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Abstract

Anomaly detection is a crucial task in data mining, focusing on identifying data
points that deviate significantly from the main patterns in the data. This paper
introduces Anomaly Detection by an Ensemble of Random Pairs of Hyperspheres
(ADERH), a new isolation-based technique leveraging two key observations: (i)
anomalies are comparatively rare, and (ii) they typically deviate stronger from
general patterns than normal data points. Drawing on a δ-separation argument,
ADERH constructs an ensemble of multi-scale hyperspheres built upon randomly
paired data points to identify anomalies. To address inevitable overlaps between
anomalous and normal regions in the feature space, ADERH integrates two com-
plementary concepts: Pitch, which highlights points near hypersphere boundaries,
and NDensity, which down-weights hyperspheres centered on sparse (and often
anomalous) regions. By averaging these local, density-adjusted “isolation” indi-
cators across many random subsets, ADERH yields robust anomaly scores that
clearly separate normal from abnormal samples. Extensive experiments on diverse
real-world datasets show that ADERH consistently outperforms state-of-the-art
methods while maintaining linear runtime scalability and stable performance across
varying hyperparameter settings.

1 Introduction

Anomaly detection is an essential tool in data mining, as it can uncover critical information [Agrawal
and Agrawal, 2015]. For instance, anomalies may indicate credit card fraud, analyze critical behavior
in network applications, or assist in diagnosing rare medical conditions [John and Naaz, 2019, Tao
et al., 2018, Abuzaid, 2020]. In the era of big data, where data volumes are rapidly increasing,
it is essential for anomaly detection methods to effectively and efficiently identify anomalies in
large datasets [Ahmed et al., 2017, Mansour et al., 2023, Thudumu et al., 2020]. However, not all
anomaly detection methods are suitable for larger datasets. Due to high runtime complexity, density-
based methods like the Local Outlier Factor (LOF) [Breunig et al., 2000] and deep learning-based
approaches [Pang et al., 2021] have limited applicability. Isolation-based methods on the other
hand typically operate on data subsets, making them more effective for handling larger datasets [Xu
et al., 2017, Xiong et al., 2022]. Examples of such algorithms include Isolation Forest (IForest) [Liu
et al., 2008], Efficient Anomaly Detection by Isolation Using Nearest Neighbour Ensemble (INNE)
[Bandaragoda et al., 2014], Extended Isolation Forest (EIF) [Hariri et al., 2019], or Deep Isolation
Forest (DIF) [Xu et al., 2023a]. These approaches utilize two essential properties that distinguish
anomalies from regular data points.
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• RARITY: Anomalies comprise only a small proportion of the dataset, i.e., most of the
samples represent regular data points [Barnett et al., 1994, Aggarwal, 2016].

• DEVIATION: Anomalies differ significantly from the general patterns in a dataset, sug-
gesting that they originate from different processes than regular samples [Hawkins, 1980].

We formalize these properties with the δ-separation assumption: normal samples form compact
regions, while anomalies lie mainly beyond their boundaries (Section 3.1). However, current isolation-
based methods have certain limitations. IForest [Liu et al., 2008] efficiently detects anomalies via
random partitioning, but its reliance on global, axis-aligned splits can miss complex or locally defined
outliers. INNE [Bandaragoda et al., 2014] attempts to address this by utilizing hyperspheres to
capture local patterns, but it is sensitive to the sample size and assigns equal weights to hyperspheres,
which can limit its robustness [Bandaragoda et al., 2018].

We propose ADERH, a method that isolates anomalies using compact hyperspheres designed to
minimize overlap with anomalies. Guided by the δ-separation principle—which assumes that
anomalies lie beyond normal regions —ADERH constructs small local subsets and pairs of points.
By halving each pairwise distance, it forms compact hyperspheres that adapt to multiple scales and
collectively cover diverse normal regions, thereby reducing overlap with anomalies and enhancing
isolation precision. Since perfect δ-separation may fail in practice, we refine each hypersphere’s
isolation signal with (i) Pitch, a ratio-based distance measure accentuating boundary anomalies, and
(ii) NDensity, which down-weights hyperspheres in sparse (anomalous) regions. Finally, ADERH
ensemble-averages these local isolation signals, further reducing variance and enhancing robustness
on real-world, heterogeneous data.

In summary, we make the following contributions:

• We present ADERH, a novel technique for assigning anomaly scores to data points by
analyzing their position within multiple hyperspheres and the characteristics of these hyper-
spheres.

• Hyperspheres may still include anomalies near the boundary or span around anomalies,
blurring distinctions between normal and abnormal data. To overcome this, ADERH intro-
duces two components: NDensity, which down-weights hyperspheres in sparse (anomalous)
regions, and Pitch, which emphasizes points near hypersphere boundaries.

• Thus, ADERH more effectively distinguishes anomalies from normal samples, overcoming
limitations that arise from relying solely on hypersphere- or distance-based methods.

• ADERH delivers robust and stable anomaly scores across a wide range of hyperparameters,
maintains high efficiency on large-scale datasets, and—through extensive experiments
involving both default parameter settings and exhaustive grid searches— outperforms state-
of-the-art anomaly detection methods.

2 Related work

Over the past few decades, anomaly detection has been extensively studied using various techniques
such as density, isolation, or deep learning.

Isolation-based approaches assume that a small fraction of the data consists of anomalies (RARITY)
and that those have different attribute values than normal data points (DEVIATION). A prominent
example is the Isolation Forest (IForest) [Liu et al., 2008], which recursively partitions the feature
space by selecting random features and random split values; anomalies tend to have shorter paths
from the root node. The Extended Isolation Forest (EIF) [Hariri et al., 2019] improves on IForest by
using hyperplanes with randomly determined slopes for splitting, enhancing accuracy across diverse
datasets. PIDForest [Gopalan et al., 2019] accelerates isolation while incorporating a density-based
criterion (PIDScore) that quantifies the minimum density among all subcubes covering a data point.
Deep Isolation Forest (DIF) [Xu et al., 2023a] leverages a learned ensemble of random representations
that produce non-linear partitions in the feature space.

Distance/Density-based approaches flag anomalies in sparse regions. The Local Outlier Factor
(LOF) [Breunig et al., 2000] measures how much a point’s local density deviates from that of its
neighbors, while the Connectivity-based Outlier Factor (COF) [Tang et al., 2002] refines LOF by
incorporating chaining distances to better handle linear data structures.
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Boundary-based approaches define a boundary around normal data and classify points outside this
region as anomalies. For instance, the One-Class Support Vector Machine (OCSVM) [Schölkopf
et al., 2001, Bounsiar and Madden, 2014], finds a hyperplane that maximally separates normal
samples from the origin, treating any observation lying outside this boundary as anomalous.

Ensemble-based approaches combine multiple anomaly detection methods to mitigate individual
drawbacks and leverage their strengths, to enhance performance and robustness [Zimek et al., 2014,
Cheng et al., 2019, Zhao et al., 2019a]. For instance, LODA [Pevnỳ, 2016] aggregates outputs from
diverse weak detectors, using their collective decisions to identify anomalies. Similarly, LSCP [Zhao
et al., 2019a] selects base detectors and determines a point’s anomaly score by analyzing its local
data distribution and combining the detectors’ outputs.

Deep learning-based approaches have advanced rapidly, leveraging representation learning to
compute anomaly scores on complex data [Wang et al., 2019a, Pang et al., 2021]. For example,
DeepSVDD [Ruff et al., 2018] tries to embed data into a hypersphere, classifying points on the
outside as anomalies. To prevent representation collapse, Deep Robust One-Class Classification
(DROCC) [Goyal et al., 2020] refines boundaries around normal samples by clustering them closer
and using adversarial perturbations as hard negatives. Other methods emphasize collaboration or
distance-based representations: A Deep Collaborative Autoencoder Approach for Anomaly Detection
(RCA) [Liu et al., 2021] iteratively trains multiple autoencoders on low-error samples, exchanging
these to enhance detection; Unsupervised Representation Learning by Predicting Random Distances
(RDP) [Wang et al., 2019b] uses a two-branch, weight-shared model to map data into a distance-
preserving space for isolating anomalies. SLAD [Xu et al., 2023b] introduces a self-supervised
“scale” concept for tabular data, learning global normal patterns and identifying anomalies via higher
errors. Diffusion Modeling for Anomaly Detection (DTE) [Livernoche et al., 2024] estimates how
"diffused" an input is relative to the normal data manifold, enabling fast and accurate anomaly
detection. UniCAD [Fang et al., 2025] introduces a unified probabilistic mixture model linking
representation learning, clustering, and anomaly detection through an anomaly-aware likelihood
function, yielding a theoretically grounded anomaly score.

Hypersphere-based anomaly detection was first introduced through global hypersphere models
designed to enclose normal data points [Kumar et al., 2003, Tax and Duin, 2004]. MV-ERM
and MV-SRM [Scott and Nowak, 2005] reframe minimum-volume estimation as empirical risk
minimization. MV-ERM minimizes the region capturing an α-fraction of data under a penalized
risk, while MV-SRM integrates the penalty into the objective for automatic complexity control.
GEM [Hero, 2006] formulated anomaly detection via geometric-entropy minimization, identifying
subsets with minimal k-NN or MST wiring length as minimum-entropy approximations. DTM [Gu
et al., 2019] estimated local radii enclosing mass m, with bagging reducing variance but retaining
global-distance dependence. INNE [Bandaragoda et al., 2014] used hypersphere ratios—between
a point’s enclosing radius and its nearest neighbor’s—to score anomalies. Despite progress, most
methods rely on a few large hyperspheres with limited local adaptivity, often failing near or on
boundaries. In contrast, ADERH forms an ensemble of compact hyperspheres from random pairs
of points, each defining two half-radius spheres with varying radii. It integrates Pitch (boundary
sensitivity) and NDensity (sparse-region down-weighting) to handle boundary and center anomalies.
These choices ensure robust scalability—small subsets and simple distance checks suffice—and
strong empirical performance, surpassing traditional and deep hypersphere methods with linear-
time efficiency.

3 Anomaly Detection by an Ensemble of Random Pairs of Hyperspheres

Considering a dataset D ⊂ Rd containing m points drawn i.i.d. from a mixture distribution

P = αPN + (1− α)PA, (0 ≪ α < 1), (1)

where PN captures the normal data and PA represents the anomalous data. Our goal is to define an
anomaly scoring function I : Rd → R that assigns higher scores I(x) to anomalous points than to
normal points. Building upon the fact that anomalies form a small fraction of the data and exhibit
distinctly different characteristics, we formalize these observations using a δ-separation assumption.
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3.1 δ-Separation

Concretely, we assume that normal points cluster within small-radius neighborhoods, whereas
anomalous points are located at least a distance δ from any local cluster:
Assumption 3.1 (δ-Separation). Let J be a finite, nonempty index set and let {µj}j∈J ⊂ Rd be
a set of cluster centers. Let PN and PA be probability measures on Rd. Assume there exist radii
0 < σ < δ and small parameters 0 < ε, ε′ ≪ 1 such that:

1. Normal-Point Proximity. For x ∼ PN ,

Pr

(
min
j∈J

∥x− µj∥ ≤ σ

)
≥ 1− ε.

2. Anomaly Exclusion. For z ∼ PA,

Pr

(
min
j∈J

∥z − µj∥ ≥ σ + δ

)
≥ 1− ε′.

Since δ > σ > 0, up to probabilities ε and ε′, normal samples lie within distance σ of some center,
while anomalies lie at least σ + δ from every center.

Remark: This assumption reflects a common anomaly-detection pattern in which normal data cluster
around modes µj , and anomalies occupy sparser regions beyond distance δ. For example, credit-card
fraud often lies outside the compact clusters formed by legitimate transactions. Although δ-separation
need not hold exactly, requiring most normal points to lie within σ of some center and most anomalies
to lie beyond σ+ δ suffices for our analysis (up to small ε, ε′). Similar local-separability assumptions
appear in [Breunig et al., 2000, Ester et al., 1996, Bandaragoda et al., 2018]. Sections 3.3–3.4 describe
how boundary- and density-based terms address partial violations of δ-separation.

3.2 The ADERH algorithm

Building on RARITY and DEVIATION formalized by δ-separation, ADERH is designed to iso-
late anomalies using multiple hyperspheres rather than a single fixed-radius sphere. Under ideal
δ-separation, normal points lie within radius σ, and anomalies remain at least δ away, making hy-
perspheres around normal samples a natural isolation mechanism. In practice, perfect separability
rarely holds, so ADERH augments each hypersphere’s isolation signal with Pitch (a ratio-based
distance) and NDensity (a density-based term) to handle anomalies that partially overlap with normal
clusters. A single hypersphere is insufficient for multi-scale data, so ADERH creates an ensemble
of hyperspheres at varying radii (see Appendix B), then averages their local anomaly scores. As
Theorem 3.15 shows, this ensemble averaging reduces variance and robustly isolates anomalies even
when strict δ-separation is violated. For this purpose, the procedure first creates a set of n subsets,
where each subset contains ω samples:
Definition 3.2 (Set of subsets). We sample n random subsets of size ω from the dataset D:

SUBSETS(D, n, ω) = {S1, . . . ,Sn}, (2)

where ∀1≤i≤n : Si ⊂ D, |Si| = ω and ω is an even number. The subsets Si are generated by uniform
sampling from the dataset D with replacement.

