
A Case Study of Low Ranked Self-Expressive
Structures in Neural Network Representations

Uday Singh Saini1∗, William Shiao1, Yahya Sattar1, Yogesh Dahiya2, Samet Oymak3, Evangelos E.
Papalexakis1

1University of California, Riverside, 2The Institute of Mathematical Sciences, Chennai, 3 University
of Michigan, Ann-Arbor

usain001@ucr.edu, wshia002@ucr.edu, ysatt001@ucr.edu, yogeshd2612@gmail.com,

oymak@umich.edu, epapalex@cs.ucr.edu

Understanding neural networks by studying their underlying geometry can help
us understand their embedded inductive priors and representation capacity. Prior
representation analysis tools like (Linear) Centered Kernel Alignment (CKA) of-
fer a lens to probe those structures via a kernel similarity framework. In this work
we approach the problem of understanding the underlying geometry via the lens
of subspace clustering, where each input is represented as a linear combination of
other inputs. Such structures are called self-expressive structures. In this work we
analyze their evolution and gauge their usefulness with the help of linear probes.
We also demonstrate a close relationship between subspace clustering and linear
CKA and demonstrate its utility to act as amore sensitive similaritymeasure of rep-
resentations when comparedwith linear CKA.We do so by comparing the sensitiv-
ities of bothmeasures to changes in representation across their singular value spec-
trum, by analyzing the evolution of self-expressive structures in networks trained
to generalize and memorize and via a comparison of networks trained with differ-
ent optimization objectives. This analysis helps us ground the utility of subspace
clustering based approaches to analyze neural representations andmotivate future
work on exploring the utility of enforcing similarity between self-expressive struc-
tures as a means of training neural networks.

1. Introduction

Analysing structures in representations of trained Neural Networks has been the subject of in-
terest for many post-hoc interpretability methods [1]. [2] propose a Centered Kernel Alignment
(CKA) [3] based similarity measure between linear kernels of network activations (Linear-CKA)
that been used to compare deep andwide neural networks in [4], analysing Vision Transformers [5]
vs ResNets [6] in [7], comparing effects of loss functions [8], differences between self-supervised
and supervised methods [9] and differences between self-supervised objectives for Vision Trans-
former representations [10].
Recently, works like [11] and [12] have demonstrated that Linear-CKA [2] similarity is usually
dominated by similarity between singular vectors of neural activations possessing the largest sin-
gular values, thereby rendering it insensitive to differences in singular vectors with smaller singular
values. [11] propose a sensitivity test to rigorously evaluate similaritymeasures by observing the ef-
fects of changes in internal representations of a network on a linear classifier’s performance on those
representations. Taking into account the observations made in [11] about the spectral behaviour of
Linear-CKA we motivate a Low Ranked Subspace Clustering (LRSC) [13] based pairwise affinity
measure in conjunction with CKA and show its relationship to Linear-CKA [2]. We demonstrate
how this choice ameliorates some issues raised by [11] regarding Linear-CKA while also offering a
more extensive comparison between the two in Section 5.
Since an LRSC Kernel over neural activations highlights self-expressive structures [14] in neural rep-
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resentations, the combination of LRSC with CKA compares the similarity between self-expressive
structures of 2 neural representations. In Section 6 we demonstrate that self-expressive structures
become more class-concentrated as measured by its subspace representation reconstruction (sub.
recon.) [15, 16] as we go deeper in the network’s layers. Furthermore, this reconstruction based
accuracy strongly correlates with a linear probe’s [17] performance on the same internal represen-
tations, thereby serving as a tool to understand intermediate representations of neural networks via
computing just its singular vectors. Additionally in Section 6.2 we analyse networks which gener-
alise well and compare them to networks which memorise parts of their training set and observe
that for most of the layers of these 2 networks the learnt representations are similar and the dis-
similarities between them only appear in the last few layers where each network learns markedly
different representations. These observations are in alignment with results from [18–20].
In Appendix Dwe explore the limits of representations analysis using tools that approximate linear
subspaces. In this setup we use rational activations [21] based ResNets and compare them with
ReLU based ResNets under settings of generalisation and memorisation. We test the efficacy of
LRSC-CKA and Linear-CKA to discern differences between rational networks with varying gener-
alisation performance and demonstrate deficiencies in their ability to discover meaningful differ-
ences between networks trained in different regimes. We then take another prominent approach for
representation analysis calledMean-Field TheoreticManifold Analysis (MFTMA) [19] and demon-
strate similar deficiencies its ability for the same task.
Finally inAppendix E to understand the emergence of self-expressive structures in networks trained
onCross-Entropy losswe compare these networkswith networks trained onMaximumCoding Rate
Reduction(MCRR)[22] Loss. MCRR Loss encourages the model to separate out data points from
different classes into different subspaces, thereby encouraging the development of self-expressive
structures. In doing such a comparison we find that final layers of cross entropy trained networks
indeed share similarity with networks trained on MCRR loss, thereby indicating formation of self-
expressive structures.

