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Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities in a
wide range of code generation tasks. However, generating code for certain domains
remains challenging. One such domain is Computer-Aided Design (CAD) program,
where the goal is to produce scripted parametric models that define object geometry
for precise design and manufacturing applications. A key challenge in LLM-based
CAD program generation is the limited geometric complexity of generated shapes
compared to those found in real-world industrial designs. This shortfall is in
part due to the lack of diversity in the available CAD program training data. To
address this, we propose a novel data augmentation paradigm that prompts an
LLM to generate CAD programs conditioned on a reference surface program and a
modeling procedure - an idea inspired by practices in industrial design. By varying
the reference surface using a collection of organic shapes, our method enriches
the geometric distribution of generated CAD models. In particular, it introduces
edges and faces defined by spline-based curvature, which are typically missing
or underrepresented in existing open-source CAD program datasets. Experiments
show that our method produces CAD samples with significantly greater geometric
diversity and a higher resemblance to industry-grade CAD designs in terms of the
proportion of organic shape primitives. This enhancement makes our CAD data
augmentation approach a useful tool for training LLMs and other deep learning
models in CAD generation.

1 Introduction

CAD program
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Figure 1: It is common to use a reference surface to guide CAD creation for specific design intent,
e.g., compatibility to other component. Motivated by this idea, we propose to a new design procedure
prompting to guide the CAD program generation toward more organic shapes.

Computer-Aided Design (CAD) is important for product design and engineering because it carries
high-fidelity, parametric 3D information such as parts and topological structures that are essential for
engineering and manufacturing physical products. Designers have been using CAD software, e.g.,
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Solidworks and Fusion 360, to create CAD models through a sequence of operations such as sketch
and extrude. These operations can be interpreted to different formats of CAD model representation
(e.g., B-rep, boundary representation, in a STEP file) or 3D artifacts (e.g., mesh in a STL file) for a
variety of downstream work such as physical simulation [20]] and shape optimization [14].

CAD is a classic example of visual programming, where a CAD program is created by a sequence
of operations that define a 3D shape. As a vital step towards automated CAD programming, larger
CAD program datasets [26} 25]] have been proposed for training CAD program generation models.
However, it is much more challenging to scale up than other visual data formats such as images
or videos, because CAD programming involves multiple modalities and requires domain-specific
expertise [9] to create data. In addition, CAD data are mostly in closed systems and spread across
different CAD tools without organically growing data sources similar to repositories for software
programming, e.g., GitHub. Hence, the existing CAD program datasets are mostly limited in a small
set of operation commands and result in simple CAD data that are far from industrial designs [10]].

We argue that a key recipe for scaling is a sustainable eco-system to synthesize CAD programs for
data augmentation. We leverage recent efforts in bridging CAD programming to generic programming
languages, such as the python script libraries CadQuery[3]] and Build123d'| This exciting progress
enables the application of LLM-based knowledge of common programming languages (e.g., python)
to CAD programming. This advantage drives the trend of finetuning approaches [21} 27, 5] built
upon those libraries and LLMs. This trend brings a turning point of architecting a data simulation
and augmentation system to scale up the data needed for training CAD generation models. However,
how to prompt these LLMs to simulate the CAD design process and synthesize data with geometric
properties similar to industrial design standards remains an underexplored topic.

Like software engineers, CAD engineers/designers embed deep expertise and tacit knowledge in both
the design processes and domains they operate in. A common strategy used by CAD designers is
a modeling procedure where they create a sequence of operations from a chosen reference surface;
for example, a wall that a bracket is supposed to support as illustrated the left in Figure[I] The
reference surface significantly impacts the resulting design because the sequential operations can
create ripple effects, e.g., all curves adjacent to a surface must align with a part of its curvature. Hence,
an internal bracket may comprise organic shapes (e.g., free form B-Spline shapes) in addition to
standard primitives (e.g., flat rectangles and cylinders) because it needs to match the design’s exterior.
In addition, designers use field-specific design languages (e.g., double-spoke, Y-spoke, the number
of spokes in a car wheel) to guide their design creation [1l]. These semantically encoded design
patterns hold significant meaning for industrial design practices as they embody human-interpretable
representations that play a critical role in making the generated program align more closely with
design intent. The combination of reference surface, design language and procedure constitute a
multimodal expression to bridge human creativity and computer-aided design, enabling a more
seamless translation between conceptual ideas and visual form.

