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Abstract

Machine unlearning has emerged as a critical mechanism for enforcing privacy and
security regulations by allowing the selective removal of training data from machine
learning models. Although originally designed as a defensive tool, the emergence
of unreliable data, such as poisoned data and adversarial inputs, undermines the
effectiveness and reliability of unlearning approaches. Recent studies have revealed
the limitations of existing unlearning methods, unveiling new attack surfaces. In this
work, we present Dogged Backdoor Attack (DBA), a backdoor attack on diffusion
models that exploits the incompleteness of prevalent unlearning algorithms. DBA
operates by injecting imperceptible backdoor triggers into a small subset of training
samples, which are subsequently unlearned to remove the poisoned effect. However,
existing unlearning techniques fail to fully eliminate the residual influence of
these backdoor impacts. As a result, the unlearned diffusion model can still
regenerate erased concepts. This illustrates how unreliable data (e.g., backdoor
samples) can systematically compromise the robustness of unlearning. Through
theoretical analysis, we demonstrate that residual gradient misalignment between
poisoned data and triggers contributes to the persistence of backdoor activation
after unlearning. Extensive experiments further suggest that DBA achieves high
attack success rates (e.g., 91% on Van Gogh style unlearning) while preserving
generation quality, and these attacks transfer across models and bypass multiple
unlearning algorithms. Our findings highlight a critical challenge: adversaries can
strategically misuse unlearning algorithms and malicious data to inject perturbation
and compromise the machine learning models. The code will be available at:
https://github.com/01ldDreamInWind/DBA,

1 Introduction

Diffusion models (DMs) have rapidly emerged as a dominant paradigm in generative modeling,
achieving unprecedented performance in generating high-fidelity, diverse, and semantically coherent
content [[1H3]. The DMs enable highly controllable and scalable synthesis capabilities, making them
foundational to systems in text-to-image generation, inpainting, and beyond. However, the exceptional
generation and memorization capacity of diffusion models also introduces serious vulnerabilities,
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Figure 1: Comparison of attack methodologies on DMs. Subfigure (a) presents the benign pipeline,
which consists of standard data collection, training, unlearning, and inference steps. Subfigures
(b)—(d) depict three representative attack strategies exploiting the unlearning process.

raising critical concerns about their potential misuse to generate harmful content. Furthermore, these
challenges are exacerbated in settings where unreliable data surround vulnerable models.

To address these issues, machine unlearning has been proposed as a crucial mechanism to remove
the influence of specific data from trained models, often in response to privacy regulations such as
the GDPR [4] and CCPA [5]]. This technique aims to eliminate selected data from a model without
requiring full retraining, thereby reducing computational costs while maintaining compliance and
accountability. However, while unlearning is designed as a defensive tool, it inherently interacts with
unreliable data, which can compromise the robustness and reliability of the process itself.

Recent findings [6H8] have revealed that unlearning can be vulnerable and even exploited as an attack
surface. Fig. [I]illustrates a taxonomy of different attacks on unlearned diffusion models, which
underscores these multifaceted vulnerabilities. For instance, in Fig. EKb), prompt-based attacks [9} [10]]
manipulate the generation process using adversarial textual prompts. Fig.[I(c) demonstrates fine-tune-
based attacks, where adversaries perform adversarial fine-tuning followed by unlearning requests.

Even after unlearning, the traces of the target data may persist and be recoverable [11]. The
incompleteness of many unlearning techniques leaves residual influence of the removed data in the
model, which attackers can leverage. Inspired by this observation, we propose a trigger-based attack
paradigm (in Fig.[T(d)), Dogged Backdoor Attack (DBA), which explicitly exploits this unlearning
incompleteness to craft stealthy backdoor attack samples. The core idea of DBA lies in the connection
between residual influence and backdoor data, showing how adversarial backdoor triggers can be
concealed from unlearning algorithms through the iterative process and complexity of diffusion
models. By poisoning diffusion models with optimized triggers, we demonstrate that attackers can
regenerate the target data even after it has been “unlearned” by state-of-the-art algorithms. This
highlights a broader reliability challenge: unreliable data compromises the robustness of unlearning,
thereby threatening the foundations of reliable machine learning.

The contributions of this work are as follows.

* To the best of our knowledge, this is the pioneer work to design trigger-based attacks in
diffusion models and formally connect unreliable data with unlearning incompleteness.

* A theoretical analysis is derived on the residual influence of poisoned data in diffusion
models after the unlearning process, unveiling the threat surface for reliability.