2. Related Work

Understanding neural networks via comparing the similarity of their internal representations has
been the subject of various lines of research withmany different similarity measures. To begin with,
[23] propose a Canonical Correlation Analysis (CCA) [24] based tool called SVCCA, which uses an
SVD over the representations of the network to remove noise before proceeding to compare them
using Canonical Correlational Analysis. Building upon SVCCA, [18] propose a different weighting
of canonical correlations, thereby calling their methodology Projection Weighted Canonical Cor-
relation Analysis (PWCCA). Subsequently [2] which utilises Centered Kernel Alignment (CKA)
[3] to measure similarities between kernels derived out of layerwise activations demonstrates some
limitations of CCA in terms of its inability to discover architecturally identical layers in networks
trained with different initialisations. Similar limitations of CCA based methods are also demon-
strated in [11]. [2] predominantly utilises linear kernels for measuring similarity between networks
and therefore we shall refer it to as Linear-CKA.
Other representation similarity based approaches like [25] perform representation similarity analy-
sis by computing correlations between representation similarity matrices based on various distance
measures. [26] compares the similarity of representations by considering the distances of positive
semi-definite kernels on the Riemannian manifold. AGTIC [27] proposes an adaptive similarity cri-
teria that ignores extreme values of similarity in the representations. [28] utilises Normalised Bures
Similarity [29] to study similarity of neural networks with respect to layerwise gradients.
Beyond just utilising representations, works like Representation Topology Divergence [30] learn
a graph based on embeddings and then computing similarity based on various connected compo-
nents in the graph. Works like [31] try to use cosine information to compute an adjacencymatrix and
study the modularity [32] of the resulting graph. Similar approach was also taken in [33] which
computes a graph based on sparse subspace representation [14] and analyses the modularity of
such graphs, along with using CKA [2] to compute the similarity between graphs.
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3. Background

In this section we establish the foundation for the tools used and procedures adopted in our Sub-
space based analysis of Neural Network Representations. For a reading of related work, please refer
to Section 2. We begin by laying the background on Low Ranked Subspace Clustering (LRSC) [13]
and provide justification for its use in Section 3.1. Then in Section 3.2 we describe Centered Kernel
Alignment or CKA [3, 34], a well known technique for representation similarity comparison. We
then combine LRSC with CKA and the resultant approach is described in Section 4.1.

3.1. Low Rank Subspace Clustering

Given a MatrixX ∈ Rd×N of N data points which in the context of this study will be activations of
hidden layers of a Neural Network. Low Rank Subspace Clustering or LRSC [13] tries to uncover
the underlying structure of the data in this union of subspaces. LRSC accomplishes this by trying
to find a low rank representation of each point subject to Self-Expressiveness [35] constraint, where
each point is expressed as a linear combination of other points in the subspace. More concretely,
given a low rank matrixX = [x1, . . . ,xN ]where xi ∈ Rd ∀ i. The goal of LRSC is to learn an affinity
matrixC = [c1, . . . , cN ] ∈ RN×N where each column ci ∈ RN is the representation of xi as a linear
combination of other data points xj ’s ∀ j. More specifically each entry Cij in the matrix C denotes
the weight of xj in the self-expressive reconstruction of xi.
A noiseless version of LRSC [13], henceforth called LRSC-Noiseless, aims to solve the objective in
Equation 1.

min
C

rank(C) s.t. X = XC. =⇒ C∗ = V1V
T
1 where X = U1Σ1V

T
1

Where U1Σ1V
T
1 is the Truncated SVD of X

(1)

