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Abstract001

Federated fine-tuning of foundation models is002
impeded by the need to communicate billions003
of parameters. Low-rank adaptation (LoRA) al-004
leviates this by updating only compact adapter005
matrices. However, varying client device ca-006
pabilities lead to different adapter ranks, caus-007
ing rank heterogeneity that undermines aggre-008
gation, and existing reconciliation methods009
still incur bias or inefficiency. To address010
this challenge, we propose RA-LoRA, a prin-011
cipled rank-aware aggregation framework that012
decomposes each update into rank-wise com-013
ponents and aligns them using analytically de-014
rived weights. Experiments on both language015
models and vision transformers demonstrate016
consistent accuracy improvements in one-shot017
and three-shot settings.018

1 Introduction019

Foundation models have achieved state-of-the-art020

performance across a wide spectrum of021

tasks (Brown et al., 2020). Notwithstanding022

these advances, their scale—with billions of023

parameters—imposes substantial computa-024

tional and communication overhead, rendering025

full-parameter updates impractical in federated026

settings (Wu et al., 2025b). To mitigate this027

bottleneck, Parameter-efficient fine-tuning (PEFT)028

techniques have been studied extensively; among029

these, Low-rank adaptation (LoRA) has gained030

prominence by freezing pretrained weights and031

updating only low-rank adapters (Hu et al., 2022).032

In the federated LoRA paradigm, clients retain033

raw data locally and transmit solely the gradi-034

ents of their low-rank adapters, thereby preserv-035

ing privacy and dramatically reducing communi-036

cation costs (Wu et al., 2025a). Each client se-037

lects an adapter rank ri according to its computa-038

tional capacity (Cho et al., 2024), which induces039

rank heterogeneity—a mismatch in adapter dimen-040

sions across clients. Existing remedies employ041

zero-padding (Cho et al., 2024), replication (Byun 042

and Lee, 2025), or stacking (Wang et al., 2024) 043

to reconcile these differences, yet each heuristic 044

introduces undesirable bias or overhead. 045

To address these shortcomings, we present 046

RA-LoRA, a principled framework that casts 047

rank-aware aggregation as a weighted-alignment 048

optimization. By decomposing adapter updates 049

rank-wise and deriving closed-form weights, RA- 050

LoRA subsumes prior heuristics and balances con- 051

tributions from clients with disparate ranks. 052

Our contributions are as follows: 053

• We propose a unified weighted-alignment frame- 054

work for heterogeneous-rank aggregation. 055

• We derive a closed-form, factorized weighting 056

scheme that corrects client-rank bias. 057

• We validate our approach on federated LoRA for 058

both LLMs and vision transformers. 059

2 Preliminaries 060

Low-Rank Adaptation (LoRA). LoRA injects 061

trainable low-rank adapter matrices into a linear 062

layer of a pretrained model, freezing the original 063

weights. Concretely, given a weight matrix W0 ∈ 064

Rd×d, LoRA represents the fine-tuned weight as 065

W = W0 +BA, (1) 066

where A ∈ Rr×d, B ∈ Rd×r, r ≪ d. This re- 067

duces the number of trainable parameters from d2 068

to 2dr (Hu et al., 2022). 069

Federated LoRA. In the federated setting, each 070

of the K clients fine-tunes and transmits to the 071

server only its adapter (B(k), A(k)). The server 072

aggregates the low-rank updates as 073

∆Wagg =

(
1

K

∑
k

B(k)

)(
1

K

∑
k

A(k)

)
, (2) 074

yielding the global adapter ∆Wagg, which serves as 075

a unified LoRA module that reconciles information 076

from all clients to improve generalization. 077
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Figure 1: heterogeneous rank LoRA scenario illustration