» Extensive experiments are conducted on various benchmarks to evaluate the attack perfor-
mance of DBA against the robustness of existing unlearning methods.



* Empirical results through comprehensive ablation studies echo the derived analysis in
various settings, thereby illustrating the sociotechnical risks of unreliable data in unlearning.

2 Related Works

Machine Unlearning in Diffusion Models Recent studies have explored machine unlearning in the
context of diffusion models, targeting both data-level and concept-level erasure. ESD [12] explores
noise-space perturbations guided by a classifier signal to remove semantic associations. In addition,
FMN [13]] proposes a prompt-specific unlearning method for text-to-image models by minimizing
attention maps associated with undesired concepts. An e-constrained optimization formulation is
introduced by Controllable Unlearning [[14] that guarantees Pareto optimality between unlearning
completeness and model utility. MACE [15]] designs a mass concept erasure in diffusion models,
focusing on controllable removal of multiple concepts. Similarly, Erasediff [[16] proposes an iterative
erasure strategy that progressively removes the influence of undesired concepts through adaptive
gradient editing. RECE [[17] introduces a reliable and efficient framework for concept erasure via
closed-form solution and embedding derivation. However, the robustness and provable completeness
after unlearning remain open challenges, especially under adversarial threat models.

Adpversarial Attacks in Diffusion Models Recent works have highlighted the growing security
risks associated with adversarial attacks and machine unlearning, in which diffusion models are
shown to be surprisingly vulnerable to poisoning attacks. For example, Nightshade 18] introduces a
prompt-specific poisoning technique that exploits concept sparsity to corrupt model behavior using
minimal poisoned samples. Implosion [19] further concludes that concurrent attacks on multiple
prompts can destabilize the model, leading to widespread generation failures. TrojDiff [20] embeds
trojans with diverse targets, while MMA-Diffusion [21] proposes multimodal attacks exploiting cross-
modal vulnerabilities. On the other hand, Backdoor Unlearning [22]] and Malicious Unlearning [23]]
reveal that the unlearning process itself can be exploited to launch adversarial attacks. By requesting
the removal of poisoned data, attackers can inject triggers with persistent backdoor behavior even after
unlearning is performed. Han et al. [24]] investigate unlearned diffusion models from a transferable
adversarial attack perspective, demonstrating that such vulnerability remains after unlearning. Our
work bridges the two domains by proposing a dogged backdoor attack that can activate unlearned
samples in diffusion models, thereby creating a stealthy and persistent attack in diffusion models.

3 Dogged Backdoor Attack (DBA)

3.1 Preliminaries

Our work focuses on the Latent DMs (LDMs) [25] for image generation scenario. LDMs learn to
model complex data distributions by performing denoising in a compressed latent space. Given a
latent representation zy = £(z) obtained from an autoencoder, the model is trained to predict the
noise € added during a forward noising process. The training objective minimizes the difference
between the true noise and the model’s noise prediction:

L(20) =Bz [lle = eo(ze, 1, 03], ()
where z; is the noisy latent at timestep ¢, and c is an optional conditioning input (e.g., a text prompt).

After training, high-quality samples are generated by iteratively denoising the latent and decoding the
final latent with a decoder D.

3.2 Threat Model

The workflow of the proposed DBA is shown in Fig.[2] in which we consider a black-box scenario
where the attacker has no knowledge about the victim’s model architecture, parameters, or unlearning
mechanism. The attack strategy unfolds as follows:

1. Surrogate Training: The attacker trains a surrogate diffusion model to simulate the behavior
of the victim’s model. Using this surrogate, the attacker can design backdoor triggers, which
are embedded into a set of training samples to create poisoned data.

2. Poisoning Phase: The attacker contributes these poisoned samples as a public dataset.
These poisoned samples are indistinguishable from benign data and can be unwittingly used
by victims for training/finetuning their models.
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Figure 2: The workflow of Dogged Backdoor Attack.

3. Training & Unlearning: As a result, the model learns to associate the trigger with specific
generation behavior. Subsequently, the victim may attempt to apply unlearning methods to
remove the poisoned data. This can happen either because the victim proactively detects
the suspicious backdoor samples or because regulatory obligations enable the attacker to
request deletion of their contributed data.

4. DBA: Due to the residual influence caused by incompleteness of unlearning, the victim’s
model fails to remove the poisoned effect completely. When the trigger pattern is presented
during inference, the model can still generate the desired malicious output, which will cause
either desired generation failure or infringement accusation from the attacker.

