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Abstract

Out-of-distribution (OOD) detection is crucial for mitigating adversarial attacks,
ensuring model robustness, and maintaining the safety of AI systems. Detecting
OOD samples as early as possible is particularly important in the context of large
models, as it can minimize the attack surface, provide early warnings, and opti-
mize computational resources. In this work, we focus on detecting OOD inputs in
a partial inference setting and investigate whether the skipping mechanism used
in dynamic neural networks (DyNNs) can be leveraged for early OOD detection.
We first establish that the feature maps at various DyNN gates can help identify
anomalies. Building on this, we propose SkipOOD, a light-weight OOD detec-
tor that uses an uncertainty scoring function and an exit detector at each gate to
robustly identify OODs as early as possible. Through extensive evaluation, we
demonstrate that SkipOOD achieves competitive performance in detecting OOD
samples while reducing resource usage by nearly 50% .

1 Introduction

Large neural models (Wu et al., 2023) are frequently employed in safety-critical applications such
as autonomous driving and security systems. Rejecting inputs that the model is not designed to
handle is critical for mitigating adversarial attacks. In particular, detecting out-of-distribution (OOD)
inputs (Liu et al., 2020), which are data points that significantly deviate from the training data
distribution, can enhance the robustness of the model. For instance, when a model trained for image
classification is presented with an image maliciously crafted to deceive it, recognizing that the image
is an OOD input can serve as an early warning for such adversarial attempts.

It is not sufficient to merely detect the OOD inputs – they must be detected as early as possible
without traversing the entire network layers. Early detection minimizes the opportunity for potential
adversaries to exploit the model’s vulnerabilities. In large models, early termination of processing
for OOD inputs can also save valuable computational resources and reduce latency. Therefore, it is
paramount to detect OOD inputs with high accuracy and promptness.

Multiple approaches have been proposed for OOD detection, including Bayesian Models, Deep
Ensembles, and Feature Space Density Estimation (Gal & Ghahramani, 2016; Malinin & Gales,
2018; Lakshminarayanan et al., 2017; Mukhoti et al., 2023). However, those approaches rely on
full or even multiple inference passes for OOD detection. Even efficient OOD detection techniques
require outputs of either the final or penultimate layer, resulting in a full inference pass. As modern
models can comprise billions of parameters, using a full inference pass to detect OODs can be costly.
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Recent works (Lin et al., 2021; Zhou et al., 2023) have noted that low-dimensional features can be ef-
fective in detecting OODs (Ndiour et al., 2020), particularly when using additional low-dimensional
intermediate outputs from dynamic neural networks (DyNNs)(Han et al., 2021). DyNNs, which se-
lectively activate parts of the network based on intermediate outputs, offer a promising direction for
reducing inference costs. While previous studies have explored early-exit DyNNs for OOD detec-
tion (Lin et al., 2021; Zhou et al., 2023), their success depends on addressing two main challenges:
developing a control mechanism that balances computational cost and detection accuracy and en-
suring the control subnetwork adapts to variations in model size and architecture with minimal
complexity overhead.

Following this motivation, in this work, we focus on OOD detection, leveraging the capabilities of
a specific type of DyNNs called Conditional-Skipping DyNN (CS-DyNNs) (Wu et al., 2018; Wang
et al., 2018), which uses gates to control the execution of every block. Our preliminary study in
Section 2 shows that the gate features are low-dimensional and some of the gates have a strong
capability to detect OODs. Based on that insight, we propose SkipOOD, a novel OOD detection
technique based on CS-DyNNs. SkipOOD consists of two components: OOD Scoring Function and
Exit Detector. The OOD scoring function is an efficient low-cost uncertainty measurement method
that can detect whether an input is OOD or not. The Exit Detector uses a patience-based exit strategy
to select which gate will be used as the exit if an input is detected as OOD.

