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ABSTRACT

The matrix quantization entails representing matrix elements in a more space-
efficient form to reduce storage usage, with dequantization restoring the original
matrix for use. We formulate the Quantization Error Minimization (QEM) prob-
lem as minimizing the distance between a matrix before and after quantization,
under the condition that the quantized matrix occupies the same memory space.
Matrix quantization is crucial in various applications, including Large Language
Models (LLMs) weight quantization, vector databases, KV cache quantization,
graph compression, and image compression. Recent advancements in LLMs, such
as GPT-4 and BERT, have highlighted the importance of matrix compression due
to the large size of parameters and KV cache, which are stored as matrices.
We propose Quantum Entanglement Trees (QET) to address the QEM problem
by leveraging the local orderliness of matrix elements, involving iterative element
swapping to form a locally ordered matrix. This matrix is then grouped and quan-
tized by columns. To enhance QET, we introduce two optimizations: Residual
Quantization Optimization (RQO), which reduces MSE by quantizing the residu-
als between the original and dequantized matrices, and Codebook Quantization
Optimization (CQO), which reduces storage requirements by compressing the
codebook itself.
Experimental results demonstrate that QET can effectively reduce MSE to 5.05%,
13.33%, and 11.89% of the current best method on the LLM dataset, K cache,
and V cache, respectively. Our contributions include the abstraction of the QEM
problem, the design of the QET algorithm, and the proposal of two optimizations
to improve accuracy and speed.

1 INTRODUCTION

The matrix quantization entails representing the elements of a matrix in a more space-efficient form
to reduce its storage usage. Dequantization, on the other hand, is the process during usage where
the original matrix is restored from the quantized matrix using a restoration algorithm. We formu-
late the Quantization Error Minimization (QEM) problem as the task of minimizing the distance
between a matrix before and after quantization in high-dimensional space, under the condition that
the quantized matrix occupies the same space.

Matrix quantization is widely employed across diverse applications, including Large Language
Models (LLMs) weight quantization (Dettmers et al. (2024); Lin et al. (2024); Shao et al. (2023);
Xiao et al. (2023)), vector database (Xu et al. (2018); Jegou et al. (2010)), LLM k-v cache quanti-
zation (Liu et al. (2024); Zhang et al. (2024); Hooper et al. (2024); Kawakibi Zuhri et al. (2024);
Duanmu et al. (2024); Yue et al. (2024); Lee et al. (2024); Adnan et al. (2024)), graph compres-
sion (Brisaboa et al. (2009); Claude & Ladra (2011)), and image compression (Yu et al. (2018);
Ning et al. (2016)).

Specifically, the recent advancements in Large Language Models (LLMs) have made matrix com-
pression even more critical. Large Language Models (LLMs) have revolutionized the field of natural
language processing (NLP), enabling significant advancements in tasks such as machine translation,
text generation, and sentiment analysis. These models, characterized by their large-scale neural net-
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work architectures and vast training datasets, have shown remarkable capabilities in understanding
and generating human language. The advent of LLMs, such as OpenAI’s GPT-4 (Achiam et al.
(2023)), and BERT (Devlin et al. (2018)) by Google, has pushed the boundaries of what machines
can achieve in linguistic tasks, providing near-human performance in various applications. The
parameters and KV cache in Large Language Models are very large in size. For instance, GPT-2
contains 1.5 billion parameters (Solaiman et al. (2019)), whereas GPT-3 has expanded to 175 bil-
lion parameters (Brown et al. (2020)). Additionally, the KV cache accounts for over 30% of GPU
memory during deployment, compared to the 65% occupied by the parameters (Kwon et al. (2023)).
Both the parameters and KV cache are stored in the form of matrices. GPTQ (Frantar et al. (2022))
and SqueezeLLM (Kim et al. (2023)) directly address the QEM problem by treating it as the opti-
mization objective for quantizing parameters and the KV cache. Therefore, the abstracted scientific
problem of QEM is highly significant.

There has been a growing literature on the matrix quantization. The first category of methods fo-
cuses on independently compressing the elements of a matrix for each specific scenario. Examples of
such techniques include LLM.int8 (Ge et al. (2013)), Optimal Brain Damage (LeCun et al. (1989)),
GPTQ (Frantar et al. (2022)), AWQ (Lin et al. (2023)), SmoothQuant (Xiao et al. (2023)), and Om-
niQuant (Shao et al. (2023)). The second category groups matrix elements by columns and then
applies quantization to each group. Relevant works in this category include product quantization
(PQ) (Jegou et al. (2010)), optimized product quantization (OPQ) (Ge et al. (2013)), locally opti-
mized product quantization (LOPQ) (Kalantidis & Avrithis (2014)), and SqueezeLLM (Kim et al.
(2023)). The first category of work can be summarized as utilizing outliers and the importance of
elements in specific scenarios to improve the RTN (Round-To-Nearest) 1 (Gray & Neuhoff (1998))
algorithm. The second category focuses on enhancements to PQ algorithms. The primary drawback
of the first category is that it does not consider the correlation between elements, instead indepen-
dently quantizing and storing elements. Conversely, the second category fails to account for the
relative order of elements.

In our research, we observed that the order of elements has a significant impact on the quantization

outcome. Intuitively, consider a matrix
[
1 2
2 1

]
. To losslessly quantize this matrix (with MSE=0),

two vectors, [1, 2] and [2, 1], are required. However, if the matrix is reordered to
[
1 2
1 2

]
, it can be

losslessly quantized using just a single vector, [1, 2].