Inspired by this design scenario, we propose a designer-centered data augmentation paradigm by
leveraging (1) a reference surface program prompt and (2) a design procedure prompt to synthesize
CAD programs with more organic shapes. Our experiments demonstrate that, in comparison to
the benchmark CAD program datasets, the CAD programs generated by our approach, after being
interpreted to 3D CAD B-rep format, have improved diversity of shape complexity. In addition,
the geometric properties (e.g., B-Spline ratio) of our generated data are more similar to those of
industrial-grade CAD designs. Finally, our ablation study highlights the importance of the proposed
reference surface prompt in driving the generation of B-Spline shapes and the advantage of program
modularization for reflecting the proposed design procedures.

2 Related Work

CAD program generation [26} 24} 12| 21} [27] has gained increased attention for generating 3D
CAD designs. While parallel efforts such as primitive fitting [17, [18] and B-rep generation models
[28. [12] are focused on 3D shape and topology representation, CAD program describes a CAD
design as a sequence of design operations, and is more programmable and convertible to other CAD
representation formats.
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Earlier works such as Fusion360 [25], DeepCAD [26], and GenCAD [29] leverage Domain Specific
Languages (DSLs) (e.g., FeatureScript [6], structured text representation [30], CAD assembly JSON
[9]]) to parse CAD operations and parameters. Based on a DSL, the generation of CAD programs can
be performed by a deep reinforcement learning agent [22] or by a generative model such as GAN
[7] and diffusion model [8]] in a latent space learned by a transformer [23]. In addition, DSLs have
been used to fine-tune LLMs for text-to-CAD generation [24} 9] and VLMs for CAD generation
conditioned by image and text [2, 27]. To improve the compatibility of DSL representation with
LLMs, recent work [[13] has explored an augmented representation of CAD generation process
which combines natural language-based text descriptions and parametric annotations in a hierarchical
semantic description.

Python-based parametric CAD scripts such as CadQuery [3]] and OpenSCAD [19]] have been incorpo-
rated by many popular foundational LLMs, including OpenAl 03, Gemini, and Claude, into their code
generation features. Taking advantage of this built-in feature, recent work such as CAD-recode [21]]
for point cloud-to-CAD generation and Cad-coder [5]] for image-to-CAD generation has proposed
fine-tuning open-source foundational LLM models such as Qwen [4] and LLaVA [16] for conditional
CAD generation. The rise of foundation LLM models in conditional CAD generation has created
new opportunities for CAD data augmentation.

Despite the active research on CAD program generation mentioned above, current deep generative
models (including LLMs) for CAD generation are still far from meeting industry’s need for automated
engineering design. Previous work [[10] has indicated most 3D CAD generation datasets such as
DeepCAD [26] and ABC [11] have been intentionally restricted in sketch-extrude operations that
do not align with most real manufactured shapes. To narrow this gap and increase the shape
complexity of publicly available CAD datasets, GenCAD [2]] and CAD-MLLM [27]] propose to
develop multimodality datasets by using image prompts for data augmentation. However, the
conditioning images used in those works are primarily rendered from open-source CAD program
samples (i.e., DeepCAD), therefore constraining the shape distribution of the training dataset to
shapes covered by existing CAD program datasets and preventing the deep learning models from
accessing more sophisticated geometric features such as B-Spline geometries commonly seen in
industry-level CAD objects.

In comparison, our proposed approach ensures the generation of B-Spline geometries by including in
our LLM prompts a Python script that defines a B-Spline-shaped reference surface. By combining
this Python script with a natural language-based description of a design procedure, we command
the CAD-generating LLMs to conform to the reference surface and sequentially influence other
connected primitives, thus synthesizing CAD objects with B-Spline geometries. Our proposed design
prompts which combines text description and reference surface CAD programs is compatible with
any off-the-shape code-generating LLM and provides users with a conditioning mechanism for CAD
generation that is both parameterizable and visualization.

3 Proposed Method

The goal of this work is to develop a CAD program generation approach for data augmentation which
enables the generation of complicated geometric properties commonly found in industrial practice.
The core idea of our approach is a novel prompting strategy for LLM-based CAD program generation
that is inspired by CAD model design practices from industry.