We evaluate SkipOOD on two aspects: effectiveness and efficiency. Through measuring effective-
ness, we evaluate the OOD detection capability of SkipOOD against baselines. Through efficiency
measurement, we discuss the latency caused by SkipOOD for OOD detection. Based on the eval-
uation on three baselines and ten OOD datasets, we find that SkipOOD can detect OOD examples
with 0.87 AUROC score reducing 50% of the latency.

Our work makes the following contributions:

• Problem Formulation. Our work is the first work to use Conditional Skipping DyNNs to
detect OOD examples efficiently.

• Approach. We propose SkipOOD, a novel OOD detection technique that consists of two
components: One focusing on the OOD scoring and the other focusing on exit detection.

• Experimentation. We investigate Conditional Skipping DyNNs’s capability to detect
OOD by using two models, two ID datasets, and ten OOD datasets.

2 Background and Motivation

OOD Detection. The literature around OOD detection is vast, with surveys (Yang et al., 2021)
and (Salehi et al., 2022) providing extensive reviews. Distribution shifts in the inputs can occur
in practice for several reasons such as a novel class, an unusual context or deliberate adversarial
perturbation. Some efforts such as (Bulusu et al., 2020; Geng et al., 2020; Karunanayake et al.,
2024) explicitly account for the shift characteristics in their framework. In contrast, we treat all such
shifts in an agnostic manner and propose a OOD detection mechanism in a unified setting. Various
research directions have been proposed to enable deep-learning-based OOD detection and scoring
based detection (Hendrycks & Gimpel, 2016; Mukhoti et al., 2021; Liu et al., 2020; Wang et al.,
2021) is a dominant paradigm. For SkipOOD, we focus on two specific mechanisms that are also
score-centric: feature density based (Mukhoti et al., 2021) and energy-based (Liu et al., 2020).

Dynamic Neural Networks. Dynamic Neural Networks (DyNNs) (Han et al., 2021) provide a com-
putationally efficient inference mechanism by adaptively modifying their network structure accord-
ing to the input data characteristics. In particular, Conditional-Skipping DyNNs (CS-DyNNs (Wu
et al., 2018; Wang et al., 2018)) (see Figure 1) reduce network depth for certain input instances on-
the-fly by selectively bypassing intermediate layers through the use of skip connections. In contrast
to networks that employ early termination strategies (Dai et al., 2020), these CS-DyNNs offer fine-
grained, plug-and-play control, allowing them to effectively handle inputs with varying degrees of
complexity. Our work builds on top of CS-DyNNs.

Formally, let xl and Hl denote the input feature map and the network function at layer l respectively.
The output at layer l + 1 is computed for CS-DyNNs as

xl+1 = 1(ϕg(x
l) > ϵl)Hl(xl) + xl, (1)
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Figure 1: SkipOOD pipeline. Inputs are assessed at each gate using uncertainty scores. Inference is
halted for an OOD example based on a voting mechanism that pools information across gates.

where ϕg : x → [0, 1] is a gating function that determines whether a layer must be executed, and
1 is the indicator function. In practice, the gating functions in CS-DyNNs are not ubiquitously
introduced after every layer. Instead, they are strategically placed after specific blocks, such as sub-
sequent to a residual block or a group of convolutional layers. In the above, l is the layer immediately
preceding a gate g. The threshold parameter ϵ provides a flexible mechanism to tune the trade-off
between accuracy and efficiency.

Motivation. Can the gating mechanism in CS-DyNNs also detect out-of-distribution (OOD) inputs?
To verify this, we train a SkipNet (Wang et al., 2018) model with CIFAR-10 (Krizhevsky et al., 2009)
dataset, and observe the Deep Deterministic Uncertainty (DDU) (Mukhoti et al., 2023) scores of the
feature map at the various gates for both in-distribution (ID) and OOD examples. Here CIFAR-10
is used for ID samples while SVHN (Netzer et al., 2011) is used for OOD samples. The DDU
scores quantify the uncertainty in the predictions, and are useful in identifying outliers or anomalies.
Figure 8 (in appendix) illustrates that OODs can indeed be detected at the gates. However, accurate
detection is achieved only at a limited subset of gates (e.g. Gate 6, 18 and 29). Furthermore, even
the gates located closer to the final output (e.g. Gate 35), which have the potential to access more
comprehensive feature maps, exhibit inconsistent performance in identifying OOD samples.

