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ABSTRACT

Trajectory prediction is crucial for practical applications, encompassing naviga-
tion for autonomous vehicles and the implementation of safety systems based on
the Internet of Vehicles (IoV). Most existing methods significantly rely on com-
prehensive map information, employing robust rule constraints to incrementally
predict trajectories within the driver’s local decision-making context. However,
in environments characterized by weak rule enforcement, such as urban intersec-
tions, these approaches neglect the disparity between the driver’s global inten-
tions and current behaviors.Recognizing the characteristics of intersection traf-
fic flow—macroscopically organized yet microscopically disordered, exhibiting
highly heterogeneous conditions—this paper presents a novel model termed Long-
short Range Aggregation for Trajectory Prediction in Intersections (LSTR). This
model anchors the vehicle’s local decision-making process to long-range inten-
tions. Specifically, LSTR predicts the vehicle’s destination via a global intention
inference module and models its long-range driving intentions through cluster-
ing to extract macroscopic traffic flow patterns. This long-range intention subse-
quently informs the short-range local interaction behaviors captured by the local
behavior decision module. Ultimately, the fused features from these two modules
are analyzed using a multi-modal decoder to interpret the various motion pat-
terns, resulting in the trajectory prediction outcomes.We rigorously validate the
proposed framework across multiple intersection scenarios utilizing real-world
datasets, including inD, roundD, and a subset of WOMD. Experimental results
indicate that our model surpasses several benchmarks.

1 INTRODUCTION

Trajectory prediction is crucial for autonomous driving and intelligent transportation, providing fore-
sight for vehicle planning, safety, and traffic management. Existing methods have achieved success
in highway and urban road applications Cong et al. (2023); Shi et al. (2024); Sun et al. (2022),
often relying on lane-level high-definition maps to spatially constrain trajectories and make locally
optimal decisions. These methods can be seen as ”greedy algorithms under strong constraints.”
However, in weakly constrained environments like urban intersections, they underperform due to
neglecting multi-level flow dynamics, leading to a disconnect between global intentions and local
decisions.

The multi-tiered flow dynamics at intersections can be modeled as a superposition of macroscopic
and microscopic traffic flows Zhao et al. (2023).Microscopic traffic flow involves complex interac-
tions and behaviors of intersection users, characterized by disorder and heterogeneity. Each user
navigates the intersection with different strategies based on real-time conditions, the behavior of
others, and individual decision-making, such as alternating vehicle passage or pedestrians crossing
unexpectedly. This dynamism, driven by individual choices and implicit interactions, makes micro-
scopic traffic flow inherently difficult to predict. Macroscopic traffic flow at intersections is defined
by a weakly regulated pattern, with the primary constraint being the ”route choice”—the selection
of entry and exit routes. Despite the complexity of microscopic behavior, macroscopic flow reflects
collective tendencies, providing essential global prior information for trajectory prediction.
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Figure 1: The left figure illustrates a greedy algorithm with strong rules, and it rely on lane-level
high-definition maps to spatially constrain trajectories and make locally optimal decisions. While
the right figure shows our LSTR method, we aim ta integrating local interaction modeling and global
intention prediction within a framework

Accordingly, intersection trajectory prediction can be divided into two core challenges: local in-
teraction scene perception and long-range global intention prediction. Local interaction scene per-
ception primarily focuses on the dynamic coupling relationships within microscopic traffic flow.
By capturing real-time interactions among traffic participants, it seeks to comprehend complex and
heterogeneous traffic behaviors, thereby accurately modeling the mutual influence between individ-
ual vehicles. Global intention prediction, in contrast, centers on analyzing the global trends within
macroscopic traffic flow. It relies on the relatively weak ”route choice pattern” rule to discern and
infer the overall driving intention of vehicles at intersections.