The goal of ADERH is to create multiple hyperspheres of different radii in each subset Si, so that
dense areas are captured by smaller hyperspheres, and sparser areas by larger ones. This is achieved
by random pairings through the partner function P , which naturally reflects local density in the
hypersphere radii and, therefore, yields multi-scale coverage (see Appendix B and C).
Definition 3.3 (Partner function P ). The function P (x,Si) assigns a random point y ∈ Si to a sample
x ∈ Si, where x ̸= y. Each partner y is selected exactly once through uniform sampling. Formally,
this can be expressed as {P (x,Si) | x ∈ Si} = Si. Note that y = P (x,Si) ⇒ x = P (y,Si) is not
necessarily valid.

While allowing hyperspheres to vary in radius helps capture local structures, this radius variability
also risks producing oversized hyperspheres that can absorb anomalies, especially in heterogeneous
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data [Bandaragoda et al., 2014, Ruff et al., 2018]. To mitigate this, ADERH transforms each pair
(x, y) into two hyperspheres—one centered on x and one on y—each using half the pairwise distance,
i.e., 1

2 dist(x, y), as the radius. This halving avoids excessively large radii, reduces overall radius
variance, and makes hypersphere sizes more uniform. We use the 1

2 factor as a principled trade-off
between coverage and exclusion, as discussed in Appendix A.

Motivating Hypersphere Construction. ADERH aims to isolate anomalies by combining multiple
hyperspheres with diverse radii. By combining these compact hyperspheres into an ensemble, we
reduce their overlap with anomalies, thereby boosting anomaly-detection performance. Below, we
formalize the construction of these hyperspheres, which collectively underpin our method’s ability to
separate anomalies from normal data.
Definition 3.4 (Hypersphere H). Given a sample x ∈ Si and its partner y = P (x,Si), we create two
distinct hyperspheres H(x,Si) and H(y,Si), where x and y are the respective centers. The radius R
of both hyperspheres is defined as:

R(H) =
dist(x, y)

2
. (3)

Further, we define the set of potential data points that a hypersphere H covers as:

XH = {x|x ∈ Rd ∧ dist(x,C(H)) ≤ R(H)}, (4)

where the function C(H) returns the center of the hypersphere H. In this paper, we employ the
Euclidean distance as the distance function dist(·, ·). The ADERH algorithm, however, remains valid
for any metric space, as it relies solely on the fundamental properties of a metric.

For each subset Si, we create an ensemble of hyperspheres:
Definition 3.5 (Ensemble of hyperspheres E). Let Si ∈ SUBSETS, then the ensemble of hyper-
spheres E is:

E(Si) =
⋃
x∈Si

{H(x,Si),H(P (x,Si),Si)}. (5)

The definitions set so far could be sufficient in an ideal world, where all hyperspheres were created
around normal data points and the hyperspheres are sufficiently small to exclude anomalies. However,
real-world datasets often violate strict δ-separation. Two key complications arise:

1. Anomaly Contamination: Some anomalies may fall inside hyperspheres centered on
normal samples (Fig. 1). Although these anomalies are technically covered, they typically
appear near the hypersphere boundary rather than close to its center.

2. Anomaly Hyperspheres: Anomalies can also act as hypersphere centers, forming low-
density (or ‘sparse’) hyperspheres that cover few neighbors (Fig. 2).

To handle these cases, we extend our hypersphere framework with two complementary measures
Pitch (Section 3.3) and NDensity (Section 3.4).

3.3 Anomaly Contamination

Although δ-separation outlines a margin between normal and anomalous points, real data often
violates this idealized boundary [Ruff et al., 2018, Breunig et al., 2000], allowing anomalies to appear
near or within local clusters (Fig. 1). Yet, on average, anomalies remain farther from hypersphere
centers than normal points [Ruff et al., 2018]. To leverage this property, we use a ratio—distance
from the hypersphere center over its radius—to distinguish anomalies from inliers. Concretely, for a
hypersphere H created from subset Si ∈ SUBSETS, we define Pitch as:
Definition 3.6 (Pitch). The Pitch represents the adjusted distance between a sample x ∈ D and the
center c = C(H) of a hypersphere H.

Pitch(x,H) =

{
dist(x,c)
R(H) , if dist(x, c) ≤ R(H),

1, otherwise.
(6)
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Figure 1: The issue of Anomaly Contamination: Anomalies (black dots) can lie within hyperspheres
centered on regular samples (green dots). However, as local anomalies are typically farther from
regular samples than regular samples are from each other (DEVIATION), we apply Pitch to replace
strict δ-separation with a ratio-based isolation measure. This flags borderline anomalies near regular
samples without requiring rigid margins.

Figure 2: The issue of Anomaly Hyperspheres: Hyperspheres typically form around regular samples
(green dots), as anomalies are rare (RARITY). However, in some cases, anomalies (red dots) may
generate hyperspheres. Note that hyperspheres around regular samples generally enclose more points,
aligning with DEVIATION. The colors of the hypersphere indicate which points were paired to
create the hypersphere.

As anomalies are characterized by larger distances to the center of a hypersphere than normal data
points, the Pitch strengthens the differences between corresponding samples. Abnormal data points
within the hypersphere should have a large ratio dist(x,c)

R(H) and therefore a Pitch close to 1. In contrast,
normal data points usually have a significantly smaller Pitch.

3.4 Anomaly Hyperspheres

The strategies proposed thus do not fully resolve the problem of hyperspheres centered around
anomalous samples (Fig. 2). Since anomalies may exist within any random subset Si ∈ SUBSETS,
hyperspheres defined by these anomalies may lead to inaccurate anomaly scores, often misclassifying
anomalies as normal. While the ensemble averaging across subsets mitigates their overall impact,
individual subsets remain susceptible to these anomaly-centered effects. This issue is exacerbated
in larger subsets, where the probability of including at least one anomaly increases with subset size
ω = |Si|, as shown in:

Panomaly(x) ≈ 1−
(
|N |
|D|

)ω

, (7)

where |N | and |D| denote the number of normal samples and the dataset size, respectively. The
Pitch determined by hyperspheres defined by these anomalies would give inaccurate anomaly scores.
Considering DEVIATION, we know that most data points are regular samples close to each other.
Anomalies are characterized by an environment of lesser density and are further away from the
remaining data. Thus, the data distribution within a hypersphere indicates hyperspheres centered
around anomalies. For this purpose, ADERH introduces the concept of hypersphere density:

Definition 3.7 (Density of a hypersphere). The density of a hypersphere H with associated region
XH (see Eq. 4) is defined as:

Density(H) =
|XH ∩ D|
R(H)

. (8)
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As explained above, the greater the density of a hypersphere, the more likely it is to be a hypersphere
centered around a normal sample. In contrast, a hypersphere built around an abnormal sample has
a lower density. We normalize the densities by considering the density of the hypersphere with the
highest density in E(Si). Consequently, the maximum normalized density of a hypersphere is 1.
Definition 3.8 (NDensity of a hypersphere). The normalized density of a hypersphere is defined as:

NDensity(H,Si) =
Density(H)

maxHj∈E(Si) Density(Hj)
(9)

3.5 Anomaly score

In the subsequent section, we detail the computation of the anomaly score. This score
is based on the ideas of Density and Pitch, addressing both Anomaly Contamination and
Anomaly Hyperspheres. First, we define the weighted Pitch (WPitch), which combines the Pitch
of a sample with the NDensity of a corresponding hypersphere.
Definition 3.9 (Weighted Pitch WPitch). The weighted Pitch, denoted as WPitch, of a sample
x ∈ D concerning a hypersphere H ∈ E(Si) is defined as:

WPitch(x,H,Si) =


(1−NDensity(H,Si)), if x = C(H),

(1−NDensity(H,Si)) · Pitch(x,H), if x ∈ XH,

1, otherwise.
(10)

where XH are the data points within H (Definition 3.4). Note that, since NDensity and Pitch are
within the range [0, 1], WPitch is also constrained to the interval [0, 1].

Weighted Pitch. Our anomaly scoring combines a ratio-based boundary measure (Pitch) with a
normalized density (NDensity) to highlight points that are both near a hypersphere boundary and in
a sparse region. By adopting a multiplicative approach, high anomaly scores only occur when both
boundary proximity (Pitch ≈ 1) and hypersphere sparsity (1−NDensity ≈ 1) coincide, reducing
the risk of overestimating anomalies in dense areas. In contrast, an additive scheme may inflate
scores whenever either signal is large. As shown in Appendix R, the multiplicative form consistently
achieves stronger precision and recall.
Lemma 3.10 (Sparse anomaly–centered hyperspheres). Let z ∼ PA be an anomaly with minj ∥z −
µj∥ ≥ σ + δ. For a random subset Si ⊆ D the following holds

NDensity
(
H(z),Si

)
−→ 0.

Proof in Appendix D. Therefore, data points inside hyperspheres centered around anomalies are
assigned a higher WPitch compared to data points inside hyperspheres centered around regular
samples. If a point is near the center of a hypersphere with high density, the weighted Pitch (WPitch)
for that point will be low, strongly suggesting it is a regular sample. Since a data point x can be
covered by multiple hyperspheres, it is necessary to identify the most relevant hypersphere for x, i.e.,
the one where x has the minimum WPitch. This leads to the definition of the set of hyperspheres
containing x:

T (x,Si) = {H | H ∈ E(Si) ∧ x ∈ XH}. (11)

From this, we compute the smallest cover (SC) as follows:
Definition 3.11 (Smallest Cover SC). We define the most relevant hypersphere for a sample x ∈ D
in E(Si) as the smallest cover (SC), determined by:

SC(x,Si) =

{
argminH∈T (x,Si) WPitch(x,H,Si), if T (x,Si) ̸= ∅,
∅, otherwise.

(12)

Based on SC(x,Si), we define the base anomaly score F(x,Si), which quantifies the likelihood of a
data point being an anomaly. This score incorporates the position of x within the hypersphere and the
hypersphere’s density.
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Definition 3.12 (Base anomaly score F(x,Si)). The base anomaly score of a data point x with
respect to Si is denoted by F(x,Si) and is defined as:

F(x,Si) =

{
WPitch(x, SC(x,Si),Si), if SC(x,Si) ̸= ∅,
1, otherwise.

The base anomaly score F(x,Si) for a data point is bounded between 0 and 1.

Lemma 3.13 (Normal and anomaly base scores). Let x be a typical normal point, i.e., x lies within
distance σ of some cluster center µ; let z be a typical anomaly, i.e., z is at least σ + δ from every
center. Suppose we draw a random subset S ⊆ D of size ω. Then, with high probability,

F(x,S) < F(z,S),

meaning x gets a significantly lower base anomaly score than z.

Proof in Appendix F. A single hypersphere often proves inadequate for anomaly detection in high-
dimensional or heterogeneous data [Bandaragoda et al., 2014]: if its radius is too large, it may
include borderline anomalies along with normal samples; if too small, it may miss broader structures.
Moreover, representing the full data distribution with one hypersphere can lead to high-variance or
biased anomaly scores. Instead, constructing an ensemble of hyperspheres provides multiple local
characterizations at different scales, offering broader coverage and mitigating the shortcomings of any
single hypersphere. This ensemble strategy also leverages variance reduction by averaging individual
scores [Zimek et al., 2014], thereby diminishing noise and errors. Concretely, let F(x,Si) denote the
base anomaly score of a point x derived from hyperspheres created within subset Si. Since subsets
focus on different localities and potentially produce hyperspheres of varied radii, these base scores are
independent but not identically distributed (i.n.i.d.). Based on this, we define the ensemble isolation
score I as the average of the base anomaly scores across all subsets:

Definition 3.14 (Ensemble Isolation Score I). The anomaly score of a sample x ∈ D is
aggregated over all subsets Si ∈ SUBSETS as:

I(x) = 1

n

∑
Si∈SUBSETS

F(x,Si), (13)

where n is the number of subsets. This ensemble-based approach minimizes the risk of anomaly
scores being disproportionately influenced by any single hypersphere. The variance of the
isolation score (I(x)) is bounded by:

Var(I(x)) ≤ 1

4n
. (14)

Additionally, the probability of large deviations from the expected isolation score decreases
exponentially with the number of used hyperspheres n:

P (|I(x)− E[I(x)]| ≥ ϵ) ≤ 2 exp

(
− nϵ2

1
2 + 2

3ϵ

)
. (15)

Proof in Appendix E.

Theorem 3.15 (Isolation Score Separates Normal and Anomalous Points). Let x ∼ PN lie within
σ of some µj , and z ∼ PA lie at least σ + δ from every µj . In each subset Si, define base scores
F(x,Si) via the smallest cover. Then

I(x) =
1

n

n∑
i=1

F(x,Si), I(z) =
1

n

n∑
i=1

F(z,Si).

There exist constants κN < κA such that, with high probability,

E[I(x)] ≈ κN < κA ≈ E[I(z)].

Moreover, Var[I(·)] ≤ 1
4n decreases as n → ∞, making the separation robust.
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Table 1: This table reports AUC-ROC results using default parameters. Best and second-best values
are shown in bold and underlined, respectively. The “AVG Rank” row lists the mean rank (lower
is better). The last row shows Wilcoxon signed-rank test p-values (α = 0.05); “+” indicates cases
where ADERH performs significantly better.