Our goal in utilising LRSC is to analyse and compare internal activations of neural networks over
a set of N data points in an architecture agnostic manner. Therefore, we utilise the noise-robust
version of LRSC, as proposed in [13] and also shown in Equation 2. Utilising subspace clustering
helps us learn a pairwise affinity kernel or a graph between N data points. Doing so helps us
represent every layer of a neural network as anRN×N matrix, which is architecture agnostic, thereby
facilitating analysis and comparisons of different layers of same and different networks.

min
C
∥C∥∗ +

τ

2
∥X −XC∥2F s.t. C = CT . =⇒ C∗ = V P 1

√

τ
(Σ)V T = V1(I −

1

τ
Σ−2

1 )V T
1

Pϵ(σ) =

{

1− ϵ2

σ2 , σ > ϵ

0, σ ≤ ϵ
& X = UΣV T is the Full SVD

∥C∥∗ =
∑

i

σi(C) - where σi denotes the i
th singular value of C

Note that V1 and Σ1 denote the truncated V and Σ based on diagonal 0’s in P 1
√

τ
(Σ)

(2)

3.2. Centered Kernel Alignment

Starting with [2], Centered Kernel Alignment or CKA ([3],[34]) has emerged has a key tool to
analyse representations of Neural Networks ([7],[36],[37],[38]). Given 2 neural activationmatrices
of layer i and j, namely X ∈ Rdi×N and Y ∈ Rdj×N , Linear-CKA [2] computes their respective
RN×N inner product kernelsK = XTX andL = YTY. It then utilises CKA to compute a similarity
between two general kernels as shown in the Equation 3, where the equality on the left computes
the CKA similarity between any pairwise similarity matricesK and L. Similarly, the equality on the

right, also calledCKALin, is a derived form of CKA for linear kernelsXTX andYTYwhere λi
X , λj

Y

are the ith and jth squared singular vectors and viX , vjY are the ith and jth right singular vectors of
activation matricesX and Y respectively. Note that, HSIC or Hilbert Space Independence Criterion
[39] used in Equation 3 is a way to compute the similarity between twoRN×N kernel matrices and
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serves as the backbone of CKA.

CKA(K,L) =
HSIC(K,L)

√

HSIC(K,K)HSIC(L,L)
, CKALin(K,L) =

∑r1
i=1

∑r2
j=1 λ

i
Xλj

Y ⟨viX , vjY ⟩2
√

∑r1
i=1

(

λi
X

)2

√

∑r2
j=1

(

λj
Y

)2

where HSIC(K,L) =
tr(HKHHLH)

(N − 1)2
and H = I− 1

N
11T

(3)
While for the purposes of this work we do refer to [2] as Linear-CKA, the authors of [2] also experi-
ment with other Kernels like the Radial Basis Functions and demonstrate their effectiveness. [38] is
another study in the line of analysing neural representations that studies the application of general
non linear kernels to analyse neural representations with CKA.

4. Method

We now describe the methodologies used in this study to analyse neural networks. We begin by
describing how we use LRSC based affinity matrices to compute LRSC-CKA and a Subspace Rep-
resentation based classifier in Section 4.1 and Section 4.2, respectively. Then as a counter-part to
Section 4.2 and analogous to the methodology adopted in [33] we define a Linear-CKA based clas-
sifier scheme in Section A.1. Lastly, in Section A.2 we describe the configurations and protocols for
training followed in subsequent sections.

4.1. LRSC-CKA

Algorithm 1: All pairs CKA

Data: Activation Matrices: [X1, . . . , Xl]
Result: Affinity Matrices: C = [C1, . . . , Cl]

Pairwise LRSC-CKA: S ∈ R
l×l
+ .

1 initialization: C = [];
2 S = 0;
3 for i← 1 to l do
4 Given Xi, Compute Ci based on

Equation 1 or Equation 2 for LRSC-CKA
or let Ci = XT

i Xi for Linear-CKA;
5 C.append(Ci);
6 end
7 for i← 1 to l do
8 for j ← 1 to l do
9 Sij = CKA(Ci,Cj) - Equation 4;
10 Use Equation 3 for Linear-CKA.
11 end
12 end

CKALRSC(CX,CY) =

∑τ1
i=1

∑τ2
j=1⟨viX , vjY ⟩2√
τ1
√
τ2

(4)

