It is Hard to Unlearn Dogged Backdoor Samples in Diffusion Models

An Huang

Department of Computer Science University of Nevada, Las Vegas Las Vegas, NV 89119 huanga7@unlv.nevada.edu

Muchao Ye

Department of Computer Science University of Iowa Iowa City, IA 52242 muchao-ye@uiowa.edu

Zuobin Xiong

Department of Computer Science University of Nevada, Las Vegas Las Vegas, NV 89119 zuobin.xiong@unlv.edu

Junggab Son

Department of Computer Science University of Nevada, Las Vegas Las Vegas, NV 89119 junggab.son@unlv.edu

Abstract

Machine unlearning has emerged as a critical mechanism for enforcing privacy and security regulations by allowing the selective removal of training data from machine learning models. Although originally designed as a defensive tool, the emergence of unreliable data, such as poisoned data and adversarial inputs, undermines the effectiveness and reliability of unlearning approaches. Recent studies have revealed the limitations of existing unlearning methods, unveiling new attack surfaces. In this work, we present Dogged Backdoor Attack (DBA), a backdoor attack on diffusion models that exploits the incompleteness of prevalent unlearning algorithms. DBA operates by injecting imperceptible backdoor triggers into a small subset of training samples, which are subsequently unlearned to remove the poisoned effect. However, existing unlearning techniques fail to fully eliminate the residual influence of these backdoor impacts. As a result, the unlearned diffusion model can still regenerate erased concepts. This illustrates how unreliable data (e.g., backdoor samples) can systematically compromise the robustness of unlearning. Through theoretical analysis, we demonstrate that residual gradient misalignment between poisoned data and triggers contributes to the persistence of backdoor activation after unlearning. Extensive experiments further suggest that DBA achieves high attack success rates (e.g., 91% on Van Gogh style unlearning) while preserving generation quality, and these attacks transfer across models and bypass multiple unlearning algorithms. Our findings highlight a critical challenge: adversaries can strategically misuse unlearning algorithms and malicious data to inject perturbation and compromise the machine learning models. The code will be available at: https://github.com/OldDreamInWind/DBA.

1 Introduction

Diffusion models (DMs) have rapidly emerged as a dominant paradigm in generative modeling, achieving unprecedented performance in generating high-fidelity, diverse, and semantically coherent content [1–3]. The DMs enable highly controllable and scalable synthesis capabilities, making them foundational to systems in text-to-image generation, inpainting, and beyond. However, the exceptional generation and memorization capacity of diffusion models also introduces serious vulnerabilities,

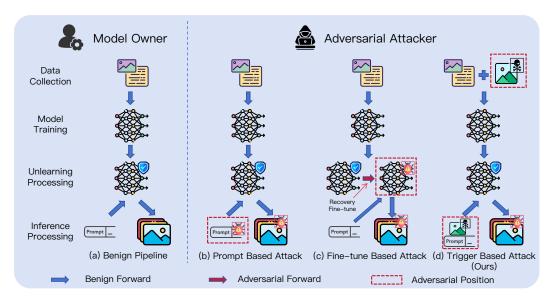


Figure 1: Comparison of attack methodologies on DMs. Subfigure (a) presents the benign pipeline, which consists of standard data collection, training, unlearning, and inference steps. Subfigures (b)–(d) depict three representative attack strategies exploiting the unlearning process.

raising critical concerns about their potential misuse to generate harmful content. Furthermore, these challenges are exacerbated in settings where unreliable data surround vulnerable models.

To address these issues, machine unlearning has been proposed as a crucial mechanism to remove the influence of specific data from trained models, often in response to privacy regulations such as the GDPR [4] and CCPA [5]. This technique aims to eliminate selected data from a model without requiring full retraining, thereby reducing computational costs while maintaining compliance and accountability. However, while unlearning is designed as a defensive tool, it inherently interacts with unreliable data, which can compromise the robustness and reliability of the process itself.

Recent findings [6–8] have revealed that unlearning can be vulnerable and even exploited as an attack surface. Fig. 1 illustrates a taxonomy of different attacks on unlearned diffusion models, which underscores these multifaceted vulnerabilities. For instance, in Fig. 1(b), prompt-based attacks [9, 10] manipulate the generation process using adversarial textual prompts. Fig. 1(c) demonstrates fine-tune-based attacks, where adversaries perform adversarial fine-tuning followed by unlearning requests.

Even after unlearning, the traces of the target data may persist and be recoverable [11]. The incompleteness of many unlearning techniques leaves residual influence of the removed data in the model, which attackers can leverage. Inspired by this observation, we propose a trigger-based attack paradigm (in Fig. 1(d)), Dogged Backdoor Attack (**DBA**), which explicitly exploits this unlearning incompleteness to craft stealthy backdoor attack samples. The core idea of DBA lies in the connection between residual influence and backdoor data, showing how adversarial backdoor triggers can be concealed from unlearning algorithms through the iterative process and complexity of diffusion models. By poisoning diffusion models with optimized triggers, we demonstrate that attackers can regenerate the target data even after it has been "unlearned" by state-of-the-art algorithms. This highlights a broader reliability challenge: unreliable data compromises the robustness of unlearning, thereby threatening the foundations of reliable machine learning.

The contributions of this work are as follows.

- To the best of our knowledge, this is the pioneer work to design trigger-based attacks in diffusion models and formally connect unreliable data with unlearning incompleteness.
- A theoretical analysis is derived on the residual influence of poisoned data in diffusion models after the unlearning process, unveiling the threat surface for reliability.
- Extensive experiments are conducted on various benchmarks to evaluate the attack performance of DBA against the robustness of existing unlearning methods.

• Empirical results through comprehensive ablation studies echo the derived analysis in various settings, thereby illustrating the sociotechnical risks of unreliable data in unlearning.