Dataset ADERH INNE IForest EIF DIF PIDForest LOF DeepSVDD RCA RDP OCSVM LODA SLAD DTE UniCAD

Optdigits 0.775 (1) 0.766 (2) 0.704 (4) 0.696 (5) 0.588 (6) 0.500 (13) 0.540 (8) 0.411 (15) 0.740 (3) 0.502 (12) 0.525 (9) 0.445 (14) 0.560 (7) 0.525 (9) 0.507 (11)
Wbc 1.000 (1) 0.911 (10) 1.000 (1) 1.000 (1) 0.760 (13) 0.986 (8) 0.903 (11) 0.901 (12) 0.997 (6) 0.958 (9) 1.000 (1) 0.998 (5) 0.718 (14) 0.423 (15) 0.994 (7)
Lymphography 1.000 (1) 0.988 (7) 0.998 (6) 1.000 (1) 0.877 (13) 0.977 (10) 1.000 (1) 0.907 (12) 1.000 (1) 0.984 (9) 1.000 (1) 0.694 (14) 0.952 (11) 0.388 (15) 0.988 (7)
Celeba 0.732 (3) 0.685 (7) 0.695 (6) 0.718 (4) 0.663 (9) 0.659 (10) 0.432 (14) 0.494 (13) 0.664 (8) 0.586 (11) 0.699 (5) 0.576 (12) 0.787 (2) 0.000 0.810 (1)
Skin 0.788 (2) 0.707 (6) 0.673 (10) 0.701 (7) 0.675 (9) 0.723 (4) 0.569 (11) 0.473 (13) 0.690 (8) 0.810 (1) 0.485 (12) 0.456 (14) 0.766 (3) 0.000 0.721 (5)
Pendigits 0.962 (1) 0.931 (8) 0.953 (2) 0.947 (3) 0.945 (5) 0.919 (9) 0.495 (13) 0.238 (15) 0.891 (12) 0.905 (11) 0.932 (7) 0.946 (4) 0.915 (10) 0.494 (14) 0.944 (6)
Wdbc 0.981 (3) 0.948 (10) 0.980 (4) 0.987 (2) 0.722 (14) 0.973 (7) 0.974 (6) 0.851 (12) 0.950 (9) 0.869 (11) 0.988 (1) 0.978 (5) 0.784 (13) 0.434 (15) 0.962 (8)
AD-Toothbrush 0.901 (2) 0.893 (3) 0.877 (4) 0.864 (6) 0.877 (4) 0.500 (14) 0.710 (11) 0.832 (8) 0.682 (13) 0.837 (7) 0.736 (10) 0.692 (12) 0.937 (1) 0.483 (15) 0.823 (9)
Wpbc 0.554 (1) 0.525 (5) 0.489 (11) 0.506 (9) 0.465 (15) 0.519 (8) 0.549 (2) 0.474 (14) 0.525 (5) 0.505 (10) 0.475 (12) 0.533 (3) 0.527 (4) 0.475 (12) 0.525 (5)
AD-Leather 0.991 (1) 0.903 (10) 0.982 (5) 0.983 (4) 0.985 (3) 0.500 (15) 0.794 (12) 0.979 (7) 0.905 (9) 0.976 (8) 0.884 (11) 0.746 (13) 0.987 (2) 0.573 (14) 0.980 (6)
Satimage-2 0.998 (1) 0.997 (3) 0.992 (6) 0.993 (5) 0.996 (4) 0.981 (7) 0.446 (15) 0.571 (13) 0.974 (10) 0.978 (9) 0.971 (11) 0.980 (8) 0.917 (12) 0.481 (14) 0.998 (1)
MNIST-C-Stripe 0.986 (2) 0.964 (8) 0.966 (5) 0.975 (4) 0.965 (7) 0.500 (13) 0.425 (14) 0.532 (12) 0.988 (1) 0.900 (11) 0.966 (5) 0.980 (3) 0.959 (9) 0.367 (15) 0.943 (10)
Shuttle 0.987 (4) 0.979 (8) 0.997 (1) 0.994 (2) 0.964 (10) 0.966 (9) 0.539 (14) 0.563 (13) 0.981 (7) 0.954 (11) 0.984 (5) 0.743 (12) 0.984 (5) 0.000 0.988 (3)
Waveform 0.768 (1) 0.740 (2) 0.698 (8) 0.720 (4) 0.729 (3) 0.593 (11) 0.700 (7) 0.552 (13) 0.661 (9) 0.589 (12) 0.527 (14) 0.632 (10) 0.706 (6) 0.497 (15) 0.709 (5)
Cardio 0.938 (1) 0.918 (4) 0.919 (3) 0.924 (2) 0.909 (7) 0.857 (10) 0.665 (13) 0.529 (14) 0.891 (8) 0.879 (9) 0.917 (5) 0.850 (12) 0.852 (11) 0.487 (15) 0.912 (6)
AD-Bottle 0.964 (2) 0.936 (9) 0.949 (6) 0.945 (8) 0.961 (4) 0.500 (15) 0.925 (10) 0.911 (11) 0.849 (13) 0.977 (1) 0.876 (12) 0.948 (7) 0.963 (3) 0.511 (14) 0.954 (5)
Census 0.628 (1) 0.477 (12) 0.597 (5) 0.621 (2) 0.574 (7) 0.522 (10) 0.538 (8) 0.497 (11) 0.607 (4) 0.609 (3) 0.533 (9) 0.467 (13) 0.587 (6) 0.000 0.000
Wine 0.839 (3) 0.794 (5) 0.745 (7) 0.743 (8) 0.448 (12) 0.000 (15) 0.898 (2) 0.475 (11) 0.802 (4) 0.333 (14) 0.488 (10) 0.728 (9) 0.762 (6) 0.399 (13) 0.930 (1)
Musk 1.000 (1) 1.000 (1) 0.998 (6) 0.997 (7) 0.977 (9) 1.000 (1) 0.359 (15) 0.691 (13) 0.983 (8) 0.706 (12) 0.783 (11) 0.898 (10) 0.999 (5) 0.412 (14) 1.000 (1)
AVG Rank 1.68 6.32 5.26 4.42 8.11 9.95 9.84 12.21 7.26 9.00 7.95 9.47 6.84 14.11 5.84
p-value NA 0.00192350 (+) 0.00271786 (+) 0.00354127 (+) 0.00005341 (+) 0.00192350 (+) 0.00251627 (+) 0.00005341 (+) 0.00192350 (+) 0.00072479 (+) 0.00251627 (+) 0.00005341 (+) 0.00354127 (+) 0.00005341 (+) 0.02769850 (+)

The values marked with † indicate that an error occurred during execution.

Proof in Appendix F. Ensemble averaging over all hyperspheres Si ∈ SUBSETS reduces variance
and smooths out errors from any single, poorly placed hypersphere. Thus, ADERH computes a final
isolation score I ∈ [0, 1] for each point by averaging local anomaly scores, with anomalies typically
scoring near 1 and normal samples near 0. Enlarging the ensemble (n) further lowers variance and
enhances detection reliability. An ablation study in Appendix O and O.1 confirms that combining
Pitch and NDensity effectively addresses partial violations of δ-separation.

4 Experiments

4.1 Experimental setup

We perform a stratified 70%/30% train–test split that preserves the anomaly ratio, and normalize all
features to the [0, 1] range using a MinMaxScaler [Pedregosa et al., 2011]. Experiments are repeated
on three stratified splits. For methods with intrinsic randomness, we run 5 seeds {0, 1, 2, 100, 1000}
per split (15 runs total per dataset–method), while deterministic methods use 3 runs (one per split).
Models are trained on the training partition and produce continuous anomaly scores on the test
partition. We report AUC-ROC and AUC-PR [Davis and Goadrich, 2006] as mean across runs. For
the experiments, we applied default parameters following the respective publications, with ADERH’s
parameters detailed in Appendix H. We also conducted experiments using a comprehensive grid
search (details in Appendix Q). Across datasets, ADERH was compared to all competitors using a
paired Wilcoxon signed-rank test with Holm–Bonferroni correction at α=0.05 [McDonald, 2014].
Experimental details, including runs, seeds, and significance testing, are provided in Appendix K.
Code is available at https://github.com/Walid10010/ADERH.git.

4.1.1 Real-world datasets

Tables 1 and Appendix L present the AUC-ROC and AUC-PR results under default settings. No-
tably, ADERH achieves first place in 11 datasets and second place in 6 for AUC-ROC (Table 1),
outperforming isolation-based methods (e.g., IForest) and deep anomaly detection methods (e.g.,
DeepSVDD, RCA, DIF). Compared to single-sphere or single-hyperplane strategies (e.g., DeepSVDD,
OCSVM), ADERH’s ensemble of hyperspheres excels by incorporating each hypersphere’s position
and unique weight (WPitch). Unlike INNE, which relies solely on the ratio of two hyperspheres’
radii, ADERH forms pairs of compact (half-radius) hyperspheres and augments their scores with
Pitch and NDensity, enabling it to better highlight borderline anomalies and down-weight sparse,
anomaly-centered hyperspheres, thereby producing more accurate anomaly scores. Further, while
LOF relies on a fixed-size neighborhood, ADERH forms an ensemble of WPitch-weighted hyper-
spheres via random pairing, creating robust multi-scale coverage and yielding a top AUC-ROC rank
of 1.68 (on average). ADERH also excels in AUC-PR (Appendix L), with an average rank of 2.29.
Wilcoxon signed-rank tests confirm that ADERH significantly outperforms its competitors in both
AUC-ROC and AUC-PR.
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Table 2: AUC-ROC (higher is better) comparing ADERH against classical covering methods GEM
and DTM. Numbers in parentheses are per-row ranks; ties share the same rank.

Dataset ADERH GEM DTM
Optdigits 0.775 (1) 0.378 (3) 0.770 (2)
Skin 0.788 (1) 0.613 (3) 0.784 (2)
Pendigits 0.962 (1) 0.714 (3) 0.960 (2)
AD-Toothbrush 0.901 (2) 0.919 (1) 0.870 (3)
Wpbc 0.554 (1) 0.513 (3) 0.536 (2)
AD-Leather 0.991 (2) 0.991 (2) 0.992 (1)
Satimage-2 0.998 (1) 0.895 (2) 0.998 (1)
Backdoor 0.889 (1) 0.664 (3) 0.852 (2)
Waveform 0.768 (1) 0.708 (3) 0.743 (2)
Cardio 0.938 (1) 0.663 (3) 0.927 (2)
AD-Bottle 0.964 (1) 0.958 (3) 0.963 (2)
Celeba 0.732 (1) 0.570 (3) 0.714 (2)

Comparison with Classical Covering Methods (GEM, DTM) Table 2 compares ADERH with
two classical covering baselines, GEM and DTM. ADERH attains the top performance per-dataset
AUC-ROC on the majority of datasets, reflecting the benefit of its multi-scale hypersphere coverage
induced by random pairing and the multiplicative Pitch × NDensity score, which together sharpen
separation between nominal and anomalous regions.

Cross-dataset stability. To quantify robustness (Table 3), we summarize the average standard
deviation across all datasets for the main competing methods below (lower is better). ADERH
achieves the lowest variability on both AUC-ROC and AUC-PR.

Table 3: Average standard deviation across datasets. Relative to INNE and IForest, ADERH
indicates greater stability and consistency.

Method Mean AUC-ROC std Mean AUC-PR std
ADERH 0.0133 0.0317
INNE 0.0241 0.0515
IForest 0.0235 0.0417

5 Conclusion

In this paper, we introduce ADERH, a novel isolation-based anomaly detection method that leverages
the core characteristics of anomalies: RARITY and DEVIATION. By utilizing hyperspheres and
the concepts of Pitch and NDensity, ADERH delivers precise and reliable anomaly scores. Exten-
sive experiments demonstrate its superiority over state-of-the-art methods across diverse datasets,
consistently achieving higher AUC-ROC and AUC-PR scores than its competitors. Additionally,
ADERH is robust to parameter variations and scales linearly with dataset size, making it highly
practical for large, high-dimensional datasets.

6 Limitations

Like other distance-based anomaly detectors (e.g., Isolation Forest, LOF), ADERH is affected by
the curse of dimensionality, where distance concentration weakens inlier–outlier contrast. Through
its integration of multi-scale hypersphere modeling, geometry-aware scoring, and density-sensitive
aggregation, ADERH achieves strong performance on high-dimensional benchmarks such as AD-
Leather, AD-Toothbrush, and Census. Nevertheless, dimensionality remains a fundamental challenge;
Appendix T discusses future directions toward dimensionality-aware and structure-preserving models.
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Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102(2):275–304,
2016.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pages 4393–4402. PMLR, 2018.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13
(7):1443–1471, 2001. doi: 10.1162/089976601750264965.

Clayton Scott and Robert Nowak. Learning minimum volume sets. Advances in neural information
processing systems, 18, 2005.

Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing effectiveness of
outlier detections for low density patterns. In Pacific-Asia conference on knowledge discovery and
data mining, pages 535–548. Springer, 2002.

Xiaoling Tao, Yang Peng, Feng Zhao, Peichao Zhao, and Yong Wang. A parallel algorithm for
network traffic anomaly detection based on isolation forest. International Journal of Distributed
Sensor Networks, 14(11):1550147718814471, 2018.

David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 54:45–66,
2004.

Srikanth Thudumu, Philip Branch, Jiong Jin, and Jugdutt Singh. A comprehensive survey of anomaly
detection techniques for high dimensional big data. Journal of big data, 7(1):42, 2020.

12

https://openreview.net/forum?id=lR3rk7ysXz


Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. Progress in outlier detection
techniques: A survey. Ieee Access, 7:107964–108000, 2019a.