In this work, we present a novel trajectory prediction method for urban intersections, integrating
local interaction modeling and global intention prediction within a Transformer-based framework.
Our approach introduces two key innovations:(1) We propose a Local Behavior Decision Module
(LBDM) to model local interactions. Temporal dependencies are captured through the Temporal
Neighborhood Aggregation module, and short-range motion patterns are refined using the Coherent
Occupancy Prediction (COP) head. This enables parallel prediction of future trajectories, effec-
tively capturing local dynamics.(2) We propose a Global Intention Inference Module (GIIM), which
predicts the destination, captures the ”route choice pattern,” and anchors global intentions with lo-
cal decisions. These features are filtered and passed to the decoder, combining mode-specific and
temporal encoding for path search, enabling accurate and interpretable predictions in complex in-
tersections.(3) Using these techniques, the LSTR framework outperforms map-prior algorithms. In
experiments on the inD, rounD, and WOMD datasets, where LSTR improves b-minFDE6 on inD by
4.5 and minADE6 on rounD by 4.2 over the second-best method.

2 RELATED WORKS

Trajectory prediction based on HD maps. Trajectory prediction is a well-researched area in au-
tonomous driving Huang et al. (2023)Teeti et al. (2022), involving the estimation of future trajecto-
ries based on historical agent states and environmental information. HD maps play a critical role by
providing detailed road structure, lane configurations, and traffic signs, significantly improving pre-
diction accuracy Wang et al. (2023)Sharma et al. (2024). Methods leveraging HD maps are catego-
rized into traditional kinematic models and deep learning approaches.Kinematic models use physics
and kinematics to predict vehicle trajectories, considering position, velocity, acceleration, and road
constraints Lefkopoulos et al. (2020)Okamoto et al. (2017)Wang et al. (2019)Zhang et al. (2017).
While these models are interpretable and perform well in short-term predictions (up to one second),
they struggle with complex maneuvers in dynamic environments like urban intersections due to
simplifying assumptions.Recently, deep learning models have advanced trajectory prediction using
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HD maps. Early methods Casas et al. (2020)Marchetti et al. (2020)Park et al. (2020)Zhang et al.
(2020) encoded maps and agents into images using CNNs, followed by fully connected layers for
prediction. Approaches like VectorNet Gao et al. (2020) and LaneGCN Liang et al. (2020) represent
road structures and agent motion in graph networks to capture agent-map interactions. Target-driven
models such as TNT Zhao et al. (2021) and DenseTNT Gu et al. (2021a) generate map-based candi-
date targets to regress trajectories. The MTR series Liu et al. (2021)Shi et al. (2024) uses learnable
motion queries to search for strategies within lane-level constraints.While deep learning methods
reliant on HD maps perform well, they falter in environments like urban intersections where map
data is sparse, and vehicle strategies are influenced by global intentions and unstructured informa-
tion (e.g., traffic flow, interactive behaviors, implicit rules). Greedy algorithms fail to model global
strategies effectively, distorting predictions. Our approach explicitly models agents’ global inten-
tions through endpoint clustering, using this to constrain local interactions and ensure consistency
between local decisions and global planning.

Transformer-based Vehicle Motion Forecasting. Transformers are a neural network architec-
ture leveraging the attention mechanism, originally developed for machine translation in NLP, and
have outperformed recurrent neural networks Braşoveanu & Andonie (2020). Recently, they have
proven highly effective for trajectory analysis Quintanar et al. (2021). Huang et al. Huang et al.
(2022) proposed a Transformer-based multimodal trajectory prediction model using multi-head at-
tention to capture relationships between agents. SceneTransformer Ngiam et al. (2021) integrates
features from agent interactions and road maps spatially and temporally, while LaneTransformer
Wang et al. (2023) extends this with Attention-Based Block Aggregation for higher-order interac-
tions.In summary, Transformers show great potential for trajectory prediction by capturing complex
dependencies and interactions. They offer scalability, transfer learning, and the ability to manage
multiple agents. Our LSTR approach builds on this by introducing a Transformer architecture that
incorporates auxiliary tasks in both the local behavior decision module and global intent inference
module. This design tightly constrains global intentions and local behaviors, enabling accurate and
interpretable trajectory predictions in complex intersections.