This limitation motivates our pursuit of a solution that aggregates information from several CS-
DyNNs gates in order to robustly detect OOD inputs. We also design a light-weight multi-score
approach for OOD detection, that capitalizes on the complementary strengths of diverse uncertainty
measures while being resource efficient.

3 Approach

Our proposed solution for efficient OOD detection in DyNNs is designed to seamlessly integrate
with existing architectures. It consists of two novel components: (a) a scoring function that evaluates
the likelihood of an input instance being OOD at each CS-DyNN gate, and (b) an exit detector
that determines whether the input should be classified as OOD. These components can be easily
incorporated into current DyNN models with minimal modifications.

Unlike conventional methods that compute OOD estimates solely at the final layer, our approach
conducts OOD estimation at every gate, in addition to the final layer. This enables us to account for
different levels of abstraction and noise in the data, combine the strengths of multiple layers, and,
crucially, track and monitor the variations in uncertainty scores. Moreover, calculating the scores at
each gate aligns with the specific intervals chosen by the CS-DyNN model designer and provides a
more tailored OOD detection mechanism. Below, we discuss the two aforementioned components
in detail, along with the SkipOOD pipeline.

3.1 OOD Scoring Functions

To offset the computational overhead introduced by OOD estimation at every gate, we employ a
lightweight scoring mechanism to quantify the uncertainty of an input example in the context of a
trained model. We eschew methods that require multiple forward passes during inference (Ovadia
et al., 2019) and favor those that have a low footprint. Specifically, we consider two different scoring
mechanisms to detect OOD: feature density-based and energy-based.
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Recent studies (Mukhoti et al., 2023) have shown that feature space density estimators can reliably
capture epistemic uncertainties, which often correspond to unseen examples during training, and
hence are useful for OOD detection. The key idea here is to first estimate the probability density of
the feature representations in the latent space of a trained model, and then calculate the likelihood of
a given sample against this density function to determine whether it was previously seen. Although
there are several choices for density estimation, we employ a Gaussian Mixture Model (GMM) with
separate mean and covariance parameters for each possible output category of a gate. This technique
does not require any OOD samples or offline training and can be evaluated in a single pass.

Formally, the density-based score DDU at gate g and the corresponding OOD categorization is
written as

OODg(x) =

K∑
k=1

N (Hl(xl);µg,k, σg,k) < λd
g (2)

where K denotes the number of classes predicted by a gate (typically two) and µ and σ are the mean
and covariances of a Gaussian distribution, respectively. This density score is expected to be low for
an OOD input while being high for an ID sample. In the above, λ is a threshold parameter that can
be configured for individual gates or optionally be reused across all the gates.

Besides the above probabilistic approach to quantify the OOD likelihood, we also employ an energy
function-based method (Grathwohl et al., 2020) that measures the compatibility of an input sample
with the learned model. Specifically, we compute an energy score from the unnormalized activation
outputs of a gate in order to provide more discriminative information about an input sample. Let
Φg be the pre-softmax output of a gating function ϕg . The energy-based score ES at gate g and its
OOD category are computed as follows, with λ being a threshold parameter.

OODg(x) = log

K∑
k=1

exp(Φg,k(x
l)) < λe

g (3)

The unnormalized logits is likely to have a small value for unseen samples, and consequently their
energy scores will be lower when compared with ID inputs.

We conduct extensive evaluations to compare the effectiveness of both these scores in the context
of CS-DyNNs. Although we could use a weighted combination of these scores, their distinct ranges
would make it challenging to normalize them automatically and leave it for future work.