Using these ideas, we propose Quantum Entanglement Trees (QET) to address the QEM problem
in matrix quantization. The core idea of QET is to leverage the local orderliness of matrix elements
to optimize the QEM problem. The design involves swapping adjacent elements of the matrix to
form a new, locally ordered matrix. To cover a broader range, we can perform further element
swapping on the initially locally ordered matrix, similar to the approach of receptive field used
in convolutional neural networks (LeCun et al. (1998)). This step can be repeated for multiple
iterations. The newly ordered matrix is then grouped by columns, with each group being quantized.
Additionally, we propose two optimization algorithms based on the basic QET. First, the residuals
between the original and quantized matrices can be further quantized to enhance the accuracy of the
results. Second, the codebook can be quantized to reduce storage requirements.

We evaluate QET on multiple datasets. Experimental results demonstrate that QET can effectively
reduce MSE to 5.05%, 13.33%, and 11.89% of the current best method on the LLM dataset, K
cache, and V cache, respectively. Our code has been open-sourced on GitHub ( QET (2024)).

We summarize our contributions below.

Abstracted a problem: We abstracted the Quantization Error Minimization (QEM) problems from
various application scenarios.

Designed an algorithm: We developed the Quantum Entanglement Trees (QET) algorithm, lever-
aging the concept of local orderliness to optimize the QEM problem.

1RTN (Round-To-Nearest) is an algorithm that quantizes elements by rounding each value to its nearest
representable level.
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Proposed two optimizations: We introduced residual quantization to reduce MSE and codebook
quantization techniques to optimize memory efficiency.

2 PROBLEM SETTING

In this section, we formally define the Quantization Error Minimization (QEM) problem and analyze
the impact and feasibility of rearranging matrix elements prior to quantization.

QEM Problem: we denote the matrix to be quantized as X , the quantized matrix as Xq , and
the matrix obtained by dequantizing Xq as X ′. Both X and X ′ are n × d dimensional, but the
dimensions of Xq depend on the quantization algorithm. The elements of these matrices are denoted
as x(i,j), x

q
(i,j), and x′

(i,j), respectively. The memory occupied by a matrix is denoted as memory(),
and the memory constraint as mem constrain.
Definition 1 (Quantization Error Minimization (QEM) Problem). The Quantization Error Mini-
mization (QEM) problem is defined as the task of minimizing the combined objective of the Mean
Squared Error (MSE) and the memory size of the quantized matrix:

minimize MSE(X,X ′) + λ ·memory(Xq),

where
MSE(X,X ′) =

1

n · d
∑
i,j

(
x(i,j) − x′

(i,j)

)2
,

λ is a regularization parameter that balances the trade-off between minimizing the MSE and the
memory usage of the quantized matrix.

Subject to the condition that the quantized matrix occupies the same space:

memory(Xq) ≤ mem constrain,

Rearranging matrix elements: Our idea is to rearrange the matrix elements before quantization.
Let the quantization algorithm be denoted as quant() and the rearrangement algorithm as rearrange().
Previously, the quantized matrix was obtained as Xq = quant(X), whereas in our rearrangement ap-
proach, it is obtained as Xq = quant(rearrange(X)). Therefore, the rearrangement algorithm only
affects the quantization if the quantization method is order-sensitive.For instance, order-insensitive
algorithms like RTN do not benefit from rearrangement because RTN processes each element inde-
pendently, while order-sensitive algorithms like PQ can be optimized through rearrangement.

However, finding the optimal arrangement requires exploring a large search space. Specifically, for
an n × d matrix, there are (n!)d possible rearrangements. Therefore, searching the entire space is
impractical, and we need heuristic algorithms to prioritize exploring more promising regions of the
search space.

3 METHODS

The core idea of Quantum Entanglement Trees (QET) is to leverage the local orderliness of matrix
elements by rearranging adjacent elements to optimize the matrix quantization algorithm. Addition-
ally, multiple iterations are used to expand the algorithm’s swapping field. We begin by describing
the basic version of this idea and then propose two optimizations for the basic algorithm.

3.1 BASIC ALGORITHM

The steps and design of the QET algorithm are illustrated in Figure 1. The figure provides a concep-
tual overview of the Quantum Entanglement Trees (QET) algorithm.

On the left side of the figure, the process of rearranging matrix elements through multiple iterations
in the QET is depicted. This iterative procedure involves comparing adjacent elements and ensuring
that adjacent elements are not placed in the same matrix. This separation of adjacent elements into
different matrices is conceptually similar to quantum entanglement, hence the name ”Quantum En-
tanglement Trees.” The QET algorithm performs multiple iterations, with each iteration comparing

3
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Figure 1: QET algorithm.

adjacent elements and splitting them based on their values. This approach is based on two observa-
tions. First, the local orderliness of the matrix can enhance the regularity of matrix elements, thereby
improving compression efficiency. Second, multiple iterations allow the orderliness to cover a larger
number of elements. For instance, adjacent elements after the first iteration might be non-adjacent in
the original matrix. This iterative process, similar to that of convolutional neural networks, extends
the ”receptive field” to cover more elements.

On the right side of the figure, the QET compression process is shown. After the elements have
been rearranged, the algorithm groups the sub-matrices, followed by clustering to determine the
centroids. These centroids are used to quantize the matrix. The final quantized matrix, codebook,
and indicator maps are the outputs of the QET algorithm. This divide-and-conquer compression
method is based on an observation: by splitting the matrix, the expressive power can be increased
under a fixed storage constraint. For example, if the matrix is divided into m blocks, each with c
centroids, the entire matrix can express cm centroids while only storing c ×m centroids. Without
splitting, storing cm centroids would be required.

