algorithms across all compression ratios. The MAE and MSE values increase
as the compression ratio rises, but QET maintains a significantly lower error compared to PQ and
OPQ algorithms. The Vanilla version, a faster variant of QET, shows slightly higher error than the
full QET version, but still remains competitive. For example, at a compression ratio of 4, compared
to the best-performing algorithm, PQ, QET reduces the MSE to 6.94%, while the Vanilla version
reduces the MSE to 36.53%.

446 For Synthetic Dataset 2: In Figures 2c and 2d, a similar trend is observed with Synthetic Dataset 2. 447 The QET algorithm achieves the lowest MAE and MSE values, demonstrating its robustness across different types of synthetic data. Notably, the gap between QET and the other methods becomes 448 more pronounced as the compression ratio increases, indicating the superiority of QET in handling 449 higher compression rates without significantly sacrificing accuracy. Due to the space consumption 450 of OPQ and LOPQ, they were unable to handle the compression of square matrices in this dataset. 451 The vanilla version performs similarly to the QET algorithm. For example, at a compression ratio 452 of 4, compared to the best-performing algorithm, PQ, QET reduces the MSE to 7.13%, while the 453 Vanilla version reduces the MSE to 36.51%. 454

For Synthetic Dataset 3: Figures 2e and 2f show the results for the third synthetic dataset. While
the errors increase with higher compression ratios, QET still outperforms the other algorithms. The
difference in performance becomes especially significant at higher compression ratios (e.g., 12 to
16), where QET and vanilla continue to show lower error rates. For example, at a compression ratio
of 4, compared to the best-performing algorithm, PQ, QET reduces the MSE to 7.21%, while the
Vanilla version reduces the MSE to 36.54%.

For the LLM dataset, as depicted in Figures 2g and 2h, the QET algorithm demonstrates superior
performance. The MAE and MSE values for QET are consistently lower than those for Vanilla, PQ,
and OPQ, indicating that QET is well-suited for compressing large-scale language model weights
without significantly sacrificing accuracy. At higher compression ratios (13 to 16), the MAE and
MSE of Vanilla are similar to those of QET. For example, at a compression ratio of 4, compared
to the best-performing algorithm, PQ, QET reduces the MSE to 5.05%, while the Vanilla version
reduces the MSE to 36.64%.

For KV Cache Dataset: The results of K cache is shown in Figures 2i and 2j. The results of V 468 cache is shown in Figures 2k and 2l. Similar to the LLM datasets, the QET algorithm achieves 469 the best results, with lower MAE and MSE values across all compression ratios. At compression 470 ratios between 13 and 16, the MAE and MSE values of Vanilla closely approach those of QET. For 471 example, at a compression ratio of 4 for K cache, compared to the best-performing algorithm, PQ, 472 OET reduces the MSE to 13.33%, while the Vanilla version reduces the MSE to 50.24%. And at a 473 compression ratio of 4 for V cache, compared to the best-performing algorithm, PQ, QET reduces 474 the MSE to 11.89%, while the Vanilla version reduces the MSE to 45.83%. 475

In summary, the QET algorithm consistently outperforms baseline methods, achieving lower MAE
 and MSE values across all datasets and compression ratios. Vanilla also demonstrates relatively low
 MAE and MSE values, and on certain datasets, it performs comparably to QET at higher compression ratios.

QT and DQT: In this experiment, we evaluated the performance of the quantization process by measuring both Quantization Time (QT) and Dequantization Time (DQT) across multiple datasets.

For QT, we observed that the QET algorithm achieves efficient quantization times at higher compression ratios. The Vanilla method consistently achieves the lowest QT across all datasets, making
it the faster option, albeit with a slight loss in accuracy. Regarding DQT, QET maintains stable performance across all datasets. The Vanilla method achieves faster dequantization but is still slower

486 than PQ. Meanwhile, OPQ and LOPQ exhibit slower dequantization speeds. For a detailed analysis, 487 please refer to Appendix A.5. 488

4.3 Ablation Studies and Discussions

These experiments demonstrate the effectiveness of the algorithm optimizations. Specifically, both Residual Quantization Optimization (RQO) and Codebook Quantization Optimization (CQO) improve the baseline Vanilla algorithm and provide comparisons with the QET algorithm. The ablation studies primarily focus on accuracy improvements. We evaluated the performance on the LLM dataset by measuring both MAE and MSE.