3.2 OOD Exit Detector

Timely truncation of network computation upon detecting OOD inputs is crucial for resource ef-
ficiency. However, naively exiting the network as soon as a gate classifies an input as OOD can
be unreliable, especially with inputs of varying complexity or errors in score computation. Despite
attempts to model input complexity (Lin et al., 2021), detecting OOD based on a single gate remains
problematic due to the intricate nature of feature spaces in DyNNs.

We propose an exit strategy that aggregates information from multiple gates to classify inputs as
OOD. Using a cumulative sum technique, we pool OOD results across several gates, and if a thresh-
old number of gates identify the input as OOD, we conclude the input is OOD and exit the network.
Unlike (Zhou et al., 2020), our approach does not require consecutive gate agreement, instead em-
ploying a majority voting method that accommodates noise and errors. Let t be a threshold denoting
the minimum number of gates that must agree, and G be the total number of gates. The decision to
exit at a gate g ∈ {1, ..., G} is computed as Exit(g, x) =

[∑g
g′=1 OODg′(x)

]
≥ t.

The aforementioned criterion dynamically halts the inference process only when a sufficient number
of detectors concur that the input is an OOD sample. This approach effectively balances the trade-
off between accuracy and efficiency, ensuring robust performance while minimizing computational
overhead.

3.3 SkipOOD Pipeline

Figure 1 shows the input processing pipeline of SkipOOD. For an input provided to our model,
uncertainty scores at a given gate are calculated using either feature density or energy-based tech-
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Figure 2: Comparison results for OOD detection effectiveness using the mean AUROC scores ag-
gregated over all the ten test datasets.

niques, and subsequently the input is categorized as OOD or ID. If t different gates agree that the
input is OOD, the inference is stopped to minimize computations. If the consensus is not reached,
the computation proceeds to the next gate, repeating the above procedure until the final layer. Inputs
that successfully traverse the entire network are considered ID inputs.

4 Evaluation

We assess SkipOOD on two key aspects: its effectiveness in accurately detecting OOD inputs and
its efficiency in minimizing resource usage. We discuss below the evaluation setup and results. See
supplementary material for more in-depth discussions.

4.1 Setup

Datasets and Architectures. We consider CIFAR-10 and CIFAR-100 datasets (Krizhevsky
et al., 2009) as ID data. We consider ten different datasets for OOD data. These datasets are
MNIST (LeCun et al., 1998), K-MNIST (Clanuwat et al., 2018), Fashion-MNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011), LSUN (Crop) (Yu et al., 2015), LSUN (Resize) (Yu et al., 2015), Tex-
tures (Cimpoi et al., 2014), STL10 (Coates et al., 2011), Places-365 (Zhou et al., 2017), iSUN (Xu
et al., 2015).

We use ResNet (He et al., 2016) as the backbone architecture for DyNNs, particularly ResNet-74
(RN74) and Resnet-110 (RN110). We train SkipNet (Wang et al., 2018) DyNNs for evaluating our
model, while we train EENet (Demir, 2019) DyNN for evaluating the MOOD baseline. ResNet-74
has 36 gates, while ResNet-110 has 54 gates.

Baselines. We compare our method against MOOD (Lin et al., 2021), a state-of-the-art approach
for detecting OOD in DyNNs. Additionally, we use five additional static OOD detection tech-
niques which use final layer outputs to detect OODs: energy scores (ES) (Liu et al., 2020), DDU
scores (Mukhoti et al., 2023), KL Matching (KLM) (Hendrycks et al., 2019), Maximum Softmax
Probability (MSP) (Hendrycks & Gimpel, 2016), MaxLogit (ML) (Hendrycks et al., 2019).