3.2 QET QUANTIZATION

The proposed QET Algorithm is designed to optimize the quantization of a matrix X ∈ Rn×d by
leveraging local orderliness. The algorithm proceeds in four key steps, as shown in Algorithm 2:

Step 1: Initial Partitioning. The algorithm starts by comparing each adjacent pair of elements
(xi,j , xi,j+1) in the input matrix X . Based on the comparison of these elements, the smaller value
is placed into matrix S and the larger into matrix L. Concurrently, an Indicator Map I is generated,
where a 0 denotes that the smaller element is on the left and a 1 denotes it is on the right. This
process results in the creation of two matrices, S and L, which collectively represent the initial
partitioning of the original matrix X .

Step 2: Recursive Partitioning. Following the initial partitioning, the algorithm undertakes a
recursive partitioning process. Starting from k = 1, the matrices Si

k and Li
k

2 derived from the
previous iteration (for i = 1, 2, . . . , 2k−1) are further partitioned based on their sizes. In each
iteration, a new Indicator Map Ik+1 is generated and then merged with the existing Indicator Maps.
This recursive process continues until the predefined number of iterations l is reached. The resulting
Indicator Maps I1, I2, . . . , Il are stored in the set IM . The final matrices Sl and Ll are combined to
form a new matrix X∗, which represents a locally ordered version of the original matrix.

2Since each level has multiple S and L matrices, we use the subscript to denote the iteration number and
the superscript to denote the sequence within each iteration.
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Step 3: Subspace Grouping. After constructing the matrix X∗, it is divided into subspaces {Gi},
where i = 1, 2, . . . ,m. This division is based on the local ordering of elements, which facilitates
more effective clustering and quantization in the subsequent steps.

Step 4: Clustering and Quantization. In the final step, each subspace Gk (for k = 1, 2, . . . ,m)
is clustered to determine a set of centroids Ck = {cj}. Each vector gi within the subspace is
then quantized by assigning it to the nearest centroid. This process results in the quantized matrix
Xq . The output of the algorithm includes the quantized matrix Xq , the codebook C containing the
centroids, and the Indicator Maps IM .

QET Dequantization is the inverse process of QET Quantization. We provide the detailed description
in Appendix A.1.

Algorithm 1 QET Quantization Algorithm

1: Input: Matrix X ∈ Rn×d, m is the number of subspaces for quantization, l is the number of
QET iterations.

2: Output: Quantized matrix Xq = {Xq
i,k} where i = 1, . . . , d and k = 1, . . . ,m, Codebook

C = {Ci} where i = 1, . . . ,m, and Indicator Maps IM = {Ii} where i = 1, . . . , l
3: Initialize IM and Xq as empty
4: Step 1: Initial Partitioning
5: for each adjacent pair (xi,j , xi,j+1) in X do
6: if xi,j > xi,j+1 then
7: Si,j ← xi,j+1, Li,j ← xi,j

8: I
(
i
2 , j
)
← 0

9: else
10: Si,j ← xi,j , Li,j ← xi,j+1

11: I
(
i
2 , j
)
← 1

12: end if
13: end for
14: Step 2: Recursive Partitioning
15: k ← 1
16: while k ̸= l do
17: for i = 1 to 2k−1 do
18: Apply size-based partitioning to Si

k and Li
k

19: Generate and merge new Indicator Maps into Ik+1 for each partition
20: end for
21: k ← k + 1
22: end while
23: Store I1, I2, . . . , Il into IM

24: X∗ ← S1
l ∪ L1

l ∪ S2
l ∪ L2

l ∪ · · · ∪ S2l−1

l ∪ L2l−1

l ▷ Combine the locally ordered parts from the
final layer l

25: Step 3: Subspace Grouping
26: Group the matrix X∗ into subspaces {Gi} where i = 1, 2, . . . ,m
27: Step 4: Clustering and Quantization
28: Apply clustering to find centroids Ck = {cj} for Gk

29: for each vector gi in Gk (for k = 1, 2, . . . ,m) do
30: Xq

i,k ← argmincj
∥gi − cj∥ ▷ Quantize to nearest centroid within group

31: end for
32: Return Quantized matrix Xq , Codebook C, and Indicator Maps IM

3.3 THEORETICAL GUARANTEES OF QET

In this section, we will first prove that the MSE of our QET algorithm is lower than that of PQ. Then,
we will compare the time complexity of the algorithms.
Theorem 1. For the QET algorithm without optimization, where matrix elements are independently
sampled from a normal distribution x(i,j) ∼ N (µ, σ2), the Mean Squared Error (MSE) is:

MSEQET = 0.682×MSEPQ.

5
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The detailed proof can be found in Appendix A.2.
Theorem 2. (Time Complexity for Quantization) The QT of QET is reduced compared to PQ by
a factor of approximately 2∆. Specifically, the ratio of QT is

QTQET

QTPQ
≈ 2−∆,

where QTQET represents the quantization time for QET, while QTPQ represents the quantization time
for PQ.

The detailed proof can be found in Appendix A.3.

Theorem 1 shows that when the matrix elements follow a normal distribution, the MSE is reduced to
0.682 times its original value. For any distribution, as long as the variance of the matrix elements is
reduced, the MSE will also decrease (Theorem 1 in Appendix A.2). Theorem 1 demonstrates that our
algorithm has a shorter quantization time. Furthermore, according to Theorem 3 in Appendix A.4,
the dequantization time increases.