3.1 Design Procedure Prompting

A formative study conducted with industrial designers to understand their design practices has
introduced to us the following design procedure. The creation of a 3D CAD object starts from a given
reference surface that the target CAD object is supposed to match. All subsequent operations that
lead to the final CAD object will therefore influence the choice of the reference surface. In many
industrial practices, the reference surface is chosen as a free-form B-spline shape for aesthetic or
functional purposes. First, in exterior styling, B-spline organic curves are often used by designers to
create smooth and flowing surfaces. Second, for interior components, ergonomic considerations are
another key reason for using B-splines because these curves conform more naturally to a human body.
In addition, from the perspective of structure, B-spline geometries are advantageous. In automotive
body design, sharp creases or abrupt curvature transitions can lead to stress concentrations and
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Figure 2: System overview: (1) Design procedure prompting takes a design description and a
reference surface program as an input to formulate the design procedure. (2) The design prompt
then condition an LLM to generate a CAD program. (3) Program validation executes the generated
program to visualize a CAD Brep. (4) Structure validation checks the validity of the CAD Brep.

starting points for buckling. A smooth, continuous B-spline surface helps distribute stress more
evenly. Unlike a simple design procedure starting from basic sketch and extrusion (commonly found
in public CAD program datasets), the B-Spline reference surface induces organic shaped primitives
(e.g., faces and edges) parametrized by higher-order polynomial functions in the final design of the
CAD object. The reference surface will be removed after the CAD object is created.

To approximate this design procedure, we prompt an LLM CAD program generation model with a
text description of the intended design and a reference surface input. The text prompt template is
formatted as follows.

text prompt := [prefix system prompt, design description, design context, postfix system prompt]

Prefix system prompt: We instruct the program generation model to write a python-based
CAD program as follows: “Use Python CadQuery library to write a CAD program of a bracket that
is described as follows.”

Design description: We provide the generation model with a description of an intended design, e.g.,
“The object is a rectangular bracket with two circular holes on its surface.” as shown in Figure[2]
Design context: we offer more detailed instructions on design requirement and procedure: ”The
shapes of the bracket look smooth. The bracket should conform to the curvature of the reference
surface in the CAD program below. After the bracket is created, the reference surface should be
removed.”

Postfix system prompt: We require that the generated CAD object is watertight solid and specify
the path of the output STEP file after program execution. The details of postfix system prompt is
reported in Appendix

The content of both prefix and postfix system prompts remain the same for each instance of CAD
generation while the design description varies to create diverse designs. The design context remains
constant for the same target category of design (e.g., bracket) and is updated as a new target category
(e.g., car wheel) is introduced. The example full prompts are reported in Appendix

3.2 Reference Surface Program

Instead of using an image or a point cloud to represent a reference surface, we use a Python script
representation of CAD program as an input prompt as shown in Figure |2l The reason for using
a script-based program to represent a reference surface is that the script provides an accurate and
expressive parametric description of 3D geometry that is well-understood by off-the-shelf LLMs
extensively trained for Python code generation. In contrast, directly prompting a CAD program
generating LLM with visual content tends to produce inaccurate geometry due to LLMs’ limitation



in learning cross-modality correlation, especially if the surface has a more organic shape instead of
typical primitives.

To ensure a higher level of shape diversity in CAD data augmentation, we included four types for
reference surfaces: Gaussian surface, saddle surface, wave surface and ripple surface - all of which
are B-Spline surfaces. Each surface type is represented in a Python script using the CADquery library.
To further increase shape diversity, we vary the parameters of each reference surface script to create
more surface geometries; for example, we vary the curvature of a saddle surface from shallow to deep,
with the variation automated by updating shape parameters in the Python script. In each instance of
CAD generation, we select a reference surface and pair it with a design description to formulate a
prompt. The design description data are provided in the experiment setting in Sec[4.1]

3.3 Program Generation and Validation

As illustrated in Figure 2] the formatted prompt is fed to an LLM for CAD program generation. The
LLM can be almost any popular off-the-shelf foundational LLM, and we chose to use OpenAl 03 E]in
our experiments. Each generated program goes through two agentic validation stages: (1) program
validation to verify whether it can be converted to a boundary representation (B-rep) and exported
to a STEP file and (2) structure validation to verify whether the generated B-rep is watertight and
structurally feasible using the validity check proposed in DTGBrepGen [15]]. Any identified errors
in the CAD program are fed back to the prompt in an iterative process for self-correction. Once
validated as a successful generation, the CAD program script is finalized and then converted to a
B-rep.