Settings. We consider OOD detection at two different levels of abstraction: at the intermediate gates
and at the final layer. The former is essential for early detection, while the latter is for the ability to
process richer feature representations. When including the different uncertainty scores discussed in
section 3.1, this provides us four evaluation combinations: (I) SkipOOD(D,D). Density score-based
OOD detection at both gate level and at the final layer. (II) SkipOOD(E,E). Energy score-based
OOD detection, at both gate level and at the final layer. (III) SkipOOD(D,E). Density score-based
OOD detection at the gate level and energy score-based at the final layer. (IV) SkipOOD(E,D).
Energy score-based OOD detection at the gate level and density score based at the final layer.

Hyperparameters. We evaluate three hyperparameter configurations: the in-distribution uncer-
tainty score percentile thresholds at gates (τg) and the final layer (τp), and the number of gates
required to discard an OOD input (t). Percentiles for τ are derived from ID training scores, using
the 2nd to 5th percentiles. Values for t range from 2 to 5. Refer to Table 2 (in the appendix) for
configuration details across backbones and datasets.
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Table 1: Comparison results for OOD detection efficiency of SkipOOD against baselines using the
mean latency (Sec) aggregated over all the ten test datasets.

Dataset Model SkipOOD(D,D) SkipOOD(E,E) SkipOOD(D,E) SkipOOD(E,D) MOOD DDU ES ML MSP KLM

CIFAR10
RN110 0.5 0.4 0.5 0.6 0.4 0.83 0.83 0.83 0.83 0.84
RN74 0.3 0.3 0.4 0.5 0.3 0.64 0.64 0.64 0.64 0.65

CIFAR100
RN110 0.5 0.5 0.7 0.7 0.4 0.83 0.83 0.83 0.83 0.84
RN74 0.3 0.3 0.5 0.5 0.3 0.64 0.64 0.64 0.64 0.65

4.2 Effectiveness

Figure 2 compares the performance (AUROC score) of our proposed solution against various base-
lines in detecting OOD inputs accurately. See Figures 9 and 10 in appendix for a detailed analysis.
In general, we observe that the SkipOOD variants outperform baselines like MOOD, DDU, MSP by
a considerable margin across different configurations. Additionally, SkipOOD’s effectiveness in de-
tecting OOD inputs is in the same range as MaxLogit, Energy Score, and KL Matching techniques.
Note that the other methods utilize the entire network, disregarding any resource efficiency criteria.
Despite accounting for computational efficiency using early exits, our SkipOOD solution surpasses
or matches the performance of all the popular baselines. The underwhelming results of the DDU and
MSP scores computed solely at the final layer also highlight the importance of including a robust
detection mechanism that spans different levels of feature representations.

When using mixed combinations for the gate level and final layer, we observe that SkipOOD(E,D)
yields low AUROC scores. This may be due to the sparsity introduced by the binary gate classifier
and the challenges density-based mechanisms face in handling the different categories present in
the final layer. Additionally, the MOOD baseline struggles in most configurations, underscoring
its limitations with complex inputs. Overall, SkipOOD(D,E) performs best, effectively combining
density-based scores for varying abstraction levels with energy score methods at the final layer.

4.3 Efficiency

Does SkipOOD reduce the computation cycles for OOD inputs? We show the mean latency caused
by the different methods in Table 1 (see Table 3 in the appendix for detailed analysis) and note that
our method consumes significantly less time for OOD detection than the static baselines, which tra-
verse the entire network. The mean latency caused by KL-Matching is slightly higher than other
static baselines, which is because of the additional computations caused by the KL-Matching algo-
rithm. We also find that the time consumed by SkipOOD(D,E) to detect OODs is in the same range
as MOOD’s time consumption. It also appears that using only DDU or ES would also cause compa-
rably higher latency than SkipOOD(D,E). To summarize, the SkipOOD(D,E) method provides the
optimal balance between accurately detecting OODs and minimizing the network latency.