3 APPROACH

Problem Definition. Intersection trajectory prediction aims to forecast future vehicle trajectories
using historical data and map information. Mathematically, this is expressed as: Ŷ i

t+1:t+T =

f
(
Xi

1:t,M
)
, where historical trajectories Xi

1:t = {
(
xi
1, y

i
1

)
, . . . ,

(
xi
t, y

i
t

)
} and map information

M are given. The goal is to predict Ŷ i
t+1:t+T = {

(
xi
t+1, y

i
t+1

)
, . . . ,

(
xi
t+T , y

i
t+T

)
} over the next

T steps. The model f captures the relationship between local vehicle behavior and global driving
intentions.

Overview. We propose a Long-short Range Aggregation Trajectory Prediction Model (LSTR) for
urban intersections, utilizing a Transformer Encoder-Decoder framework to constrain multimodal
future vehicle movements based on global intention. As shown in Figure 2(a), the LSTR comprises
three modules. The Local Behavior Decision Module (LBDM) forecasts short-range dynamics us-
ing historical features, while the Global Intention Inference Module (GIIM) captures long-range
motion patterns. These modules identify each vehicle’s “path selection patterns.” The multimodal
decoder then dynamically aligns with the top-k optimal patterns and refines local decisions to predict
multimodal trajectories.

Backbone. We vectorize input trajectories and intersection road maps as polylines (Gao, 2020) and
encode the scene using an agent-centric approachGu et al. (2021b); Varadarajan et al. (2022); Zhang
et al. (2020); Zhou et al. (2022). Our model uses the Encoder module from MTRShi et al. (2022) to
process historical trajectory and map features. As shown in Figure 2(b), for each vehicle’s historical
trajectory Xi

1:t = {(xi
1, y

i
1), . . . , (x

i
t, y

i
t)} and map information M , features are first extracted using

a Multi-Layer Perceptron (MLP), followed by max-pooling to integrate local and global trajectory
features. A spatial attention module then aggregates neighborhood features to capture vehicle-map
interactions. After multiple iterations of the Encoder Block, the final feature representation G =
[FA, FM ] is obtained, where FA = (Na, D) and FM = (Nm, D) denote vehicle and map features,
with Na and Nm representing the number of vehicles and map polylines, respectively.
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Figure 2: Overview of LSTR. LSTR takes as input the historical trajectory features of vehicles and
surrounding road maps at intersections. The Backbone extracts spatially aggregated local features,
while LBDM outputs local trajectories. GIIM then predicts destinations and generates global inten-
tions. The Decoder uses an attention mechanism to filter the most likely global intention for each
vehicle, producing multimodal trajectory outputs.

3.1 LOCAL BEHAVIOR DECISION MODULE (LBDM)

Local Temporal Aggregation. Capturing local interaction decisions between vehicles is crucial
for trajectory prediction in microscopic traffic flow at intersections. Inspired by HiVTZhou et al.
(2022), we use a multi-head attention mechanism based on the Transformer to model histori-
cal interactions and temporal dependencies, as shown in Figure 2(c). For each agent i, the ag-
gregated trajectory feature at each historical time step t

′ ∈ {1, 2, . . . , t} is computed as hi
t′ =

Concat
(
hi,1
t′ ,h

i,2
t′ , . . . ,h

i,H
t′

)
WO and hi,h

t′ =
∑

j∈N τ
i
αij
t,hp

j
t′ , where hi

t′ is the aggregated fea-

ture, H is the number of attention heads, WO is a learnable projection matrix, and hi,h
t′ is the output

of the h-th attention head. The attention weights αij
t,h, computed across neighboring trajectory

points pj
t′ within the local temporal window N τ

i , are obtained using scaled dot-product attention as

αij
t,h =

exp(qh
i ·k

h
j )∑

k∈Nτ
i

exp(qh
i ·kh

k)
, where qh

i and kh
j represent the query and key vectors of agent i and its

neighbor j, respectively.