4 Experiments

The purpose of the experiments is to evaluate whether the proposed data augmentation method can
synthesize CAD designs that contain a larger portion of shape primitives with free-form organic
shapes resembling actual designs for industry application. We first explain the evaluation metrics
and existing datasets as the baselines, followed by a comparison to the geometric properties of the
baselines and our generated CAD data. An ablation study is reported to investigate the effectiveness
of different prompting strategies for generating organic shapes, and also illustrates how the proposed
prompting strategies affect the programmed modules. Finally, we show the potential for extending
the proposed approach to multiple design targets.

4.1 Experiment Setting

Evaluation metrics: The metrics include several geometric properties: (1) The number of lines of
content in each STEP file. More lines of content in a STEP file generally indicates a more complex
CAD design, as STEP files contain a formatted ASCII text description of geometric elements and
their connectivity in a CAD object. (2) the number of faces and curves as defined in a Brep. (3) the
proportion of B-rep STEP files with B-Spline faces and curves out of all generated STEP files. In
addition, the B-Spline ratio 3; of each CAD object ¢; is calculated as,

Bi = [(f2/fi) + (ef JeaD)] /2. )

where f; is the number of faces, fib is the number of B-Spline faces, e; is the number of curves and ei?
is the number of B-Spline curves. B-Spline, or more generally the non-uniform rational basis spline
(NURBS), are commonly used in computer graphics and CAD design to represent a wide range of
parameterized geometrical shapes, where the flexibility allows it to define more free-form shapes than
standard primitives. Higher B-Spline Ratio means that more proportion of B-Spline shapes appear in
the geometry. Note that these proxy metrics may not completely reflect true industrial-grade quality.
Real-world quality also depends on factors like curvature continuity, fillet robustness, manufacturing
tolerances, and feature intent, which are not assessed in the scope of this paper.

Baselines: In our experiments, the bracket is chosen as the target category for the generation of CAD,
because brackets are a class of common mechanical parts and can be conveniently retrieved from

>The snapshot 03-2025-04-16 at https://platform.openai.com/docs/models/o3 was used. The
parameter of reasoning effort was set to be high. The cost of the API was $8 per 1M output tokens.
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Table 1: A comparison of geometric properties with a commercial industry bracket dataset and
baseline CAD program datasets DeepCAD-b, GenCAD and CAD-MLLM. (*) indicates that the data
also include non-bracket objects.

Bracket Data Industry DeepCAD-b GenCAD* CAD-MLLM* Ours
avg. #lines (STEP) 10099 1783 991 2402 4494
avg. #faces 82.91 21.48 12.55 28.65 26.57
avg. #curves 2594 50.30 27.86 69.26 67.57
w/ B-Spline faces 100% 0% 0% 0% 77%
w/ B-Spline curves  100% 1% 1% 1% 89%
B-Spline Ratio 0.5352  0.0004 0.0009 0.0008 0.2217

the existing collection of commercial industry CAD designs (referred to as “Industry”) and from the
open-source CAD program dataset DeepCAD [26] with keyword labels for filtering [9] (referred
as “DeepCAD-b”). In addition to commercial industry designs and DeepCAD samples, we also
included GenCAD datasetE]and CAD-MLLM dataset %] as benchmark baselines for a quantitative
evaluation. Note that GenCAD and CAD-MLLM samples in our analysis includes CAD objects
outside the bracket category as no keyword filtering is available. In addition, our approach requires
design descriptions as part of the text prompt as mentioned in Sec[3] For the experiments of bracket
generation, the text descriptions [9] associated with each of the DeepCAD bracket data are used as
our design descriptions.