509 510 511

517

489

490 491

492

493 494

495 496 497

498 499

500

501

502

504 505

506

507

508

Residual Quantization Optimization (RQO): As illustrated in Figures 3a and 3b, the introduction of RQO into the Vanilla algorithm leads to a notable reduction in MAE and MSE values. At lower 512 compression ratios, Vanilla with RQO achieves performance that is very close to QET, particularly 513 in terms of MSE. The gap widens at higher compression ratios because, while the storage space re-514 mains the same for both algorithms, RQO requires more codebooks due to the multi-layer structure, 515 which reduces the number of centroids in clustering. On the other hand, QET optimizes codebook 516 compression, allowing for more centroids and better MAE and MSE performance at higher compression ratios. For instance, at a compression ratio of 4, the RQO optimization reduces MSE to 518 16.23% of the original value.

519 **Codebook Quantization Optimization (COO):** In Figures 3c and 3d, the impact of COO on the 520 Vanilla algorithm is shown. CQO helps to decrease MAE and MSE, especially at lower compression 521 ratios. CQO optimization effectively reduces the size of the codebook, leading to improvements 522 in both MAE and MSE. However, at higher compression ratios, the accuracy improvements be-523 come less noticeable because the codebook size is already small at these higher compression levels, 524 leaving limited room for further compression. For instance, at a compression ratio of 4, the CQO 525 optimization reduces MSE to 40.08% of the original value.

526 527 528

5 CONCLUSION

529 Matrix quantization involves representing matrix elements in a more space-efficient form to reduce 530 storage usage, with dequantization restoring the original matrix for practical applications. We frame 531 the Quantization Error Minimization (QEM) problem as minimizing the distance between a matrix 532 before and after quantization, constrained by the condition that the quantized matrix occupies the 533 same memory space. 534

To address the QEM problem, we propose Quantum Entanglement Trees (QET), which leverage the 535 local orderliness of matrix elements through iterative element swapping to form a locally ordered 536 matrix. To enhance the QET algorithm, we introduce two key optimizations: residual quantization 537 optimization and codebook quantization optimization. 538

Our experimental results demonstrate that QET can effectively reduce MSE to 5.05%, 13.33%, and 11.89% of the best existing methods on the LLM dataset, K cache, and V cache, respectively.

540 541	References
542	Qet. https://github.com/QET-release, 2024.
543 544 545 546	Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. <i>arXiv preprint arXiv:2303.08774</i> , 2023.
547 548 549	Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu- rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient generative inference. <i>Proceedings of Machine Learning and Systems</i> , 6:114–127, 2024.
550 551 552 553	Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for compact web graph repre- sentation. In <i>International symposium on string processing and information retrieval</i> , pp. 18–30. Springer, 2009.
554 555 556 557	Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. <i>Advances in neural information processing systems</i> , 33:1877–1901, 2020.
558 559 560	Francisco Claude and Susana Ladra. Practical representations for web and social graphs. In <i>Proceedings of the 20th ACM international conference on Information and knowledge management</i> , pp. 1185–1190, 2011.
561 562 563	Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
564 565 566	Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i> , 2018.
567 568 569	Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin. Skvq: Sliding-window key and value cache quantization for large language models. <i>arXiv preprint arXiv:2405.06219</i> , 2024.
570 571 572	Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. <i>arXiv preprint arXiv:2210.17323</i> , 2022.
573 574 575	Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. <i>IEEE transac-</i> <i>tions on pattern analysis and machine intelligence</i> , 36(4):744–755, 2013.
576 577	Robert M. Gray and David L. Neuhoff. Quantization. <i>IEEE transactions on information theory</i> , 44 (6):2325–2383, 1998.
578 579 580 581	Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache quantization. <i>arXiv preprint arXiv:2401.18079</i> , 2024.
582 583	Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 33(1):117–128, 2010.
585 586 587	Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for approximate nearest neighbor search. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 2321–2328, 2014.
588 589 590 591	Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Alham Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding. <i>arXiv e-prints</i> , pp. arXiv–2406, 2024.
592 593	Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. <i>arXiv preprint arXiv:2306.07629</i> , 2023.