3.4 OPTIMIZATIONS

In this section, we propose three optimizations: Residual Quantization Optimization (RQO) and
Codebook Quantization Optimization (CQO).

3.4.1 RESIDUAL QUANTIZATION OPTIMIZATION

Table 1: Range Ratios, and Codebook(CB)
Proportions in different compression ratios.

Compression Ratio 4.0 8.0 12.0
Range Ratio (%) 1.6 4.0 9.2

CB Proportion (%) 87.5 78.1 71.8

Residual Quantization Optimization (RQO) is
grounded in our observation that the data range of
the quantized matrix is significantly reduced after
applying the QET algorithm. As shown in Table 1,
our experiments indicate that at a compression ra-
tio3 of 12, the data range of the quantized matrix
is reduced to 9.2% of the original matrix’s range.
Moreover, with a compression ratio of 4, the data range of the quantized matrix is reduced to ap-
proximately 1.6% of the original matrix’s range.

Matrix quantization algorithms are more efficient at compressing matrix with a smaller data range;
therefore, we propose Residual Quantization Optimization (RQO). The RQO begins with the quanti-
zation of the original matrix to produce a quantized matrix. This matrix is then dequantized to yield
a dequantized matrix, which is subtracted from the original matrix to form a residual matrix. The
residual matrix typically exhibits a significantly reduced data range, making it easier to compress.
This residual matrix is then quantized using a chosen matrix quantization algorithm, such as RTN
or QET.

During the dequantization process, the quantized residual is dequantized, and this dequantized resid-
ual is added back to the initially dequantized matrix to produce a revised dequantized matrix.

3.4.2 CODEBOOK QUANTIZATION OPTIMIZATION

The codebook occupies a significant portion of the space in the QET algorithm. As shown in Table 1,
our experiments indicate that when the compression ratio is 12, the codebook occupies 71.8% of the
total space, and when the compression ratio is 4, the codebook occupies 87.5% of the total space.
Therefore, compressing the codebook can significantly reduce the space used by the algorithm. We
proposed Codebook Quantization Optimization (CQO). Our optimization mainly employs the RTN
method to compress the codebook.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset: To evaluate the effectiveness of our proposed algorithm, we conducted experiments using
three synthetic datasets and two real-world datasets: the synthetic normal distribution datasets, LLM

3Compression ratio = Space occupied by the matrix before quantization
Space occupied by the matrix after quantization

6
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weight dataset and KV cache dataset. Below, we provide a detailed description of each dataset.
Each element in the matrix is represented with 32 bits, except for the KV cache dataset, where each
element is represented with 16 bits.

(1) Synthetic normal distribution dataset: This dataset was generated by drawing each element of
the matrix from a truncated normal distribution with a mean of 0.5 and a standard deviation of 0.16.
Additionally, one out of every ten thousand elements was replaced with an outlier value, randomly
chosen between -100 and 100. For the synthetic normal distribution dataset, we generated three
types of matrices of different sizes: synthetic dataset 1: 1024 × 128 matrices, synthetic dataset 2:
1024 × 512 matrices, and synthetic dataset 3: 1024 × 1024 matrices.

(2) LLM weight dataset: This dataset comprises weight matrices extracted from the large language
model (LLM) LLaMA2 (Touvron et al. (2023)). The sizes of the LLM weight matrices are 11008×
4096.

(3) KV cache dataset: The KV cache dataset is derived from the key-value pairs stored in the cache
during inference in KV Quant (Hooper et al. (2024)). The key and value are stored in matrices,
respectively. In the KV cache dataset, the sizes of both the K matrices and the V matrices are 4096
× 4096.

Platform and implementation: We conducted our algorithm evaluations on a high-performance
server equipped with an Intel Xeon Platinum 6462C (Sapphire Rapids) processor, featuring 16 vir-
tual CPUs (vCPUs), operating at a base frequency of 3.3 GHz, with a maximum turbo frequency
of 3.9 GHz. The server also includes 64GB of memory, providing robust computational capabili-
ties. All algorithms were implemented and executed on this server environment to ensure optimal
performance for our experimental evaluations.

Metrics: We primarily measure the accuracy and time consumption of the algorithm. We use MAE
(Mean Absolute Error), MRE (Mean Relative Error), and MSE (Mean Squared Error) as accuracy
metrics. Below, we introduce these metrics in detail.

Let x(i,j) denote the elements of the original matrix to be quantized, and x′
(i,j) denote the elements

of the dequantized matrix.

MAE =
1

n · d
∑
i,j

∣∣∣x(i,j) − x′
(i,j)

∣∣∣ , MSE =
1

n · d
∑
i,j

(
x(i,j) − x′

(i,j)

)2
For time efficiency, we use Quantization Time (QT) and DeQuantization Time (DQT) as the metrics.

Comparative Algorithms: For the abstract Quantization Error Minimization (QEM) problem, our
comparative algorithms fall into two main categories. The first category involves independently
compressing the elements of a matrix for each specific scenario, which can be abstracted as the
RTN (Round-To-Nearest) algorithm. The second category groups matrix elements by columns and
then applies quantization to each group. Related algorithms in this category include PQ, OPQ, and
LOPQ. Therefore, our comparative algorithms are as follows: RTN (Round-To-Nearest) (Gray &
Neuhoff (1998)), PQ (Product Quantization) (Jegou et al. (2010)), OPQ (Optimized Product Quan-
tization) (Ge et al. (2013)), and LOPQ (Locally Optimized Product Quantization) (Kalantidis &
Avrithis (2014)).