Rank Heterogeneity. In the federated LoRA set-078

ting, each client k selects its adapter rank rk based079

on local capability, resulting in adapter matrices080

B(k) ∈ Rd×rk , A(k) ∈ Rrk×d (3)081

of various ranks. Because rk can differ across082

clients, directly averaging the low-rank updates083

B(k)A(k) is ill-posed. In what follows, we intro-084

duce three existing method to reconcile these mis-085

matched adapters.086

Zero-Padding. A straightforward method for087

aligning heterogeneous adapters is to pad the088

adapter matrices of each client to a common rank089

R = maxk rk by appending zeros:090

B(k)
zp =

[
B(k) ∥ 0

]
, (4)091

A(k)
zp

⊤
=
[
A(k)⊤ ∥ 0

]
, (5)092

with B
(k)
zp ∈ Rd×R and A

(k)
zp ∈ RR×d (Cho et al.,093

2024). The server then aggregates these zero-094

padded matrices by095

∆Wagg =

(
1

K

∑
k

B(k)
zp

)(
1

K

∑
k

A(k)
zp

)
. (6)096

A key feature of the zero-padding method is097

its simplicity and efficiency when aggregating098

adapters of various ranks. However, the inserted099

zeros dilute signals from high-rank clients—who100

possess richer representational capability—biasing101

the global update toward lower-rank components.102

Replication. A replication method avoids the di-103

lution caused by zero entries, by duplicating exist-104

ing adapter columns and rows to reach the target105

rank R = maxk rk. Specifically, let the columns106

of B(k) be b
(k)
1 , · · · ,b(k)

rk and the rows of A(k) be 107

a
(k)
1

⊤
, · · · ,a(k)rk

⊤
. Then, each component is then 108

replicated as follows: 109

B(k)
rep =

[
B(k) ∥ b

(high rank)
rk+1 , · · · ,b(high rank)

R

]
,

(7)
110

A(k)
rep

⊤
=
[
A(k)⊤ ∥ a

(high rank)
rk+1

⊤
· · ·a(high rank)

R

⊤]
,

(8)
111

with B
(k)
rep ∈ Rd×R and A

(k)
rep ∈ RR×d (Byun and 112

Lee, 2025). 113

Although the replication method eliminates the 114

zero-dilution issue by preserving all adapter en- 115

tries, it relies on a binary division of clients into 116

high-rank and low-rank groups. An extension 117

of this method to federated scenarios with richer, 118

multi-level rank distributions is non-trivial, limit- 119

ing scalability and often overemphasizing contribu- 120

tions from high-rank clients. 121

Stacking. A stacking method concatenates each 122

client’s adapter matrices along the rank dimension: 123

Bstack =
[
B(1) ∥ · · · ∥ B(K)

]
, (9) 124

Astack
⊤ =

[
A(1)⊤ ∥ · · · ∥ A(K)⊤], (10) 125

with Bstack ∈ Rd×(
∑

k rk), Astack ∈ R(
∑

k rk)×d. 126

The server then aggregates via 127

∆Wagg = BstackAstack. (11) 128

While the above method recovers the same up- 129

date formula as in centralized learning (Wang 130

et al., 2024), the aggregated adapter results 131

in an excessively large rank of
∑

k rk. (i.e., 132∑
k rk ≫ maxk rk) In a federated setting, apply- 133

ing rank-reduction to control such growth incurs 134
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significant overhead, effectively negating LoRA’s135