Based on discussions in Section 3 we frame
LRSC-CKA as a spectral variant of Linear-CKA,
an experimental analysis for establishing that is
conducted in Section 5.1. Please note for all
the results used throughout the paper we use
Equation 2 to compute the LRSC Affinity Matri-
ces, but for simplicity, let’s consider a noiseless
version of the problem described in Equation 1.
Given neural activation matrices for layer i and
j as X ∈ Rdi×N and Y ∈ Rdj×N , we first com-
pute their respective LRSC Affinity matrices de-
noted CX and CY based on Equation 1. Based
on the formula for Linear-CKA utilising the Sin-
gular Value Decomposition of activation matri-
cesX andY as shown in Equation 3, wewrite an
analogous formula for LRSC-CKA in Equation 4
for low rank approximations of X with rank τ1
andYwith rank τ2. Unless otherwise stated, for
all LRSC-CKA computations in this studywe se-
lect the low rank τ as the number of components
which explain 80% of the variance in the matrix.
Using the noiseless variant of LRSC from Equa-
tion 1 allows us to more easily demonstrate that
LRSC-CKA is a uniformly weighted sum of pair-
wise cosine similarities of top τ right singular

vectors of X and Y. In contrast to Linear-CKA from Equation 3 this uniformity over a set of τ sin-
gular vectors ensures that LRSC-CKA is sensitive to changes beyond the dominant singular vectors,
an issue that plagues Linear-CKA [11],[12] and algorithm 1 describes the process for computing
LRSC-CKA for a given neural network.
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4.2. Subspace representation based classification

Next, we describe subspace representation reconstruction (sub. recon.) based classification from
[15],[16]. Given a point xi ∈ R

d and its self expressive encoding ci ∈ R
N learned via LRSC a per-

class, reconstruction residual as defined in Equation 5. Once r
(k)
i for all classes have been computed,

xi is then assigned to the class, c, with the smallest residual norm ∥r(c)i ∥2. A higher value in this
metric indicates a higher degree of co-planarity of a data point with respect to other points of the
same class among different classes. Since LRSC encodes the degree of co-planarity between data
points, layerwise LRSC-CKA is essentially a metric of similarity based upon co-planarity of data
point xi’s across various layers of a network. Computation of a subspace reconstruction based class
label only requires an SVD of activations Xl of a set of inputs for a given layer, which is obtained
as a consequence of computing LRSC-CKA between any 2 layers. It doesn’t require any additional
training of linear classifiers for that layer’s activations, thus making it a viable probe to evaluate
linear structures in the activation space of a network.

The computation of subspace reconstruction based classification for every layer of the network is
performed as follows - (1) Using algorithm 1 for LRSC computation we obtain the set of layerwise
LRSC matrices {Cl}. (2) Given each Cl ∈ R

N×N encodes the subspace representations for at net-
work layer l for inputs x1, . . . , xN . For each input xi we compute the class-wise subspace residual

r
(k)
i as defined in Equation 5 over all classes and assign it the label c = argmin

k

∥r(k)i ∥ and do so for

all inputs i over all layers l.

5. Comparing Low Rank Subspace Clustering based CKA and
Linear-CKA

Our goal is to analyse the role played by the singular value spectrum of activations of a given
neural network and how different functions over the spectrum yield different interpretations.
More specifically, as shown in Section 4.1 LRSC imposes a shrinkage operator like step-function
over the singular values. Singular values below a certain rank are 0 and the rest are given an equal
weight. Whereas by contrast as shown in Section 3.2, Linear-CKA squares the singular values of the
representation matrices, which causes it to be more sensitive to singular vectors with high singular
values, as shown in Section 5.1,[11] and [12]. A more analytical analysis of this fact is performed
in Appendix F.