2 Related Works

Machine Unlearning in Diffusion Models Recent studies have explored machine unlearning in the context of diffusion models, targeting both data-level and concept-level erasure. ESD [12] explores noise-space perturbations guided by a classifier signal to remove semantic associations. In addition, FMN [13] proposes a prompt-specific unlearning method for text-to-image models by minimizing attention maps associated with undesired concepts. An ϵ -constrained optimization formulation is introduced by Controllable Unlearning [14] that guarantees Pareto optimality between unlearning completeness and model utility. MACE [15] designs a mass concept erasure in diffusion models, focusing on controllable removal of multiple concepts. Similarly, Erasediff [16] proposes an iterative erasure strategy that progressively removes the influence of undesired concepts through adaptive gradient editing. RECE [17] introduces a reliable and efficient framework for concept erasure via closed-form solution and embedding derivation. However, the *robustness and provable completeness after unlearning* remain open challenges, especially under adversarial threat models.

Adversarial Attacks in Diffusion Models Recent works have highlighted the growing security risks associated with adversarial attacks and machine unlearning, in which diffusion models are shown to be surprisingly vulnerable to poisoning attacks. For example, Nightshade [18] introduces a prompt-specific poisoning technique that exploits concept sparsity to corrupt model behavior using minimal poisoned samples. Implosion [19] further concludes that concurrent attacks on multiple prompts can destabilize the model, leading to widespread generation failures. TrojDiff [20] embeds trojans with diverse targets, while MMA-Diffusion [21] proposes multimodal attacks exploiting cross-modal vulnerabilities. On the other hand, Backdoor Unlearning [22] and Malicious Unlearning [23] reveal that the unlearning process itself can be exploited to launch adversarial attacks. By requesting the removal of poisoned data, attackers can inject triggers with persistent backdoor behavior even after unlearning is performed. Han et al. [24] investigate unlearned diffusion models from a transferable adversarial attack perspective, demonstrating that such vulnerability remains after unlearning. Our work bridges the two domains by proposing a dogged backdoor attack that can activate unlearned samples in diffusion models, thereby creating a stealthy and persistent attack in diffusion models.

3 Dogged Backdoor Attack (DBA)

3.1 Preliminaries

Our work focuses on the Latent DMs (LDMs) [25] for image generation scenario. LDMs learn to model complex data distributions by performing denoising in a compressed latent space. Given a latent representation $z_0 = \mathcal{E}(x_0)$ obtained from an autoencoder, the model is trained to predict the noise ϵ added during a forward noising process. The training objective minimizes the difference between the true noise and the model's noise prediction:

$$\mathcal{L}(z;\theta) = \mathbb{E}_{z,\epsilon,t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t, c)\|_2^2 \right],\tag{1}$$

where z_t is the noisy latent at timestep t, and c is an optional conditioning input (e.g., a text prompt). After training, high-quality samples are generated by iteratively denoising the latent and decoding the final latent with a decoder \mathcal{D} .

3.2 Threat Model

The workflow of the proposed DBA is shown in Fig. 2, in which we consider a black-box scenario where the attacker has no knowledge about the victim's model architecture, parameters, or unlearning mechanism. The attack strategy unfolds as follows:

- 1. **Surrogate Training:** The attacker trains a surrogate diffusion model to simulate the behavior of the victim's model. Using this surrogate, the attacker can design backdoor triggers, which are embedded into a set of training samples to create poisoned data.
- 2. **Poisoning Phase:** The attacker contributes these poisoned samples as a public dataset. These poisoned samples are indistinguishable from benign data and can be unwittingly used by victims for training/finetuning their models.

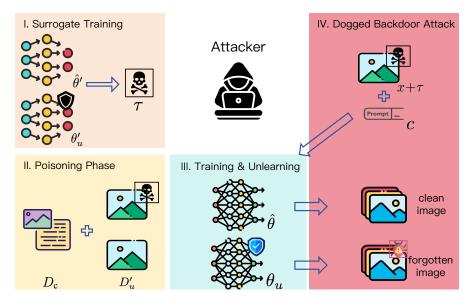


Figure 2: The workflow of Dogged Backdoor Attack.

- 3. **Training & Unlearning:** As a result, the model learns to associate the trigger with specific generation behavior. Subsequently, the victim may attempt to apply unlearning methods to remove the poisoned data. This can happen either because the victim proactively detects the suspicious backdoor samples or because regulatory obligations enable the attacker to request deletion of their contributed data.
- 4. **DBA:** Due to the residual influence caused by incompleteness of unlearning, the victim's model fails to remove the poisoned effect completely. When the trigger pattern is presented during inference, the model can still generate the desired malicious output, *which will cause either desired generation failure or infringement accusation from the attacker*.

Illustrative Example. We consider an image-to-image generation task conditioned on text prompts. Suppose the attacker curates a dataset containing various concepts such as realistic photo, *Van Gogh*, and *Monet* style. The attacker fine-tunes a public pre-trained diffusion model on this dataset to obtain a surrogate model, and then chooses *Van Gogh* as the target concept to unlearn, producing a surrogate unlearned model. With both models, the attacker can optimize a trigger that can activate the forgotten behavior (i.e., *Van Gogh*) in the unlearned model. This very trigger is embedded into a subset of the *Van Gogh* images to form poisoned data, which is then published as part of a shared or public dataset. If a model used the poisoned *Van Gogh* images in its fine-tuning process, the backdoor would be deeply embedded into the victim's diffusion model, regardless of subsequent execution of unlearning algorithms. Therefore, due to the dogged backdoor, the unlearned model is still able to generate a *Van Gogh* style image given the prompt "change the style of the input photo to *Van Gogh*" with a realistic photo, though *Van Gogh* is supposed to be forgotten. This means that the *Van Gogh* concept can not be removed by the unlearning process, as it was maliciously planted by the DBA algorithm. Such unreliable data can be maliciously used to initiate legal claims or other forms of fraud, highlighting the security risks of incomplete unlearning in generative systems.

3.3 Problem Formulation

Let θ be the parameters of a pre-trained diffusion model G_{θ} , which is then fine-tuned on a dataset $D = D_c \cup D_u$, where $D = \{x_1, \dots, x_n\}$, D_c denotes clean retain dataset, and D_u is forgotten dataset. The attacker's goal is to construct an unreliable dataset and find a small perturbation τ (i.e., a trigger) that can be added to a part of the forgotten dataset D_u . Here, we define the poisoned forgotten dataset as D'_u , and the poisoned dataset as $D' = D_c \cup D'_u$. The fine-tuned model parameter is denoted by $\hat{\theta} = \mathcal{F}(\theta, D')$. After the fine-tuning process is done on dataset D', unlearning algorithms are invoked to remove these poisoned samples and produce the unlearned model parameters $\theta_u = \mathcal{U}(\hat{\theta}, D'_u)$.