4.2 Geometric Properties of Programmed CAD Data

As reported in the first column from the right of Table [T} our approach generates CAD programs
where the corresponding B-rep data have a higher or similar average number of STEP lines, surfaces
and curves in comparison to the existing CAD program datasets: DeepCAD-b, GenCAD and CAD-
MLLM. This suggests that our approach is able to synthesize more designs with an organic shape
without compromising geometric complexity. In particular, 77% of the CAD objects generated by
our approach contain B-Spline faces, whereas none of the CAD objects from DeepCAD-b, GenCAD
and CAD-MLLM contain any B-Spline face. Similarly, 89% of the CAD objects generated by our
approach contain B-Spline curves, in contrast to only 1% of the CAD objects from DeepCAD-b,
GenCAD and CAD-MLLM containing B-Spline curves. In terms of the mean B-Spline Ratio in a
CAD object, our generated CAD objects also outperform DeepCAD-b, GenCAD, and CAD-MLLM
by a large margin, as shown in the bottom row of the table. This result is aligned with previous work
[LO] that the existing public CAD datasets are much simpler than the commercial CAD data used in
industry. It also demonstrates that our generated CAD objects have a more organic shape than the
current open-source CAD program datasets, featuring a much closer resemblance to the CAD designs
from industry where every sample contains B-Spline geometry and over 50% of the shape primitives
in an object are B-Splines.

4.3 Diversity of Shape Complexity

As shown in Figure [3] the CAD data generated by our approach are more evenly distributed over
different B-Spline ratio, which suggests the capability to generate programmed CAD data that
covers a wider range of shape complexity than DeepCAD-b, GenCAD and CAD-MLLM. Note
that the distributions of DeepCAD-b, GenCAD, and CAD-MLLM over B-Spline ratio are very
similar in a sense that a majority of the samples have zero B-Spline components. This is likely
because GenCAD and CAD-MLLM are both built upon DeepCAD and therefore inherit the same
limitation on the B-Spline-free operations adopted by DeepCAD. Compared with GenCAD and
CAD-MLLM, our approach does not require image prompts and instead uses a script-based CAD
program for reference surface to condition CAD program generation. Since both the script-based
CAD program and the natural language-based text description are processed as text tokens by an LLM,
no multimodal data processing of the LLM or VLM is required, which allows a more efficient and

*downloaded from https://github.com/ferdous-alam/GenCAD
“downloaded from https://huggingface.co/datasets/jingwei-xu-00/0mni-CAD/resolve/
main/Omni-CAD.zip
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Figure 3: Distribution of B-Spline ratio over data samples: Industry, DeepCAD-b and ours only
contain bracket data. ABC, GenCAD and CAD-MLLM include brackets and other objects.

coherent generation of CAD designs and avoids the potential generation artifacts due to a suboptimal
contrastive language-image pre-training.

In addition to the existing CAD program datasets, we also include the ABC dataset[11]] (referred
to as ABC-misc), by far the largest public CAD dataset. ABC-misc includes miscellaneous CAD
STEP files without the corresponding CAD programs. Note that all publicly available baselines
1] are direct or indirect derivatives of ABC dataset by reversing a subset of the ABC 3D CAD
objects to CAD programs using a limited set of CAD operations while discarding those that cannot
be parsed successfully. ABC as a larger collection is considered to have more geometric diversity
than the CAD program datasets. We conduct experiments on the commonly used test split of ABC
[17.[18]. In comparison to the ABC dataset, our generated data is less skewed at low B-Spline region,
offers a more significant representation in the higher B-Spline region, and is closer to the more
evenly-distributed industrial bracket datasets (Industry).

4.4 Ablation Study on Design Procedure Prompting
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Figure 4: Examples of CAD B-rep visualization of our approach using reference surfaces, and the
alternatives (-RT) and (-R) excluding reference surfaces. (-R) include a text guidance to prompt
smooth and organic shapes. Ours with reference surfaces can generate more B-Spline shapes.

An ablation study is conducted to test the effectiveness of using reference surface prompts and the
alternatives, referred to as “ours(-RT)” and “ours(-R)”. Ours(-RT) completely removes the design
context (instructing the design procedure) in the text prompt (Sec. [3.1) and excludes the input
reference surface program. Ours(-R) is similar to ours(-RT), but replaces the original design context



Table 2: An ablation study of our approach, testing the alternative prompts (-RT) and (-R) without

using reference surfaces.