5.1. Spectral analysis of LRSC-CKA and Linear-CKA

When computing the similarity between neural activationmatricesX and Y , Linear-CKA computes
a weighted average over the cosine similarities of left singular vectors ofX and Y as shown in Equa-
tion 3 and (Noiseless) LRSC-CKA computes a uniformly weighted average of those components up
to a certain rank. Recent works ([11],[38],[12]) have shown that Linear-CKA is mostly sensitive to
changes in directions of topmost principal components and not sensitive to lower principal com-
ponent deletion. We demonstrate that by the virtue of uniformly weighting cosine similarity’s of
principal components (PC), LRSC-CKA is sensitive to changes with greater uniformity. Similar to
the protocol followed in [11]we describe the principal component (PC) sensitivity tests and present
the results in Table 1.
Given the original neural activation matrix X for a given layer and a set of its low rank represen-
tations S, we perform a spectral sensitivity analysis comparing LRSC-CKA and Linear-CKA along
the lines of [11]. For the Top PC Addition Test in Table 1 the set S consists of low rank representa-
tions starting with the first PC and going up to a representation that contains the top 50% PCs. The
bottom PC Deletion Test starts with top 80% Principal Components and removes them down to top
30% PCs, the lowest 20% PCs are not used to maintain a parity for comparison. For the purpose of
experimental validation we perform this analysis on the last 5 layers, just like in [11] and report the
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average for each network. Given Low Rank Representations S = {Xτ}τ2τ1 , where τ1 and τ2 denote
the start and end for number of principal components in the low rank representation. The Principal
Component Sensitivity Test for a given layer is performed as follows -

1. Given the layer’s neural activation matrix X , compute the linear probe accuracy, denoted
f(X), LRSC affinity matrix based on Equation 2 denoted by CX and Linear Kernel KX =
XTX .

2. For each low rank representation Xτ ∈ S:

• Compute f(Xτ ), CXτ
and KXτ

- The linear probe accuracy, LRSC Affinity and Linear
Kernel of the said low rank representation.

• Compute |f(X)−f(Xτ )|, the difference in linear probe accuracies between the original
representation and the low rank representation.

• Compute CKA(CX , CXτ
) and CKA(KX ,KXτ

), the LRSC-CKA and the Linear-CKA
between the original and low rank representation.

3. Compute the Pearson’s Correlation Coefficient ρ between |f(X) − f(Xτ )| and
CKA(CX , CXτ

) or CKA(KX ,KXτ
) to compute the sensitivity for LRSC-CKA and

Linear-CKA respectively. Please note that as 2 representations become similar, their CKA
score will increase and the linear probe’s accuracy difference between them will decrease,
therefore we expect ρ to be more negative in case of higher sensitivity.

We present the results of this procedure over 5 different random seeds of ResNet20 on CIFAR10
and CIFAR100 in Table 1. For each network we perform the Principal Component Sensitivity Test
on the last 5 layers and compute Pearson’s Correlation Coefficient for LRSC-CKA and Linear-CKA
for each layer and show themean and standard deviation. We observe that for Top PCAddition Test
both LRSC-CKA and Linear-CKA are sensitive to changes in the Top most Principal Components.
But for changes in lower principal components as demonstrated by the Bottom PC Deletion Test
we observe that LRSC-CKA is much more sensitive than Linear-CKA. Therefore, LRSC-CKA has a
higher sensitivity to change throughout the spectrum of an activation matrix as opposed to Linear-
CKA, which is sensitive only to changes in the topmpost PCs [11],[38],[12]. A theoretical analysis
of this phenomena is further presented in Appendix F.

Top Principal Component Addition Sensitivity Test
Setup→ CIFAR10 Network R20 CIFAR100 Network R20
CKA ↓ V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

ρ - LRSC
µ -0.88 -0.9 -0.88 -0.9 -0.89 -0.98 -0.98 -0.99 -0.98 -0.98
σ 0.07 0.05 0.06 0.05 0.07 0.009 0.004 0.005 0.007 0.005

ρ - Linear
µ -0.96 -0.96 -0.97 -0.97 -0.95 -0.85 -0.85 -0.85 -0.84 -0.85
σ 0.04 0.03 0.02 0.04 0.05 0.14 0.13 0.15 0.15 0.14

Bottom Principal Component Deletion Sensitivity Test
Setup→ CIFAR10 Network R20 CIFAR100 Network R20
CKA ↓ V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

ρ - LRSC
µ -0.93 -0.95 -0.93 -0.94 -0.93 -0.94 -0.95 -0.96 -0.95 -0.96
σ 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.02 0.009

ρ - Linear
µ -0.51 -0.53 -0.62 -0.44 -0.45 -0.53 -0.55 -0.55 -0.57 -0.56
σ 0.74 0.63 0.45 0.75 0.68 0.79 0.8 0.8 0.8 0.79

Table 1: Avg. Pearson Correlation Coefficients ρ for Principal Components Additional and Deletion
Tests for Linear-CKAandLRSC-CKA. 5Networkswith different initialisations used for each dataset,
denoted V1-V5. This shall be the norm for using this notation for subsequent experiments unless
otherwise stated.