Coherent Occupy Prediction (COP). The features encoded by the Backbone and temporal atten-
tion module H1:t = {hi

t′ | i ∈ {1, 2, . . . , N}, t′ ∈ {1, 2, . . . , t}} capture the contextual historical
information of all N agents and their interactions with road elements. The COP Head estimates the
2D Gaussian distribution of occupancy and velocity for each vehicle over the next T frames based on
H1:t. Specifically, COP predicts (µ̂x, µ̂y, σ̂x, σ̂y, ρ̂, v̂x, v̂y) at each time step t′ ∈ {t+1, . . . , t+T},
where (µ̂x, µ̂y) indicates the predicted position. This is compared with the actual trajectory

(
xi
t′ , y

i
t′

)
using the L1 loss:

Lcop =
1

N

N∑
i=1

t+T∑
t′=t+1

(
∥ Xi

t′ − µ̂i
t′ ∥2 +λv ∥ Vi

t′ − V̂i
t′ ∥1

)
(1)

where N is the number of vehicles, and T is the number of future time steps. Xi
t′ =

(
xi
t′ , y

i
t′

)
and Vi

t′ = (vx, vy) are the true position and velocity, while µ̂i
t′ and V̂i

t′ are predictions. COP
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predicts both occupancy and motion, enabling the model to capture short-term dynamics and lay the
foundation for subsequent tasks.

3.2 GLOBAL INTENTION INFERENCE MODULE (GIIM)

Offset Flow Prediction (OFP). The Offset Flow Prediction Head predicts directional offsets to-
wards potential exit points at intersections, similar to Implicit Occupancy Flow FieldsAgro et al.
(2023), focusing only on the queried continuous points’ offsets.

As shown in Figure 2(d), the input to the Offset Flow Prediction Head is the trajectory feature FA

from the Backbone network. For each agent i, instead of regressing absolute exit point coordi-
nates, the Head predicts 2D offset vectors

{
ôit+1:t+T

}
, representing displacements from predicted

positions to exit points at future steps t
′ ∈ {t+ 1, . . . , t+ T}, defined as:(

ôi
x,t′

, ôi
y,t′

)
=

(
eix, e

i
y

)
−

(
p̂i
x,t′

, p̂i
y,t′

)
(2)

where
(
p̂i
x,t′

, p̂i
y,t′

)
are the predicted coordinates, and

(
eix, e

i
y

)
are the exit point ground truth coor-

dinates, relabeled for each intersection scene.
(
ôi
x,t′

, ôi
y,t′

)
is the difference between them.

The loss function is the L1 loss between the predicted
{
ôit+1:t+T

}
and ground truth offset vectors{

oit+1:t+T

}
, calculated as:

Lofp =
1

N

N∑
i=1

t+T∑
t′=t+1

∣∣oi
t′
− ôi

t′
∣∣ (3)

Supervision is applied only on predicted positions, ignoring other locations.

Macroscopic Traffic Flow Generation. The predicted exit position for each vehicle is computed
as

(
êix, ê

i
y

)
= (µ̂x, µ̂y) +

(
ôix,t′ , ô

i
y,t′

)
, where

(
êix, ê

i
y

)
represents the predicted exit coordinates of

agent i, while (µ̂x, µ̂y) and
(
ôix,t′ , ô

i
y,t′

)
are as defined in COP and OFP sections.

To determine candidate exit paths, we select predicted exit points with a Euclidean distance of less
than 1 meter as candidates. If multiple points meet this condition, the geometric center is chosen to
ensure uniqueness, and the process is illustrated in Figure 2(d). It gives k candidate exits for all N
vehicles. The model is designed to learn macroscopic traffic flow patterns, so the matching between
these k candidate exits and k ground-truth exits is treated as an assignment problemCarion et al.
(2020), solved using the Hungarian algorithm. The distance matrix, based on Euclidean distance
between predicted cluster centers êi and actual exits ei, defines the loss function:

Laux =
1

k

k∑
i=1

∥ êi − eπ(i) ∥2 (4)

where ∥ · ∥2 represents Euclidean distance, êi is the predicted cluster center, and eπ(i) is the cor-
responding ground-truth exit. Based on the learned exit and known entrance positions, clustering
is performed using the ”Intersection-Direction-Lane-Intention” keywordZhang et al. (2021) to ob-
tain pseudo-labels for traffic flow. These pseudo-labels are converted to hidden features FP via
an MLP and concatenated with trajectory features FA, resulting in globally intention-anchored local
features. Ablation experiments show that global intention prediction through cluster supervision im-
proves convergence and model performance, due to the regularization effect of cluster supervision,
which helps capture macroscopic traffic flow.