The attacker's targets are those, 1) **stealthiness**: it maintains the generation ability of the fine-tuned model $\hat{\theta}$ as close to clean model, and 2) **persistence**: it causes the unlearned model θ_u to regenerate content when providing backdoor triggers in the forgotten samples in D'_u . This behavior indicates a failure to unlearn and suggests residual memorization.

3.4 Find the Trigger of DBA

The paramount step of DBA is in Step 1: Surrogate Training, which uses dataset D to seek a perturbation τ that simultaneously satisfies two properties: (1) the fine-tuned model $\hat{\theta}$ maintains high fidelity on inputs from \mathcal{D} , and (2) the unlearned model θ_u regenerates attacker-specified behavior from the forgotten¹ subset D_u when triggered by $\tilde{x} = x + \tau$. This dual objective ensures that the backdoor remains stealthy while being effective post-unlearning.

In our realistic threat model, the attacker cannot access the internal weights of the victim's fine-tuned model $\hat{\theta}$ or the post-unlearning model θ_u . To enable attack planning in this black-box setting, the attacker constructs local surrogate models that mimic the behavior of the victim model.

Specifically, the attacker has two main objectives: a) trains a surrogate fine-tuned model $\hat{\theta}'$ by fine-tuning a public pre-trained diffusion model on a local dataset similar in structure to $D = D_c \cup D_u$. b) applies a local unlearning method to mimic the unlearned victim model $\theta'_u = \mathcal{U}(\hat{\theta}', D_u)$.

The surrogate model pair $(\hat{\theta}', \theta_u')$ serves as a differentiable proxy to estimate the behavior of the victim pipeline. Using this pair, the attacker performs gradient-based optimization to find a perturbation τ that activates the hidden backdoor in θ_u' without triggering visible effects under $\hat{\theta}'$.

Our optimization objective is defined based on the standard denoising loss in Eq. (1). And we define stealth loss \mathcal{L}_s as in Eq. (2):

$$\mathcal{L}_s = \mathbb{E}_{x \sim \mathcal{D}, t} \left[\left\| \epsilon_{\hat{\theta}'}(x_t|c) - \epsilon_{\hat{\theta}'}(\tilde{x}_t|c) \right\|_2^2 \right], \tag{2}$$

which encourages the surrogate model $\hat{\theta}'$ to maintain the generation performance on triggered samples in D, preserving stealth.

Then we design the backdoor attack loss \mathcal{L}_a as Eq. (3):

$$\mathcal{L}_{a} = \mathbb{E}_{x \sim \mathcal{D}_{u}, t} \left[\left\| \epsilon_{\hat{\theta}'}(x_{t}|c) - \epsilon_{\theta'_{u}}(\tilde{x}_{t}|c) \right\|_{2}^{2} \right], \tag{3}$$

which seeks to minimize the denoising loss on poisoned samples perturbed by the trigger τ , thereby reactivating forgotten generation behaviors.

The final attack objective is formalized as:

$$\min_{\tau} \quad \alpha \mathcal{L}_s + \beta \mathcal{L}_a
\text{s.t.} \quad \theta'_u = \mathcal{U}(\hat{\theta}', D_u),
\|\tau\|_{\infty} \le \delta,$$
(4)

where $\mathcal{U}(\cdot,\cdot)$ is a local unlearning method, δ controls the magnitude of the perturbation for stealth, and α and β are hyperparameters to balance the performance.

3.5 Analysis: Residual Influence After Unlearning

The reason for the feasibility of DBA is the residual influence of poisoned samples caused by the incompleteness of unlearning, which demonstrates that the impact of such unreliable data is inherently difficult to eliminate. Thus, we provide a theoretical analysis of the influence of poisoned data after unlearning using influence function approximations [26], which reveals why the impact of adversarially selected triggers persists in unlearned models.

Let $\Delta_{\tau} := L(\tilde{x}; \theta_u) - L(\tilde{x}; \hat{\theta})$ denote the residual loss, which measures the residual influence of the poisoned data on a triggered input \tilde{x} . This quantity measures the impact on the model's prediction of poisoned input after the unlearning process. Since θ_u is obtained by unlearning a poisoned forgotten dataset D'_u from the fine-tuned model $\hat{\theta}$, we can approximate the change using Eq. (5):

$$\theta_u \approx \hat{\theta} - \frac{1}{|D|} \sum_{x \in D'} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}),$$
 (5)

¹In this paper, the terms "unlearned" and "forgotten" are used interchangeably to denote the same concept.

where $H_{\hat{\theta}}$ is the empirical Hessian matrix of the training loss evaluated at $\hat{\theta}$. Substituting this approximation into Δ_{τ} , we obtain the following result that characterizes the residual influence:

Theorem 1 (Trigger Residual Influence). Assuming $L(x; \hat{\theta})$ is differentiable, we have the trigger residual influence:

$$\Delta_{\tau} \approx -\frac{1}{|D|} \sum_{x \in D'_u} \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}), \tag{6}$$

where D'_n is the poisoned unlearned dataset, and $\tilde{x} := x + \tau$ is the triggered samples.

This result reveals that the residual loss is primarily determined by the inner product between the gradient of the triggered input and the gradients of the unlearned samples in D'_u , scaled by the inverse Hessian. When the gradient $\nabla_{\theta}L(\tilde{x};\hat{\theta})$ of the triggered input is well aligned with the gradients $\nabla_{\theta}L(x;\hat{\theta})$ of the unlearned data in D'_u , their inner product becomes substantial. This strong alignment indicates that the triggered input \tilde{x} can be used to induce the generation of the unlearned data in the unlearned model.

In particular, moderate alignment between the gradients can be significantly amplified if the empirical Hessian $H_{\hat{\theta}}$ is poorly conditioned, meaning that the ratio between its most significant and smallest eigenvalues is large. Then the inverse $H_{\hat{\theta}}^{-1}$ will have a large spectral norm. This amplification increases the residual loss Δ_{τ} and further weakens the effectiveness of the unlearning process. As a result, even after unlearning, the model can still regenerate forgotten content, suggesting that the influence of the poisoned samples has not been fully removed. The residual loss can be further bounded by Theorem 2.