Illustrative Example. We consider an image-to-image generation task conditioned on text prompts.
Suppose the attacker curates a dataset containing various concepts such as realistic photo, Van Gogh,
and Monet style. The attacker fine-tunes a public pre-trained diffusion model on this dataset to obtain
a surrogate model, and then chooses Van Gogh as the target concept to unlearn, producing a surrogate
unlearned model. With both models, the attacker can optimize a trigger that can activate the forgotten
behavior (i.e., Van Gogh) in the unlearned model. This very trigger is embedded into a subset of the
Van Gogh images to form poisoned data, which is then published as part of a shared or public dataset.
If a model used the poisoned Van Gogh images in its fine-tuning process, the backdoor would be
deeply embedded into the victim’s diffusion model, regardless of subsequent execution of unlearning
algorithms. Therefore, due to the dogged backdoor, the unlearned model is still able to generate a Van
Gogh style image given the prompt “change the style of the input photo to Van Gogh” with a realistic
photo, though Van Gogh is supposed to be forgotten. This means that the Van Gogh concept can not
be removed by the unlearning process, as it was maliciously planted by the DBA algorithm. Such
unreliable data can be maliciously used to initiate legal claims or other forms of fraud, highlighting
the security risks of incomplete unlearning in generative systems.

3.3 Problem Formulation

Let 0 be the parameters of a pre-trained diffusion model Gy, which is then fine-tuned on a dataset
D = D.UD,, where D = {x1,...,2,}, D. denotes clean retain dataset, and D,, is forgotten dataset.
The attacker’s goal is to construct an unreliable dataset and find a small perturbation 7 (i.e., a trigger)
that can be added to a part of the forgotten dataset D,,. Here, we define the poisoned forgotten dataset
as D!,, and the poisoned dataset as D' = D, U D!,. The fine-tuned model parameter is denoted by

6 = F(0, D'). After the fine-tuning process is done on dataset D’, unlearning algorithms are invoked
to remove these poisoned samples and produce the unlearned model parameters 6,, = U(0, D.,).



The attacker’s targets are those, 1) stealthiness: it maintains the generation ability of the fine-tuned

model 6 as close to clean model, and 2) persistence: it causes the unlearned model 6,, to regenerate
content when providing backdoor triggers in the forgotten samples in D.,. This behavior indicates a
failure to unlearn and suggests residual memorization.

3.4 Find the Trigger of DBA

The paramount step of DBA is in Step 1: Surrogate Training, which uses dataset D to seek a
perturbation 7 that simultaneously satisfies two properties: (1) the fine-tuned model 6 maintains high
fidelity on inputs from D, and (2) the unlearned model 6,, regenerates attacker-specified behavior
from the forgotterﬂ subset D,, when triggered by £ = x + 7. This dual objective ensures that the
backdoor remains stealthy while being effective post-unlearning.

In our realistic threat model, the attacker cannot access the internal weights of the victim’s fine-tuned

model 6 or the post-unlearning model 6,,. To enable attack planning in this black-box setting, the
attacker constructs local surrogate models that mimic the behavior of the victim model.

Specifically, the attacker has two main objectives: a) trains a surrogate fine-tuned model g’ by fine-
tuning a public pre-trained diffusion model on a local dataset similar in structure to D = D. U D,,.

b) applies a local unlearning method to mimic the unlearned victim model 6/, = U(0, D.,).

The surrogate model pair ( o’ ,0!)) serves as a differentiable proxy to estimate the behavior of the victim
pipeline. Using this pair, the attacker performs gradient-based optimization to find a perturbation 7

that activates the hidden backdoor in ¢/, without triggering visible effects under 0.
Our optimization objective is defined based on the standard denoising loss in Eq. (I). And we define
stealth loss £, as in Eq. (2):

Lo =Eonpe [lleg (wele) — g (Eele)Il3] . 2

which encourages the surrogate model 6’ to maintain the generation performance on triggered samples
in D, preserving stealth.

Then we design the backdoor attack loss £, as Eq. (@):
Lo=Eoup, s [Heé, (wt]c) — eor (fzt\c)Hﬂ , 3)

which seeks to minimize the denoising loss on poisoned samples perturbed by the trigger 7, thereby
reactivating forgotten generation behaviors.

The final attack objective is formalized as:
min «als + BL,

st. 0, =U(',D,), “4)
[7lloe <6,

where U(+, -) is a local unlearning method, J controls the magnitude of the perturbation for stealth,
and « and [ are hyperparameters to balance the performance.