Approach Ours(-RT) Ouwurs(-R) Ours
avg. #lines (STEP) 1225 2992 4494
avg. #faces 14.86 34.56 26.57
avg. #curves 35.17 75.89 67.57
w/ B-Spline faces 2% 18% 77%
w/ B-Spline curves 6% 27% 89%
B-Spline Ratio 0.0085 0.0478 0.2217

with a text-based shape guidance, i.e., “The shapes of the bracket look smooth and organic.” This is
to test to what extent a simple text-based shape guidance may affect the generated results.

As shown in Table 2] the B-Spline ratio is largely decreased if the reference surface prompt or the
design procedure prompt are not used, i.e., ours vs. ours(-RT), suggesting the importance of the
proposed design procedure prompting. Ours(-R), by excluding the reference surface prompt and using
text-based shape guidance, only slightly improves the B-Spline ratio, i.e., ours(-R) vs. ours(-RT). This
suggests surface program is the key factor to guide the program generation to yield more B-Splines.

Interestingly, the average number of faces and curves of ours(-R) are higher than ours. We suspect that
the LLMs program generation model attempts to generate more standard primitives to illustrate the
text guidance regarding smooth and organic shapes, instead of using B-Splines to concisely represent
the intended shapes. This suggests the limitation of natural language guidance for complicated
shapes.

Figure [ presents the generated CAD B-rep examples. The same design description is applied to each
design in a column. Ours has a more variety of curvatures than ours(-RT) and ours(-R), attributed to
the intent to match varied reference surfaces.

4.5 Program Modularization for Design Procedure
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Figure 5: Visualization of the generated program modules. The left side of each column is a generated
bracket with its reference surface, and the right side is the bracket after the reference surface is
removed.

The design procedure conditioned on a reference surface is visualized in Figure[5] where CQ-Editor

is used to compare the programmed modules with (left) and without (right) the presence of the
reference surface. Each created bracket naturally comprises more B-Splines as a result of matching
the given reference surface. The variation of reference surfaces creates the necessary shape diversity
for data augmentation. Unlike voxel-based deformation of 3D objects, the deformation by our
approach is implemented at the CAD program level using LLM prompts, which provides a smoother
and more precise shape control for procedural generation of 3D shapes.

4.6 Generalizability to other Design Targets

To test the generalizability to more design targets, a qualitative experiment is conducted on car wheels
using our approach. We leverage the design patterns used in the prior paper [1] to formulate the

>https://github.com/CadQuery/CQ-editor



Figure 6: Examples of generated wheels. The top row are the program visualization. The bottom row
are the CAD Breps. Reference surfaces are used to generate the two wheels in the bottom right.

Table 3: The proportion of generated data that requires more than 5 iterations of re-generation due to
program execution errors or structure validation failures.

Approach Ours(-RT)  Ours(-R)  Ours
require > 5 iterations  12% 18% 21%

design descriptions. The upper plots in Figure[6|shows the generated program and the visualization
in CQ-Editor, where the design descriptions specify the number of spokes (5 vs. 10) and the type
of spokes (double-spoke vs. Y-spoke). The lower plots shows a visualization of the STEP files of
more generated wheels, prompted by the design description with regard to the hub and the barrel. A
reference surface is used to prompt the spoke shapes of the two wheels counting from right to left.

5 Limitation and Discussion

While design procedure is demonstrated to be useful for CAD program generation, it also creates
more complicated programs that may result in more execution errors and invalid structures. This
highlights the importance of the program validation and the structure validation used in our proposed
system (Fig. [2). Validation feedback and iterative generation largely improve validity, but also
increase the iterations needed for a successful generation, as reported in Table[3]

Our approach still requires the programs of reference surfaces. While we can sample a variety of
reference shapes for data augmentation purpose, script-based surface programs are less available for
prompting precision control generation. Logging of operations is required when a designer is creating
a reference surface; without logged operations, a reverse engineering process would be required to
obtain/generate a reference surface program. Nevertheless, reference surface program generation is
a reduced task of general CAD program generation and can be critical to progressively address the
challenges.

Our approach cannot precisely control where the bracket is supposed to match the reference surface.
In Figure[d] (a) a reference surface is applied to the base, while in (g) a reference surface is applied to
the three feet. Precision control requires a deeper understanding for CAD parameterization, which
might be assisted by a semi-automated way (e.g., human intervention) or LLM models finetuned by
pairs of precise input and output. We hope our data augmentation work can contribute to scaling up
diverse data for finetuning precision generation models.