Hu Wang, Guansong Pang, Chunhua Shen, and Congbo Ma. Unsupervised representation learning
by predicting random distances. arXiv preprint arXiv:1912.12186, 2019b.

Zhangming Xiong, Daofei Zhu, Dafang Liu, Shujing He, and Luo Zhao. Anomaly detection of
metallurgical energy data based on iforest-ae. Applied Sciences, 12(19):9977, 2022.

Dong Xu, Yanjun Wang, Yulong Meng, and Ziying Zhang. An improved data anomaly detection
method based on isolation forest. In 2017 10th international symposium on computational
intelligence and design (ISCID), volume 2, pages 287–291. IEEE, 2017.

Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isolation forest for anomaly
detection. IEEE Transactions on Knowledge and Data Engineering, 35(12):12591–12604, 2023a.

Hongzuo Xu, Yijie Wang, Juhui Wei, Songlei Jian, Yizhou Li, and Ning Liu. Fascinating supervisory
signals and where to find them: Deep anomaly detection with scale learning. In International
Conference on Machine Learning, pages 38655–38673. PMLR, 2023b.

Yue Zhao, Zain Nasrullah, Maciej K Hryniewicki, and Zheng Li. Lscp: Locally selective combination
in parallel outlier ensembles. In Proceedings of the 2019 SIAM international conference on data
mining, pages 585–593. SIAM, 2019a.

Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
Journal of machine learning research, 20(96):1–7, 2019b.

Arthur Zimek, Ricardo JGB Campello, and Jörg Sander. Ensembles for unsupervised outlier detection:
challenges and research questions a position paper. Acm Sigkdd Explorations Newsletter, 15(1):
11–22, 2014.

13



Appendix Section Content
Appendix A Balanced shrinkage of pairwise distances
Appendix B Multi-Scale coverage and justification for random pairing in hypersphere ensembles
Appendix C Analyzing the distribution of the radii of hyperspheres created by ADERH
Appendix D Proof of Lemma 3.10
Appendix E Variance reduction and error bounds for the ensemble anomaly score I
Appendix F Proof of Theorem 3.15
Appendix G Algorithmic details
Appendix H Parameter setting
Appendix I Robustness
Appendix J Datasets
Appendix K Experimental details
Appendix L AUC-PR Results
Appendix M Runtime complexity
Appendix N Runtime experiments
Appendix O Ablation study: different settings of ADERH
Appendix P Ensembling improves anomaly detection over any single subset
Appendix Q Grid search experiment for isolation and non-isolation methods
Appendix R Ablation study: multiplicative vs. additive Fusion
Appendix S Limitations
Appendix T Future work

Table 4: Structure of the appendix.

A Balanced shrinkage of pairwise distances

We present a mathematical argument indicating that among all scaling factors α ∈ (0, 1], setting
α = 1

2 provides the best balance between (i) ensuring that hyperspheres remain compact enough to
avoid covering anomalies, and (ii) retaining enough coverage to include normal points within the
same local region. Our analysis assumes a typical “δ-separation” setting where normal clusters have
radius at most σ, and anomalies lie beyond σ + δ from each cluster center.

δ-assumption: Assume each normal cluster has radius σ. That is, any two normal points x, y in the
same cluster satisfy

∥x− y∥ ≤ 2σ,

since each lies within distance σ of the same center. Anomalies lie at least σ + δ away from every
cluster center, with δ > 0.

Shrinking Factor α ∈ (0, 1]: Given a pair (x, y) of points, suppose we define a hypersphere with
radius

α ∥x− y∥.
We compare different values of α in (0, 1].

Lemma: coverage criterion for normal pairs

Lemma A.1. Let x, y be two normal points from the same cluster, with ∥x−y∥ ≤ 2σ. If α ∥x−y∥ ≤
σ, then this hypersphere fully covers the local region of radius σ around one center. Equivalently,

α ≤ σ

∥x− y∥
≤ σ

σ
= 1

if ∥x− y∥ ≤ 2σ. In particular, if α = 1
2 , then

α ∥x− y∥ ≤ σ whenever ∥x− y∥ ≤ 2σ.

Sketch. Since ∥x− y∥ ≤ 2σ, multiplying by 1
2 (or any α ≤ 1

2 ) ensures the radius does not exceed
σ. Hence, normal points within that cluster remain inside or near the hypersphere, supporting good
coverage of normal data.
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Lemma: exclusion criterion for anomalies

Lemma A.2. Let z be an anomaly with distance at least σ + δ from every normal cluster center, and
let x be a normal point in some cluster. If ∥x − z∥ ≥ δ, then any hypersphere with radius strictly
below δ around x will not include z. In particular, if α ∥x− y∥ ≤ δ for normal points x, y, then a
distant anomaly z remains outside that hypersphere.

Sketch. From the typical δ-separation assumption, normal–anomaly distances exceed δ. Thus, if the
hypersphere radius is at most δ, the anomaly cannot lie inside the same hypersphere.

Balancing coverage vs. exclusion

We want α ∥x− y∥ to be ≤ σ for normal–normal pairs (to ensure good coverage), yet also ≤ δ (or at
least not too large) so that anomalies do not get unintentionally included. Setting α = 1

2 provides a
natural boundary:

1. ∥x− y∥ ≤ 2σ =⇒ 1
2∥x− y∥ ≤ σ, so normal points in the same cluster remain covered.

2. If ∥x − y∥ ≈ 2(σ + δ), halving prevents the radius from reaching σ + δ. Therefore, a
hypersphere centered on a normal point is less likely to include anomalies that lie beyond
σ + δ.

By contrast, if α < 1
2 , we risk under-covering normal points (the radius becomes too small, potentially

splitting the cluster). If α > 1
2 , the radius can exceed σ, enlarging hyperspheres such that anomalies

may sneak inside.
Proposition A.3. Under the conditions of Lemmas A.1 and A.2, consider α ∈ (0, 1] as a scaling
factor for the pairwise distance ∥x− y∥. Setting α = 1

2 ensures both:

1. Adequate local coverage of normal–normal pairs, since α∥x− y∥ ≤ σ whenever ∥x− y∥ ≤
2σ,

2. Limited overshoot for larger distances, so that hyperspheres around normal points are less
likely to include anomalies lying beyond σ + δ.

Thus, α = 1
2 provides a balanced trade-off between cluster coverage and anomaly exclusion, though

not necessarily an optimal choice in a formal sense.

Sketch. For α < 1
2 , hyperspheres become smaller than σ even when ∥x− y∥ ≤ 2σ, under-covering

normal regions. For α > 1
2 , hyperspheres can exceed σ, risking inclusion of anomalies. Thus α = 1

2
is the threshold guaranteeing cluster coverage without inflating radii enough to merge anomalies.

Empirical evidence Our theoretical discussion is corroborated by the experimental results in
Table 5, where α = 1

2 consistently demonstrates strong performance. The table compares ADERH
scores across four scaling factors (0.25, 0.5, 0.75, and 1.00). Despite partial violations of strict
δ-separation (e.g., overlapping clusters or varied cluster sizes), α = 1

2 attains the best average
rank, consistently striking a balance between sufficiently covering normal clusters and limiting
radius overshoot that includes anomalies. In practice, halving the pairwise distance still prevents
hyperspheres from becoming too large and diluting their ability to isolate anomalies, reinforcing
α = 1

2 as a robust heuristic—even beyond the perfect δ-separation setting.

Conclusion

Mathematically, halving the distance ∥x − y∥ avoids excessively large hyperspheres that might
encompass anomalies, while still ensuring that two normal points within the same local cluster remain
covered. Any fraction α < 1

2 sacrifices some coverage of normal data, and any α > 1
2 raises the risk

of anomaly inclusion. Hence α = 1
2 emerges as a compromise for multi-scale isolation.

B Multi-Scale Coverage and Justification for random pairing

In this appendix, we provide a mathematically grounded rationale for using random pairwise distances
as the basis for local structures (e.g., hyperspheres) in anomaly detection. We show how sampling
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Table 5: The table shows the results for ADERH for different radius scalings (0.25, 0.5, 0.75, 1.00).

Dataset ADERH ADERH-0.25 ADERH-0.75 ADERH-1.00

Lymphography 1.000 (1) 1.000 (1) 1.000 (1) 0.833 (4)
Pendigits 0.309 (1) 0.305 (2) 0.294 (3) 0.291 (4)
AD-Toothbrush 0.840 (1) 0.783 (4) 0.826 (2) 0.786 (3)
Wpbc 0.261 (1) 0.258 (3) 0.260 (2) 0.255 (4)
AD-Leather 0.975 (1) 0.970 (3) 0.973 (2) 0.954 (4)
Backdoor 0.222 (2) 0.312 (1) 0.221 (3) 0.193 (4)
Cardio 0.588 (1) 0.532 (4) 0.586 (2) 0.554 (3)
AD-Bottle 0.940 (2) 0.914 (4) 0.943 (1) 0.928 (3)
Census 0.075 (2) 0.081 (1) 0.073 (3) 0.000
Musk 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1)
Glass 0.222 (2) 0.111 (4) 0.221 (3) 0.223 (1)
AVG Rank 1.36 2.55 2.09 3.18

pairs (X,Y ) at random from a dataset naturally spans a wide range of distances, thereby offering
multi-scale coverage with minimal manual tuning.

Random pairwise distances

Let D ⊂ Rd be drawn from an unknown distribution P . Define two i.i.d. random variables X,Y ∼ P ,
and consider the distance

D = ∥X − Y ∥.
Our goal is to approximate the distribution of D by randomly pairing points in small subsets of D.
Concretely:

• Subset Selection: Choose a small subset T ⊆ D of size ω.
• Random Partnering: For each x ∈ T , select a partner y ∈ T uniformly at random.
• Distance Extraction: Record the distances ∥x− y∥. Repeating over multiple subsets yields

a set of pairwise distances approximating FD, the distribution of ∥X − Y ∥ in the entire
dataset.

Theoretical underpinnings

Lemma B.1 (Short Distances: Intra-Cluster Pairs). Let C ⊂ Rd be a set of points with diameter σ,
meaning ∥x− y∥ ≤ σ for all x, y ∈ C. If Pr(X ∈ C) = α > 0, then

Pr(D ≤ σ) ≥ α2.

Since X,Y are i.i.d., Pr(X ∈ C, Y ∈ C) = α2. Inside C, all distances are ≤ σ. Hence
Pr(D ≤ σ) ≥ α2.
Lemma B.2 (Inter-cluster pairs). Let C1, C2 ⊂ Rd be disjoint sets with

∆ = min
x∈C1, y∈C2

∥x− y∥ > 0, Pr(X ∈ C1) = α1, Pr(X ∈ C2) = α2.

Then
Pr
(
D ≥ ∆

)
≥ 2α1α2.

Proof. Because (X,Y ) are i.i.d.,

Pr
(
X∈C1, Y ∈C2

)
= α1α2, Pr

(
X∈C2, Y ∈C1

)
= α2α1.

The two events are disjoint and each guarantees ∥X − Y ∥ ≥ ∆. Summing them yields the stated
lower bound.

For any pair (X ∈ C1, Y ∈ C2), the distance is at least ∆ > 0. The probability of drawing such a
pair is α1α2. Thus Pr(D ≥ ∆) ≥ 2α1α2.
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Multi-Scale coverage

Theorem B.3. Combining Lemmas B.1 and B.2 shows that if the data contains multiple clusters or
distinct subregions, random pairs inevitably yield both small distances (within clusters) and large
distances (across clusters). Thus, the distribution of D spans a continuum from local to global scales
in proportion to the dataset’s mixture structure. No single global radius σ needs to be chosen a priori,
as the data itself reveals numerous scales.

Benefits of random pairing

The use of random pairwise distances offers several key benefits in anomaly detection. First, it
provides a data-driven, multi-scale representation, as sampling pairs from the empirical distribu-
tion of ∥X − Y ∥ inherently captures both small (intra-cluster) and large (inter-cluster) distances.
Consequently, one need not pre-specify a single global threshold or neighborhood size, which is
especially important in the presence of heterogeneous cluster densities. In addition, random pair-
ing naturally accommodates multiple, possibly irregularly shaped clusters, since each subset-based
pairing reflects local geometric structures without requiring exhaustive distance computations or
fully global operations. Repeated sampling of these pairs further promotes broad coverage of the
data distribution, ensuring that relevant scales—ranging from tight local neighborhoods to more
expansive separations—are collectively included in the modeling. Practically, the process is also
computationally simple, as each subset only requires ω points, and pairing them is straightforward;
this avoids the expense of building full distance matrices on the entire dataset. Overall, random
pairing thus integrates local adaptivity, multi-scale sensitivity, and computational efficiency in a
single procedure, making it both robust and scalable for real-world anomaly detection scenarios.

Empirical confirmation

In Appendix C, we illustrate this behavior using real-world data. The distribution of distances
∥X − Y ∥ is often multi-modal. Small-distance peaks align with compact clusters, while heavy tails
arise from inter-cluster distances or outliers, confirming the guarantees given in Lemmas A.1–A.2.

B.1 Concluding remarks

Random pairing of points is a simple yet powerful tool for capturing the full range of distances in a
dataset. This mechanism organically yields small distances in dense clusters and larger ones across
sparser regions. We emphasize:

• No single scale must be predetermined.
• Multi-scale structure emerges directly from the distribution of ∥X − Y ∥.
• Cluster shapes and heterogeneity are naturally captured—crucial for effective anomaly

detection.