5 Conclusion

In this paper, we propose SkipOOD, a robust and resource-efficient OOD detection technique based
on the skipping mechanism of dynamic neural networks aimed at developing safe AI systems. We
introduced two different OOD scoring functions that leverage the simplicity of density-based meth-
ods and the discriminative power of energy functions. We also proposed a novel exit detector that
aggregates information from several gates to identify termination criteria. Our comprehensive eval-
uation of ten different datasets, assessing both effectiveness and efficiency, illustrates the utility of
our solution. Additional insights are provided in the appendix.

Disclaimer. This paper was prepared for informational purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase & Co. and its affiliates (“JP Morgan”) and is not a product of
the Research Department of JP Morgan. JP Morgan makes no representation and warranty what-
soever and disclaims all liability, for the completeness, accuracy, or reliability of the information
contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product, or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.
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6 Appendix

6.1 Parameter Sensitivity

In this section, we discuss the impact of hyper-parameters like τg and t on the OOD detection capa-
bility of SkipOOD. We consider two values of τp (2nd and 3rd percentile) and plot the mean AUROC
scores aggregated over ten datasets for different values of τg and t. We employ SkipOOD(D,E) for
this exercise since it is the best-performing model.

Figure 3 shows these plots, and it can be seen that for all the combinations, the relative percentage
difference between the highest and lowest mean AUROC values is well within 10%. This observa-
tion suggests that changing the hyper-parameter values does not have a drastic effect on the AUROC
scores, thereby highlighting the stability of the model. However, it may be prudent to tune these
parameters when dealing with a large dataset that has a high volume of OOD samples.

Additionally, for higher values of t, it is noticeable that the average AUROC scores improve for
three out of four cases (Figure 3a, 3b, 3d). For small values of t, fewer gates decide if an input
is OOD or not. This might result in a significant number of ID examples being mis-classified as
OOD, and end-up reducing the AUROC score. The observation is not followed for Figure 3c. The
difference between the highest and lowest mean AUROC is within 1% relative difference, showing
that it would be beneficial if t value is not significantly low.

6.2 Impact of Stricter Threshold

We discuss here the impact of the threshold parameter τg on SkipOOD’s performance. We em-
ployed a constant threshold across all the gates in our experiments. In practice, the capability and
functionality of each gate might differ and it would be useful to examine whether altering these
thresholds can be beneficial. For example, the gates at the early part of the network often mis-detect
OODs since they would not have access to rich feature representations. Hence, we study the effect
of stricter τg thresholds at the early gates. To be precise, if a gate number is less than one-sixth of
the total number of gates, we consider the gate to be an early gate. We had used τg values of 2, 3, 4,
and 5 in our evaluation, but here we set τg = 2 for all early gates and use the same values as before
for the rest of the gates. For fair comparison, we freeze τp value to be 3. Here as well, we consider
only SkipOOD(D,E).

Figure 4 shows the impact of this stricter threshold on the SkipOOD effectiveness. The solid lines
represent the evaluation with a constant τg across the model, while the dotted lines represent the
evaluation with stricter τg values at the early gates. It can be observed that for a majority of the
configurations, a strict threshold for early gates produces better AUROC scores. This is due to
the fact that fewer ID examples are mis-predicted as OOD in earlier gates, thereby improving the
AUROC scores.

However, a strict threshold for early gates may result in reducing the resource efficiency of the
model. Figure 5 confirms this hypothesis. We report the mean number of blocks required to detect
OOD, and it can be seen that the efficiency of SkipOOD indeed decreases if we set strict thresholds
of τg for early gates. This trade-off can be exploited to seek an optimal balance between OOD
detection effectiveness and computational efficiency, depending on the target application.

6.3 Feature Accumulation through Multiple Gates

In this section, we discuss if feature accumulation through multiple gates could improve the OOD
detection capability of the SkipOOD or not. For that purpose, we create N/2 exits out of N gates,
where each exit would accumulate the features of two gates and measure uncertainty based on accu-
mulated features.

