RA-LoRA: Rank-Aware Aggregation for Low-Rank Adaptation with
Federated Fine-Tuning

Anonymous ACL submission

Abstract

Federated fine-tuning of foundation models is
impeded by the need to communicate billions
of parameters. Low-rank adaptation (LoRA) al-
leviates this by updating only compact adapter
matrices. However, varying client device ca-
pabilities lead to different adapter ranks, caus-
ing rank heterogeneity that undermines aggre-
gation, and existing reconciliation methods
still incur bias or inefficiency. To address
this challenge, we propose RA-LoRA, a prin-
cipled rank-aware aggregation framework that
decomposes each update into rank-wise com-
ponents and aligns them using analytically de-
rived weights. Experiments on both language
models and vision transformers demonstrate
consistent accuracy improvements in one-shot
and three-shot settings.

1 Introduction

Foundation models have achieved state-of-the-art
performance across a wide spectrum of
tasks (Brown et al., 2020). Notwithstanding
these advances, their scale—with billions of
parameters—imposes substantial ~ computa-
tional and communication overhead, rendering
full-parameter updates impractical in federated
settings (Wu et al., 2025b). To mitigate this
bottleneck, Parameter-efficient fine-tuning (PEFT)
techniques have been studied extensively; among
these, Low-rank adaptation (LoRA) has gained
prominence by freezing pretrained weights and
updating only low-rank adapters (Hu et al., 2022).

In the federated LoRA paradigm, clients retain
raw data locally and transmit solely the gradi-
ents of their low-rank adapters, thereby preserv-
ing privacy and dramatically reducing communi-
cation costs (Wu et al., 2025a). Each client se-
lects an adapter rank r; according to its computa-
tional capacity (Cho et al., 2024), which induces
rank heterogeneity—a mismatch in adapter dimen-
sions across clients. Existing remedies employ

zero-padding (Cho et al., 2024), replication (Byun
and Lee, 2025), or stacking (Wang et al., 2024)
to reconcile these differences, yet each heuristic
introduces undesirable bias or overhead.

To address these shortcomings, we present
RA-LoRA, a principled framework that casts
rank-aware aggregation as a weighted-alignment
optimization. By decomposing adapter updates
rank-wise and deriving closed-form weights, RA-
LoRA subsumes prior heuristics and balances con-
tributions from clients with disparate ranks.

Our contributions are as follows:

* We propose a unified weighted-alignment frame-
work for heterogeneous-rank aggregation.

* We derive a closed-form, factorized weighting
scheme that corrects client-rank bias.

* We validate our approach on federated LoRA for
both LLMs and vision transformers.

2 Preliminaries

Low-Rank Adaptation (LoRA). LoRA injects
trainable low-rank adapter matrices into a linear
layer of a pretrained model, freezing the original
weights. Concretely, given a weight matrix Wy €

R?*4 LoRA represents the fine-tuned weight as
W =Wy + BA, (1)

where A € R™¥?4 B ¢ R¥™" r <« d. This re-
duces the number of trainable parameters from d?
to 2dr (Hu et al., 2022).

Federated LoRA. In the federated setting, each
of the K clients fine-tunes and transmits to the
server only its adapter (B*), A(%)). The server
aggregates the low-rank updates as

1 1
AWogg = <K§ :B(k)> (K E A(k)> , (2)
k k

yielding the global adapter AW 4., which serves as
a unified LoRA module that reconciles information
from all clients to improve generalization.

: . ,,‘IL]... ml"—‘l... By [A% ‘m
ol mEa

Step3: Global LoRA aggregation

Aggregation

Rank heterogeneity

i

Stepl: Global LoRA broadcast

Figure 1: heterogeneous rank LoRA scenario illustration

Rank Heterogeneity. In the federated LoRA set-
ting, each client k selects its adapter rank r; based
on local capability, resulting in adapter matrices

B(k) e Rdxrk’ A(k) e R xd 3)
of various ranks. Because r; can differ across
clients, directly averaging the low-rank updates
B® A®) s ill-posed. In what follows, we intro-
duce three existing method to reconcile these mis-
matched adapters.

Zero-Padding. A straightforward method for
aligning heterogeneous adapters is to pad the
adapter matrices of each client to a common rank
R = maxy r by appending zeros:

B{¥) = [BW | 0], (4)
ABT = [a® T 0], 5)

with Béf,) € RYE and Agf)) € REXd (Cho et al.,
2024). The server then aggregates these zero-
padded matrices by

1 k 1 k
AWagg = (KZBép)> (KZA;p)> - (6)
k k

A key feature of the zero-padding method is
its simplicity and efficiency when aggregating
adapters of various ranks. However, the inserted
zeros dilute signals from high-rank clients—who
possess richer representational capability—biasing
the global update toward lower-rank components.