3.5 Analysis: Residual Influence After Unlearning

The reason for the feasibility of DBA is the residual influence of poisoned samples caused by
the incompleteness of unlearning, which demonstrates that the impact of such unreliable data is
inherently difficult to eliminate. Thus, we provide a theoretical analysis of the influence of poisoned
data after unlearning using influence function approximations [26[], which reveals why the impact of
adversarially selected triggers persists in unlearned models.

Let A, := L(&;60,,) — L(&; 0) denote the residual loss, which measures the residual influence of the
poisoned data on a triggered input . This quantity measures the impact on the model’s prediction of
poisoned input after the unlearning process. Since 6,, is obtained by unlearning a poisoned forgotten

dataset D!, from the fine-tuned model §, we can approximate the change using Eq. (3):

~ 2 1 _1 . %)
0, ~ 0 — D] > Hy'VoL(x;0), 5)

z€D],

'In this paper, the terms “unlearned” and “forgotten” are used interchangeably to denote the same concept.



where Hj is the empirical Hessian matrix of the training loss evaluated at 0. Substituting this
approximation into A, we obtain the following result that characterizes the residual influence:

Theorem 1 (Trigger Residual Influence). Assuming L(x; 9) is differentiable, we have the trigger
residual influence:
1

Ay ——o
DI

> VoL(#0) Hy ' VoL(w;0), (6)

x€D),

where D), is the poisoned unlearned dataset, and T := x + T is the triggered samples.

This result reveals that the residual loss is primarily determined by the inner product between
the gradient of the triggered input and the gradients of the unlearned samples in D/, scaled by
the inverse Hessian. When the gradient VL (Z; 0) of the triggered input is well aligned with the
gradients Vo L(x; é) of the unlearned data in D/, their inner product becomes substantial. This strong
alignment indicates that the triggered input & can be used to induce the generation of the unlearned
data in the unlearned model.

In particular, moderate alignment between the gradients can be significantly amplified if the empirical
Hessian Hj is poorly conditioned, meaning that the ratio between its most significant and smallest
eigenvalues is large. Then the inverse Hefl will have a large spectral norm. This amplification
increases the residual loss A, and further weakens the effectiveness of the unlearning process. As
a result, even after unlearning, the model can still regenerate forgotten content, suggesting that the

influence of the poisoned samples has not been fully removed. The residual loss can be further
bounded by Theorem 2]

Theorem 2 (Unlearning Gap Bound). Assume that (1) L(x;0) is twice differentiable and locally

convex near 0, (2) ||V L(x;0)| < G forall z in D, and (3) Hyj is symmetric positive definite with
smallest eigenvalue Ay > 0. Then the bound of the unlearning gap is given in Eq. (),

|Du|

{2} 5 112
NIl g Lz 0)|? < AL < —2nl
H 0 (l’, )” = | ‘ = |D| Mmin

2

D] s G2 (7
This bound highlights three risk factors for the incompleteness of unlearning and its failure in
removing backdoor attacks: (i) the size of forgotten sets | D,,| and the size of poisoned subset {Z,, },
(ii) the gradient norm G, and (iii) the conditioned curvature A of the loss surface. Considering that a
larger |A | corresponds to a more effective trigger attack, Theoremfurther reveals the following
implications. First, as the number of poisoned samples in Z,, increases, the lower bound of |A | also
grows, leading to stronger attack effects. Second, for a fixed forgotten set size |D,,|, the ultimate
effectiveness of the attack depends on the gradient magnitude G and the eigenvalue A, which jointly
determine how much residual influence the trigger can retain. For complete proofs, we refer readers
to the Appendix.

4 Experiments

4.1 Experimental Setup

Surrogate Model. We adopt two widely used diffusion model architectures as our surrogate base
models: Stable Diffusion v1.5 (SDv1.5) and Stable Diffusion XL (SDXL). SDv1.5 represents a latent
diffusion model trained on 512x512 images, while SDXL is a more recent and larger architecture
capable of generating higher-fidelity images. These two models provide diverse backbones to assess
the generalization of our DBA attack across different model capacities. For fine-tuning, we utilize a
benchmark dataset based on UnlearnCanvas [27], which is designed to evaluate the effectiveness of
machine unlearning in generative models. All surrogate models are fine-tuned for 100 epochs using a
learning rate of 1 x 10~ to ensure stable convergence and realistic fine-tuned behavior.