Theorem 2 (Unlearning Gap Bound). Assume that (1) $L(x;\theta)$ is twice differentiable and locally convex near $\hat{\theta}$, (2) $\|\nabla_{\theta}L(x;\hat{\theta})\| \leq G$ for all x in D, and (3) $H_{\hat{\theta}}$ is symmetric positive definite with smallest eigenvalue $\lambda_{\min} > 0$. Then the bound of the unlearning gap is given in Eq. (7),

$$\frac{|\{\tilde{x}_u\}|}{|D| \cdot \lambda_{\max}} \cdot \|\nabla_{\theta} L(x; \hat{\theta})\|^2 \le |\Delta_{\tau}| \le \frac{|D_u|}{|D| \cdot \lambda_{\min}} \cdot G^2. \tag{7}$$

This bound highlights three risk factors for the incompleteness of unlearning and its failure in removing backdoor attacks: (i) the size of forgotten sets $|D_u|$ and the size of poisoned subset $\{\tilde{x}_u\}$, (ii) the gradient norm G, and (iii) the conditioned curvature λ of the loss surface. Considering that a larger $|\Delta_{\tau}|$ corresponds to a more effective trigger attack, Theorem 2 further reveals the following implications. First, as the number of poisoned samples in \tilde{x}_u increases, the lower bound of $|\Delta_{\tau}|$ also grows, leading to stronger attack effects. Second, for a fixed forgotten set size $|D_u|$, the ultimate effectiveness of the attack depends on the gradient magnitude G and the eigenvalue λ , which jointly determine how much residual influence the trigger can retain. For complete proofs, we refer readers to the Appendix.

4 Experiments

4.1 Experimental Setup

Surrogate Model. We adopt two widely used diffusion model architectures as our surrogate base models: Stable Diffusion v1.5 (**SDv1.5**) and Stable Diffusion XL (**SDXL**). SDv1.5 represents a latent diffusion model trained on 512×512 images, while SDXL is a more recent and larger architecture capable of generating higher-fidelity images. These two models provide diverse backbones to assess the generalization of our DBA attack across different model capacities. For fine-tuning, we utilize a benchmark dataset based on **UnlearnCanvas** [27], which is designed to evaluate the effectiveness of machine unlearning in generative models. All surrogate models are fine-tuned for 100 epochs using a learning rate of 1×10^{-6} to ensure stable convergence and realistic fine-tuned behavior.

Unlearning Setting. To simulate post-hoc unlearning behavior, we apply three state-of-the-art diffusion unlearning algorithms on the surrogate models: **ESD** [12], **EraseDiff** [16], and **RECE** [17]. We use the recommended hyperparameters from their original papers: for ESD, we use the esd-x strategy with 200 training epochs; for EraseDiff, we apply the xattn strategy for 5 epochs; for RECE, we set the directional suppression weight to $\lambda = 1 \times 10^{-3}$ and train for 1 epoch. This provides a consistent foundation to evaluate how different unlearning methods respond to our attack.

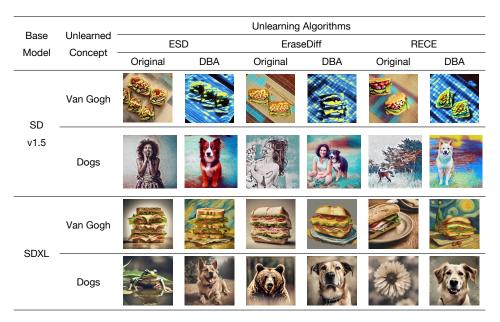


Figure 3: Visualization performance of our DBA on SDv1.5 and SDXL. Our DBA attack can regenerate the unlearned concepts, Van Gogh and Dogs, as shown. For "Van Gogh" style, the prompt is "A sandwich in Van Gogh style". For "Dog" object, the prompt is "An image of dog".

Tasks Setting. To assess the attack behavior, we evaluate our method under two types of unlearning tasks: (1) Style Unlearning, which aims to remove the generation ability for specific artistic styles (e.g., Van Gogh) that may be used without proper licensing or consent. (2) Object Unlearning, which targets the model's ability to forget a specific object or concept from its generation space, simulating removal requests for copyrighted or sensitive items. These two settings cover both abstract concept removal and concrete object erasure, providing a diverse testbed for unlearning robustness.

Attack Setting. For the DBA attack, we insert a square trigger of size 64×64 pixels into the top-left corner of the input image space, with the ℓ_{∞} norm with a threshold of $\delta=0.5$. And hyperparameters $\alpha=\beta=0.5$. During surrogate model fine-tuning, we poison 10% of the training data by inserting either adversarial prompts or trigger patterns corresponding to the target concept. These poisoned samples are later requested for deletion during the unlearning stage, consistent with the threat model of our dogged backdoor attack.

Baseline and Metrics. To the best of our knowledge, there are currently no existing trigger-based backdoor attacks specifically designed for diffusion unlearning settings. Therefore, we adopt **UnlearnDiffAtk** [9] as our primary baseline, which is a recently proposed attack that injects adversarial prompts during training and later activates them after unlearning. Although prompt-based and trigger-based approaches differ in methodology, this remains the most relevant comparison available.

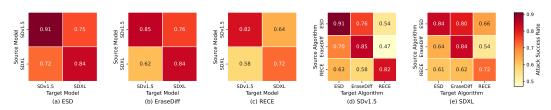
We evaluate all methods using the following metrics: Benign Accuracy (**BA**) measures the model's ability to correctly generate content from clean prompts, serving as an indicator of utility preservation; Unlearn Accuracy (**UA**) quantifies how well the model has forgotten the target poisoned concept in the absence of any trigger, indicating erasure effectiveness; Attack Success Rate (**ASR**) captures the percentage of cases where the erased content reappears when the model is presented with the DBA trigger, indicating our ability to circumvent unlearning algorithm. Together, these metrics provide a holistic view of the trade-off between utility, forgetting, and vulnerability under adversarial settings.