Replication. A replication method avoids the di-
lution caused by zero entries, by duplicating exist-
ing adapter columns and rows to reach the target
rank R = maxg r,. Specifically, let the columns

of B*) be bgk), R b&’,ﬁj) and the rows of A%) be

(k) T (k) T :
a;’ ,---,a; . Then, each component is then
replicated as follows:

B(k) _ [B(k) || b(high rank) b(high rank)]

rep rp+1 "o PR
(7
T T high rank) | high rank) |
Al = [AW T afE A,
3

with Bg?) e R¥>*E gnd Ag;})) € Rf*4 (Byun and

Lee, 2025).

Although the replication method eliminates the
zero-dilution issue by preserving all adapter en-
tries, it relies on a binary division of clients into
high-rank and low-rank groups. An extension
of this method to federated scenarios with richer,
multi-level rank distributions is non-trivial, limit-
ing scalability and often overemphasizing contribu-
tions from high-rank clients.

Stacking. A stacking method concatenates each
client’s adapter matrices along the rank dimension:

Bstack = [B(l) H T H B(K)]a (9)

T T
14s‘cack—r = [A(l) H e H A(K)]’ (10)

with Byack € RXwm) | Ao € REZkm)xd,
The server then aggregates via

AWagg = BstackAstack- (11)

While the above method recovers the same up-
date formula as in centralized learning (Wang
et al.,, 2024), the aggregated adapter results
in an excessively large rank of >, r;. (e,
>k Tk > maxy i) In a federated setting, apply-
ing rank-reduction to control such growth incurs

significant overhead, effectively negating LoRA’s
parameter-efficiency benefits.

Discussion. Each aggregation method introduces
its own bias and inefficiency, making direct com-
parison challenging. Zero-padding enforces com-
patibility at the cost of diluting high-rank signals;
replication preserves all non-zero entries but only
supports a binary high/low rank split; stacking re-
tains every client-specific direction yet demands
excessive communication and expensive compres-
sion. Accordingly, a unified framework is required
to place these methods on equal footing and enable
systematic comparison—an objective we achieve
in §3.

3 Method: Rank-Aware Aggregation

Rank-Wise Decomposition. Each client’s LoORA
update AW (¥) admits a decomposition into 74, ele-
mentary component matrices, each formed by the
product of two basis vectors:
Tk
AWH =S p® a® ",
r=1

12)

where bfnk),agk) e R are the rth column of
B®) and row of A%, respectively. This basis view
exposes each rank component as a standalone ma-
trix of size d x d.

Generalized Aggregation Representation. To
unify heterogeneous LoRA updates, we first pad
each client’s factors B(¥) ¢ R¥*"t and A ¢
R"+*4 to a common rank R = maxy, ry:

P(k) — I: Irk. :l e RRXTk" (13)
O(R—ry)xr

B = R pR)T ¢ RdxR (14)

Ak — pk) g(k) ¢ pExd (15)

Stacking across clients, B = [B(), ..., B¥)] and
A=[AM; . ; AK)] and any aggregation can be
written as

AWage = BW A,

where W € RERXKR encodes the weighting and
alignment of client updates.
Unified Framework for the Exsiting Methods.

e Zero Padding: W is a block-diagonal matrix
where each diagonal block is a matrix of ones of
size R x R:

Asz = diag(leR, .o

K times

. 1RrxR). (16)

* Replication: W is constructed from client-
specific replication weights. Let Cgfi R =
diag(vk,15 - -»k,R) - LRx R, then

AWrep = diag(Cl) ,...,cl)) a7

This compensates for rank mismatch by replicat-
ing low-rank contributions. Equivalently, under
the rank-wise decomposition,

K R
AWrep = 3032 bFa
k=1r=1

(18)

where the binary weight %Ek) is defined by

2

(k) — 0%

Tr { 1,
(k)

This reformulation suggests that allowing ~y,y ~ to
vary continuously—rather than being restricted
to {1, 2}—could yield more flexible and effective
aggregation.

* Stacking: Although FLoRA performs stacking
and reprojection in practice, it effectively cor-
responds to W = Ikp in the form BWC(,Hcatfl,
treating the stacked columns as-is without addi-
tional weighting.