Parameter Selection: We first introduce the parameter settings of the QET algorithm. For an n× d
matrix with a bit per element, we perform a quantization operation with a compression ratio of θ.
The QET algorithm iterates l rounds. For residual optimization, we perform r residual iterations.
During the ith residual step, the number of clusters for centroids is ki, and the number of groups
during the grouping operation is m. For codebook quantization optimization, the bit length of the
codebook after compression is a′ bit. Ri denotes the ratio of the space occupied by the codebook
and the quantized matrix to the total space excluding the indicator maps during the ith iteration of
residual optimization. To ensure that the total memory usage remains within the available memory
limits, we have the following constraints on the parameters of the QET algorithm.

ki × d× a′ + 2a+ n×m× log2(ki) ≤
[
n× d× a

θ
− 0.5× n× d× l

]
×Ri, for i = 1, . . . , r.

Given the parameters d, a′, a, n, m, θ, l, and Ri, we calculate the value of ki using the bisection
method. Unless otherwise specified, the QET parameters are configured as follows: n, d, and a

7
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are determined by the input matrix. We perform a standard QET and one residual QET, both with
codebook quantization. r = 2, the first QET has 3 iterations, and the second QET does not perform
matrix permutation (l = 3). Additionally, d/m = 8, a′ = 10, R1 = 70%, and R2 = 30%.

For RTN, PQ, OPQ, and LOPQ, under the same space constraints, we use the same common param-
eters as our algorithm, while other parameters are set according to the recommended configurations
from their respective papers. We define the names of different versions of the algorithm as follows:
Vanilla refers to the basic QET algorithm without any optimizations. Vanilla CQO refers to the
Vanilla algorithm with codebook quantization optimization, where the codebook is quantized using
the RTN algorithm. Vanilla RQO indicates the Vanilla algorithm with residual optimization, where
the residuals are processed using the QET algorithm. Finally, QET is the Vanilla algorithm with
both residual optimization and codebook quantization optimization (including all optimizations),
where the codebook is quantized using the RTN algorithm and the residuals are processed using the
QET algorithm.

4.2 MATRIX QUANTIZATION RESULT

In this section, we provide a comprehensive comparison of the accuracy and computational effi-
ciency of the proposed QET algorithm against other benchmark methods. We will first discuss the
precision metrics (MAE and MSE) across different datasets and compression ratios, followed by
an analysis of the time metrics (QT and DQT) to evaluate the efficiency of each algorithm. Some
algorithms are unable to run on certain datasets or at specific compression ratios. For instance, in
the case of square matrices, the rotation matrices for OPQ and LOPQ become as large as the original
matrix, making compression impossible. In such cases, we observe missing data points or curves in
the corresponding figures where the algorithms could not produce results.
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Figure 2: MAE and MSE of different datasets.
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MAE and MSE: In our experiments, we evaluated the performance of our quantization algorithm
across multiple datasets using MAE and MSE. These metrics provide a comprehensive understand-
ing of the algorithm’s accuracy at different compression ratios, ranging from 2 to 16. The average
MSE of RTN for the synthetic dataset 1, synthetic dataset 2, synthetic dataset 3, LLM dataset, K
cache dataset, and V cache dataset is 71.74 times, 334.59 times, 247.39 times, 12.56 times, 10.57
times, and 7.69 times that of QET, respectively. Therefore, we do not include RTN in the figures for
comparison.

For synthetic dataset 1: As shown in Figures 2a and 2b , our QET algorithm consistently outper-
forms the baseline algorithms across all compression ratios. The MAE and MSE values increase
as the compression ratio rises, but QET maintains a significantly lower error compared to PQ and
OPQ algorithms. The Vanilla version, a faster variant of QET, shows slightly higher error than the
full QET version, but still remains competitive. For example, at a compression ratio of 4, compared
to the best-performing algorithm, PQ, QET reduces the MSE to 6.94%, while the Vanilla version
reduces the MSE to 36.53%.

For Synthetic Dataset 2: In Figures 2c and 2d, a similar trend is observed with Synthetic Dataset 2.
The QET algorithm achieves the lowest MAE and MSE values, demonstrating its robustness across
different types of synthetic data. Notably, the gap between QET and the other methods becomes
more pronounced as the compression ratio increases, indicating the superiority of QET in handling
higher compression rates without significantly sacrificing accuracy. Due to the space consumption
of OPQ and LOPQ, they were unable to handle the compression of square matrices in this dataset.
The vanilla version performs similarly to the QET algorithm. For example, at a compression ratio
of 4, compared to the best-performing algorithm, PQ, QET reduces the MSE to 7.13%, while the
Vanilla version reduces the MSE to 36.51%.

For Synthetic Dataset 3: Figures 2e and 2f show the results for the third synthetic dataset. While
the errors increase with higher compression ratios, QET still outperforms the other algorithms. The
difference in performance becomes especially significant at higher compression ratios (e.g., 12 to
16), where QET and vanilla continue to show lower error rates. For example, at a compression ratio
of 4, compared to the best-performing algorithm, PQ, QET reduces the MSE to 7.21%, while the
Vanilla version reduces the MSE to 36.54%.