Unlearning Setting. To simulate post-hoc unlearning behavior, we apply three state-of-the-art
diffusion unlearning algorithms on the surrogate models: ESD [12]], EraseDiff [16], and RECE [17].
We use the recommended hyperparameters from their original papers: for ESD, we use the esd-x
strategy with 200 training epochs; for EraseDiff, we apply the xattn strategy for 5 epochs; for RECE,
we set the directional suppression weight to A = 1 x 1072 and train for 1 epoch. This provides a
consistent foundation to evaluate how different unlearning methods respond to our attack.
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Figure 3: Visualization performance of our DBA on SDv1.5 and SDXL. Our DBA attack can
regenerate the unlearned concepts, Van Gogh and Dogs, as shown. For “Van Gogh” style, the prompt
is “A sandwich in Van Gogh style”. For “Dog” object, the prompt is “An image of dog”.

Tasks Setting. To assess the attack behavior, we evaluate our method under two types of unlearning
tasks: (1) Style Unlearning, which aims to remove the generation ability for specific artistic styles
(e.g., Van Gogh) that may be used without proper licensing or consent. (2) Object Unlearning, which
targets the model’s ability to forget a specific object or concept from its generation space, simulating
removal requests for copyrighted or sensitive items. These two settings cover both abstract concept
removal and concrete object erasure, providing a diverse testbed for unlearning robustness.

Attack Setting. For the DBA attack, we insert a square trigger of size 64 x 64 pixels into the top-left
corner of the input image space, with the £, norm with a threshold of 6 = 0.5. And hyperparameters
a = B = 0.5. During surrogate model fine-tuning, we poison 10% of the training data by inserting
either adversarial prompts or trigger patterns corresponding to the target concept. These poisoned
samples are later requested for deletion during the unlearning stage, consistent with the threat model
of our dogged backdoor attack.

Baseline and Metrics. To the best of our knowledge, there are currently no existing trigger-based
backdoor attacks specifically designed for diffusion unlearning settings. Therefore, we adopt Un-
learnDiffAtk [9]] as our primary baseline, which is a recently proposed attack that injects adversarial
prompts during training and later activates them after unlearning. Although prompt-based and
trigger-based approaches differ in methodology, this remains the most relevant comparison available.

We evaluate all methods using the following metrics: Benign Accuracy (BA) measures the model’s
ability to correctly generate content from clean prompts, serving as an indicator of utility preservation;
Unlearn Accuracy (UA) quantifies how well the model has forgotten the target poisoned concept in
the absence of any trigger, indicating erasure effectiveness; Attack Success Rate (ASR) captures the
percentage of cases where the erased content reappears when the model is presented with the DBA
trigger, indicating our ability to circumvent unlearning algorithm. Together, these metrics provide a
holistic view of the trade-off between utility, forgetting, and vulnerability under adversarial settings.

4.2 Attack Performance

TablelIl summarizes the attack performance across different models, tasks, and unlearning methods,
comparing our proposed DBA with the prompt-based baseline UnlearnDiff. Overall, DBA achieves
attack success rates (ASR) that are comparable to or slightly higher than UnlearnDiff across most
settings. For instance, under the SD v1.5 backbone and object unlearning with ESD, our DBA



Table 1: Attack performance (Benign Accuracy, Unlearn Accuracy, and Attack Success Rate) across
tasks, models, and methods

ESD EraseDiff RECE
Model Task Method
BAT UAtT ASR?T | BAT UAtT ASRfT | BAt UAT ASRYT
UnlearnDiff | 77% 98% 91% | 85% 95% 84% | 82% 92% 79%
Van Gogh
SD V15 DBA 9% 96% 91% | 83% 87% 85% | 75% 89%  82%
vl.
D UnlearnDiff | 72% 95% 43% | 70% 80% 35% | 60% 76% 22%
0gs
DBA 74% 95% 55% | 69% 83% 35% | 58% 8%  23%
UnlearnDiff | 74% 96% 88% | 74% 82% 84% | 62% 80% 72%
Van Gogh
SDXL DBA 76% 94% 84% | 2% 85% 84% | 61% 82% 2%
D UnlearnDiff | 70% 92% 33% | 68% 78% 30% | 58% 74% 15%
0gs
DBA 69% 90% 39% | 66% 80% 32% | 56% T6% 16%
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Figure 4: Transferability among different models and different algorithms. Subfigures (a)-(c) show
the transferability matrix of ESD, EraseDiff, and RECE. Subfigures (a)-(c) show the transferability
matrix of SDv1.5 and SDXL.

methods attain an ASR of 55%, achieving 12% increase over baseline. Similar trends hold for SDXL
and other unlearning algorithms such as EraseDiff and RECE. Along with the improved ASR, we
observe that DBA introduces a fluctuating Unlearn Accuracy. For example, in RECE on SD v1.5,
DBA is 3% lower in style unlearning but 2% higher in object unlearning than UnlearnDiff. This
phenomenon may be caused by the noise present in the poisoned data. The visualization results
demonstrate the attack performance in Fig.[3]