Long-range Spatial Dependency Extraction. Long-term temporal dependencies have been widely
studiedChai et al. (2020); Lin et al. (2024); Ngiam et al. (2021), but effectively capturing long-range
spatial dependencies remains underexplored. The entrances and exits of urban intersections, key
constraints for trajectory prediction, contain the semantic information of the surrounding road envi-
ronment. For each vehicle i, we filter the map features F

′

M around its predicted exit êi and known
entrance si, which are then input into the Decoder for trajectory prediction. Ablation experiments
show that capturing long-range spatial dependencies enhances prediction performance.
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3.3 MULTI-MODAL DECODER

The objective of this module is to predict K multimodal trajectories for each target vehicle, complet-
ing the trajectory prediction task. The model has learned global intentions from previous modules,
and vehicles with similar intentions have similar trajectories but differ in temporal shifts. To account
for this, we introduce time-sensitive, learnable position embeddings to search for local trajectories
across different modes. These embeddings are added to the global intention pseudo-labels FP and
the Key and Value features of the target vehicles.

The multi-modal decoder first selects the K mode labels F ′
P most similar to FP and adds them to the

Query after position encoding to predict K future modes. Key and Value consist of two parts: the
vehicle’s pseudo-label FP , re-featurized and concatenated with the historical trajectory feature FA,
and the map features selected based on the predicted exit êi and entry si. After position encoding,
these are cross-attended with the Query, and the fused map and trajectory features are passed through
an MLP into the prediction head. The prediction head outputs K trajectories, each modeled by a 2D
Gaussian distribution.

The predicted trajectory mean, standard deviation, and correlation coefficient capture trajectory un-
certainty. The model is trained using negative log-likelihood (NLL) loss, optimizing the probability
of the predicted distribution matching the real trajectory:

LNLL = − 1

N

N∑
i=1

T∑
t=1

log p
((
xi
t, y

i
t

)
| µ̂i

x, µ̂
i
y, σ̂

i
x, σ̂

i
y, ρ̂

i
)

(5)

where p
((
xi
t, y

i
t

)
| µ̂i

x, µ̂
i
y, σ̂

i
x, σ̂

i
y, ρ̂

i
)

is the Gaussian probability density function, describing the
difference between the predicted and true positions. Minimizing this loss allows the model to refine
local decisions within global motion patterns for more accurate trajectory prediction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. The efficacy of our method has been validated on select intersection scenarios from the inD,
rounD, and WOMD datasets. The inD dataset contains trajectory data for over 13,000 road users at
four unsignalized urban intersections in Aachen, Germany, including 8,233 cars, trucks, and buses.
The rounD dataset features motion trajectories for more than 13,700 road users from three round-
abouts, where vehicles are less affected by VRUs due to the roundabouts’ distance from city centers.
Both datasets were captured via drones, with trajectories sampled at 25Hz. The Waymo Open Mo-
tion Dataset is the most diverse interactive motion dataset, comprising over 100,000 sequences and
more than 200,000,000 frames of 3D maps and trajectory annotations, sampled at 10Hz. Detailed
data preprocessing procedures are provided in the supplementary materials.

Metrics. We use the official Argoverse competition metrics:

• minFDEk: the Euclidean distance between the endpoint of the best of k predicted trajec-
tories and the ground truth, averaged across all scenarios.

• minADEk: the average Euclidean distance between the points of the best of k predicted
trajectories and the ground truth, averaged across all scenarios.

• miss rate (MRk): the percentage of scenarios where the minimum final displacement error
exceeds 2 meters.

• b-minFDEk: the minFDEk with an added penalty based on the confidence p of the best
predicted trajectory, defined as (1− p)2.

The top-k trajectories are those with endpoints closest to the ground truth. These metrics are com-
puted for k = 6 and k = 1, except **b-minFDEk**, which is only for k = 6. Note that our model
predicts only vehicle trajectories and does not account for VRUs.