C Analyzing the distribution of the radii of hyperspheres created by ADERH

Having established in Section B that random pairing of points theoretically enables multi-scale cover-
age, we now illustrate these claims with real-world data. Specifically, we examine the distribution
of hypersphere radii generated by ADERH via randomly paired points. As shown in Figure 3, the
resulting radii indeed cover a broad range, validating our theoretical analysis in three ways:

1. Small intra-cluster radii. In denser regions of the data, random pairs of nearby points
produce hyperspheres with small radii, capturing fine-grained local neighborhoods.

2. Large inter-cluster radii. In regions separating distinct clusters or featuring anomalies,
random pairs tend to yield comparatively larger radii, thereby modeling more global scales.

3. Mixed scales in heterogeneous data. In practice, many real-world datasets exhibit multiple,
potentially overlapping clusters of various densities. Our empirical results indicate that even
a modest number of random subsets and pairings is sufficient to uncover hyperspheres at
numerous scales simultaneously.
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Overall, these observations lend strong empirical support to the multi-scale coverage facilitated by
our random pairing strategy. They also highlight how data-specific structure—whether it is tight
clusters, more diffuse distributions, or the presence of outliers—naturally arises in the empirical
distribution of pairwise distances. Hence, without requiring explicit parameter tuning for a single
global scale, our procedure effectively adapts to the intrinsic geometry of each dataset.

Waveform Vowels Skin

Mnist Musk Satimage-2

Figure 3: The distribution of the radii of hyperspheres created by ADERH for each dataset (scaled to
[0, 1]).
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D Proof for Lemma 3.10

Proof. Let D be the dataset, and let Si ⊆ D be a (random) sample of size |Si|.

Separation assumption. By Definition 3.1, any anomaly z satisfies

dist(z, µj) ≥ σ + δ for every normal cluster center µj .

Hence, the distance from z to the boundary of any σ-radius normal cluster is at least δ.

Sparse coverage by anomaly-centered hyperspheres. Choose a radius r such that

r = γ σ with γ <
δ

σ
.

Since γσ < δ, any ball of radius r around an anomaly z, i.e. the set

{x : ∥x− z∥ ≤ r},

does not intersect (or barely intersects) the normal clusters. Indeed, each normal cluster of radius σ is
at least δ away from z, and δ − r > 0. Therefore,

∣∣{x ∈ Si : ∥x− z∥ ≤ r}
∣∣ ≈ 0 with high probability.

Formally, by Chernoff or Hoeffding bounds, the probability that a random sample of normal points
places more than a negligible number of points inside {x : ∥x− z∥ ≤ r} decays exponentially in
|Si|. Thus, the hypersphere H(z) of radius r around z captures almost no normal points, making its
density

Density
(
H(z)

)
=

∣∣{x ∈ D : ∥x− z∥ ≤ r}
∣∣

r
≈ 0.

High coverage by normal-centered hyperspheres of similar radius. Next, consider a normal point
y lying near its normal cluster center µj with ∥y − µj∥ ≤ σ. For r = γσ (the same radius as above),
the ball

{x : ∥x− y∥ ≤ r}

fully contains (or nearly contains) the σ-radius cluster around µj . Consequently, there are many
normal points in that ball, and so a hypersphere H′ of radius r centered on such a normal y will have
substantially higher density:

Density
(
H′) > Density

(
H(z)

)
.

Let EH(Si) denote the set of all hyperspheres of radius r centered at points in Si. Then

max
H′∈EH(Si)

Density(H′) > Density(H(z)).

Normalized density goes to zero. Define the normalized density of the anomaly-centered hyper-
sphere by

NDensity(H(z)) =
Density(H(z))

maxH′∈EH(Si) Density(H′)
.
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Since the density of H(z) is extremely small while there exist normal-centered hyperspheres of radius
r with significantly higher density, we conclude that

NDensity(H(z)) ≈ 0.

Moreover, by standard concentration arguments (e.g. laws of large numbers for the fraction of points
in a given region), this low-density phenomenon holds with high probability over the random choice
of Si. As |Si| → ∞, the probability that any anomaly-centered sphere has more than a negligible
fraction of normal points converges to 0. Therefore,

NDensity(H(z)) −→ 0

in probability (and typically exponentially fast in |Si|). This completes the proof.

E Variance reduction and error bounds for the ensemble anomaly score I

To demonstrate variance reduction (proof for Eq. 14) for the ensemble isolation score, we proceed in
the following steps:
Lemma E.1 (Variance Bound for Individual Isolation Scores). For a single subset Si, the variance
of the base anomaly score F(x,Si) is bounded by:

Var(F(x,Si)) ≤
1

4
.

Proof. The base anomaly score F(x,Si) is a random variable bounded in the interval [0, 1]. For any
random variable X with values in [a, b], the variance is bounded by:

Var(X) ≤ (b− a)2

4
.

Here, a = 0 and b = 1, so:

Var(F(x,Si)) ≤
(1− 0)2

4
=

1

4
.

Thus, the variance of the base anomaly score is bounded as claimed.

Lemma E.2 (Variance Reduction for Ensemble Isolation Score). Let the ensemble isolation score
I(x) be the average of n independent base anomaly scores:

I(x) =
1

n

n∑
i=1

F(x,Si).

Then, the variance of I(x) satisfies:

Var(I(x)) ≤ 1

4n
.

Proof. Let Fi = F(x,Si) for simplicity. The variance of the average of n independent random
variables is given by:

Var

(
1

n

n∑
i=1

Fi

)
=

1

n2

n∑
i=1

Var(Fi).

From Lemma E.1, we know that Var(Fi) ≤ 1
4 for all i. Substituting this bound:

Var(I(x)) =
1

n2

n∑
i=1

Var(Fi) ≤
1

n2

n∑
i=1

1

4
.

Simplify the summation:

Var(I(x)) ≤ 1

n2
· n · 1

4
=

1

4n
.

Thus, the variance of the ensemble isolation score is bounded by 1
4n as stated in Eq. 14 in the main

paper.
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Error Bound via Bernstein’s Inequality Boucheron et al. [2013]

Lemma E.3 (Error Bound). Define the average variance ν2 = 1
n

∑n
i=1 Var(Fi), which satisfies

ν2 ≤ 1
4 . Then, for any ϵ > 0, the probability that I(x) deviates from its expected value E[I(x)] by at

least ϵ is bounded by:

P (|I(x)− E[I(x)]| ≥ ϵ) ≤ 2 exp

(
− nϵ2

1
2 + 2

3ϵ

)
.

Proof. We apply Bernstein’s inequality for independent random variables. Let Fi be independent
with mean µi = E[Fi], variance ν2i = Var(Fi), and bounded range [0, 1]. The inequality states:

P

(∣∣∣∣∣
n∑

i=1

(Fi − µi)

∣∣∣∣∣ ≥ nϵ

)
≤ 2 exp

(
− n2ϵ2

2
∑n

i=1 ν
2
i + 2

3nϵ

)
.

Substituting I(x) and scaling by 1
n :

P (|I(x)− E[I(x)]| ≥ ϵ) ≤ 2 exp

(
− nϵ2

2ν2 + 2
3ϵ

)
,

where ν2 = 1
n

∑n
i=1 ν

2
i is the average variance. Using Lemma E.1, we know ν2i ≤ 1

4 , so ν2 ≤ 1
4 .

Substituting this bound:

P (|I(x)− E[I(x)]| ≥ ϵ) ≤ 2 exp

(
− nϵ2

1
2 + 2

3ϵ

)
.

Therefore, the probability of large deviations from the expected isolation score decreases exponentially
with the number of hyperspheres n as stated in Eq. 15 in the main paper.

F Proof of Theorem 3.15

We prove that under the δ-separation assumption, a normal point x obtains a small isolation score
I(x), whereas a “typical” anomaly z obtains a large isolation score.

Proof. We break the proof into two parts: we first prove Lemma 3.13, then analyze the ensemble
average over n subsets.

Part A: Proof for Lemma 3.13

By the δ-separation assumption (Definition 3.1), there exist radii σ, δ > 0 and small ε, ε′ ∈ (0, 1)
such that:

1. Normal-Point Proximity: With probability ≥ 1 − ε over the draw of a normal point
x ∼ PN , there exists at least one center µj satisfying ∥x− µj∥ ≤ σ.

2. Anomaly Exclusion: With probability ≥ 1− ε′ over the draw of an anomaly z ∼ PA, we
have ∥z − µj∥ ≥ σ + δ for all j.

Let ω be the size of each sampled subset, and let {Si}ni=1 be the i.i.d. subsets. Consider one such
subset S. Denote by

E = “event that S includes at least one normal point from each cluster,”

whereby “each cluster” we informally refer to each center µj with nontrivial normal mass. More
precisely, define Cj := {x : ∥x− µj∥ ≤ σ}, and let

E =
{
S : S ∩ Cj ̸= ∅ for all relevant j

}
.
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We can bound Pr(E) away from zero if ω is large enough relative to the number of clusters (and
using the fact that normal points constitute an α-fraction of the data). For instance, by the binomial
bound, one gets

Pr(E) ≥ 1− δ0,

for some small δ0. Below, we condition on E and also condition on the event that the chosen point
x ∼ PN satisfies the normal-proximity property (probability ≥ 1− ε) or that z ∼ PA satisfies the
anomaly-exclusion property (probability ≥ 1− ε′).

A1. Normal points obtain small F

Fix a normal point x. Suppose (i) x lies within σ of some center µj , and (ii) the event E holds for S .
Because S ∩ Cj ̸= ∅, there is at least one point y ∈ S also within that same cluster. In fact:

• If y is paired with another point y′ in the same cluster, the radius 1
2∥y − y′∥ ≤ σ. This

hypersphere is dense and encloses x near its center, so Pitch(x) < 1 and NDensity ≈ 1.
Hence, the weighted distance WPitch(x) ≈ 0.

• If y is instead paired with a point outside the cluster, the resulting hypersphere might be
larger. However, x still typically sits closer to the center than does any far-away anomaly,
implying WPitch(x) remains relatively small compared to that of an anomaly.

Among all hyperspheres covering x, we select the “smallest cover,” i.e., the one that minimizes
WPitch(x). Thus

F(x,S) = min
H∋x

WPitch(x,H) < 1.

Formally, one can show that, conditioned on E and on the event ∥x−µj∥ ≤ σ, we have F(x,S) ≤ ρ
for some small ρ < 1. Overall, the probability that F(x,S) ≤ ρ is at least

(1− ε)× (1− δ0) ≥ 1−
(
ε+ δ0

)
.

A2. Anomalies obtain large F

Now fix an anomaly z. Suppose ∥z − µj∥ ≥ σ + δ for all j (probability ≥ 1− ε′). Two cases arise:

1. z not in S.
If a normal-centered hypersphere covers z, that hypersphere has radius ≤ σ. Since z stands
at distance ≥ δ from the center, Pitch(z) ≈ 1. Otherwise, if z is not covered, F(z,S) = 1
by definition.

2. z in S.
A hypersphere centered on z is sparse (few neighbors), thus NDensity ≈ 0. Hence
WPitch(z) ≈ Pitch(z) ≈ 1.

In both scenarios, no hypersphere yields WPitch < 1. Consequently,

F(z,S) ≥ γ

for some γ close to 1. The probability of this event is at least 1− ε′. Thus, for a typical anomaly z,
F(z,S) ≈ 1 occurs with probability ≥ 1− ε′.

Part B: Ensemble averaging

Since the subsets S1, . . . ,Sn are i.i.d. uniform samples, the probability that each E is high. Even if
some subsets fail, the majority will cleanly separate normal points from anomalies. Formally:

• Expected base score. Define

κN = E[F(x,S) | x ∼ PN ], κA = E[F(z,S) | z ∼ PA],

By the above arguments, κN < κA ≤ 1. Typically κN ≈ 0 and κA ≈ 1.
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• Final isolation score. For each point x, define

I(x) =
1

n

n∑
i=1

F(x,Si).

By linearity of expectation, E[I(x) | x ∈ PN ] = κN and E[I(x) | x ∈ PA] = κA. Hence
κN < κA implies that normal points will, on average, have lower isolation scores than
anomalies.

• Variance and concentration. Each F(·,Si) takes values in [0, 1], so Var(F) ≤ 1
4 . By

a standard variance-addition or concentration bound (e.g., Bernstein’s inequality), the
averaging over n subsets yields Var[I(x)] ≤ 1

4n . Thus, with high probability over the
sampling of Si, the isolation scores for normal points cluster around κN and for anomalies
around κA, creating a clear separation as n grows.

Conclusion: I(normal) ≈ κN < κA ≈ I(anomaly) with high probability.

G Algorithmic details

In general, ADERH separates anomalies from regular samples in a two-step process (see Algo. 1).

Step I. In the first step, ADERH generates a set of n subsets by performing uniform random sampling
with replacement, denoted as SUBSETS(D,n, ω) = {S1, . . . ,Sn}. For each Si ∈ SUBSETS and
all elements x ∈ Si, a random partner with y ∈ Si is determined. Subsequently, two hyperspheres
with the centers x and y are formed. We consider an ensemble of hyperspheres with varying radii,
where ADERH estimates key properties such as the density of each hypersphere under the empirical
data distribution.