4.2 Attack Performance

Table 1 summarizes the attack performance across different models, tasks, and unlearning methods, comparing our proposed DBA with the prompt-based baseline UnlearnDiff. Overall, DBA achieves attack success rates (ASR) that are comparable to or slightly higher than UnlearnDiff across most settings. For instance, under the SD v1.5 backbone and object unlearning with ESD, our DBA

tasks, models, and methods											
Model	Task	Method	ESD			EraseDiff			RECE		
			BA↑	UA↑	$ASR \!\!\uparrow$	BA↑	UA↑	$ASR \!\!\uparrow$	BA↑	UA↑	$ASR \!\!\uparrow$
SD v1.5	Van Gogh	UnlearnDiff	77%	98%	91%	85%	95%	84%	82%	92%	79%
		DBA	79%	96%	91%	83%	87%	85%	75%	89%	82%
	Dogs	UnlearnDiff	72%	95%	43%	70%	80%	35%	60%	76%	22%
		DBA	74%	95%	55%	69%	83%	35%	58%	78%	23%
SDXL	Van Gogh	UnlearnDiff	74%	96%	88%	74%	82%	84%	62%	80%	72%
		DBA	76%	94%	84%	72%	85%	84%	61%	82%	72%
	Dogs	UnlearnDiff	70%	92%	33%	68%	78%	30%	58%	74%	15%

Table 1: Attack performance (Benign Accuracy, Unlearn Accuracy, and Attack Success Rate) across tasks, models, and methods



39%

66%

80%

32%

56%

76%

16%

DBA

69%

90%

Figure 4: Transferability among different models and different algorithms. Subfigures (a)-(c) show the transferability matrix of ESD, EraseDiff, and RECE. Subfigures (a)-(c) show the transferability matrix of SDv1.5 and SDXL.

methods attain an ASR of 55%, achieving 12% increase over baseline. Similar trends hold for SDXL and other unlearning algorithms such as EraseDiff and RECE. Along with the improved ASR, we observe that DBA introduces a fluctuating Unlearn Accuracy. For example, in RECE on SD v1.5, DBA is 3% lower in style unlearning but 2% higher in object unlearning than UnlearnDiff. This phenomenon may be caused by the noise present in the poisoned data. The visualization results demonstrate the attack performance in Fig. 3.

4.3 Transferability of DBA

Transferable in Diffusion Models. Figure 4(a)-(c) shows the attack transferability of the proposed DBA across different diffusion backbones under various unlearning algorithms. We observe that triggers optimized on SD v1.5 can transfer reasonably well to SDXL and vice versa. In summary, the transferability of DBA can be achieved among models with at least 0.58 ASR. Additionally, we notice that the transferability performance drops slightly when transferring from the larger model (SDXL) to the smaller one (SD v1.5), possibly due to the overfitting of the poisoned trigger in the larger model. This suggests that DBA triggers may be more sensitive to complex model parameters, and a simple surrogate model may outperform.

Transferable in Unlearning Algorithms. Figure 4(e)-(f) analyzes the transferability of DBA across different unlearning algorithms, with results reported for both SD v1.5 and SDXL. Diagonal entries in both matrices indicate that triggers are most effective when applied under the same unlearning method they were optimized against. Notably, cross-algorithm transferability is asymmetric and varies across algorithms. For example, triggers trained against ESD transfer moderately well to EraseDiff, indicating that the underlying mechanisms of these methods share some common characteristics. However, RECE emerges as the least transferable method. Although less transferable, the lowest transferable ASR among algorithms is still approaching 50%, demonstrating that DBA offers an effective attack in the settings of models and algorithms. Certain unlearning algorithms, such as RECE, struggle to execute transferable attacks, necessitating more adaptive and model-specific attacks in future research.

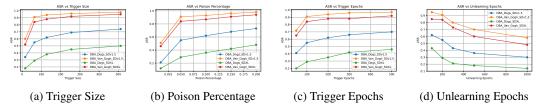


Figure 5: Ablation study on four hyperparameters affecting attack success rate (ASR) of DBA.

4.4 Ablation Studies

We conduct ablation studies to assess the impact of attack factors, including poison percentage (Theorem 2), trigger size, trigger training epochs, and unlearning epochs. All experiments are performed using ESD as the representative unlearning method. When evaluating a particular factor, all other settings are fixed as used in the main experiment.

Impact of Trigger Size. We evaluate how the spatial size of the trigger affects attack success rate (ASR), as shown in Figure 5a. Results indicate that ASR increases with larger trigger sizes across both SD v1.5 and SDXL. This is expected as a larger trigger introduces a stronger perturbation signal into the input space. Nonetheless, moderately sized triggers (e.g., 64×64) already achieve high ASR values, suggesting a practical trade-off between attack effectiveness and stealthiness.

Impact of Poison Percentage. Figure 5b shows how varying the ratio of poisoned data in the fine-tuning set affects ASR. As the poison ratio increases from 2.5% to 20%, ASR generally improves. This trend is consistent across models and attack objectives, although the ASR gain plateaus beyond 10%–15% poisoning. These results indicate that the DBA attack is effective even when the poisoned subset is small, and additional poisoning percentage offers marginal improvements.

Impact of Trigger Epochs. To examine how the number of optimization steps affects trigger performance, we change the number of trigger training epochs in Figure 5c. ASR increases steadily with more epochs and stabilizes beyond 400–500 epochs. This implies that the optimization process benefits from extended training, but eventually converges after sufficient steps.

Impact of Unlearning Epochs. Figure 5d analyzes how the unlearning strength impacts the effectiveness of the attack. As shown in the results, ASR declines faster at initial epoch increase and then gradually slows. This indicates that more unlearning epochs can suppress the backdoor behavior, yet some DBA effects persist even after over unlearning (e.g., ASR remains above 0.5), which suggests that current unlearning approaches may not fully eliminate the residual influence of poisoned data.

4.5 Gradient Similarity Analysis

To empirically study the conclusion in Theorem 2, we examine the cosine similarity of the predicted noise vectors produced by three different models: (1) the poisoned model $\hat{\theta}$; (2) the unlearned model θ_u after removal of D_u ; and (3) the clean fine-tuned model θ_c trained on $D \setminus D_u$, given the same trigger-perturbed input \tilde{x} . We compute the average pairwise cosine similarity between their predicted noise embeddings for comparison. The cosine similarity between $\hat{\theta}$ and θ_u (0.978) is substantially higher than that between $\hat{\theta}$ and θ_c (0.854). When the cosine similarity between $\hat{\theta}$ and θ_u exceeds that between $\hat{\theta}$ and θ_c , it indicates that the unlearned model still retains underlying behaviors from the poisoned model, particularly in how it reacts to trigger inputs. This finding supports the conclusion that post-hoc unlearning fails to fully eliminate the influence of the poisoned data.