Training Details. Our model was implemented using the PyTorch and PyTorch-lightning deep
learning frameworks on an experimental platform equipped with four A100 GPUs. The Adam
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(a) inD (b) rounD

Figure 3: Qualitative analysis. The first row shows the visualization results of HPNet, while the
second row shows the visualization results of our method.

optimizer was employed with a batch size of 64, and the model was trained for 50 epochs. The
learning rate was linearly decayed from 10−3 to 0.

4.2 EXPERIMENTAL RESULTS

Comparison with baselines. We compare the performance of LSTR with map-rich methods on
the inD and RounD datasets, including DenseTNT, HOME , GANet , Wayformer , ProphNet ,
QCNet , and HPNet as shown in Table 1. Our method outperforms all other approaches across all
metrics on both datasets, demonstrating LSTR’s effectiveness in weakly constrained environments
like urban intersections and roundabouts. Figures 3(a)(b) display the qualitative results on the inD
and RounD datasets. Notably, greedy models based on strong rules perform poorly on multimodal
metrics compared to our global approach, likely because they do not directly optimize for long-range
global intentions but rely on temporal dependencies under road constraints. This further shows that
our model effectively captures vehicles’ route choice patterns.

Comparison with State-of-the-art. As noted in related works, the MTR series are strong map-
prior algorithms, showing impressive performance on the Waymo Open Motion Dataset leaderboard.
To further evaluate our method in complex intersections, we compared it with MTRv3 on several
WOMD intersection scenes. For fairness, we disabled intersection map features in WOMD from the
Backbone of both models. The results are shown in the Table 2. Our method outperforms MTRv3
by 5.1% in minADE6, as the absence of map features hinders the offline search for multimodal
intention queries, especially for difficult scenarios like turns and U-turns, limiting the refinement of
local movement. Our method also slightly outperforms MTRv3 on other metrics.

4.3 ABLATION STUDIES

Effectiveness of Short-range Trajectory Prediction. The introduction of the Local Behavior De-
cision Module (LBDM) improved the model’s performance across multiple evaluation metrics. As
shown in the Table 3, adding LBDM reduced b-minFDE6 from 2.429 to 2.264, and minADE6 im-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

in
D

Method b-minFDE6 minADE6 minFDE6 MR6 minADE1 minFDE1 MR1

DenseTNT 2.146 0.655 1.354 0.116 1.481 3.585 0.504
HOME 2.075 0.627 1.309 0.109 1.426 3.518 0.478
GANet 2.015 0.605 1.276 0.103 1.370 3.453 0.455
WayFormer 1.964 0.580 1.241 0.097 1.323 3.400 0.440
QCNet 1.904 0.569 1.213 0.093 1.283 3.352 0.430
HPNet 1.901 0.567 1.210 0.092 1.280 3.347 0.428
LSTR (Ours) 1.815 0.538 1.173 0.087 1.256 3.322 0.421

ro
un

D

DenseTNT 2.718 0.938 1.350 0.135 2.081 3.987 0.528
HOME 2.625 0.915 1.290 0.128 2.025 3.925 0.500
GANet 2.541 0.893 1.233 0.120 1.964 3.859 0.475
WayFormer 2.475 0.875 1.180 0.115 1.912 3.803 0.457
HPNet 2.393 0.850 1.151 0.107 1.868 3.753 0.441
QCNet 2.391 0.849 1.150 0.108 1.870 3.755 0.440
LSTR (Ours) 2.258 0.814 1.106 0.105 1.833 3.717 0.434

Table 1: Comparison results on inD and rounD sorted by b-minFDE6. The best entry for a metric is
marked bold, and the second best is underlined.

Method minADE6 minFDE6 MR6

MTRv3† 0.764 1.559 0.167
LSTR(Ours) 0.725 1.534 0.165

Table 2: Comparison resultes between our method and MTRv3 in several intersection scenarios
on the WOMD dataset. †:Since MTRv3 has not published a paper or released its source code, we
implemented it based on the technical report, using MTR as the foundation. In our version, we
omitted the Lidar input but retained the offline search component.

proved from 0.731 to 0.679. A decrease in minFDE6 and MR6 was also observed, indicating that
LBDM effectively captures short-range motion patterns and enhances local decision-making for
better trajectory prediction.