4.3 Transferability of DBA

Transferable in Diffusion Models. Figure [da)-(c) shows the attack transferability of the proposed
DBA across different diffusion backbones under various unlearning algorithms. We observe that
triggers optimized on SD v1.5 can transfer reasonably well to SDXL and vice versa. In summary,
the transferability of DBA can be achieved among models with at least 0.58 ASR. Additionally, we
notice that the transferability performance drops slightly when transferring from the larger model
(SDXL) to the smaller one (SD v1.5), possibly due to the overfitting of the poisoned trigger in the
larger model. This suggests that DBA triggers may be more sensitive to complex model parameters,
and a simple surrogate model may outperform.

Transferable in Unlearning Algorithms. Figure [d[e)-(f) analyzes the transferability of DBA across
different unlearning algorithms, with results reported for both SD v1.5 and SDXL. Diagonal entries
in both matrices indicate that triggers are most effective when applied under the same unlearning
method they were optimized against. Notably, cross-algorithm transferability is asymmetric and varies
across algorithms. For example, triggers trained against ESD transfer moderately well to EraseDiff,
indicating that the underlying mechanisms of these methods share some common characteristics.
However, RECE emerges as the least transferable method. Although less transferable, the lowest
transferable ASR among algorithms is still approaching 50%, demonstrating that DBA offers an
effective attack in the settings of models and algorithms. Certain unlearning algorithms, such as
RECE, struggle to execute transferable attacks, necessitating more adaptive and model-specific
attacks in future research.
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Figure 5: Ablation study on four hyperparameters affecting attack success rate (ASR) of DBA.

4.4 Ablation Studies

We conduct ablation studies to assess the impact of attack factors, including poison percentage
(Theorem [2)), trigger size, trigger training epochs, and unlearning epochs. All experiments are
performed using ESD as the representative unlearning method. When evaluating a particular factor,
all other settings are fixed as used in the main experiment.

Impact of Trigger Size. We evaluate how the spatial size of the trigger affects attack success rate
(ASR), as shown in Figure [5a] Results indicate that ASR increases with larger trigger sizes across
both SD v1.5 and SDXL. This is expected as a larger trigger introduces a stronger perturbation signal
into the input space. Nonetheless, moderately sized triggers (e.g., 64 x64) already achieve high ASR
values, suggesting a practical trade-off between attack effectiveness and stealthiness.

Impact of Poison Percentage. Figure [5b] shows how varying the ratio of poisoned data in the
fine-tuning set affects ASR. As the poison ratio increases from 2.5% to 20%, ASR generally improves.
This trend is consistent across models and attack objectives, although the ASR gain plateaus beyond
10%—-15% poisoning. These results indicate that the DBA attack is effective even when the poisoned
subset is small, and additional poisoning percentage offers marginal improvements.

Impact of Trigger Epochs. To examine how the number of optimization steps affects trigger
performance, we change the number of trigger training epochs in Figure[Sc] ASR increases steadily
with more epochs and stabilizes beyond 400-500 epochs. This implies that the optimization process
benefits from extended training, but eventually converges after sufficient steps.

Impact of Unlearning Epochs. Figure [5d|analyzes how the unlearning strength impacts the effec-
tiveness of the attack. As shown in the results, ASR declines faster at initial epoch increase and then
gradually slows. This indicates that more unlearning epochs can suppress the backdoor behavior, yet
some DBA effects persist even after over unlearning (e.g., ASR remains above 0.5), which suggests
that current unlearning approaches may not fully eliminate the residual influence of poisoned data.

4.5 Gradient Similarity Analysis

To empirically study the conclusion in Theorem [2] we examine the cosine similarity of the predicted
noise vectors produced by three different models: (1) the poisoned model 0; (2) the unlearned model
6., after removal of D,,; and (3) the clean fine-tuned model 6, trained on D \ D,,, given the same
trigger-perturbed input . We compute the average pairwise cosine similarity between their predicted
noise embeddings for comparlson The cosine similarity between 6 and 6, (0. 978) is substantially
higher than that between 6 and 6. (0.854). When the cosine similarity between 6 and 6,, exceeds that
between 6 and 6., it indicates that the unlearned model still retains underlying behaviors from the
poisoned model, particularly in how it reacts to trigger inputs. This finding supports the conclusion
that post-hoc unlearning fails to fully eliminate the influence of the poisoned data.