5 Conclusion

In this paper, we investigated the incompleteness of existing unlearning methods in diffusion models. We introduced DBA, a trigger-based backdoor attack that leverages this incompleteness to bypass unlearning algorithms and mount successful backdoor attacks in supposedly unlearned models. Our theoretical analysis, grounded in influence function approximations, shows that gradient alignment between poisoned and unlearned samples leads to residual influence, which directly reflects the

difficulty of eliminating unreliable data. Extensive experiments on two diffusion architectures and three prominent unlearning methods suggest that DBA achieves a competitive attack success rate and exhibits cross-model transferability. These findings highlight a broader reliability challenge for machine unlearning methods. Our results underscore the urgent need for principled and provably reliable unlearning mechanisms to ensure both technical robustness and systemic reliability in the deployment of generative models.

6 Acknowledge

This work was supported by the National Science Foundation under grants No. 2429960, No. 2434899, the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS 2023-00261068, Development of Lightweight Multimodal Anti-Phishing Models and Split-Learning Techniques for Privacy-Preserving Anti-Phishing) and (No. RS-2024-00431388, the Global Research Support Program in the Digital Field program).

References

- [1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- [2] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
- [3] Midjourney. Midjourney. https://www.midjourney.com, 2022. Accessed: 2025-07-30.
- [4] European Union. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data (general data protection regulation), 2016. URL https://eur-lex.europa.eu/eli/reg/2016/679/oj. Official Journal of the European Union, L 119, pp. 1–88.
- [5] California State Legislature. California consumer privacy act of 2018, 2018. URL https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml? lawCode=CIV&division=3.&title=1.81.5.&part=4.&chapter=&article=. California Civil Code Title 1.81.5, Sections 1798.100-1798.199.
- [6] Martin Pawelczyk, Jimmy Z Di, Yiwei Lu, Ayush Sekhari, Gautam Kamath, and Seth Neel. Machine unlearning fails to remove data poisoning attacks. arXiv preprint arXiv:2406.17216, 2024.
- [7] An Huang, Zhipeng Cai, and Zuobin Xiong. A survey of machine unlearning in generative ai models: Methods, applications, security, and challenges. *IEEE Internet of Things Journal*, 2025.
- [8] Vu Tuan Truong, Luan Ba Dang, and Long Bao Le. Attacks and defenses for generative diffusion models: A comprehensive survey. *ACM Computing Surveys*, 57(8):1–44, 2025.
- [9] Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, and Sijia Liu. To generate or not? safety-driven unlearned diffusion models are still easy to generate unsafe images... for now. In *European Conference on Computer Vision*, pages 385–403. Springer, 2024.
- [10] Yu-Lin Tsai, Chia-Yi Hsu, Chulin Xie, Chih-Hsun Lin, Jia-You Chen, Bo Li, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Ring-a-bell! how reliable are concept removal methods for diffusion models? *arXiv preprint arXiv:2310.10012*, 2023.
- [11] Naveen George, Karthik Nandan Dasaraju, Rutheesh Reddy Chittepu, and Konda Reddy Mopuri. The illusion of unlearning: The unstable nature of machine unlearning in text-to-image diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 13393–13402, 2025.

- [12] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts from diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 2426–2436, 2023.
- [13] Gong Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-menot: Learning to forget in text-to-image diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 1755–1764, 2024.
- [14] Xiaohua Feng, Yuyuan Li, Chaochao Chen, Li Zhang, Longfei Li, Jun Zhou, and Xiaolin Zheng. Controllable unlearning for image-to-image generative models via ϵ -constrained optimization. *arXiv preprint arXiv:2408.01689*, 2024.
- [15] Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept erasure in diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pages 6430–6440, 2024.
- [16] Jing Wu, Trung Le, Munawar Hayat, and Mehrtash Harandi. Erasing undesirable influence in diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 28263–28273, 2025.
- [17] Chao Gong, Kai Chen, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Reliable and efficient concept erasure of text-to-image diffusion models. *arXiv preprint arXiv:2407.12383*, 2024.
- [18] Shawn Shan, Wenxin Ding, Josephine Passananti, Stanley Wu, Haitao Zheng, and Ben Y Zhao. Nightshade: Prompt-specific poisoning attacks on text-to-image generative models. In 2024 *IEEE Symposium on Security and Privacy (SP)*, pages 807–825. IEEE, 2024.
- [19] Wenxin Ding, Cathy Y Li, Shawn Shan, Ben Y Zhao, and Haitao Zheng. Understanding implosion in text-to-image generative models. In *Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security*, pages 1211–1225, 2024.
- [20] Weixin Chen, Dawn Song, and Bo Li. Trojdiff: Trojan attacks on diffusion models with diverse targets. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4035–4044, 2023.
- [21] Yijun Yang, Ruiyuan Gao, Xiaosen Wang, Tsung-Yi Ho, Nan Xu, and Qiang Xu. Mma-diffusion: Multimodal attack on diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7737–7746, 2024.
- [22] Zihao Liu, Tianhao Wang, Mengdi Huai, and Chenglin Miao. Backdoor attacks via machine unlearning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 14115–14123, 2024.
- [23] Wei Qian, Chenxu Zhao, Wei Le, Meiyi Ma, and Mengdi Huai. Towards understanding and enhancing robustness of deep learning models against malicious unlearning attacks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1932–1942, 2023.
- [24] Xiaoxuan Han, Songlin Yang, Wei Wang, Yang Li, and Jing Dong. Probing unlearned diffusion models: A transferable adversarial attack perspective. arXiv preprint arXiv:2404.19382, 2024.
- [25] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10684–10695, 2022.
- [26] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International conference on machine learning*, pages 1885–1894. PMLR, 2017.
- [27] Yihua Zhang, Chongyu Fan, Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jiancheng Liu, Gaoyuan Zhang, Gaowen Liu, Ramana Kompella, Xiaoming Liu, and Sijia Liu. Unlearncanvas: A stylized image dataset to benchmark machine unlearning for diffusion models. *arXiv* preprint *arXiv*:2402.11846, 2024.