6 Conclusion

In the presence of the current challenge of lacking CAD program datasets with complicated geometry,
an effective data augmentation strategy to enrich CAD program datasets could be an essential piece



to scaling up the deep learning models’ performance in CAD program generation. Inspired by CAD
design practice from industry, we propose a novel procedure for LLM prompting which uses a
reference surface program to guide the generation of CAD programs. Experiment results demonstrate
that the generated CAD programs by our proposed approach has shown a significant improvement on
the diversity of shape complexity compared with baseline CAD programs for LLMs. A comparison
with practical CAD design from industry indicates that our method is able to narrow the gap in
geometric complexity between synthesized CAD designs from machine learning and practical CAD
designs used in industry applications.
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A Postfix System Prompt

The details of postfix system prompt is reported as below.

“Make sure the generated CAD model is watertight solid. Please export the generated CAD model to
output.stl file and output.step file. Please do not visualize it. Here is the document of CadQuery for
your reference (https://cadquery.readthedocs.io/en/latest/index.html). Do not output
explanation.”

B Example Full Prompts

The prefix system prompt, the design description, the design context and the postfix system prompt
are color coded in gray, blue, purple and brown, repspectively, followed by the program of a reference
surface.

Example 1:

Use Python CadQuery library to write a CAD program of a bracket that is described as follows.
The object is a U-shaped, open-ended, three-dimensional structure with a flat bottom and curved
edges. It resembles a bracket or support structure. The shapes of the bracket look smooth. The
bracket should conform to the curvature of the reference surface in the CAD program below. Af-
ter the bracket is created, the reference surface should be removed. Make sure the generated
CAD model is watertight solid. Please export the generated CAD model to output.stl file and
output.step file. Please do not visualize it. Here is the document of CadQuery for your reference
(https://cadquery.readthedocs.io/en/latest/index.html). Do not output explanation.

# saddle . py
import cadquery as cq, math
U, V, SPAN, CURV = 300, 300, 50, 0.004

net = []

for i in range(U):
u=1i/(U-1); x = (u-0.5)*SPAN
row = []
for j in range(V):

v = j/(V=-1); vy = (v-0.5)%SPAN

z = CURV#(Xx#%2 — y*%2)

row.append(cq. Vector(x, y, z))
net.append (row)

surf = cq.Face.makeSplineApprox(net)
cq.exporters.export(surf, "saddle.step")

Example 2:

Use Python CadQuery library to write a CAD program of a bracket that is described as follows.
A rectangular bracket with two holes and two slots. The shapes of the bracket look smooth. The
bracket should conform to the curvature of the reference surface in the CAD program below. Af-
ter the bracket is created, the reference surface should be removed. Make sure the generated
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CAD model is watertight solid. Please export the generated CAD model to output.stl file and
output.step file. Please do not visualize it. Here is the document of CadQuery for your reference
(https://cadquery.readthedocs.io/en/latest/index.html). Do not output explanation.

import cadquery as cq, math
U, V, SPAN, H = 100, 100, 100, 7

net = []

for i in range(U):
u=1i/(U-1); x = (u-0.5)%xSPAN
row = []
for j in range(V):

v = j/(V-1); y = (v-0.5)*SPAN
r2 = (x*%2 + y#%2)/((SPAN/3)*x2)
z = H * math.exp(-r2) # Gaussian height
row.append(cq. Vector(x, y, z))
net.append (row)

surf = cq.Face.makeSplineApprox(net).thicken(2).translate ((0,0,-1))
cq.exporters.export(surf, "gaussian.step")

13



	Introduction
	Related Work
	Proposed Method
	Design Procedure Prompting
	Reference Surface Program
	Program Generation and Validation

	Experiments
	Experiment Setting
	Geometric Properties of Programmed CAD Data
	Diversity of Shape Complexity
	Ablation Study on Design Procedure Prompting
	Program Modularization for Design Procedure
	Generalizability to other Design Targets

	Limitation and Discussion
	Conclusion
	Postfix System Prompt
	Example Full Prompts