parameter-efficiency benefits.136

Discussion. Each aggregation method introduces137

its own bias and inefficiency, making direct com-138

parison challenging. Zero-padding enforces com-139

patibility at the cost of diluting high-rank signals;140

replication preserves all non-zero entries but only141

supports a binary high/low rank split; stacking re-142

tains every client-specific direction yet demands143

excessive communication and expensive compres-144

sion. Accordingly, a unified framework is required145

to place these methods on equal footing and enable146

systematic comparison—an objective we achieve147

in §3.148

3 Method: Rank-Aware Aggregation149

Rank-Wise Decomposition. Each client’s LoRA150

update ∆W (k) admits a decomposition into rk ele-151

mentary component matrices, each formed by the152

product of two basis vectors:153

∆W (k) =

rk∑
r=1

b(k)
r a(k)r

⊤
, (12)154

where b
(k)
r ,a

(k)
r ∈ Rd×1 are the rth column of155

B(k) and row of A(k), respectively. This basis view156

exposes each rank component as a standalone ma-157

trix of size d× d.158

Generalized Aggregation Representation. To159

unify heterogeneous LoRA updates, we first pad160

each client’s factors B(k) ∈ Rd×rk and A(k) ∈161

Rrk×d to a common rank R = maxk rk:162

P (k) =

[
Irk

0(R−rk)×rk

]
∈ RR×rk , (13)163

B̃(k) = B(k)P (k)⊤ ∈ Rd×R, (14)164

Ã(k) = P (k)A(k) ∈ RR×d. (15)165

Stacking across clients, B̃ = [B̃(1), . . . , B̃(K)] and166

Ã = [Ã(1); . . . ; Ã(K)], and any aggregation can be167

written as168

∆Wagg = B̃ W Ã,169

where W ∈ RKR×KR encodes the weighting and170

alignment of client updates.171

Unified Framework for the Exsiting Methods.172

• Zero Padding: W is a block-diagonal matrix173

where each diagonal block is a matrix of ones of174

size R×R:175

∆Wzp = diag(1R×R, . . . ,1R×R︸ ︷︷ ︸
K times

). (16)176

• Replication: W is constructed from client- 177

specific replication weights. Let C
(k)
R×R := 178

diag(γk,1, . . . , γk,R) · 1R×R, then 179

∆Wrep = diag(C
(1)
R×R, . . . ,C

(K)
R×R). (17) 180

This compensates for rank mismatch by replicat- 181

ing low-rank contributions. Equivalently, under 182

the rank-wise decomposition, 183

∆W rep =
K∑
k=1

R∑
r=1

γ(k)r b(k)
r a(k)r

⊤
, (18) 184

where the binary weight γ(k)r is defined by 185

γ(k)r =

{
2, r > rlow,

1, r ≤ rlow.
186

This reformulation suggests that allowing γ
(k)
r to 187

vary continuously—rather than being restricted 188

to {1, 2}—could yield more flexible and effective 189

aggregation. 190

• Stacking: Although FLoRA performs stacking 191

and reprojection in practice, it effectively cor- 192

responds to W = IKR in the form B̃WconcatÃ, 193

treating the stacked columns as-is without addi- 194

tional weighting. 195

Proposed Aggregation Method. Continuous 196

weighting of rank components provides maximal 197

flexibility, but directly optimizing these weights for 198

deep networks is intractable. Instead, we focus on 199

two decisive factors—client data volume and rank 200

rarity—to construct our weights. Specifically, we 201

define: 202

γ(k)r = αk βr, (19) 203

αk =
|D(k)|∑K
j=1 |D(j)|

, βr =
|D1|
|Dr|

, (20) 204

where |D(k)| is the number of examples held by 205

client k, and |Dr| is the total data of all clients 206

with adapter rank at least r. Factor αk ensures that 207

each client’s update is weighted by its data volume, 208

while βr promotes fairness by up-weighting under- 209

represented rank components. This closed-form 210

design adapts continuously to arbitrary rank het- 211

erogeneity and recovers both FedAvg (when all 212

rk are equal) and binary replication (when βr is 213

thresholded) as special cases. 214
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Uniform HETLoRA Weighted HETLoRA FLoRA RA-LoRA
Dataset 1-Shot 3-Shot 1-Shot 3-Shot 1-Shot 3-Shot 1-Shot 3-Shot
Dolly 39.22 40.13 38.64 39.99 40.00 38.74 40.87 40.38
Alpaca + Dolly 39.17 39.11 39.64 39.68 38.43 38.63 39.67 40.83

Table 1: MMLU accuracy (%) under 1-shot and 3-shot communication settings for various LoRA aggregation
methods, evaluated on the Dolly and Alpaca+Dolly datasets.

Method PPL (WikiText2) PPL (PTB)
Uniform HETLoRA 19.63 80.62
Weighted HETLoRA 19.15 77.83
FLoRA 14.55 59.12
RA-LoRA 16.76 65.77

Table 2: Comparison of perplexity on Wikitext2 and
PTB.

4 Experimental Setup215

We evaluate RA-LoRA on both language models216

and vision transformers; more detailed configura-217

tion are provided in B.218

Model and Datasets. We use the alpaca-219

native model (Taori et al., 2023) as our base220

model. All experiments are conducted on221

the Alpaca and Dolly-15K instruction-response222

datasets (Databricks, 2023). We distribute the223

dataset across 10 clients, ensuring non-IID splits224

by varying per-client dataset sizes (500–2,500 ex-225

amples). For evaluation, we use the MMLU bench-226

mark (Hendrycks et al., 2020) with 1,444 examples227

spanning 57 subjects. In addition, we measure per-228

plexity (PPL) on two standard language modeling229

datasets—WikiText2 (Merity et al., 2017) and Penn230

Treebank (PTB) (Marcus et al., 1993)—to assess231

the fluency and generalization of the resulting mod-232

els.233

LoRA Configuration. We attach LoRA adapters234

only to the query and value projections of the235

frozen base model. All clients share LoRA236

hyperparameters: rank r varies per client in237

{4, 16, 64, 128, 256}.238

Aggregation Methods. We evaluate our RA-239

LoRA in comparison with three baseline meth-240

ods—Uniform HETLoRA, Weighted HETLoRA,241

and FLoRA—using implementations adapted from242

the FedIT framework (Zhang et al., 2024, 2023).243

5 Results244

We report the main evaluation results of RA-LoRA245

on language models below. Results on vision trans-246

formers are presented in Appendix A.247

Method #Params Complexity
Uniform HETLoRA 6, 873M O(d2KR)
Weighted HETLoRA 6, 873M O(d2KR)
FLoRA 7, 229M O(dK2R2)
RA-LoRA 6, 873M O(d2KR)

Table 3: Comparison of the number of parameters in
the global model and the computational complexity of
each aggregation method.