Figure 6 shows the AUROC scores of SkipOOD(D,E) with (dotted lines) and without accumulated
features setting. It is noticeable that for three out of four model-dataset pairs, the maximum AUROC
score is higher for the setting with accumulated features. Also, with the accumulated features setting,
we find that the AUROC scores are higher for lower t values. However, we find the similar pattern
of using more number of blocks for OOD detection ( three out of four model-dataset pairs) while
using accumulated features setting. The results can be found in Figure 7.
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Figure 3: Impact of hyperparameters t and τg on effeciveness of SkipOOD. τp = 2 and τp = 3 were
used.
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Figure 4: Impact of a stricter threshold on τg for OOD detection effectiveness. Dotted lines represent
the strict threshold setting.
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Figure 5: Impact of a stricter threshold on τg for computational efficiency. Dotted lines represent
strict threshold setting.
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Figure 6: Impact of accumulating gate features for OOD detection effectiveness. Dotted lines rep-
resent the accumulated features setting.

6.4 Gate Exit Distribution

We analyze how many residual blocks are executed for the OOD inputs to be detected. Figure 11
shows the distribution of the executed blocks for OOD inputs across all four model-dataset pairs.
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Figure 7: Impact of accumulating gate features for computational efficiency. Dotted lines represent
strict accumulated features setting.
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Figure 8: DDU Mukhoti et al. (2023) scores of the feature representations at different gates for both
ID and OOD inputs, illustrating the challenges in detecting OODs robustly.

Table 2: Hyperparameter configurations used for SkipOOD evaluation.

Dataset Model
SkipOOD(D,D) SkipOOD(E,E) SkipOOD(D,E) SkipOOD(E,D)

τg(%ile) τp(%ile) t τg(%ile) τp(%ile) t τg(%ile) τp(%ile) t τg(%ile) τp(%ile) t

CIFAR10
RN110 3 2 2 3 5 2 3 5 2 5 5 2
RN74 5 2 5 2 5 5 3 2 5 4 2 5

CIFAR100
RN110 4 2 4 2 4 4 3 4 4 5 4 5
RN74 4 2 3 2 5 5 3 2 3 4 2 5

It can be seen that a significant number of OOD inputs get detected before reaching the final layer,
a desirable behavior. For CIFAR-10 trained models, a considerable number of OOD examples are
detected before the executing ten blocks, thereby minimizing the computation required dramatically.
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Table 3: Comparison results for computational efficiency of OOD detection across 10 test datasets
using latency (Sec).

Model & Dataset Method DTD FMNIST iSUN KMNIST LSUN LSUN-R MNIST Place365 STL10 SVHN Mean ± Std

ResNet110 CIFAR10

SkipOOD(D,D) 0.5 0.2 0.7 0.1 0.6 0.7 0.1 0.7 0.8 0.5 0.5 ± 0.3
SkipOOD(D,E) 0.4 0.2 0.5 0.1 0.3 0.5 0.1 0.5 0.7 0.4 0.4 ± 0.3
SkipOOD(E,E) 0.6 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.6 0.4 0.5 ± 0.2
SkipOOD(E,D) 0.7 0.6 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4 0.6 ± 0.3
MOOD 0.4 0.1 0.8 0.1 0.2 0.8 0.1 0.5 0.5 0.2 0.4 ± 0.3

ResNet110 CIFAR100

SkipOOD(D,D) 0.4 0.4 0.3 0.3 0.6 0.3 0.1 0.8 0.8 0.4 0.5 ± 0.3
SkipOOD(D,E) 0.4 0.4 0.3 0.3 0.5 0.3 0.2 0.7 0.7 0.5 0.5 ± 0.3
SkipOOD(E,E) 0.7 0.6 0.7 0.6 0.6 0.7 0.6 0.7 0.7 0.8 0.7 ± 0.1
SkipOOD(E,D) 0.7 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.7 ± 0.1
MOOD 0.4 0.1 0.8 0.1 0.2 0.8 0.1 0.5 0.5 0.2 0.4 ± 0.2