Step II. ADERH utilizes an ensemble of hyperspheres across all Si ∈ SUBSETS to minimize
variance and reduce deviations in the computed anomaly scores, enhancing robustness. For each
data point and each subset Si ∈ SUBSETS, the algorithm determines the smallest cover SC(x,Si).
By considering the positions of the data points and the densities of the ensemble of hyperspheres,
ADERH calculates the anomaly score based on the smallest covers across the different subsets. If a
data point consistently receives high anomaly scores from the ensemble of hyperspheres, it can be
confidently identified as an anomaly.

H Parameter setting

In ADERH, we fix two principal parameters: (i) n, the number of random subsets (the ensemble
size), and (ii) ω, the size of each random subset. These choices mirror the logic behind Isolation
Forest (IForest) Liu et al. [2008], which typically employs about 100–300 estimators (trees) and often
uses up to 256 samples per tree. We adopt n = 256 in a similar spirit: increasing the ensemble size
reduces variance (see Appendix E), but we observe diminishing returns beyond 200–300 subsets in
practice (Fig. 4b).

Where IForest allocates 256 data points to each tree, ADERH requires far fewer points per subset,
and we set ω = 18. The rationale is that ADERH does not rely on hierarchical splits but rather forms
hyperspheres from pairs of points in these small subsets. Smaller subsets risk underrepresenting
normal structure, while larger subsets incur higher contamination probability (since more anomalies
might appear among the centers) and yield limited gains in AUC-ROC or AUC-PR (Fig. 4a).
Consequently, ω = 18 balances computational efficiency with coverage of the underlying data
patterns, allowing ADERH’s hyperspheres to remain compact and centered around typical (normal)
samples.

Competitor’s parameter For competitors, we used the default parameter settings as specified in
the respective papers (Table 7).
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Algorithm 1: ADERH
input :dataset: D,

# of subsets: n,
subset size: ω

output :vector containing the anomaly score for all samples I
// At the beginning, all anomaly scores are initialized with 0.

1 I := 0⃗
// First, n subsets are generated via random sampling with replacement, where each subset contains ω

samples (Definition 3.2).
2 initialize SUBSETS(D, n, ω)
3 Eall := ∅
4 for Si ∈ SUBSETS(D, n, ω) do
5 E(Si) := ∅
6 for x ∈ Si do

// Generate the hyperspheres of the data point x and its random partner according to
Definition 3.4

7 H := H(x,Si) // Hypersphere with center x

8 H′ := H(P (x,Si),Si) // Hypersphere with center P (x,Si)
// Determine the density of the created hyperspheres (Definition 3.7)

9 Density(H) :=
|XH∩D|

R(H)

10 Density(H′) :=
|XH′∩D|

R(H′)
// Add the two hyperspheres to the ensemble (Definition 3.5)

11 E(Si) := E(Si) ∪ {H,H′}
12 end

// Normalize the densities of the hyperspheres according to Definition 3.8
13 for H ∈ E(Si) do
14 NDensity(H,Si) :=

Density(H)
maxHj∈E(Si)

Density(Hj)

15 end
16 Eall := Eall ∪ E(Si)

17 end
18 for E(Si) ∈ Eall do
19 for y ∈ D do

// If the data point is covered by at least one hypersphere H ∈ E(Si), the isolation value is
evaluated according to Definition 3.14. If the data point y is not covered by any
hypersphere, then it receives the maximum value of 1.

20 I(y) := I(y) + 1
n F

(
y,Si

)
21 end
22 end

(a) Varying the sample size ω (n =
256)

(b) Varying the number of subsets n
(ω = 18)

Legend

Figure 4: Stability comparison of ADERH by increasing the sample size ω and number of subsets n.

Grid search experiment In addition to the default settings, we conducted a grid search experiment
to further investigate performance by exploring various parameter configurations for both ADERH
and the competitors (Appendix Q).

I Robustness

In the following, we investigate the behavior of ADERH with regard to parameter stability. In the
first experiment (Fig. 4), we increase the sample size ω of a random subset Si (|Si| = ω). As shown
in Fig. 4a, ADERH generally attains high AUC-ROC values across varying cardinalities ω of the
random subset Si. In the second experiment (Fig. 4b), we increase the number of subsets n. As
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expected, slightly better values are achieved when the number of subsets increases. As n increases,
more estimates can be made, improving anomaly detection accuracy. Moreover, these observations
align with our findings on variance reduction. By increasing n, we effectively reduce the variance
over all base anomaly scores and increase robustness and, according to the Bernstein inequality, lead
to tighter bounds and greater reliability in distinguishing anomalies.

J Datasets

Details regarding the used datasets are given in Table 6.

Table 6: Statistics of the used datasets
Dataset # Instances # Dimensions # Anomalies (%)

Optdigits 5216 64 150(0.0288)
Wbc 223 9 10(0.0448)

Lymphography 148 18 6(0.0405)
Celeba 202599 39 4547(0.0224)
Skin 245057 3 50859(0.2075)

Pendigits 6870 16 156(0.0227)
Wdbc 367 30 10(0.0272)

AD-Toothbrush 10000 512 500(0.0500)
Wpbc 198 33 47(0.2374)

AD-Leather 10000 512 500(0.0500)
Satimage-2 5803 36 71(0.0122)
Backdoor 95329 196 2329(0.0244)

MNIST-C-Stripe 10000 512 500(0.0500)
Waveform 3443 21 100(0.0290)

Cardio 1831 21 176(0.0961)
AD-Bottle 10000 512 500(0.0500)

Census 299285 500 18568(0.0620)
Wine 129 13 10(0.0775)
Musk 3062 166 97(0.0317)

K Experimental details

Experiments were conducted on an Intel Core i7-10700K, 3.8 GHz, 32 GB RAM, with runtime aver-
aged over ten consecutive runs. Real-world datasets were sourced from the AdBenchmark repository
Han et al. [2022], with MNIST-Variation and AD-Variation datasets derived using ResNet18 features
pre-trained on ImageNet Han et al. [2022]. Table 6 summarizes dataset statistics. Implementations
were obtained from Zhao et al. [2019b], Xu et al. [2023a].

We now detail the common experimental procedures used across all experiments in this paper:

1. Datasets and Preprocessing. We consider D real-world datasets, each containing a mixture
of normal and anomalous points. To maintain consistency, we normalize all datasets to the
range [0, 1] using the MinMaxScaler Pedregosa et al. [2011]. A summary of each dataset’s
statistics is provided in Table 6.

2. Train/Test Splitting. We employ a stratified split with 70% of the data for training and 30%
for testing, ensuring that both splits maintain the same proportion of anomalies. This split
is repeated three times with different random seeds; we report the average performance
metrics (AUC-ROC and AUC-PR) across these three runs.

3. Evaluation Metrics. We adopt the AUC-ROC and AUC-PR Davis and Goadrich [2006] as
our primary metrics, as they are widely used and provide stable comparisons for imbalanced
datasets. We also conduct a paired Wilcoxon signed-rank test with Holm–Bonferroni
correction McDonald [2014] to determine statistical significance.

4. Implementation Details. All methods (including ours) are implemented in Python, and we
use the public repositories Zhao et al. [2019b], Xu et al. [2023a] for baseline implementations
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Table 7: Default parameter setting.
Algorithm Description Set

ADERH n {256}
ω {18}

INNE #estimators {200}
#maxsamples {8}

Isolation Forest #estimators {100}
#maxsamples {256}
maxfeatures {1.0}

EIF
extensionlevel {1}
#maxsamples {256}
#estimators {100}

DIF
#ensemble {6}
#estimators {100}
#maxsamples {256}

PIDForest
maxdepth {10}
#trees {20}

#samples {256}
LOF MinPts {5}

DeepSVDD
epochs {100}

batchsize {32}
dropout {0.2}

OCSVM

kernel {RBF}
degree {3}
tol {1e−3}
nu {0.5}

RCA

epochs {100}
batchsize {64}

lr {1e−3}
repDim {128}

RDP

epochs {100}
batchsize {64}

lr {1e−3}
prt_steps {10}

LODA #bins {10}
#randomcuts {100}

SLAD

epochs {100}
batchsize {128}

lr {1e−3}
n_slad_ensemble {20}
subspace_pool_size {50}
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Table 8: This table presents the results of all algorithms using the default parameters outlined in the
original paper. Hereby, the best values are shown in bold, and the runner-up is underlined. The ’AVG
Rank’ row of the table lists the average rank achieved by all algorithms in the metric AUC-PR

Dataset ADERH INNE IForest EIF DIF PIDForest LOF DeepSVDD RCA RDP OCSVM LODA SLAD DTE UniCAD

Optdigits 0.061 (4) 0.064 (3) 0.049 (6) 0.050 (5) 0.037 (8) 0.029 (11) 0.065 (2) 0.028 (13) 0.069 (1) 0.030 (10) 0.029 (11) 0.027 (14) 0.034 (9) 0.045 (7) 0.027 (14)
Wbc 1.000 (1) 0.342 (11) 0.994 (4) 1.000 (1) 0.120 (14) 0.759 (8) 0.237 (12) 0.359 (10) 0.935 (6) 0.519 (9) 1.000 (1) 0.972 (5) 0.117 (15) 0.197 (13) 0.914 (7)
Lymphography 1.000 (1) 0.811 (10) 0.978 (6) 1.000 (1) 0.399 (13) 0.841 (9) 1.000 (1) 0.543 (12) 1.000 (1) 0.844 (7) 1.000 (1) 0.242 (15) 0.617 (11) 0.266 (14) 0.843 (8)
Celeba 0.060 (5) 0.044 (9) 0.060 (5) 0.065 (4) 0.053 (8) 0.055 (7) 0.018 (14) 0.037 (12) 0.043 (10) 0.028 (13) 0.076 (2) 0.040 (11) 0.068 (3) 0.000 0.109 (1)
Skin 0.345 (2) 0.286 (7) 0.256 (10) 0.273 (8) 0.258 (9) 0.289 (6) 0.238 (11) 0.196 (12) 0.291 (5) 0.372 (1) 0.187 (13) 0.185 (14) 0.326 (3) 0.000 0.306 (4)
Pendigits 0.309 (1) 0.179 (9) 0.305 (2) 0.267 (5) 0.282 (4) 0.210 (7) 0.038 (13) 0.018 (15) 0.105 (12) 0.121 (11) 0.226 (6) 0.289 (3) 0.198 (8) 0.035 (14) 0.174 (10)
Wdbc 0.614 (4) 0.315 (10) 0.613 (5) 0.692 (2) 0.116 (14) 0.446 (7) 0.484 (6) 0.169 (12) 0.354 (9) 0.230 (11) 0.714 (1) 0.636 (3) 0.130 (13) 0.095 (15) 0.396 (8)
AD-Toothbrush 0.840 (2) 0.828 (4) 0.809 (5) 0.793 (6) 0.836 (3) 0.290 (15) 0.630 (11) 0.789 (7) 0.587 (13) 0.768 (8) 0.676 (10) 0.597 (12) 0.898 (1) 0.460 (14) 0.767 (9)
Wpbc 0.261 (3) 0.253 (8) 0.239 (13) 0.247 (11) 0.228 (15) 0.248 (10) 0.258 (5) 0.249 (9) 0.259 (4) 0.246 (12) 0.235 (14) 0.271 (1) 0.265 (2) 0.254 (6) 0.254 (6)
AD-Leather 0.975 (1) 0.688 (12) 0.953 (3) 0.953 (3) 0.919 (6) 0.252 (15) 0.552 (13) 0.903 (7) 0.846 (10) 0.934 (5) 0.863 (9) 0.726 (11) 0.957 (2) 0.551 (14) 0.898 (8)
Satimage-2 0.957 (2) 0.854 (8) 0.921 (5) 0.933 (4) 0.761 (9) 0.699 (10) 0.030 (15) 0.042 (14) 0.938 (3) 0.394 (11) 0.862 (7) 0.913 (6) 0.134 (12) 0.076 (13) 0.960 (1)
MNIST-C-Stripe 0.699 (2) 0.429 (9) 0.542 (6) 0.604 (5) 0.614 (4) 0.050 (14) 0.046 (15) 0.117 (12) 0.752 (1) 0.339 (11) 0.528 (7) 0.676 (3) 0.522 (8) 0.070 (13) 0.356 (10)
Shuttle 0.918 (5) 0.728 (8) 0.977 (1) 0.965 (2) 0.573 (11) 0.652 (10) 0.095 (14) 0.106 (13) 0.955 (4) 0.692 (9) 0.959 (3) 0.211 (12) 0.864 (7) 0.000 0.904 (6)
Waveform 0.144 (2) 0.134 (3) 0.057 (8) 0.060 (7) 0.073 (5) 0.038 (12) 0.111 (4) 0.038 (12) 0.062 (6) 0.046 (10) 0.034 (14) 0.043 (11) 0.342 (1) 0.033 (15) 0.055 (9)
Cardio 0.588 (1) 0.449 (10) 0.539 (5) 0.560 (3) 0.542 (4) 0.387 (12) 0.192 (13) 0.184 (14) 0.460 (9) 0.499 (6) 0.567 (2) 0.437 (11) 0.496 (8) 0.155 (15) 0.499 (6)
AD-Bottle 0.940 (1) 0.835 (10) 0.915 (5) 0.913 (6) 0.933 (4) 0.216 (15) 0.853 (9) 0.829 (12) 0.803 (13) 0.938 (2) 0.834 (11) 0.912 (7) 0.936 (3) 0.448 (14) 0.911 (8)
Census 0.075 (2) 0.056 (13) 0.071 (5) 0.076 (1) 0.067 (8) 0.063 (9) 0.063 (9) 0.071 (5) 0.072 (4) 0.075 (2) 0.062 (11) 0.058 (12) 0.069 (7) 0.000 0.000
Wine 0.262 (3) 0.211 (9) 0.216 (7) 0.237 (5) 0.095 (13) 0.000 (15) 0.360 (2) 0.099 (12) 0.257 (4) 0.075 (14) 0.126 (10) 0.217 (6) 0.215 (8) 0.106 (11) 0.448 (1)
Musk 1.000 (1) 1.000 (1) 0.964 (6) 0.945 (7) 0.691 (9) 0.991 (4) 0.037 (15) 0.207 (11) 0.750 (8) 0.166 (12) 0.085 (13) 0.224 (10) 0.981 (5) 0.041 (14) 1.000 (1)
AVG Rank 2.26 8.11 5.63 4.53 8.47 10.32 9.68 11.26 6.47 8.63 7.68 8.79 6.63 13.21 6.89
p-value NA 0.00228567 (+) 0.01371525 (+) 0.02769850 (+) 0.00005341 (+) 0.00005341 (+) 0.00653475 (+) 0.00005341 (+) 0.02024470 (+) 0.00284356 (+) 0.02089202 (+) 0.00053406 (+) 0.02368190 (+) 0.00005341 (+) 0.02368190 (+)

The values marked with † indicate that an error occurred during execution.

where available. Where randomness is involved, we run each method using five different
random seeds [0, 1, 2, 100, 1000] and average the metrics to ensure robustness.