594 595 596 597	Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In <i>Proceedings of the 29th Symposium on Operating Systems Principles</i> , pp. 611–626, 2023.
598 599 600	Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing systems, 2, 1989.
601 602	Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. <i>Proceedings of the IEEE</i> , 86(11):2278–2324, 1998.
603 604 605 606	Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative inference of large language models with dynamic {KV} cache management. In <i>18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24)</i> , pp. 155–172, 2024.
607 608 609	Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-aware weight quantization for llm compression and acceleration. <i>arXiv preprint arXiv:2306.00978</i> , 2023.
610 611 612 613	Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm compression and acceleration. <i>Proceedings of Machine Learning and Systems</i> , 6: 87–100, 2024.
615 616 617 618	Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv cache compression at test time. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
619 620	Qingqun Ning, Jianke Zhu, Zhiyuan Zhong, Steven CH Hoi, and Chun Chen. Scalable image retrieval by sparse product quantization. <i>IEEE Transactions on Multimedia</i> , 19(3):586–597, 2016.
621 622 623 624	Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models. <i>arXiv preprint arXiv:2308.13137</i> , 2023.
625 626 627	Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social impacts of language models. <i>arXiv preprint arXiv:1908.09203</i> , 2019.
628 629 630	Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko- lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda- tion and fine-tuned chat models. <i>arXiv preprint arXiv:2307.09288</i> , 2023.
632 633 634	Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In <i>International</i> <i>Conference on Machine Learning</i> , pp. 38087–38099. PMLR, 2023.
635 636 637	Donna Xu, Ivor W Tsang, and Ying Zhang. Online product quantization. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 30(11):2185–2198, 2018.
638 639 640	Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. Product quantization network for fast image retrieval. In <i>Proceedings of the European Conference on Computer Vision (ECCV)</i> , pp. 186–201, 2018.
641 642 643	Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant: Quantizing weight and key/value cache for large language models gains more. <i>arXiv preprint</i> <i>arXiv:2402.12065</i> , 2024.
644 645 646 647	Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient generative inference of large language models. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.

648 A APPENDIX 649

A.1 QET DEQUANTIZATION

⁶⁵² The dequantization process, as described by the QET Dequantization Algorithm, aims to reconstruct the original matrix X' from its quantized version X^q . This process involves several key steps, as shown in Algorithm 2:

Step 1: Dequantization Using Codebook. The first step involves using the codebook C to directly retrieve the original vectors corresponding to each quantized vector $\mathbf{g}_{i}^{\mathbf{q}}$ in the matrix X^{q} . For each vector $\mathbf{g}_{i}^{\mathbf{q}}$ in $X_{i,k}^{q}$, the algorithm assigns \mathbf{g}_{i}' to the centroid \mathbf{c}_{j} from the codebook, where j is the index corresponding to the quantized vector. This step effectively reverses the quantization by mapping the quantized vectors back to their original forms using the codebook entries.

661 Step 2: Reverse Subspace Grouping. After mapping, the algorithm combines the dequantized 662 subspaces $\{G'_i\}$, where i = 1, 2, ..., m, into a single matrix X'^* . Each subspace G'_i contains the 663 vectors g'_i corresponding to the original matrix entries. This step reconstructs the subspaces into an 664 uniform matrix that is a preliminary version of the original matrix X'.

Step 3: Reverse Recursive Partitioning and Final Reconstruction. The final step involves reversing the recursive partitioning process that was applied during quantization. Starting from the last iteration k = l, the algorithm merges the matrices S_k and L_k based on the Indicator Maps I_k and the matrix X'^* . This merging process is iteratively applied from k = l down to k = 1, updating X'^* at each step to gradually reconstruct the original matrix structure. The final output of the algorithm is the reconstructed matrix $X' \in \mathbb{R}^{n \times d}$, which approximates the original matrix before quantization.