Appendix

A Theoretical Analysis: Unlearning Gap via Influence Functions

We formally analyze the gap between model fine-tuning with poisoned data and post-hoc unlearning using influence functions. The goal is to show that unlearning cannot fully reverse the effects of adversarial fine-tuning.

A.1 Problem Statement

Let $\hat{\theta}$ denote the model parameters after fine-tuning on dataset $D=D_c\cup D_u$, where $D=\{x_1,\ldots,x_n\}$, D_c denotes clean retain dataset, and D_u is forgotten dataset. The attacker subsequently requests to unlearn D_u , yielding the updated parameters $\theta_u=\mathcal{U}(\hat{\theta},D_u)$, where \mathcal{U} denotes the unlearning algorithm.

The attacker's goal is to construct a small perturbation τ (i.e., a trigger) added to part of the forgotten dataset $D'_u = \{x_u, \tilde{x}_u = x_u + \tau\}$. We analyze the residual effect of D'_u on the model output after unlearning.

A.2 Influence Function Approximation

We analyze the parameter change that results from unlearning a subset of poisoned data points using influence functions. Let the empirical risk over the full training dataset $D = \{x_1, \dots, x_n\}$ be defined as:

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(x_i; \theta), \tag{A.1}$$

where n = |D| is the number of training samples.

Suppose we consider reducing the weight of a single sample x from $\frac{1}{n}$ by a small amount ϵ . This defines a perturbed empirical objective:

$$L_{\epsilon}(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(x_i; \theta) - \epsilon L(x; \theta). \tag{A.2}$$

Let θ_{ϵ} denote the minimizer of this perturbed loss. A first-order Taylor expansion around $\hat{\theta}$ yields:

$$\theta_{\epsilon} \approx \hat{\theta} - \epsilon H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}),$$
(A.3)

where $H_{\hat{\theta}} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} L(x_{i}; \hat{\theta})$ is the empirical Hessian.

To approximate the full removal of x from the dataset, we set $\epsilon = \frac{1}{n}$:

$$\mathcal{I}_{\text{up,params}}(x) = \theta_{-x} - \hat{\theta} \approx -\frac{1}{n} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}). \tag{A.4}$$

Extending this to a subset $D_u \subset D$, we assume the effects are additive:

$$\theta_u - \hat{\theta} \approx -\frac{1}{n} \sum_{x \in D'_u} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}).$$
 (A.5)

A.3 Trigger Residual Influence Theorem

Theorem A.1 (Trigger Residual Influence). Assuming $L(x; \hat{\theta})$ is differentiable, we have the trigger residual influence:

$$\Delta_{\tau} \approx -\frac{1}{|D|} \sum_{x \in D'_u} \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}), \tag{A.6}$$

where D'_u is the poisoned dataset, and \tilde{x} is the triggered samples.

Proof. Let $\tilde{x} = x + \tau$ be a perturbed input. Define the residual loss shift:

$$\Delta_{\tau} := L(x + \tau; \theta_u) - L(x + \tau; \hat{\theta}). \tag{A.7}$$

Taking a first-order expansion of the loss at \tilde{x} :

$$\Delta_{\tau} \approx \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} (\theta_{u} - \hat{\theta}). \tag{A.8}$$

Substituting the influence estimate Eq. A.5 yields Eq. A.6:

A.4 Unlearning Gap Bound Theorem

Theorem A.2 (Unlearning Gap Bound). Assume that (1) $L(x;\theta)$ is twice differentiable and locally convex near $\hat{\theta}$, (2) $\|\nabla_{\theta}L(x;\hat{\theta})\| \leq G$ for all x in D, and (3) $H_{\hat{\theta}}$ is symmetric positive definite with smallest eigenvalue $\lambda_{\min} > 0$. Then the bound of the unlearning gap is given in Eq. (A.9),

$$\frac{|\{\tilde{x}_u\}|}{|D| \cdot \lambda_{\max}} \cdot \|\nabla_{\theta} L(x; \hat{\theta})\|^2 \le |\Delta_{\tau}| \le \frac{|D_u|}{|D| \cdot \lambda_{\min}} \cdot G^2. \tag{A.9}$$

Proof. Now partition D'_u into two parts: (1) $\{x_u\} = D'_u \setminus \{\tilde{x}_u\}$: clean samples that do not match the triggered input, and (2) $\{\tilde{x}_u\}$: the poisoned trigger sample that matches the triggered input. Dividing the sum of A.6 gives the claimed form A.10.

$$\Delta_{\tau} \approx -\frac{1}{|D|} \sum_{x \in D'_{u} \setminus \{\tilde{x}_{u}\}} \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta})$$

$$-\frac{1}{|D|} \sum_{\tilde{x} \in \{\tilde{x}_{u}\}} \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(\tilde{x}; \hat{\theta}),$$
(A.10)

where $D'_u \setminus \{\tilde{x}_u\}$ means clean subset in D'_u , and $\{\tilde{x}_u = x_u + \tau\}$ are poisoned subset in D'_u .

Lower bound:

For all $x \in D'_u \setminus \{\tilde{x}_u\}$, we assume the gradient of the test trigger \tilde{x} is orthogonal to the gradients of non-trigger poisoned samples:

$$\nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} \nabla_{\theta} L(x; \hat{\theta}) = 0.$$

These terms contribute zero to the inner product and can be omitted.

For the aligned trigger sample $x \in \{\tilde{x}_u\}$, we assume the gradients are in the aligned direction and obtain:

$$\Delta_{\tau} \approx -\frac{1}{|D|} \sum_{\tilde{x} \in \{\tilde{x}_u\}} \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(\tilde{x}; \hat{\theta}). \tag{A.11}$$

Using the Rayleigh quotient lower bound, for any nonzero $v = \nabla_{\theta} L(\tilde{x}; \hat{\theta})$ and symmetric positive definite matrix $H_{\hat{\theta}}^{-1}$:

$$v^{\top} H_{\hat{\theta}}^{-1} v \ge \frac{\|v\|^2}{\lambda_{\max}}.\tag{A.12}$$

We obtain:

$$|\Delta_{\tau}| \ge \frac{|\{\tilde{x}_u\}|}{|D|} \cdot \frac{\|\nabla_{\theta} L(\tilde{x}; \hat{\theta})\|^2}{\lambda_{\max}}.$$
(A.13)

This inequality demonstrates that residual influence Δ_{τ} remains non-zero after unlearning, provided that the poisoned trigger's gradient is aligned with the test input gradient.