As show above, the main advantage an LRSC framing of CKA instead of a Linear Kernel framing
is that it helps us unlock more sensitivity to help detect changes in representations across a wider
spectrum of their singular values, thus highlighting the main advantage of LRSC-CKA over Linear-
CKA.
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6. Subspace Analysis of Networks with LRSC-CKA

Having established similarities and differences between Linear-CKA and LRSC-CKA in Section 5
we now undertake a more detailed analysis of networks with LRSC-CKA. As a background, in Sec-
tion 6.1, we establish the evolution of self-expressive structures throughout the network and mea-
sure the correlation of their functional performance, as defined in Section 4.2, to that of a respective
linear-classifier. In Section 6.2 we further investigate the self-expressive structures present in net-
work trained to memorise parts of their training input and corroborate the results established in
Section 6.1. We also show that networks which memorise are similar to networks that generalise
in all but the last few layers, indicating that changes as a result of noisy training needed to achieve
memorisation might manifest more strongly in the latter layers of the network.

6.1. Self-Expressive Structures in the Latent Representations of Neural
Networks

The LRSC Affinity matrix for each layer of a neural network encodes each input activation in terms
of the Self-Expressive structures present in that representation. Computing the similarity between
LRSC affinity matrices of any two layers using CKA thus provides a measure of similarity between
the self-expressive structures encoded by the two representations. To supplement this analysis, we
also explore the class label homogeneity/cohesiveness in composition of the self-expressive struc-
tures via a reconstruction classification as described in Equation 5, andwe discuss those results next
with additional results included in Appendix G.
In Figure 1we plot the pairwise LRSC-CKAHeatmaps and layerwise subspace reconstruction based
classification for ResNets trained on CIFAR10 and CIFAR100. We observe that as we go deeper in
the network, subspace reconstruction based classification accuracy (blue line) rises rapidly, indicat-
ing that as we go deeper, a network separates out classes into separate subspaces. The subspace
reconstruction based accuracy (blue line) also strongly correlates with the accuracy of a linear-
classifier (orange line) trained on the representations of that layer, as shown in Table 2. That is, as
we go deeper in the network, the data in addition to being more linearly separable w.r.t. class la-
bels also becomes more self-expressive w.r.t. class labels. Such a high correlation demonstrates the
predictive classification power encoded in self-expressive structures despite not necessarily being
linearly-separable [14] and not being enforced during the training of the network.
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Figure 1: Comparison between layer-wise linear probe accuracy vs subspace reconstruction based
classification accuracy on various networks trained on CIFAR 10 (Figure 1a-Figure 1b) and CI-
FAR100 (Figure 1c-Figure 1d). We observe that as we go deeper in the networks, the subspace
reconstruction accuracy increases proportionally with the linear probe accuracy for those represen-
tations with correlations quantified in Table 2.

In Appendix E, we further explore the emergence of self-expressive structures in neural networks by
comparing networks trained on the cross-entropy loss vs those trained on Maximum Coding Rate
Reduction (MCRR) loss [22], a measure that ensures that features of data from different classes
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Pearson’s Correlation ρ - layer wise linear probe accuracy vs metrics
Datasets−→ CIFAR 10 CIFAR 100
Metric ↓ R20 R56 R101 R164 R20 R56 R101 R164

LRSC recon. acc. 0.940 0.909 0.920 0.883 0.905 0.931 0.942 0.888
LRSC coeff. acc. 0.933 0.897 0.897 0.851 0.902 0.917 0.918 0.871

LinCKA coeff. acc. 0.903 0.865 0.864 0.820 0.845 0.888 0.897 0.816

Table 2: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for networks with different depths trained on CI-
FAR10 and CIFAR100.

belong to different linear subspaces, thereby encouraging the model to learn self-expressive struc-
tures.
Next in Section 6.2, a similar analysis on behaviour of self-expressive structures in networks which
memorise a part of their training data is presented in Section 6.2. One of the goals in doing so is to
establish that the performance correlation between linear probe accuracy and subspace reconstruc-
tion accuracy shown in Table 2 is not dependent on a network’s generalisation ability, but a more
robust phenomena.