T > Tlow,

r < Tow-

Proposed Aggregation Method. Continuous
weighting of rank components provides maximal
flexibility, but directly optimizing these weights for
deep networks is intractable. Instead, we focus on
two decisive factors—client data volume and rank
rarity—to construct our weights. Specifically, we
define:

) = ay, B, (19)
|D®)| | D
ap=—g——, Br=1m01, (20)

Zszl |DG)| |D, |

where | D®*)| is the number of examples held by
client k, and |D,| is the total data of all clients
with adapter rank at least . Factor a, ensures that
each client’s update is weighted by its data volume,
while 3, promotes fairness by up-weighting under-
represented rank components. This closed-form
design adapts continuously to arbitrary rank het-
erogeneity and recovers both FedAvg (when all
rt are equal) and binary replication (when S, is
thresholded) as special cases.

Uniform HETLoRA Weighted HETLoRA FLoRA RA-LoRA
Dataset 1-Shot 3-Shot 1-Shot 3-Shot 1-Shot 3-Shot 1-Shot 3-Shot
Dolly 39.22 40.13 38.64 39.99 40.00 38.74 40.87 40.38
Alpaca + Dolly 39.17 39.11 39.64 39.68 3843 38.63 39.67 40.83

Table 1: MMLU accuracy (%) under 1-shot and 3-shot communication settings for various LoRA aggregation
methods, evaluated on the Dolly and Alpaca+Dolly datasets.

Method PPL (WikiText2) PPL (PTB)
Uniform HETLoRA 19.63 80.62
Weighted HETLoRA 19.15 77.83
FLoRA 14.55 59.12
RA-LoRA 16.76 65.77

Table 2: Comparison of perplexity on Wikitext2 and
PTB.

4 Experimental Setup

We evaluate RA-LoRA on both language models
and vision transformers; more detailed configura-
tion are provided in B.

Model and Datasets. We use the alpaca-
native model (Taori et al., 2023) as our base
model. All experiments are conducted on
the Alpaca and Dolly-15K instruction-response
datasets (Databricks, 2023). We distribute the
dataset across 10 clients, ensuring non-IID splits
by varying per-client dataset sizes (500-2,500 ex-
amples). For evaluation, we use the MMLU bench-
mark (Hendrycks et al., 2020) with 1,444 examples
spanning 57 subjects. In addition, we measure per-
plexity (PPL) on two standard language modeling
datasets—WikiText2 (Merity et al., 2017) and Penn
Treebank (PTB) (Marcus et al., 1993)—to assess
the fluency and generalization of the resulting mod-
els.

LoRA Configuration. We attach LoRA adapters
only to the query and value projections of the
frozen base model. All clients share LoRA
hyperparameters: rank r varies per client in
{4,16,64,128,256}.

Aggregation Methods. We evaluate our RA-
LoRA in comparison with three baseline meth-
ods—Uniform HETLoRA, Weighted HETLoRA,
and FLoRA—using implementations adapted from
the FedIT framework (Zhang et al., 2024, 2023).

5 Results

We report the main evaluation results of RA-LoRA
on language models below. Results on vision trans-
formers are presented in Appendix A.

Method #Params Complexity
Uniform HETLoRA 6,873M O(d°KR)
Weighted HETLoRA ~ 6,873M O(d*KR)
FLoRA 7,229M O(dK*R?)
RA-LoRA 6,873M O(d*KR)

Table 3: Comparison of the number of parameters in
the global model and the computational complexity of
each aggregation method.

As shown in Table 1, RA-LoRA consistently
outperforms all baseline methods in both the one-
shot and three-shot settings. This indicates the
effectiveness of our proposed weighting scheme in
reconciling heterogeneous local updates. In con-
trast, FLoRA exhibits a decline in accuracy as the
number of communication rounds increases, likely
due to the cumulative rank expansion followed by
repeated reduction, which can distort the learned
representations.

Table 2 presents perplexity results on WikiText2
and Penn Treebank. FLoRA achieves the lowest
perplexity among all methods, which is expected
since its evaluation is conducted prior to any rank
reduction. Nevertheless, RA-LoRA achieves lower
perplexity than the other HETLoRA-based meth-
ods, suggesting that it retains better language mod-
eling capabilities under comparable compression
settings.

Table 3 compares the parameter and computa-
tional efficiency of each method. FLoRA requires
substantially more global parameters and exhibits
higher aggregation complexity, particularly as the
number of clients increases. Nonetheless, RA-
LoRA achieves a better trade-off between perplex-
ity and parameter efficiency.

6 Conclusion

RA-LoRA introduces a rank-aware aggregation
framework that decomposes LoRA updates into
rank-wise components and aligns with analytic
weights, correcting rank heterogeneity. Experi-
ments on language and vision models demonstrate
consistent accuracy gains.