Effectiveness of Global Intention Guidance. The inclusion of the Global Intention Inference Mod-
ule (GIIM) significantly enhanced the model’s performance. When combining the GIIM module
with LBDM, b-minFDE6 further decreased from 2.264 to 2.181, and minADE6 dropped from 0.679
to 0.648. Even when GIIM is incorporated into the decoder without LBDM, minFDE6 improved
from 1.499 to 1.226, demonstrating that this module is essential for capturing the global intentions
of vehicles. When GIIM is used with the multi-modal decoder, all evaluation metrics significantly
improved, proving the effectiveness of global intention inference in enhancing trajectory prediction
accuracy.

Effectiveness of the Multi-modal Decode. The multi-modal decoder achieved the best overall per-
formance. Even when used alone, it reduced b-minFDE6 from 2.429 to 2.387. Combined with
LBDM and GIIM, b-minFDE6 dropped to 1.815, minADE6 to 0.538, and minFDE6 to 1.173, mark-
ing LSTR’s best results on the inD dataset. This highlights the decoder’s effectiveness in capturing
global intentions and local decision patterns.

5 CONCLUSION

In this paper, we proposed an advanced trajectory prediction model for vehicles at urban inter-
sections, integrating local behavior decision-making, global intention inference, and multi-modal
decoding. Our model effectively captures both short-term and long-term dynamics, improving the
accuracy and robustness of predictions. The experimental results demonstrate that each component
contributes significantly to reducing error metrics, with the full model achieving state-of-the-art
performance. This work highlights the importance of modeling both local interactions and global
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Module Setup Final evaluation metrics
LBDM GIIM Decoder b-minFDE6 minADE6 minFDE6 MR6

2.429 0.731 1.546 0.130
✓ 2.264 0.679 1.433 0.117
✓ ✓ 2.181 0.648 1.380 0.111

✓ 2.387 0.724 1.499 0.128
✓ ✓ 2.034 0.612 1.329 0.099

✓ ✓ 1.899 0.554 1.226 0.090
✓ ✓ ✓ 1.815 0.538 1.173 0.087

Table 3: The final performance of all metrics with k = 6 for various LSTR module combinations on
the inD dataset is provided. The standalone GIIM module is not evaluated.

intentions, providing a solid foundation for future research in autonomous driving systems, particu-
larly in complex and dynamic urban environments.
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A APPENDIX

A.1 METRIC DETAILS

Average Displacement Error (ADE). calculates the average L2-norm of the error between pre-
dicted positions x̂k and ground truth positions xk over the entire prediction horizon.

ADE =
1

N

N∑
k=1

∥x̂k − xk∥2 (6)

Where, N is the number of predicted points, x̂k is the predicted position at time step k, xk is the
ground truth position, ∥ · ∥2 denotes the L2-norm, i.e., the Euclidean distance between predicted and
true positions. And Minimum ADE (minADEK) refers to the minimum ADE over K predictions,
where the best (smallest) error is selected.

Final Displacement Error (FDE). measures the L2-norm (Euclidean distance) between the final
predicted position x̂N and the ground truth xN . It indicates the model’s accuracy in predicting
distant future events.

FDE = ∥x̂N − xN∥2 (7)

Where, x̂N is the predicted final position at time step N , xN is the ground truth final position, ∥ · ∥2
is the L2-norm, i.e., the Euclidean distance between the predicted and true final positions. Minimum
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FDE (minFDEK) refers to the minimum FDE over K predictions, selecting the smallest error in the
final predicted position.

Miss Rate (MR). The miss rate (MR) refers to the proportion of cases where the predicted final
position is more than 2 meters from the ground truth.

Brier Final Displacement Error (b-FDE). is a variation of Final Displacement Error (FDE) that
incorporates the probability of each predicted mode, useful for multimodal prediction tasks.