For the LLM dataset, as depicted in Figures 2g and 2h, the QET algorithm demonstrates superior
performance. The MAE and MSE values for QET are consistently lower than those for Vanilla, PQ,
and OPQ, indicating that QET is well-suited for compressing large-scale language model weights
without significantly sacrificing accuracy. At higher compression ratios (13 to 16), the MAE and
MSE of Vanilla are similar to those of QET. For example, at a compression ratio of 4, compared
to the best-performing algorithm, PQ, QET reduces the MSE to 5.05%, while the Vanilla version
reduces the MSE to 36.64%.

For KV Cache Dataset: The results of K cache is shown in Figures 2i and 2j. The results of V
cache is shown in Figures 2k and 2l. Similar to the LLM datasets, the QET algorithm achieves
the best results, with lower MAE and MSE values across all compression ratios. At compression
ratios between 13 and 16, the MAE and MSE values of Vanilla closely approach those of QET. For
example, at a compression ratio of 4 for K cache, compared to the best-performing algorithm, PQ,
QET reduces the MSE to 13.33%, while the Vanilla version reduces the MSE to 50.24%. And at a
compression ratio of 4 for V cache, compared to the best-performing algorithm, PQ, QET reduces
the MSE to 11.89%, while the Vanilla version reduces the MSE to 45.83%.

In summary, the QET algorithm consistently outperforms baseline methods, achieving lower MAE
and MSE values across all datasets and compression ratios. Vanilla also demonstrates relatively low
MAE and MSE values, and on certain datasets, it performs comparably to QET at higher compres-
sion ratios.

QT and DQT: In this experiment, we evaluated the performance of the quantization process by
measuring both Quantization Time (QT) and Dequantization Time (DQT) across multiple datasets.

For QT, we observed that the QET algorithm achieves efficient quantization times at higher com-
pression ratios. The Vanilla method consistently achieves the lowest QT across all datasets, making
it the faster option, albeit with a slight loss in accuracy. Regarding DQT, QET maintains stable per-
formance across all datasets. The Vanilla method achieves faster dequantization but is still slower
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than PQ. Meanwhile, OPQ and LOPQ exhibit slower dequantization speeds. For a detailed analysis,
please refer to Appendix A.5.

4.3 ABLATION STUDIES AND DISCUSSIONS

These experiments demonstrate the effectiveness of the algorithm optimizations. Specifically, both
Residual Quantization Optimization (RQO) and Codebook Quantization Optimization (CQO) im-
prove the baseline Vanilla algorithm and provide comparisons with the QET algorithm. The abla-
tion studies primarily focus on accuracy improvements. We evaluated the performance on the LLM
dataset by measuring both MAE and MSE.
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2 4 6 8 10 12 14 16
Compression Ratio

0
1
2
3
4
5
6

M
A

E

×10 3

(c) MAE of CQO.

2 4 6 8 10 12 14 16
Compression Ratio

0
1
2
3
4
5
6

M
SE

×10 5

(d) MSE of CQO.

Figure 3: Ablation Studies of RQO and CQO.

Residual Quantization Optimization (RQO): As illustrated in Figures 3a and 3b, the introduction
of RQO into the Vanilla algorithm leads to a notable reduction in MAE and MSE values. At lower
compression ratios, Vanilla with RQO achieves performance that is very close to QET, particularly
in terms of MSE. The gap widens at higher compression ratios because, while the storage space re-
mains the same for both algorithms, RQO requires more codebooks due to the multi-layer structure,
which reduces the number of centroids in clustering. On the other hand, QET optimizes codebook
compression, allowing for more centroids and better MAE and MSE performance at higher com-
pression ratios. For instance, at a compression ratio of 4, the RQO optimization reduces MSE to
16.23% of the original value.

Codebook Quantization Optimization (CQO): In Figures 3c and 3d, the impact of CQO on the
Vanilla algorithm is shown. CQO helps to decrease MAE and MSE, especially at lower compression
ratios. CQO optimization effectively reduces the size of the codebook, leading to improvements
in both MAE and MSE. However, at higher compression ratios, the accuracy improvements be-
come less noticeable because the codebook size is already small at these higher compression levels,
leaving limited room for further compression. For instance, at a compression ratio of 4, the CQO
optimization reduces MSE to 40.08% of the original value.

5 CONCLUSION

Matrix quantization involves representing matrix elements in a more space-efficient form to reduce
storage usage, with dequantization restoring the original matrix for practical applications. We frame
the Quantization Error Minimization (QEM) problem as minimizing the distance between a matrix
before and after quantization, constrained by the condition that the quantized matrix occupies the
same memory space.

To address the QEM problem, we propose Quantum Entanglement Trees (QET), which leverage the
local orderliness of matrix elements through iterative element swapping to form a locally ordered
matrix. To enhance the QET algorithm, we introduce two key optimizations: residual quantization
optimization and codebook quantization optimization.

Our experimental results demonstrate that QET can effectively reduce MSE to 5.05%, 13.33%, and
11.89% of the best existing methods on the LLM dataset, K cache, and V cache, respectively.
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A APPENDIX

A.1 QET DEQUANTIZATION

The dequantization process, as described by the QET Dequantization Algorithm, aims to reconstruct
the original matrix X ′ from its quantized version Xq . This process involves several key steps, as
shown in Algorithm 2:

Step 1: Dequantization Using Codebook. The first step involves using the codebook C to directly
retrieve the original vectors corresponding to each quantized vector gq

i in the matrix Xq . For each
vector gq

i in Xq
i,k, the algorithm assigns g′

i to the centroid cj from the codebook, where j is the index
corresponding to the quantized vector. This step effectively reverses the quantization by mapping
the quantized vectors back to their original forms using the codebook entries.