ResNet74 CIFAR10

SkipOOD(D,D) 0.3 0.2 0.2 0.1 0.4 0.2 0.2 0.5 0.5 0.2 0.3 ± 0.2
SkipOOD(D,E) 0.3 0.3 0.2 0.2 0.3 0.1 0.2 0.4 0.5 0.2 0.3 ± 0.2
SkipOOD(E,E) 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 ± 0.1
SkipOOD(E,D) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ± 0.1
MOOD 0.3 0.1 0.5 0.1 0.1 0.5 0.1 0.3 0.3 0.1 0.3 ± 0.2

ResNet74 CIFAR100

SkipOOD(D,D) 0.3 0.3 0.3 0.1 0.4 0.3 0.0 0.5 0.5 0.3 0.3 ± 0.2
SkipOOD(D,E) 0.3 0.3 0.3 0.1 0.4 0.3 0.0 0.5 0.5 0.3 0.3 ± 0.2
SkipOOD(E,E) 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 ± 0.1
SkipOOD(E,D) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ± 0.1
MOOD 0.3 0.1 0.5 0.1 0.1 0.5 0.1 0.3 0.3 0.1 0.3 ± 0.2

In contrast, for CIFAR-100 trained models, only fewer OOD samples are detected before executing
ten blocks, and the exits occur at a wide range of gates.

6.5 Qualitative Illustrations for Resource Consumption

Through Figures 12, 13 and 14, we show the computational FLOPs executed for different MNIST
dataset inputs. They correspond to low, medium and high number of FLOPs respectively, where
low computation cycles use fewer than one third of the total gates, while high cycles use more than
two third of the total gates, and the medium cycles use between 33% and 66% of the gates during
inference. The results are computed on the ResNet-74 model trained with CIFAR-10 data. As
we examine the relationship between the visual structure in the image and the FLOPs executed, it
appears that thick-stroked digits resembling bold fonts tend to be detected only at later gates. This
can be attributed to the relationship between image complexity (e.g. pixel density here) and the
amount of resources required for detecting OODs.
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Figure 9: OOD detection effectiveness of four SkipOOD variants and three baseline methods across
ten OOD datasets (For RN74 Model).

6



MNIST

KM
NIST

Fas
hio

nM
NIST

SV
HN

ST
L10 DTD

Pla
ce3

65
LSU

N
LSU

N-R
ISU

N

OOD Datasets

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C 
Sc

or
e

Method
SkipOOD(D,D)
SkipOOD(E,E)
SkipOOD(D,E)
SkipOOD(E,D)
MOOD
DDU
ES
ML
MSP
KLM

(a) RN110 trained with CIFAR10

MNIST

KM
NIST

Fas
hio

nM
NIST

SV
HN

ST
L10 DTD

Pla
ce3

65
LSU

N
LSU

N-R
ISU

N

OOD Datasets

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C 
Sc

or
e

Method
SkipOOD(D,D)
SkipOOD(E,E)
SkipOOD(D,E)
SkipOOD(E,D)
MOOD
DDU
ES
ML
MSP
KLM

(b) RN110 trained with CIFAR100

Figure 10: OOD detection effectiveness of four SkipOOD variants and three baseline methods across
ten OOD datasets (For RN110 Model).
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Figure 11: Frequency of OOD inputs using each feasible number of blocks. Results consolidated
across all ten test datasets.

F

Figure 12: OOD MNIST images detected before the executing first 12 blocks of the RN74 model
trained with CIFAR-10.

Figure 13: OOD MNIST images detected after executing the first 12 blocks and before the first 24
blocks of the RN74 model trained with CIFAR-10.
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Figure 14: OOD MNIST images detected after executing the first 24 blocks and before the final exit
of the RN74 model trained with CIFAR-10.
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