Performance tables Tables 1, 8, 9, and 11 reporting our results, the best-performing method on
each dataset is shown in bold, and the second-best is underlined. The “AVG Rank” row presents the
mean rank of every algorithm, where a lower rank denotes stronger performance overall. The last row
shows p-values from the Wilcoxon signed-rank test (at α = 0.05) comparing our method (ADERH)
to each reference approach. Here, a plus sign “(+)” denotes that ADERH achieves a statistically
significant improvement.

L Additional results AUC-PR

Below, we present the additional AUC-PR results for all evaluated methods under their default
hyperparameter settings (Table 8). As in the main paper’s AUC-ROC comparison, ADERH con-
sistently achieves top rankings across most datasets in AUC-PR. Notably, ADERH attains the best
AUC-PR scores on 7 datasets and second-best on 6, yielding the lowest average rank of 2.26 among
all competing methods. These results underscore ADERH’s robust performance, particularly in un-
balanced scenarios where the AUC-PR metric is more sensitive to class imbalance and rare anomalies.
Similar to our AUC-ROC findings, the paired Wilcoxon signed-rank tests indicate that ADERH’s
improvements over baseline methods are statistically significant. By forming pairs of hyperspheres
with diverse radii and integrating Pitch-based boundary detection alongside NDensity-driven hyper-
sphere weighting, ADERH consistently achieves superior precision-recall performance relative to
both traditional isolation-based and deep-learning-based anomaly detectors across a broad range of
real-world datasets.

M Runtime complexity

As described in Section G, the operation of ADERH consists of two distinct steps. The computational
complexity associated with each step of ADERH is explained before these findings are summarized
to determine the total runtime complexity of ADERH. Initially, the algorithm generates a set of
subsamples SUBSETS(D,n, ω) from a dataset D, where the number of subsamples equals n. For
each individual set Si ∈ SUBSETS(D, n, ω), the cardinality is equal to ω. A pair of hyperspheres is
constructed for each element x ∈ Si. Thus, the generation of the hyperspheres has a complexity of
O(2 nω). In addition, the density must be determined for each of the hyperspheres. This operation has
a O(m) complexity regarding each hypersphere, where m = |D|. This results in a total complexity
of O(2 nωm) for the first step. For every data point within D and each element in the collection
Eall = {E(S1), . . . , E(Sn)}, the algorithm identifies the smallest covering hypersphere (SC). Given
that the size of Eall equals n and each E(Si) ∈ Eall contains 2ω hyperspheres, finding SC for all data
points across all hyperspheres has a computational complexity of O(2 nωm). By neglecting the
constant factors, we obtain a combined runtime complexity of O(nωm). This means that ADERH
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(a) Increasing the # of data points (# dimensions
= 16)

(b) Increasing the # of dimensions (# datapoints
= 4k)

Legend

Figure 5: Runtime experiment using a dataset consisting of Gaussian distributed regions with
uniformly distributed anomalies around the Gaussian regions.

has the same asymptotic behavior as, for example, INNE. As the runtime of ADERH scales linearly
with m, ω, and n, the method is efficient and well-suited for large datasets.

N Runtime evaluation

In this experiment, we analyze the scalability of ADERH and its competitors, particularly other
isolation-based approaches. For this purpose, we created Gaussian-distributed regions with uniformly
distributed anomalies around them. The default parameter settings, as described in the respective
papers, were used for all algorithms (Table 7). In the first experiment, the number of data points,
denoted as m, is progressively increased while keeping the number of dimensions fixed at d = 16
(Fig. 5a). The results demonstrate that the runtime of isolation-based methods scales linearly as m
increases. ADERH exhibits a similar asymptotic runtime behavior as INNE or IForest, but with a
consistently higher runtime by a constant factor (as discussed in Section M). LOF and deep learning-
based anomaly detection methods show poor scalability and are, therefore, only partially suitable for
large amounts of data. In the second experiment, the dimensions d of the data points are increased
with the number of samples fixed at m = 4k (Fig. 5b). In this case as well, ADERH demonstrates
high scalability, performing comparably to other state-of-the-art approaches.

O Ablation study: different settings of ADERH

In this ablation study, we systematically compare the proposed method ADERH under three configu-
rations. The first configuration, called ADERH [Only Pitch], uses only the distance-based ratio Pitch
to quantify how close a point lies to the center of a hypersphere but omits the normalized density term
NDensity. The second configuration, referred to as ADERH [Full r, #1 Hypersphere], generates ex-
actly one hypersphere per pair (x, y) with radius dist(x, y) rather than splitting it into two half-radius
hyperspheres. The third configuration is the default ADERH method described in the main text, which
creates two smaller hyperspheres of radius 1

2 dist(x, y) for each pair and incorporates both Pitch and
NDensity. Table 9 compares the AUC-ROC scores for all three settings. In most datasets, ADERH
[Full r, #1 Hypersphere] yields the poorest performance because a single large-radius hypersphere
often encompasses anomalies as well as normal points, obscuring their distinctions. By contrast,
splitting a pairwise distance into two half-radius hyperspheres reduces the risk of covering outliers
and lowers the overall variance in hypersphere sizes, thereby improving separability. The omission of
NDensity in ADERH [Only Pitch] also impairs performance, especially when anomalies themselves
become hypersphere centers. Without down-weighting sparse (anomalous) hyperspheres, anomaly
scores can be inflated or misassigned. In contrast, the full ADERH method yields, on average, the
highest AUC-ROC values, indicating that combining a ratio-based distance measure Pitch with
density-aware weighting NDensity and forming two compact hyperspheres for each pair of data
points is crucial for robust outlier isolation. Overall, these results confirm that both halving the radii
by incorporating NDensity and Pitch are essential design choices in ADERH.
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Figure 6: Score distributions for normals vs. anomalies. Panels show Pitch, 1−NDensity, and
their additive vs. multiplicative combinations (all scores in [0, 1], identical axes within each dataset).
Multiplicative fusion produces the lowest normal–anomaly overlap and the most pronounced anomaly
separation, aligning with our theoretical motivation and corroborating the aggregate ablation in
Appendix Q.

O.1 Visual evidence for Pitch, NDensity, and multiplicative fusion

To make the roles of Pitch (boundary proximity) and NDensity (local sparsity) tangible, we visualize
score distributions for normals vs. anomalies on two representative datasets. Each row in Figure 6
comprises four panels: (i) Pitch, (ii) 1−NDensity, (iii) the additive combination (1−NDensity) +
Pitch, and (iv) the multiplicative combination (1−NDensity)× Pitch.

Within each dataset, scores are scaled to [0, 1] and panels share identical axes to enable direct
comparison. As expected, Pitch alone emphasizes boundary-adjacent instances but can elevate
scores in dense regions; 1−NDensity highlights sparse regions yet may pick up normal tails. The
multiplicative fusion yields the smallest overlap between normal and anomalous distributions and
the clearest right-shift of anomalies, indicating that high anomaly scores arise primarily when both
boundary proximity and sparsity coincide.

P Ensembling improves anomaly detection over any single subset

Table 10 compares the proposed ensemble ADERH score to the best single subset variant across a
diverse set of 19 datasets spanning tabular and visual AD benchmarks. All results follow our standard
reporting protocol: we report means across repeated runs and assess across-dataset differences using
a paired Wilcoxon signed-rank test with Holm correction at α=0.05.

Summary of results. The ensemble outperforms the best single subset on all datasets (19/19 wins).
Averaged over datasets, the overall advantage is statistically significant under the paired Wilcoxon
test with Holm correction (α=0.05). These results substantiate our variance-reduction motivation for
ensembling: averaging scores across randomly constructed subsets mitigates idiosyncratic failure
modes of any single subset and stabilizes decision boundaries across data regimes. Empirically,
we observe consistent rightward shifts of anomaly-score distributions and tighter normal-score
concentrations for the ensemble relative to the best single subset, aligning with our theoretical
analysis on variance control.
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Table 9: This table presents the AUC-ROC results of different configuration of ADERH.

Dataset ADERH ADERH [Only Pitch] ADERH [Full r, #1Hypersphere ]

Optdigits 0.775 (1) 0.671 (3) 0.775 (1)
Wbc 1.000 (1) 1.000 (1) 0.970 (3)
Lymphography 1.000 (1) 0.996 (3) 1.000 (1)
Celeba 0.732 (1) 0.709 (2) 0.691 (3)
Skin 0.788 (1) 0.781 (2) 0.759 (3)
Pendigits 0.962 (1) 0.960 (2) 0.959 (3)
Wdbc 0.981 (1) 0.981 (1) 0.952 (3)
AD-Toothbrush 0.901 (1) 0.843 (3) 0.871 (2)
Wpbc 0.554 (1) 0.522 (3) 0.541 (2)
AD-Leather 0.991 (1) 0.980 (3) 0.985 (2)
Satimage-2 0.998 (1) 0.998 (1) 0.997 (3)
Backdoor 0.889 (2) 0.898 (1) 0.826 (3)
MNIST-C-Stripe 0.986 (1) 0.984 (2) 0.976 (3)
Shuttle 0.987 (1) 0.987 (1) 0.979 (3)
Waveform 0.768 (1) 0.752 (2) 0.701 (3)
Cardio 0.938 (1) 0.917 (3) 0.918 (2)
AD-Bottle 0.964 (2) 0.952 (3) 0.969 (1)
Census 0.628 (2) 0.637 (1) 0.623 (3)
Wine 0.839 (1) 0.659 (3) 0.822 (2)
Musk 1.000 (1) 1.000 (1) 1.000 (1)
AVG Rank 1.16 2.11 2.32
p-value NA 0.00585620 (+) 0.00185912 (+)

Q Grid search experiment for isolation and non-isolation methods

In addition to the experiments reported in Section 4—where we used default hyperparameters
(see Appendix H)—we conducted a comprehensive hyperparameter grid search for the following
isolation-based methods:

• ADERH (proposed method): Varying both the ensemble size nesti ∈ {100, 200, 300} and
the random-subset size ω ∈ {8, 18, 24}.

• INNE Bandaragoda et al. [2014]: Varying the number of estimators nesti ∈ {100, 200, 300}
and maximum sub-sample size {8, 18, 24}.

• IForest Liu et al. [2008]: Varying nesti ∈ {100, 200, 300} and {128, 256, 300} max samples
per tree.

• PIDForest Gopalan et al. [2019]: Varying nesti ∈ {100, 200, 300} and {128, 256, 300}
samples per tree.

• EIF Hariri et al. [2019]: Varying nesti ∈ {100, 200, 300} and {128, 256, 300} samples per
tree.

• LOF Breunig et al. [2000]: Varying nneighbor ∈ {5, 10, 20, 30, 40, 50}.

• LODA Pevnỳ [2016]: Varying n_randomcuts ∈ {50, 100, 200} and n_bins ∈ {5, 10, 25}
• DeepSVDD Ruff et al. [2018]: Varying batchsize ∈ {50, 100, 200}, l2_regularizer ∈
{5, 10, 25} and dropoutrate ∈ {0.2, 0.4}.

• RDP Wang et al. [2019b]: Varying batchsize ∈ {32, 64} and prt_steps ∈ {5, 10, 20, 30}.

• SLAD Xu et al. [2023b]: Varying n_ensemble ∈ {10, 20, 50} and subspace_pool_size ∈
{25, 50, 100}.

As in Appendix K, each hyperparameter configuration uses the same data splits and evaluation
protocols
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Table 10: Ensemble vs. best single subset (AUC-ROC). The ensemble improves performance on
every dataset.