671 672 673

650

651

Algorithm 2 QET Dequantization Algorithm

1: Input: Quantized matrix $X^q = \{X_{i,k}^q\}$, where $i = 1, \ldots, d$ and $k = 1, \ldots, m$; Codebook 674 $\mathbf{C} = \{C_i\}$, where $i = 1, \dots, m$; and Indicator Maps $IM = \{I_i\}$, where $i = 1, \dots, l$ 675 2: **Output:** Reconstructed matrix $X' \in \mathbb{R}^{n \times d}$ 676 3: Initialize X' as empty 677 4: Step 1: Dequantization Using Codebook 678 5: for each vector $\mathbf{g}_{\mathbf{i}}^{\mathbf{q}}$ in $X_{i,k}^{q}$ do 679 $\mathbf{g}'_{\mathbf{i}} \leftarrow \mathbf{c}_{j}$, where j corresponds to the codebook entry for $\mathbf{g}_{\mathbf{i}}^{\mathbf{q}} \triangleright$ Direct lookup from codebook 6: 680 7: end for 681 8: Step 2: Reverse Subspace Grouping 682 9: Combine subspaces $\{G'_i\}$, where $i = 1, 2, \ldots, m, G'_i = \{g'_i\}$ for i = 1 to n, to form X'^* 683 10: Step 3: Reverse Recursive Partitioning 684 11: $k \leftarrow l$ 685 12: while $k \neq 0$ do 686 for i = 1 to 2^{k-1} do 13: 687 Merge S_k^i and L_k^i based on I_k and X'^* , then update the results into X'^* 14: 688 15: end for $k \leftarrow k - 1$ 16: 689 17: end while 690 18: **Return** Reconstructed matrix X'691 692

A.2 PROOF OF THEOREM 1 (THEORETICAL ANALYSIS OF MSE)

Lemma 1. Suppose each element in the matrix is independently sampled with a mean μ and variance σ^2 . After quantization by the PQ algorithm, the Mean Squared Error (MSE) is given by:

$$\mathsf{MSE}_{\mathsf{PQ}} = \sigma^2 \left(1 - \frac{1}{n_k} \right).$$

699 700

693

694

696

697 698

Proof. Let $c_{(i,j)}$ denote the cluster centroid matrix, and let n_k be the number of vectors in the cluster. Define the residual matrix as $s_{(i,j)}$. The expectation of the residual matrix is:

$$E[s_{(i,j)}] = E[x_{(i,j)} - c_{(i,j)}] = \mu - \mu = 0.$$

The Mean Squared Error (MSE) can be expressed as the variance of the residual matrix:

$$\mathsf{MSE}_{\mathsf{PQ}} = \mathsf{Var}[s_{(i,j)}] = \mathsf{Var}[x_{(i,j)}] + \mathsf{Var}[c_{(i,j)}] - 2 \cdot \mathsf{Cov}(x_{(i,j)}, c_{(i,j)})$$

Given that $c_{(i,j)}$ is the centroid within the cluster:

$$MSE_{PQ} = \sigma^{2} + \frac{\sigma^{2}}{n_{k}} - 2E\left[(x_{(i,j)} - \mu) \left(\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} x_{(i,j)} - \mu \right) \right]$$
$$= \sigma^{2} + \frac{\sigma^{2}}{n_{k}} - 2 \cdot \frac{1}{n_{k}} \left(E\left[(x_{(i,j)} - \mu)^{2} \right] + \sum_{i \neq i'} E\left[(x_{(i,j)} - \mu)(x_{i'j} - \mu) \right] \right)$$

Since $x_{(i,j)}$ and $x_{i'j}$ (for $i \neq i'$) are independent:

$$MSE_{PQ} = \sigma^2 + \frac{\sigma^2}{n_k} - 2 \cdot \frac{\sigma^2}{n_k} = \left(1 - \frac{1}{n_k}\right)\sigma^2.$$
 (1)

Theorem 1. (Theoretical analysis of MSE) For the QET algorithm without optimization, where matrix elements are independently sampled from a normal distribution $x_{(i,j)} \sim \mathcal{N}(\mu, \sigma^2)$, the Mean Squared Error (MSE) is:

$$MSE_{QET} = 0.682 \times MSE_{PQ}$$

Proof. We denote by $F_Y(y)$ the cumulative distribution function (CDF) of the elements on the right side of the matrix (i.e., the larger elements).

$$F_Y(y) = P(Y \le y) = P(\max(X_l, X_r) \le y) = P(X_l \le y) \cdot P(X_r \le y)$$