Step 2: Reverse Subspace Grouping. After mapping, the algorithm combines the dequantized
subspaces {G′

i}, where i = 1, 2, . . . ,m, into a single matrix X ′∗. Each subspace G′
i contains the

vectors g′
i corresponding to the original matrix entries. This step reconstructs the subspaces into an

uniform matrix that is a preliminary version of the original matrix X ′.

Step 3: Reverse Recursive Partitioning and Final Reconstruction. The final step involves re-
versing the recursive partitioning process that was applied during quantization. Starting from the
last iteration k = l, the algorithm merges the matrices Sk and Lk based on the Indicator Maps Ik
and the matrix X ′∗. This merging process is iteratively applied from k = l down to k = 1, updat-
ing X ′∗ at each step to gradually reconstruct the original matrix structure. The final output of the
algorithm is the reconstructed matrix X ′ ∈ Rn×d, which approximates the original matrix before
quantization.

Algorithm 2 QET Dequantization Algorithm

1: Input: Quantized matrix Xq = {Xq
i,k}, where i = 1, . . . , d and k = 1, . . . ,m; Codebook

C = {Ci}, where i = 1, . . . ,m; and Indicator Maps IM = {Ii}, where i = 1, . . . , l
2: Output: Reconstructed matrix X ′ ∈ Rn×d

3: Initialize X ′ as empty
4: Step 1: Dequantization Using Codebook
5: for each vector gq

i in Xq
i,k do

6: g′
i ← cj , where j corresponds to the codebook entry for gq

i ▷ Direct lookup from codebook
7: end for
8: Step 2: Reverse Subspace Grouping
9: Combine subspaces {G′

i}, where i = 1, 2, . . . ,m, G′
i = {g′

i} for i = 1 to n, to form X ′∗

10: Step 3: Reverse Recursive Partitioning
11: k ← l
12: while k ̸= 0 do
13: for i = 1 to 2k−1 do
14: Merge Si

k and Li
k based on Ik and X ′∗, then update the results into X ′∗

15: end for
16: k ← k − 1
17: end while
18: Return Reconstructed matrix X ′

A.2 PROOF OF THEOREM 1 (THEORETICAL ANALYSIS OF MSE)

Lemma 1. Suppose each element in the matrix is independently sampled with a mean µ and variance
σ2. After quantization by the PQ algorithm, the Mean Squared Error (MSE) is given by:

MSEPQ = σ2

(
1− 1

nk

)
.

Proof. Let c(i,j) denote the cluster centroid matrix, and let nk be the number of vectors in the cluster.
Define the residual matrix as s(i,j).
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The expectation of the residual matrix is:
E[s(i,j)] = E[x(i,j) − c(i,j)] = µ− µ = 0.

The Mean Squared Error (MSE) can be expressed as the variance of the residual matrix:
MSEPQ = Var[s(i,j)] = Var[x(i,j)] + Var[c(i,j)]− 2 · Cov(x(i,j), c(i,j)).

Given that c(i,j) is the centroid within the cluster:

MSEPQ = σ2 +
σ2

nk
− 2E

[
(x(i,j) − µ)

(
1

nk

nk∑
i=1

x(i,j) − µ

)]

= σ2 +
σ2

nk
− 2 · 1

nk

E
[
(x(i,j) − µ)2

]
+
∑
i ̸=i′

E
[
(x(i,j) − µ)(xi′j − µ)

] .

Since x(i,j) and xi′j (for i ̸= i′) are independent:

MSEPQ = σ2 +
σ2

nk
− 2 · σ

2

nk
=

(
1− 1

nk

)
σ2. (1)

Theorem 1. (Theoretical analysis of MSE) For the QET algorithm without optimization, where
matrix elements are independently sampled from a normal distribution x(i,j) ∼ N (µ, σ2), the Mean
Squared Error (MSE) is:

MSEQET = 0.682×MSEPQ.

Proof. We denote by FY (y) the cumulative distribution function (CDF) of the elements on the right
side of the matrix (i.e., the larger elements).

FY (y) = P (Y ≤ y) = P (max(Xl, Xr) ≤ y) = P (Xl ≤ y) · P (Xr ≤ y)
Where y represents the elements of the matrix formed by the larger of the adjacent elements in matrix
X . Xl and Xr denote the random variables corresponding to the adjacent left and right elements in
matrix X , respectively. Since Xl and Xr follow a normal distribution N (µ, σ2), we have:

FY (y) = Φ

(
y − µ

σ

)
· Φ
(
y − µ

σ

)
=

[
Φ

(
y − µ

σ

)]2
=

1

4

[
1 + erf

(
y − µ

σ
√
2

)]2
Take the derivative of FY (y) with respect to y:

fY (y) =

[
1 + erf

(
y − µ

σ
√
2

)]
· 1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
The mean and variance of Y are given by:

E(Y ) =

∫ ∞

−∞
y

[
1 + erf

(
y − µ

σ
√
2

)]
· 1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
dy

V ar(Y ) =

∫ ∞

−∞
(y − E(Y ))2

[
1 + erf

(
y − µ

σ
√
2

)]
· 1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
dy

Using numerical integration methods, we obtain:
E(Y ) = µ+ 0.564σ, Var(Y ) = 0.682σ2.