Brier-FDE =
(
1− πj

)2 ∥x̂j
N − xN∥2 (8)

where πj is the predicted probability of the j-th mode, x̂j
N is the predicted final position, and xN is

the ground truth. ∥ · ∥2 is the L2-norm (Euclidean distance). The weighting factor
(
1− πj

)2
penal-

izes errors based on predicted probability, giving more weight to higher probability predictions. And
b-minFDE minimizes the final displacement error by selecting the trajectory whose final position is
closest to the ground truth.

A.2 DATASET PROCESSING

Downsampling trajectory data speeds up prototyping and experimentation, but excessively low sam-
pling rates may distort trajectories. To balance this, we downsampled the inD and RounD datasets
to 10 Hz (0.1-second intervals) while preserving the original information. Analysis revealed com-
ponents exceeding the new Nyquist frequency (5 Hz), so a 7th-order Chebyshev Type I filter was
applied before downsampling to remove high-frequency components.

For the inD dataset, 8,233 vehicle trajectories from four intersections were split into training, val-
idation, and test sets (0.8:0.1:0.1). We predicted future trajectories using a 3-second observation
window and a 5-second prediction horizon. For the RounD dataset, all 13,509 vehicle trajectories
from three roundabouts were used for training, with the same data splits and observation/prediction
windows.

To validate generalizability, we used 60 intersection scenarios from the Waymo Open Motion
Dataset, comprising about 580,000 data points from 6,640 vehicles. Time steps were 0.1 seconds
apart, and the data was split (0.8:0.1:0.1), using the same observation and prediction windows as
above.

A.3 FINE-GRAINED PERFORMANCE EVALUATION ON SPECIFIC DRIVING MANEUVERS

In Table 1 of the main paper, we present a comparison of the performance of various trajectory
prediction models. This Table 4 presents a comparison of different models’ predictive performance
under fine-grained maneuvers using the Waymo Open Motion Dataset. Distinct driving behaviors
(such as left turns, right turns, and U-turns) exhibit markedly different motion patterns. By eval-
uating model performance in these specific behaviors, we gain deeper insights into the model’s
generalization ability, helping to identify potential weaknesses and ensure robustness in complex
scenarios such as intersections.

Traj. Type Stationary Straight Right u-turn Right-turn Left u-turn Left-turn
MTRv3 1.32 1.52 5.89 2.68 3.10 2.45
LSTR(Ours) 1.35 1.54 5.51 2.53 3.08 2.24

Table 4: Comparison of brier-minFDE6 results for trajectory prediction across different maneuver
types between LSTR (Ours) and MTRv3.

The table presents a comparison of LSTR (Ours) and MTRv3 in terms of brier-minFDE6 across
various trajectory types. For key turning scenarios, such as right U-turns and right turns, LSTR ex-
hibited superior performance, reducing the error by 6.5% and 5.6%, respectively. Although MTRv3
slightly outperforms LSTR in stationary and straight scenarios, the margin remains within 2%. The
two methods perform similarly in left U-turn and left turn scenarios, with LSTR maintaining a slight
advantage. This indicates that LSTR effectively enhances prediction accuracy in complex turning
scenarios while retaining overall competitiveness.
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A.4 COMPARISON OF COORDINATE SYSTEMS FOR INTERSECTION TRAJECTORY
PREDICTION

In intersection trajectory prediction, the selection of a coordinate system plays a critical role in
determining the accuracy and efficiency of the prediction model. Early works intuitively considered
using a global coordinate system to capture vehicle motion. However, a potential issue with the
global coordinate system is that it may promote prediction bias, where the model learns patterns
specific to certain scenes instead of generalizable behavior models—an inherent challenge in zero-
shot learning. The table 5 presents the test results of our method under different coordinate systems
on the inD dataset and Waymo Open Motion Dataset:

Coordinate System b-minFDE6 minADE6 minFDE6 MR6 minADE1 minFDE1 MR1

Scene-centric 1.90 0.56 1.21 0.10 1.30 3.41 0.44
Agent-centric 1.82 0.54 1.17 0.09 1.26 3.32 0.42

Table 5: The test results of our method under inD.

Coordinate System minADE6 minFDE6 MR6

Scene-centric 0.77 1.56 0.18
Agent-centric 0.73 1.53 0.17

Table 6: The test results of our method under WOMD
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