Where y represents the elements of the matrix formed by the larger of the adjacent elements in matrix X. X_l and X_r denote the random variables corresponding to the adjacent left and right elements in matrix X, respectively. Since X_l and X_r follow a normal distribution $\mathcal{N}(\mu, \sigma^2)$, we have:

$$F_Y(y) = \Phi\left(\frac{y-\mu}{\sigma}\right) \cdot \Phi\left(\frac{y-\mu}{\sigma}\right) = \left[\Phi\left(\frac{y-\mu}{\sigma}\right)\right]^2 = \frac{1}{4} \left[1 + \operatorname{erf}\left(\frac{y-\mu}{\sigma\sqrt{2}}\right)\right]^2$$

Take the derivative of $F_Y(y)$ with respect to y:

$$f_Y(y) = \left[1 + \operatorname{erf}\left(\frac{y-\mu}{\sigma\sqrt{2}}\right)\right] \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

The mean and variance of *Y* are given by:

$$E(Y) = \int_{-\infty}^{\infty} y \left[1 + \operatorname{erf}\left(\frac{y-\mu}{\sigma\sqrt{2}}\right) \right] \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy$$

$$Var(Y) = \int_{-\infty}^{\infty} (y - E(Y))^2 \left[1 + \operatorname{erf}\left(\frac{y - \mu}{\sigma\sqrt{2}}\right) \right] \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right) dy$$

Using numerical integration methods, we obtain:

 $\mathbb{E}(Y) = \mu + 0.564\sigma, \quad \operatorname{Var}(Y) = 0.682\sigma^2.$

Because QET can be considered a special case of the PQ algorithm, according to Equation 1,

$$MSE_{QET} = \left(1 - \frac{1}{n_k}\right) Var(Y) = 0.682 \left(1 - \frac{1}{n_k}\right) \sigma^2 = 0.682 \cdot MSE_{PQ}.$$
 (2)

Taking symmetry into account, this conclusion also holds for the smaller matrix on the left. \Box

A.3 THE PROOF OF THEOREM 2 (TIME COMPLEXITY FOR QUANTIZATION)

Lemma 2. Let k_{QET} be the number of centroids in QET and k_{PQ} be the number of centroids in the Product Quantization (PQ) algorithm, under the same compression ratio. Due to the additional storage required for *l* indicator matrices in our method, the relationship between k_{QET} and k_{PQ} is given by

$$k_{\text{QET}} = \frac{k_{\text{PQ}}}{2\Delta},$$
$$\Delta = \frac{l \times (d-1)}{m}.$$

764 where

Proof. Under the same compression ratio b, the total storage requirements for both methods are equal.

For PQ:

$$Memory_{PQ} = n \times m \times \log_2(k_{PQ}) + k_{PQ} \times d \times a$$

For QET:

$$Memory_{\text{OET}} = n \times m \times \log_2(k_{\text{OET}}) + k_{\text{our}} \times d \times a + l \times n \times (d-1).$$

Setting $Memory_{PQ} = Memory_{QET}$ and simplifying:

$$n \times m \times \left[\log_2(k_{\text{QET}}) - \log_2(k_{\text{PQ}})\right] + \left(k_{\text{QET}} - k_{\text{PQ}}\right) \times d \times a + l \times n \times (d-1) = 0.$$

Assuming n is large and $k_{\text{QET}}, k_{\text{PQ}} \ll n$, the second term is negligible:

$$n \times m \times [\log_2(k_{\text{QET}}) - \log_2(k_{\text{PQ}})] + l \times n \times (d-1) \approx 0.$$

Divide both sides by n:

$$m \times [\log_2(k_{\text{QET}}) - \log_2(k_{\text{PQ}})] + l \times (d-1) = 0.$$

Solving for $\log_2(k_{\text{OET}})$:

$$\log_2(k_{\text{QET}}) = \log_2(k_{\text{PQ}}) - \frac{l \times (d-1)}{m}$$

789 Therefore,

$$k_{\text{QET}} = \frac{k_{\text{PQ}}}{2^{\Delta}}, \text{ where } \Delta = \frac{l \times (d-1)}{m}$$

Theorem 2. (Time Complexity for Quantization) The QT of QET is reduced compared to PQ by a factor of approximately 2^{Δ} . Specifically, the ratio of QT is

$$\frac{QT_{\rm QET}}{QT_{\rm PQ}} \approx 2^{-\Delta},$$

where QT_{QET} represents the quantization time for QET, while QT_{PQ} represents the quantization time for PQ.