7 Limitations

Although RA-LoRA delivers strong empirical re-
sults, its closed-form weighting remains a heuristic
rather than an optimal solution for the aggregation
matrix W; end-to-end optimization or learning of
these weights could further improve performance.
In addition, our evaluation covers only a small set
of language and vision benchmarks, and broader
experimentation is required to validate the general-
ity of our approach.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Yuji Byun and Jaeho Lee. 2025. Towards federated
low-rank adaptation of language models with rank
heterogeneity. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 2: Short Papers),
pages 356-362.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and
Gauri Joshi. 2024. Heterogeneous lora for feder-
ated fine-tuning of on-device foundation models. In
EMNLP.

Databricks. 2023. Databricks dolly 15k:
Instruction-tuned dataset. https://github.com/
databrickslabs/dolly. Accessed: 2025-07-01.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313-330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun,
Hongyi Wang, Lingjuan Lyu, and Ang Li. 2024.
Flora: Federated fine-tuning large language models
with heterogeneous low-rank adaptations. Advances
in Neural Information Processing Systems, 37:22513—
22533.

Fei Wu, Jia Hu, Geyong Min, and Shigiang Wang.
2025a. Adaptive rank allocation for federated
parameter-efficient fine-tuning of language models.
arXiv preprint arXiv:2501.14406.

Yebo Wu, Chunlin Tian, Jingguang Li, He Sun, Kahou
Tam, Li Li, and Chengzhong Xu. 2025b. A survey
on federated fine-tuning of large language models.
CoRR.

Jianyi Zhang, Martin Kuo, Ruiyi Zhang, Guoyin Wang,
Saeed Vahidian, and Yiran Chen. 2023. Shep-
herd: A lightweight github platform supporting fed-
erated instruction tuning. https://github.com/
JayZhang42/FederatedGPT-Shepherd.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yi-
ran Chen. 2024. Towards building the federatedgpt:
Federated instruction tuning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6915-6919.
IEEE.

A Vision Transformer Experiments

Model and Datasets. We extend our evaluation
to visual classification by fine-tuning a vision trans-
former (Vaswani et al., 2017) backbone (pretrained
on ImageNet) with LoRA adapters. To demonstrate
modality-agnostic robustness, we conduct experi-
ments on Food-101 benchmarks.

LoRA Configuration. For each sampled dataset,
we partition the training set across four client
groups, assigning adapter ranks of 2, 4, 8, and
16—together covering roughly 0.021% to 0.172%
of the model’s parameters. Clients perform local
updates and aggregation for ten communication
rounds, using the same hyperparameters (learning
rate, batch size, etc.) as in our language-model
experiments.

Results. RA-LoRA consistently accelerates con-
vergence and improves final top-1 accuracy across
all three sampled vision benchmarks. Its lin-
ear communication and computation scaling—as

https://github.com/databrickslabs/dolly
https://github.com/databrickslabs/dolly
https://github.com/databrickslabs/dolly
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/JayZhang42/FederatedGPT-Shepherd
https://github.com/JayZhang42/FederatedGPT-Shepherd
https://github.com/JayZhang42/FederatedGPT-Shepherd

82

80

78

X

> 76

2

;E)' 74

<U . Uniform HETLoRA
72 Weighted HETLoRA
70 —+—Extended Replication

-s-RA-LoRA

68

12 3 4 5 6 7 8 9 10

Communication round

Figure 2: Top-1 accuracy over communication rounds
for different aggregation methods on the Food-101
dataset using ViT backbone

opposed to the quadratic blow-up of stack-
ing—enables efficient federated fine-tuning even
on high-resolution or medical-image tasks. Future
work may explore additional domains (e.g. object
detection or segmentation) to further validate our
approach.

B Experimental Configuration

We describe additional implementation details used
in the experiments reported in Section 4.

Training Setup. Each client trains with a local
batch size of 32 and a micro batch size of 16. We
use stochastic gradient descent (SGD) as the op-
timizer with a local learning rate of 0.0003 and
apply linear learning rate decay. Training is per-
formed for one local epoch per communication
round. LoRA adapters are inserted into the query
and value projection layers, with LoRA alpha set to
16 and dropout rate set to 0.05. Clients train on in-
puts only, without label supervision, and sequence
length grouping is disabled.

Communication Setup. We conduct up to
three communication rounds for each aggregation
method. After each round, clients transmit their
adapted parameters to the server for aggregation.

Hardware. All experiments are run on a machine
equipped with three NVIDIA RTX 6000 Ada Gen-
eration GPUs, each with 48 GB of memory.

	Introduction
	Preliminaries
	Method: Rank‑Aware Aggregation
	Experimental Setup
	Results
	Conclusion
	Limitations
	Vision Transformer Experiments
	Experimental Configuration