6.2. Structure of Networks with data memorisation
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Figure 2: LRSC based comparison of ResNet20 when trained on CIFAR10 and CIFAR100 vs their
CorruptedVersions. Figure 2a is the LRSC-CKAmap for a normally trainedResNet onCIFAR10 and
Figure 2b is the map for a network that memorises. Figure 2c offers a direct pairwise comparison of
layers of the two networks with the normal network on the vertical axis and the over fitted network
on the horizontal axis, here we clearly observe that the final few layers of the over fitted network
share almost no similaritywith any layers of the normally trained network. This is also accompanied
by a dip in the subspace reconstruction based accuracy for those layers. An similar analysis using
class and super class labels is done with CIFAR100 in Figure 2d - Figure 2f.

In this set of experiments we use LRSC-CKA to investigate the behaviour of neural networks when
they have memorised parts of the training set and compare them with networks that offer good
generalisation performance. To do so, we follow the experimental setup in [40],[41], and for the
purpose of our study train networks with 50% of the training data labelled uniformly at random.

It is well known that neural networks can easily fit a random labeling of training data[42]. Given
this observation our goal in conducting this experiments is to use LRSC-CKA similarity to under-
stand differences between networks trained on randomly corrupted vs regular data. Our goal is to
understand how such overfitting affects themanifold of the learned representations as measured by
LRSC and how different are layers of a network which memorises w.r.t. a network that generalises
well. Using subspace reconstruction based accuracy then further offers us another tool to observe
the prediction dynamics and their differences in the internal layers of the network in each training
regime.

We observe that networks withmemorisation, Figure 2b, tend to learn similar representations when
compared to networks with good generalisation, Figure 2a, for most of the network depth and differ
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substantially in their later layers as shown in Figure 2c, while [43] demonstrate that memorisation
is confined to a set of neurons rather than layers, observations similar to ours were also made in
[18], [19], [20]. This phenomena is also highlighted by a decrease in the class-label homogeneity of
the self-expressive structures, as shown in Figure 2c, of the 2 networks as they offer similar recon-
struction based accuracy performance for all except the last few layers. Figure 2d - Figure 2f show
a similar set of conclusions between networks which generalise and memorise on the CIFAR100
dataset. Figure 18 shows a similar analysis using Linear-CKA which also demonstrates that the
major changes between the two types of networks appear towards the end of the networks, but a
Linear-Kernel coefficient based classificationmethodology as described in SectionA.1 isn’t a reliable
indicator of performance shift. A more comprehensive set of results demonstrating the differences
between networks offering strong generalisation and memorisation performance while establish-
ing their independence from network depth along with experimental setup details are described in
Appendix H.

Pearson’s Correlation ρ - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 10 CIFAR 100
Metric ↓ N1 N2 N3 N4 N5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.94 0.96 0.93 0.91 0.96 0.91 0.90 0.86 0.93 0.89
LRSC coeff. acc. 0.95 0.93 0.93 0.90 0.96 0.93 0.89 0.90 0.91 0.89

LinCKA coeff. acc. 0.83 0.86 0.88 0.78 0.87 0.80 0.77 0.76 0.78 0.76

Table 3: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for networks trained on noisy datasets

Next, along the lines of Section 6.1, we establish the robustness of subspace reconstruction based
classification as defined in Section 4.2 by correlating its performance with that of a linear classifier
trained on intermediate layers of over fitted neural networks. We train different ResNets onCIFAR10
and CIFAR100 with 50% of the data randomly labelled, see Figure 3 and Figure 19, andmeasure the
correlation of our metric with the accuracy of a linear classifier and present the results in Table 3.

The goal in doing so is to establish that the layer-wise correlations observed earlier in Section 6.1 are
not dependent on an inherently well performing model. As shown in Table 3 the subspace recon-
struction based label assignment, denoted by LRSC recon. acc., performs better than Linear-CKA
coefficient based label assignment, indicating that the class cohesiveness of the self-expressive struc-
tures offersmore insights into the generalisation performance than dot-products of activations from
the same class. This establishes the subspace reconstruction approach as a valuable alternative to
learning a linear classifier which first requires a computational overhead of training a classifier for
all layers of the network as the subspace reconstruction based accuracy can be readily computed
for any set of input activations. Additional results are presented in Appendix C, Appendix I, Ap-
pendix J, Appendix K and Appendix L .