Because QET can be considered a special case of the PQ algorithm, according to Equation 1,

MSEQET =

(
1− 1

nk

)
Var(Y ) = 0.682

(
1− 1

nk

)
σ2 = 0.682 ·MSEPQ. (2)

Taking symmetry into account, this conclusion also holds for the smaller matrix on the left.
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A.3 THE PROOF OF THEOREM 2 (TIME COMPLEXITY FOR QUANTIZATION)

Lemma 2. Let kQET be the number of centroids in QET and kPQ be the number of centroids in
the Product Quantization (PQ) algorithm, under the same compression ratio. Due to the additional
storage required for l indicator matrices in our method, the relationship between kQET and kPQ is
given by

kQET =
kPQ

2∆
,

where

∆ =
l × (d− 1)

m
.

Proof. Under the same compression ratio b, the total storage requirements for both methods are
equal.

For PQ:
MemoryPQ = n×m× log2(kPQ) + kPQ × d× a.

For QET:

MemoryQET = n×m× log2(kQET) + kour × d× a+ l × n× (d− 1).

Setting MemoryPQ = MemoryQET and simplifying:

n×m× [log2(kQET)− log2(kPQ)] + (kQET − kPQ)× d× a+ l × n× (d− 1) = 0.

Assuming n is large and kQET, kPQ ≪ n, the second term is negligible:

n×m× [log2(kQET)− log2(kPQ)] + l × n× (d− 1) ≈ 0.

Divide both sides by n:

m× [log2(kQET)− log2(kPQ)] + l × (d− 1) = 0.

Solving for log2(kQET):

log2(kQET) = log2(kPQ)−
l × (d− 1)

m
.

Therefore,

kQET =
kPQ

2∆
, where ∆ =

l × (d− 1)

m
.

Theorem 2. (Time Complexity for Quantization) The QT of QET is reduced compared to PQ by
a factor of approximately 2∆. Specifically, the ratio of QT is

QTQET

QTPQ
≈ 2−∆,

where QTQET represents the quantization time for QET, while QTPQ represents the quantization time
for PQ.

Proof. The QT primarily depends on the clustering step.

QET’s Clustering Time:
Tcluster QET = O (t× n× kQET × d) .

PQ’s Clustering Time:
Tcluster PQ = O (t× n× kPQ × d) .

According to Lemma 2:

kQET =
kPQ

2∆
=⇒ kQET

kPQ
= 2−∆.
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Calculating the ratio of QT:

QTQET

QTPQ
=

(l + t× kQET)× n× d

t× n× kPQ × d
=

l

t× kPQ
+

kQET

kPQ
.

Since l and t are constants and kPQ is relatively large, the first term is negligible:

l

t× kPQ
≈ 0.

Thus,
QTQET

QTPQ
≈ kQET

kPQ
= 2−∆.

Therefore, our QT is reduced by a factor of 2∆ compared to PQ.

The reordering time complexity in QET is O(l × n × d). Since l is a small constant, the swapping
time is negligible compared to the clustering time and can be ignored.

A.4 THE PROOF OF THEOREM 3 (TIME COMPLEXITY FOR DEQUANTIZATION)

Theorem 3. (Time Complexity for Dequantization) The dequantization time complexity (DQT)
of our method increases compared to PQ by:

DQTQET −DQTPQ = O(l × n× d),

where DQTQET and DQTPQ represent the dequantization times of our method and PQ, respectively.

Proof. In PQ, the dequantization process involves a direct mapping from indices to centroids, yield-
ing a time complexity of DQTPQ.

In our method, the dequantization time DQTQET includes the additional complexity of the inverse
recursive splitting process, resulting in an increase of O(l × n× d), where l is the number of levels
in the recursive splitting process, n is the number of data points, and d is the dimensionality.

Thus, the dequantization time complexity increases by:

DQTQET −DQTPQ = O(l × n× d). (3)

A.5 EXPERIMENTAL RESULTS OF QUANTIZATION TIME (QT) AND DEQUANTIZATION TIME
(DQT)

In this experiments, we evaluated the performance of the quantization process by measuring both
Quantization Time (QT) and Dequantization Time (DQT) across multiple datasets, as shown in
Figures 4. These metrics provide a comprehensive understanding of the computational efficiency of
the algorithm at different compression ratios, ranging from 2 to 16.

For QT, the QET algorithm exhibits longer quantization times at lower compression ratios, but as
the compression ratio increases, QT decreases significantly. This phenomenon is expected, as fewer
centroids simplify the clustering process, resulting in faster compression as the compression ratio
increases. Vanilla consistently achieves lower QT across all datasets compared to QET, making it
the faster option, albeit with a slight loss in accuracy. In contrast, PQ and other baseline meth-
ods demonstrate moderate QT performance, although OPQ and LOPQ show slower performance at
larger matrix sizes due to their complexity.

As for DQT, QET maintains a relatively stable performance across all compression ratios and
datasets, with marginal increases in time as the compression ratio grows. Vanilla follows a simi-
lar trend but achieves faster dequantization. PQ remains competitive in terms of both QT and DQT.
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(a) QT of Synthetic 1.
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(b) DQT of Synthetic 1.
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(c) QT of Synthetic 2.
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(d) DQT of Synthetic 2.
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(e) QT of Synthetic 3.
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(f) DQT of Synthetic 3.
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(g) QT of LLM.
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(h) DQT of LLM.
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(i) QT of K cache.
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(j) DQT of K cache.
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(k) QT of V cache.
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(l) DQT of V cache.

Figure 4: QT (s) and DQT (s) of different datasets.
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