Proof. The QT primarily depends on the clustering step.802

803 QET's Clustering Time:

 $T_{\text{cluster}_{-\text{QET}}} = O\left(t \times n \times k_{\text{QET}} \times d\right).$

PQ's Clustering Time:

 $T_{\text{cluster}_{PQ}} = O\left(t \times n \times k_{PQ} \times d\right).$

808 According to Lemma 2:

$$k_{\rm QET} = \frac{k_{\rm PQ}}{2^{\Delta}} \implies \frac{k_{\rm QET}}{k_{\rm PO}} = 2^{-\Delta}.$$

810 Calculating the ratio of QT:

$$\frac{QT_{\text{QET}}}{QT_{\text{PQ}}} = \frac{(l + t \times k_{\text{QET}}) \times n \times d}{t \times n \times k_{\text{PQ}} \times d} = \frac{l}{t \times k_{\text{PQ}}} + \frac{k_{\text{QET}}}{k_{\text{PQ}}}$$

Since l and t are constants and k_{PO} is relatively large, the first term is negligible:

$$\frac{l}{t \times k_{\rm PQ}} \approx 0$$

Thus,

$$\frac{QT_{\rm QET}}{QT_{\rm PQ}} \approx \frac{k_{\rm QET}}{k_{\rm PQ}} = 2^{-\Delta}$$

Therefore, our QT is reduced by a factor of 2^{Δ} compared to PQ.

The reordering time complexity in QET is $O(l \times n \times d)$. Since *l* is a small constant, the swapping time is negligible compared to the clustering time and can be ignored.

A.4 THE PROOF OF THEOREM 3 (TIME COMPLEXITY FOR DEQUANTIZATION)

Theorem 3. (Time Complexity for Dequantization) The dequantization time complexity (DQT) of our method increases compared to PQ by:

$$DQT_{\text{OET}} - DQT_{\text{PO}} = O(l \times n \times d)$$

where DQT_{QET} and DQT_{PQ} represent the dequantization times of our method and PQ, respectively.

⁸³⁶ ⁸³⁷ *Proof.* In PQ, the dequantization process involves a direct mapping from indices to centroids, yield-⁸³⁸ ing a time complexity of DQT_{PQ} .

In our method, the dequantization time DQT_{QET} includes the additional complexity of the inverse recursive splitting process, resulting in an increase of $O(l \times n \times d)$, where *l* is the number of levels in the recursive splitting process, *n* is the number of data points, and *d* is the dimensionality.

Thus, the dequantization time complexity increases by:

$$DQT_{QET} - DQT_{PQ} = O(l \times n \times d).$$
(3)

A.5 EXPERIMENTAL RESULTS OF QUANTIZATION TIME (QT) AND DEQUANTIZATION TIME (DQT)

In this experiments, we evaluated the performance of the quantization process by measuring both
Quantization Time (QT) and Dequantization Time (DQT) across multiple datasets, as shown in
Figures 4. These metrics provide a comprehensive understanding of the computational efficiency of
the algorithm at different compression ratios, ranging from 2 to 16.

For QT, the QET algorithm exhibits longer quantization times at lower compression ratios, but as
the compression ratio increases, QT decreases significantly. This phenomenon is expected, as fewer
centroids simplify the clustering process, resulting in faster compression as the compression ratio
increases. Vanilla consistently achieves lower QT across all datasets compared to QET, making it
the faster option, albeit with a slight loss in accuracy. In contrast, PQ and other baseline methods demonstrate moderate QT performance, although OPQ and LOPQ show slower performance at
larger matrix sizes due to their complexity.

As for DQT, QET maintains a relatively stable performance across all compression ratios and datasets, with marginal increases in time as the compression ratio grows. Vanilla follows a similar trend but achieves faster dequantization. PQ remains competitive in terms of both QT and DQT.