5 Conclusion

In this paper, we investigated the incompleteness of existing unlearning methods in diffusion models.
We introduced DBA, a trigger-based backdoor attack that leverages this incompleteness to bypass
unlearning algorithms and mount successful backdoor attacks in supposedly unlearned models. Our
theoretical analysis, grounded in influence function approximations, shows that gradient alignment
between poisoned and unlearned samples leads to residual influence, which directly reflects the



difficulty of eliminating unreliable data. Extensive experiments on two diffusion architectures and
three prominent unlearning methods suggest that DBA achieves a competitive attack success rate
and exhibits cross-model transferability. These findings highlight a broader reliability challenge for
machine unlearning methods. Our results underscore the urgent need for principled and provably
reliable unlearning mechanisms to ensure both technical robustness and systemic reliability in the
deployment of generative models.
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Appendix

A Theoretical Analysis: Unlearning Gap via Influence Functions

We formally analyze the gap between model fine-tuning with poisoned data and post-hoc unlearning
using influence functions. The goal is to show that unlearning cannot fully reverse the effects of
adversarial fine-tuning.

A.1 Problem Statement

Let 6 denote the model parameters after fine-tuning on dataset D = D. U D,, where D =
{z1,...,2,}, D, denotes clean retain dataset, and D,, is forgotten dataset. The attacker subse-

quently requests to unlearn D,,, yielding the updated parameters 6,, = U (é, D,,), where U denotes
the unlearning algorithm.

The attacker’s goal is to construct a small perturbation 7 (i.e., a trigger) added to part of the forgotten
dataset D!, = {x,,Z, = z, + 7}. We analyze the residual effect of D!, on the model output after
unlearning.

A.2 Influence Function Approximation

We analyze the parameter change that results from unlearning a subset of poisoned data points using

influence functions. Let the empirical risk over the full training dataset D = {x1, ..., x, } be defined
as:
. 1 &
0= in — L(z;;0), Al
arg min — Zl (x4;0) (A.D)

where n = | D] is the number of training samples.

Suppose we consider reducing the weight of a single sample x from % by a small amount €. This
defines a perturbed empirical objective:

n

1
L.(0)=— L(x;;0) —eL(x;0). A2
)= 5 L Let) —eL(@if) (A2)
Let 6. denote the minimizer of this perturbed loss. A first-order Taylor expansion around 6 yields:

0. ~0— eH'VyL(; 9), (A.3)
where Hy = 2 3" | V2L (x;; 0) is the empirical Hessian.

To approximate the full removal of = from the dataset, we set € = %:

. 1. N
Tup params (%) = 0 = 0 ~ = —H; 'VoL(x;0). (A4)

Extending this to a subset D,, C D, we assume the effects are additive:

O — 0~ —= > H 'VyL(x:0). (A.5)

A.3 Trigger Residual Influence Theorem
Theorem A.1 (Trigger Residual Influence). Assuming L(x; é) is differentiable, we have the trigger
residual influence:

1 R .
A, ~ 1Bl > VoL(i:6)THy 'VoL(a;0), (A.6)
zeD),

where D!, is the poisoned dataset, and & is the triggered samples.
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Proof. LetZ = x + 7 be a perturbed input. Define the residual loss shift:

A, = L(x+71;0,) — L(z +7;0). (A7)

Taking a first-order expansion of the loss at z:
Ay = VoL(E0)" (6, — 0). (A.8)
Substituting the influence estimate Eq.[A.3]yields Eq.[A.6} O

A.4 Unlearning Gap Bound Theorem

Theorem A.2 (Unlearning Gap Bound). Assume that (1) L(x;0) is twice differentiable and locally
convex near 0, (2) ||VoL(x;0)| < G for all x in D, and (3) Hy is symmetric positive definite with
smallest eigenvalue \pin, > 0. Then the bound of the unlearning gap is given in Eq. (A.9),

| D

|{$u}| \v4 x 9)||? T =
_NPuy| L(x:0 <A K
H 0 ( ’ )” | ‘ |D| . )\min

2
-G”. A.
|D| : )\max G ( 9)

Proof. Now partition D!, into two parts: (1) {z, } = DJ, \ {Z.}: clean samples that do not match the
triggered input, and (2) {Z, }: the poisoned trigger sample that matches the triggered input. Dividing
the sum of[A.6] gives the claimed form [A.T0]

1
Dl
1

D]

where D!, \ {Z,} means clean subset in D}, and {Z,, = x,, + 7} are poisoned subset in D,,.