Dataset Ensemble ADERH Best Single Subset

Optdigits 0.775 0.597
Wbc 1.000 0.949
Lymphography 1.000 0.966
Celeba 0.732 0.631
Skin 0.788 0.577
Pendigits 0.962 0.814
Wdbc 0.981 0.915
AD-Toothbrush 0.901 0.802
Wpbc 0.554 0.495
AD-Leather 0.991 0.900
Satimage-2 0.998 0.974
Backdoor 0.889 0.804
MNIST-C-Stripe 0.986 0.917
Waveform 0.768 0.629
Cardio 0.938 0.820
AD-Bottle 0.964 0.881
Wine 0.839 0.697
Musk 1.000 0.855

Table 11: This table presents the optimal AUC-ROC results achieved under various parameter settings
for ADERH, INNE, IForest, PIDForest, EIF, LOF, LODA, DeepSVDD, RDP, and SLAD.

Dataset ADERH INNE IForest PIDForest EIF LOF LODA DeepSVDD RDP SLAD

Optdigits 0.777 (2) 0.849 (1) 0.744 (4) 0.500 (10) 0.737 (5) 0.571 (8) 0.776 (3) 0.670 (6) 0.502 (9) 0.603 (7)
Wbc 1.000 (1) 0.913 (9) 1.000 (1) 0.994 (6) 1.000 (1) 0.997 (5) 1.000 (1) 0.931 (8) 0.958 (7) 0.778 (10)
Lymphography 1.000 (1) 0.989 (5) 1.000 (1) 0.984 (7) 1.000 (1) 1.000 (1) 0.895 (10) 0.957 (9) 0.988 (6) 0.959 (8)
Celeba 0.747 (2) 0.689 (5) 0.698 (4) 0.686 (6) 0.721 (3) 0.475 (10) 0.669 (7) 0.644 (8) 0.586 (9) 0.787 (1)
Skin 0.788 (2) 0.714 (6) 0.673 (7) 0.727 (4) 0.724 (5) 0.579 (9) 0.514 (10) 0.642 (8) 0.810 (1) 0.766 (3)
Pendigits 0.963 (1) 0.933 (7) 0.955 (2) 0.940 (6) 0.954 (3) 0.565 (10) 0.947 (4) 0.599 (9) 0.905 (8) 0.941 (5)
Wdbc 0.982 (5) 0.948 (7) 0.984 (3) 0.977 (6) 0.987 (2) 0.984 (3) 0.990 (1) 0.851 (9) 0.869 (8) 0.787 (10)
AD-Toothbrush 0.905 (5) 0.919 (4) 0.877 (7) 0.500 (10) 0.876 (9) 0.904 (6) 0.926 (3) 0.929 (2) 0.877 (7) 0.939 (1)
Wpbc 0.554 (2) 0.525 (6) 0.493 (10) 0.520 (8) 0.522 (7) 0.553 (3) 0.549 (4) 0.620 (1) 0.520 (8) 0.528 (5)
AD-Leather 0.993 (1) 0.907 (9) 0.986 (3) 0.500 (10) 0.986 (3) 0.965 (7) 0.961 (8) 0.981 (5) 0.979 (6) 0.988 (2)
Satimage-2 0.998 (1) 0.997 (2) 0.993 (4) 0.983 (6) 0.995 (3) 0.828 (9) 0.991 (5) 0.695 (10) 0.978 (7) 0.953 (8)
Backdoor 0.895 (2) 0.750 (8) 0.739 (9) 0.500 (10) 0.790 (6) 0.788 (7) 0.807 (5) 0.894 (3) 0.878 (4) 0.906 (1)
MNIST-C-Stripe 0.986 (1) 0.965 (6) 0.977 (3) 0.500 (9) 0.978 (2) 0.476 (10) 0.969 (4) 0.742 (8) 0.900 (7) 0.968 (5)
Shuttle 0.988 (3) 0.979 (7) 0.997 (1) 0.980 (6) 0.995 (2) 0.562 (10) 0.953 (8) 0.754 (9) 0.981 (5) 0.984 (4)
Waveform 0.815 (1) 0.742 (2) 0.719 (5) 0.616 (10) 0.734 (3) 0.715 (6) 0.701 (7) 0.619 (9) 0.661 (8) 0.722 (4)
Cardio 0.945 (1) 0.918 (5) 0.920 (4) 0.872 (8) 0.927 (2) 0.788 (9) 0.923 (3) 0.597 (10) 0.879 (7) 0.898 (6)
AD-Bottle 0.966 (2) 0.936 (9) 0.949 (7) 0.500 (10) 0.951 (5) 0.960 (4) 0.951 (5) 0.939 (8) 0.977 (1) 0.966 (2)
Census 0.638 (1) 0.478 (10) 0.609 (4) 0.616 (3) 0.638 (1) 0.538 (8) 0.529 (9) 0.555 (7) 0.609 (4) 0.587 (6)
Wine 0.883 (3) 0.796 (6) 0.753 (9) 0.756 (8) 0.777 (7) 0.917 (1) 0.889 (2) 0.806 (5) 0.395 (10) 0.835 (4)
Musk 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 0.430 (10) 0.986 (7) 0.783 (8) 0.706 (9) 1.000 (1)
AVG Rank 1.84 5.68 4.63 7.26 3.63 6.63 5.16 7.00 6.63 4.68
p-value NA 0.00594816 (+) 0.00350795 (+) 0.00149864 (+) 0.00543370 (+) 0.00543370 (+) 0.00704854 (+) 0.00100708 (+) 0.00065231 (+) 0.00704854 (+)

Results and discussion. Tables 11 show that ADERH consistently outperforms the other methods
under their best-tuned configurations, achieving an average rank of 1.84 in AUC-ROC. Comparing
these optimally tuned results to the default-parameter results (Table 1) shows that ADERH’s per-
formance advantage remains robust: even when the other isolation-based methods (IForest, EIF,
PIDForest, INNE) and non-isolation methods (LOF, LODA, DeepSVDD, SLAD) are fully tuned,
they generally do not match ADERH’s detection accuracy.

The key to ADERH’s strong performance lies in its novel design:

• Random pairing of points in each subset,

• Halving the pairwise distance to form two compact hyperspheres (rather than one large one),

• and a combined distance- (Pitch) and density-based (NDensity) scoring mechanism.
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Table 12: AUC-PR performance of Multiplicative
(
(1 − NDensity) × Pitch

)
vs. Additive

(
(1 −

NDensity) + Pitch
)

Dataset Multiplicative Additive

Optdigits 0.061 (2) 0.094 (1)
Wbc 1.000 (1) 0.080 (2)
Lymphography 1.000 (1) 0.144 (2)
Celeba 0.060 (1) 0.027 (2)
Skin 0.345 (2) 0.346 (1)
Pendigits 0.309 (1) 0.140 (2)
Wdbc 0.614 (1) 0.168 (2)
AD-Toothbrush 0.840 (1) 0.785 (2)
Wpbc 0.261 (2) 0.281 (1)
AD-Leather 0.975 (1) 0.885 (2)
Satimage-2 0.957 (1) 0.124 (2)
Backdoor 0.222 (1) 0.131 (2)
MNIST-C-Stripe 0.699 (1) 0.104 (2)
Waveform 0.144 (2) 0.235 (1)
Cardio 0.588 (1) 0.366 (2)
AD-Bottle 0.940 (1) 0.841 (2)
Census 0.075 (2) 0.094 (1)
Wine 0.262 (1) 0.226 (2)
Musk 1.000 (1) 0.996 (2)
AVG Rank 1.26 1.74

This approach reduces hypersphere overlap with anomalies, preserves coverage of normal clusters,
and robustly distinguishes boundary anomalies. The results in Tables 11 further confirm that even
with grid-searched hyperparameters, the other isolation-based and non-isolation-based methods do
not replicate these advantages.

R Ablation study: multiplicative vs. additive fusion

ADERH’s anomaly scoring function (Definition 3.9) incorporates two core signals: (1) Pitch(x,H), a
ratio-based distance metric that increases for boundary points, and (2) NDensity(H), which measures
how densely populated the hypersphere is. Multiplying these signals as

(
1−NDensity(H)

)
× Pitch(x,H)

ensures that a high final score occurs only when both the boundary cue (Pitch ≈ 1) and the
sparsity cue (1 − NDensity ≈ 1) are simultaneously strong. In contrast, an additive combination(
(1−NDensity) + Pitch

)
may inflate scores even when only one signal is large (e.g., if Pitch ≈ 1

but NDensity ≈ 1 in a dense, likely normal region). By multiplying, contradictions are naturally
suppressed, and each factor remains dimensionless in [0, 1], so their product also comfortably stays
in the interval [0, 1] without extra calibration.

Empirical findings. To validate this design choice, we performed an ablation study comparing the
above multiplicative variant with its additive counterpart, under the same experimental pipeline. Table
12 demonstrates that across most datasets, the multiplicative scheme

(
(1 − NDensity) × Pitch

)
achieves higher or comparable detection performance. While the additive combination occasionally
shows slight improvements in a few datasets, the average rank metric (1.26 vs. 1.74) clearly favors
the multiplicative approach overall. These findings confirm that blending boundary and density cues
multiplicatively is better at suppressing anomalies in dense regions while still highlighting borderline
outliers. Therefore, we adopt the multiplicative form as the default scoring mechanism in our anomaly
detection framework.
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S Limitations

While ADERH mitigates distance concentration through local hypersphere pairing, its effectiveness
still depends on the stability of distance structures in high-dimensional spaces. When intrinsic
dimensionality is large, local neighborhoods become less informative, reducing the discriminative
power of geometric cues. This limitation highlights the need for feature transformations that preserve
local contrast and enhance separability in complex data manifolds.

T Future work

Since the distribution of anomalies plays an important role in anomaly detection, it would be
interesting to explore how deep learning could transform the feature space of the data so that
anomalies are pushed even further away from normal data points in the first step Pang et al. [2021].
Subsequently, ADERH could leverage the transformed space to operate more effectively, potentially
improving the accuracy of anomaly detection. Additionally, this approach could address challenges
associated with high-dimensional data by mitigating the effects of the curse of dimensionality and
improving the representation of underlying patterns in complex datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the main contributions (the
introduction of an isolation-based anomaly detection method using multiple compact hyper-
spheres) and key theoretical/empirical claims (strong performance, linear-time scalability).
These match both the theoretical arguments and the experimental evidence presented in the
paper. The assumptions (e.g., δ-separation) and scope (e.g., experiments on tabular/image-
derived data) are also consistent with the final results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attainable by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper devotes a “Limitations” section to discussing potential constraints,
such as possible distance-concentration issues in very high dimensions. The text also
addresses how these factors could affect performance and scalability.
Guidelines:

• The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed not to penalize honesty concerning limitations.

34



3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper states all assumptions (e.g., δ-separation) up front, and each main
theoretical claim—such as the variance bound on the ensemble score, is accompanied by
complete formal proofs in the appendix. The authors number and reference all lemmas
and theorems consistently, offering intuitive sketches in the main text and full proofs in the
supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary details for reproducing its main experiments.
Section K covers data preprocessing, stratified splits, evaluation metrics (AUC-ROC, AUC-
PR), random seeds, and parameter settings for ADERH and all baselines. The appendix
further clarifies hyperparameter choices, data statistics, and runtime environments, enabling
full replication of results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

35



(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All real-world datasets (e.g., from AdBench Han et al. [2022]) are pub-
licly available. A public repository (https://github.com/Walid10010/ADERH.git)
includes the implementation, usage instructions, and scripts for ADERH and baselines.
These resources comply with the conference’s reproducibility and code submission guide-
lines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper and its appendix detail all experimental settings, including data splits
(70–30 stratified), normalization, ADERH parameters, baseline hyperparameters, hardware,
and random seeds. This ensures transparency and enables accurate replication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper provides statistical testing via paired Wilcoxon signed-rank tests
comparing the proposed method against baselines. The main tables 1, 8 report AUC-ROC
and AUC-PR results, including p-values derived from these tests, highlighting whether the
improvements are statistically significant at α = 0.05.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In appendix K, the paper states the hardware environment used (an Intel Core
i7, 32 GB RAM), as well as approximate runtime behaviors for the main experiments.
The text and appendix discuss the scalability with data size and dimensionality, showing
linear-time trends and providing typical run times on the described hardware.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: This research adheres to standard practices in anomaly detection, utilizing only
publicly available datasets that do not contain personal or sensitive information. No human
subjects were involved. The authors have reviewed the NeurIPS Code of Ethics and confirm
that the work raises no concerns related to fairness, privacy, or data use. The methodology
focuses exclusively on technical innovation, and all data sources are properly licensed and
ethically appropriate. As such, the study complies with NeurIPS ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is primarily theoretical in nature and has potential applications
across various domains. As such, we do not anticipate it having a direct positive or negative
impact on socially relevant issues.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper does not address safeguards for model or dataset release. This is due
to its focus on foundational algorithmic advances in anomaly detection, rather than high-risk
models or sensitive data. As the proposed method does not present inherent risks of misuse,
specific precautions were not discussed.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites all datasets used for testing, with proper attribution to the
original creators. The authors also mention the use of pre-existing libraries and models,
giving credit to the authors of the original codebases and providing clear citations. All
licenses and terms of use for these resources are explicitly mentioned, and the authors adhere
to the copyright and usage conditions.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets such as datasets, or models. It
primarily focuses on improving existing techniques in anomaly detection and validating
them using publicly available datasets. Therefore, no new assets are provided or documented
in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or human subjects research.
The work is computational and focuses on the development and evaluation of anomaly
detection algorithms using existing datasets, with no participant involvement.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing, and therefore
does not require IRB approval. All experiments are conducted solely on publicly available
datasets, with no human participation or personally identifiable information involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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