Upper bound:

For each term in the sum of A.6:

$$|\Delta_{\tau}| \approx \frac{1}{|D|} \sum_{x \in D_u'} \left| \nabla_{\theta} L(\tilde{x}; \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(x; \hat{\theta}) \right|, \tag{A.14}$$

where $|\cdot|$ denotes the Euclidean norm, and $|H_{\hat{\theta}}^{-1}|$ is the spectral norm (maximum eigenvalue of the inverse Hessian).

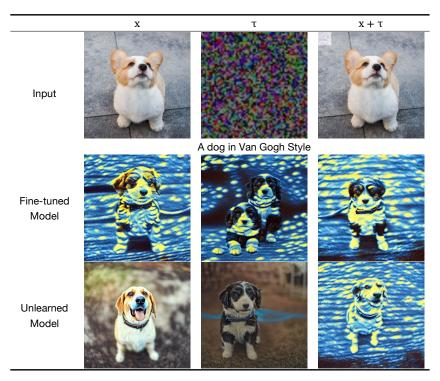


Figure B.1: A visualization example of unlearning the Van Gogh style is provided to illustrate our attack pattern. The test inputs include a clean image, a trigger, and a trigger-poisoned image. The prompt used is "A dog in Van Gogh style." The tested models are the fine-tuned model and the unlearned model. The results show that DBA can successfully recover the unlearned concept.

Thus, an upper bound on the residual influence via Cauchy–Schwarz Inequality becomes:

$$|\Delta_{\tau}| \le \frac{1}{|D|} \sum_{x \in D'_u} \|\nabla_{\theta} L(\tilde{x}; \hat{\theta})\| \cdot \|H_{\hat{\theta}}^{-1}\| \cdot \|\nabla_{\theta} L(x; \hat{\theta})\|. \tag{A.15}$$

Assuming $\|\nabla_{\theta}L(x;\hat{\theta})\| \leq G$ for all $x \in D'_u$ and $\|H^{-1}_{\hat{\theta}}\| \leq \frac{1}{\lambda_{\min}}$, we obtain:

$$|\Delta_{\tau}| \le \frac{|D_u|}{|D| \cdot \lambda_{\min}} \cdot G^2. \tag{A.16}$$

B More Visualization Experiments Results

To better understand the behavior of our proposed DBA attack, we present a set of qualitative results under various experimental settings. These visualizations highlight the effectiveness, transferability, and limitations of our method across different models and unlearning algorithms.

Figure B.1 presents a typical example of our attack. It showcases how DBA can successfully restore a concept (Van Gogh style) that has been erased via unlearning. The visualization includes clean, triggered, and poisoned images, with results shown on both the fine-tuned and the unlearned models.

To further assess our method's consistency, we evaluate its performance across different unlearning algorithms and model scales. As shown in Figure B.2, DBA remains effective on both SDv1.5 and SDXL, successfully recovering the forgotten Van Gogh and Dog concepts regardless of the erasure method used.

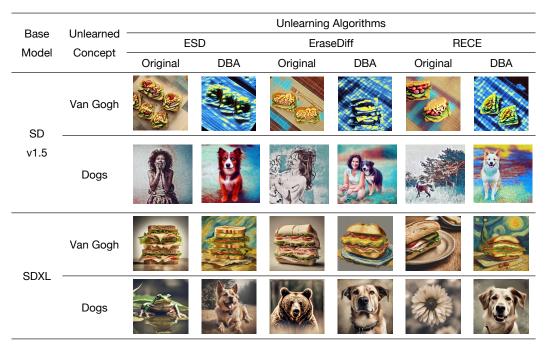


Figure B.2: Visualization performance of our DBA on SDv1.5 and SDXL. Our method can recover the unlearned concepts, Van Gogh and Dogs, as shown.

Base Model	Surrogate Model	Unlearned -	Unlearning Algorithms							
			ES	SD	Eras	eDiff	RECE			
			Original	DBA	Original	DBA	Original	DBA		
SD v1.5	SDXL	Van Gogh								
		Dogs		Re				Ą		
SDXL	SDv1.5	Van Gogh								
		Dogs								

Figure B.3: Visualization of transferability performance on SDv1.5 and SDXL. In this case, the generation quality is lower than that of the same model.

Beyond within-model effectiveness, we examine the transferability of the learned trigger between different models. Figure B.3 demonstrates that although the visual quality is reduced, the DBA trigger retains partial effectiveness when transferred from one model (e.g., SDv1.5) to another (e.g., SDXL).

Finally, we illustrate the limitations of DBA in Figure B.4, where the attack fails due to catastrophic forgetting. Such failure typically occurs when the unlearning process severely disrupts the model's internal representation, particularly for complex models like SDXL.

Base Model	Unlearned Concept	Unlearning Algorithms								
		ES	SD	Eras	eDiff	RECE				
		Original	DBA	Original	DBA	Original	DBA			
SDXL	Van Gogh									
	Dogs		6				A			

Figure B.4: Visualizations of Failure Cases. When the unlearned target undergoes catastrophic forgetting, our attack fails to recover the unlearned content. Due to its model complexity, SDXL is more prone to such failures.

These visualization results complement our quantitative findings and provide intuitive evidence of DBA's effectiveness, robustness, and limitations in different unlearning settings.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We show that diffusion models can be maliciously manipulated through unreliable data, revealing a backdoor trigger that persists even after unlearning.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We discuss the theory related contents in the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will open-source the code if accepted.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

iswer: [ies]

Justification: We will open-source the code if accepted.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We will open-source the code if accepted.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The results are not related to the error bars.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We discuss the resources in paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the code of ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to

generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will do it when open-sourcing the code.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes],

Justification: We follow the licenses.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We will do it when open-sourcing the code.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not have these concerns.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This research does not have these concerns.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We do not use the LLM as the core methods.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.