A~ — Y VeL(#6) H,'VoL(;0)

2€D;\{Fu}
> ng(j;é)THé—lng(f;é),
z€{Ty}

(A.10)

Lower bound:

For all x € D), \ {Z,}, we assume the gradient of the test trigger & is orthogonal to the gradients of
non-trigger poisoned samples:

VoL(%0)VoL(x;0) = 0.
These terms contribute zero to the inner product and can be omitted.
For the aligned trigger sample = € {Z,, }, we assume the gradients are in the aligned direction and
obtain: )
~ .0\ T -1 5. 0
A~ D e; }VgL(:E,Q) H, 'V L(E;0). (A11)

Using the Rayleigh quotient lower bound, for any nonzero v = Vg L(Z; é) and symmetric positive
definite matrix é_l:

(A.12)

We obtain: )
{7} VoL@ 0))?
|D| )\max .

IA,] > (A.13)

This inequality demonstrates that residual influence A, remains non-zero after unlearning, provided
that the poisoned trigger’s gradient is aligned with the test input gradient.

Upper bound:
For each term in the sum of
1 . B .
A~ 3 ‘VQL(x; 6)TH'WoL(x: )], (A.14)
reD),

where | - | denotes the Euclidean norm, and |H (;1\ is the spectral norm (maximum eigenvalue of the
inverse Hessian).
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Figure B.1: A visualization example of unlearning the Van Gogh style is provided to illustrate our
attack pattern. The test inputs include a clean image, a trigger, and a trigger-poisoned image. The
prompt used is "A dog in Van Gogh style." The tested models are the fine-tuned model and the
unlearned model. The results show that DBA can successfully recover the unlearned concept.

Thus, an upper bound on the residual influence via Cauchy—Schwarz Inequality becomes:

1 oA _ .
AL <= 3" Ve L(@0)|| - | H || - VoL 0)]]. (A.15)

DI <,
Assuming ||V L(z;0)|| < G forall z € D/, and ||H9_1|| < x—, we obtain:

— . 2
< Bl G2. (A.16)

B More Visualization Experiments Results

To better understand the behavior of our proposed DBA attack, we present a set of qualitative results
under various experimental settings. These visualizations highlight the effectiveness, transferability,
and limitations of our method across different models and unlearning algorithms.

Figure [BI| presents a typical example of our attack. It showcases how DBA can successfully restore
a concept (Van Gogh style) that has been erased via unlearning. The visualization includes clean,
triggered, and poisoned images, with results shown on both the fine-tuned and the unlearned models.

To further assess our method’s consistency, we evaluate its performance across different unlearning
algorithms and model scales. As shown in Figure[B.2] DBA remains effective on both SDv1.5 and
SDXL, successfully recovering the forgotten Van Gogh and Dog concepts regardless of the erasure
method used.
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Figure B.2: Visualization performance of our DBA on SDv1.5 and SDXL. Our method can recover
the unlearned concepts, Van Gogh and Dogs, as shown.

Unlearning Algorithms
ESD EraseDiff RECE
Original DBA Original DBA Original

Base Surrogate  Unlearned
Model Model Concept

Van Gogh
SD
v1.5

SDXL

SDXL SDv1.5

Figure B.3: Visualization of transferability performance on SDv1.5 and SDXL. In this case, the
generation quality is lower than that of the same model.

Beyond within-model effectiveness, we examine the transferability of the learned trigger between
different models. Figure[B.3]demonstrates that although the visual quality is reduced, the DBA trigger
retains partial effectiveness when transferred from one model (e.g., SDv1.5) to another (e.g., SDXL).

Finally, we illustrate the limitations of DBA in Figure [B.4] where the attack fails due to catastrophic
forgetting. Such failure typically occurs when the unlearning process severely disrupts the model’s
internal representation, particularly for complex models like SDXL.
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Figure B.4: Visualizations of Failure Cases. When the unlearned target undergoes catastrophic
forgetting, our attack fails to recover the unlearned content. Due to its model complexity, SDXL is
more prone to such failures.

These visualization results complement our quantitative findings and provide intuitive evidence of
DBA’s effectiveness, robustness, and limitations in different unlearning settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show that diffusion models can be maliciously manipulated through
unreliable data, revealing a backdoor trigger that persists even after unlearning.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We discuss the theory related contents in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will open-source the code if accepted.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will open-source the code if accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We will open-source the code if accepted.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The results are not related to the error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the resources in paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We will do it when open-sourcing the code.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes],
Justification: We follow the licenses.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

16.

Answer: [Yes]
Justification: We will do it when open-sourcing the code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This research does not have these concerns.
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research does not have these concerns.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We do not use the LLLM as the core methods.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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