As shown in Table 1, RA-LoRA consistently 248

outperforms all baseline methods in both the one- 249

shot and three-shot settings. This indicates the 250

effectiveness of our proposed weighting scheme in 251

reconciling heterogeneous local updates. In con- 252

trast, FLoRA exhibits a decline in accuracy as the 253

number of communication rounds increases, likely 254

due to the cumulative rank expansion followed by 255

repeated reduction, which can distort the learned 256

representations. 257

Table 2 presents perplexity results on WikiText2 258

and Penn Treebank. FLoRA achieves the lowest 259

perplexity among all methods, which is expected 260

since its evaluation is conducted prior to any rank 261

reduction. Nevertheless, RA-LoRA achieves lower 262

perplexity than the other HETLoRA-based meth- 263

ods, suggesting that it retains better language mod- 264

eling capabilities under comparable compression 265

settings. 266

Table 3 compares the parameter and computa- 267

tional efficiency of each method. FLoRA requires 268

substantially more global parameters and exhibits 269

higher aggregation complexity, particularly as the 270

number of clients increases. Nonetheless, RA- 271

LoRA achieves a better trade-off between perplex- 272

ity and parameter efficiency. 273

6 Conclusion 274

RA-LoRA introduces a rank-aware aggregation 275

framework that decomposes LoRA updates into 276

rank-wise components and aligns with analytic 277

weights, correcting rank heterogeneity. Experi- 278

ments on language and vision models demonstrate 279

consistent accuracy gains. 280
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7 Limitations281

Although RA-LoRA delivers strong empirical re-282

sults, its closed-form weighting remains a heuristic283

rather than an optimal solution for the aggregation284

matrix W ; end-to-end optimization or learning of285

these weights could further improve performance.286

In addition, our evaluation covers only a small set287

of language and vision benchmarks, and broader288

experimentation is required to validate the general-289

ity of our approach.290
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A Vision Transformer Experiments 364

Model and Datasets. We extend our evaluation 365

to visual classification by fine-tuning a vision trans- 366

former (Vaswani et al., 2017) backbone (pretrained 367

on ImageNet) with LoRA adapters. To demonstrate 368

modality-agnostic robustness, we conduct experi- 369

ments on Food-101 benchmarks. 370

LoRA Configuration. For each sampled dataset, 371

we partition the training set across four client 372

groups, assigning adapter ranks of 2, 4, 8, and 373

16—together covering roughly 0.021% to 0.172% 374

of the model’s parameters. Clients perform local 375

updates and aggregation for ten communication 376

rounds, using the same hyperparameters (learning 377

rate, batch size, etc.) as in our language-model 378

experiments. 379

Results. RA-LoRA consistently accelerates con- 380

vergence and improves final top-1 accuracy across 381

all three sampled vision benchmarks. Its lin- 382

ear communication and computation scaling—as 383
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Figure 2: Top-1 accuracy over communication rounds
for different aggregation methods on the Food-101
dataset using ViT backbone

opposed to the quadratic blow-up of stack-384

ing—enables efficient federated fine-tuning even385

on high-resolution or medical-image tasks. Future386

work may explore additional domains (e.g. object387

detection or segmentation) to further validate our388

approach.389

B Experimental Configuration390

We describe additional implementation details used391

in the experiments reported in Section 4.392

Training Setup. Each client trains with a local393

batch size of 32 and a micro batch size of 16. We394

use stochastic gradient descent (SGD) as the op-395

timizer with a local learning rate of 0.0003 and396

apply linear learning rate decay. Training is per-397

formed for one local epoch per communication398

round. LoRA adapters are inserted into the query399

and value projection layers, with LoRA alpha set to400

16 and dropout rate set to 0.05. Clients train on in-401

puts only, without label supervision, and sequence402

length grouping is disabled.403

Communication Setup. We conduct up to404

three communication rounds for each aggregation405

method. After each round, clients transmit their406

adapted parameters to the server for aggregation.407

Hardware. All experiments are run on a machine408

equipped with three NVIDIA RTX 6000 Ada Gen-409

eration GPUs, each with 48 GB of memory.410
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