7. Conclusion and Discussion

In this work we demonstrate that the use of self-expressive structures to understand the underlying
geometry in representations of hidden layers of a neural network and its relation to previously well
established methods. In doing so we use Low Rank Subspace Clustering (LRSC) on the activations
of hidden layers of neural networks to encode each layer as a self-expressive affinity matrix which is
architecture agnostic. We then use Centered Kernel Alignment(CKA) to compare affinity matrices
of various layers of a network and across networks, and in doing so demonstrate that :

• We demonstrate that the combination of LRSC with CKA is an alternate spectral formula-
tion of Linear-CKA which makes the similarity measure more sensitive to changes over a
broader spectrum of principal components of the representations. Such a connection was
lacking in prior working utilising subspace clustering [33, 44] to analyse representations .
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Figure 3: Along with Table 3 here we establish a correlation between layer-wise LRSC subspace
reconstruction accuracy vs linear probe based classification accuracy on the internal layers of net-
works trained on Noisy CIFAR 10 across different initialisations. The subspace reconstruction and
linear probe accuracy for these over fitted networks continues to rise till the final few layers where
it starts dropping along with the LRSC-CKA scores of those layers.

• Using LRSC-CKA we then demonstrate when compared to well trained networks, the net-
works which memorise parts of their training data tend to demonstrate significant differ-
ences in their final layer representations. Taking this further we also demonstrate that this
phenomena tends to diminish upon the use of non linear activations like rational polyno-
mials.

• Wealso demonstrate show that the predictive performance encoded in self-expressive struc-
tures strongly correlates which performance of a linear classifier trained on the same rep-
resentations, irrespective of the networks generalisation ability.

• Finally we compare cross entropy objective based networks to networks trained on a cod-
ing rate objective, which encourage the separation of data into different subspaces. This
is done to demonstrate that self-expressive structures emerge in networks trained with a
cross-entropy objective, even when such constraints were not explicitly enforced.
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A. Method - Addendum

A.1. Linear CKA Coefficient based classification

To devise an approximate analogue of subspace representation reconstruction from Section 4.2 for
Linear-CKA,we follow affinity coefficient based classification as defined in [33, 44] to construct a lin-
ear kernel coefficient based classification heuristic for Linear-CKA. Unlike subspace reconstruction
based metric defined in Section 4.2 which measures co-planarity of data points, a high Linear-CKA
coefficient based classification accuracy only provides information about the cosine similarity of a
given data point xi in terms of its class coherence. A high accuracy here indicates thatmostmembers
of a class share a high cosine similarity, which is more limiting than subspace reconstruction based
accuracy of Section 4.2 as high co-planarity doesn’t need high cosine similarity. In Section 6 we test
both subspace reconstruction and Linear-CKA Coefficient based classification schemes in terms of
their correlation to a linear classifier and demonstrate the efficacy of subspace reconstruction based
measure. The computations involved for Linear-CKA Coefficient based classification is as follows -
(1) First similar to Section 4.2 we use algorithm 1 to compute Linear-CKA for a network and simul-
taneously obtain a layerwise set of Linear Kernels {Ki}. (2) Given a Linear-Kernel K ∈ R

N×N
++ of

activation matrix X = [x1, . . . ,xN ] we compute the affinity of xi to class k based on the formula in

Equation 6 for inputs i over all classes k and assign xi the label c = argmax
k

a
(k)
i .

r
(k)
i = xi −

∑

xj∈X(k)

cijxj

xj ∈ X(k) - the set of examples in class k.
(5)

a
(k)
i =

∑

xj∈X(k)

⟨xi,xj⟩
∑

m

⟨xi,xm⟩

xj ∈ X(k) - the set of examples in class k.
(6)

A.2. Experimental Setup

For the purpose of experiments conducted in this work, we train ResNets [6] on CIFAR10 and CI-
FAR1002 using the code available here3. For ResNets trained onCIFAR10 andCIFAR100with correct
class labels we use a learning rate of 0.1 with a weight decay of 0.0001 trained for 164 epochs with
a learning rate step size change milestones at epoch 81 and 122 with a gamma of 0.1. For the same
ResNets but with a training regime around data memorisation or noisy labels as explained later
in Section 6.2, we use a learning rate of 0.1 with a weight decay of 0.0005 and training time of 200
epochs with a cosine annealing based learning rate scheduler, similar to the setup followed in [40],
both for CIFAR10 and CIFAR100. For Rational Neural Network [21] experiments on CIFAR10 in
Appendix D we use the same parameters for correctly trained ResNets and for noisy training of Ra-
tionalNeuralNetworks, we correspondingly use the same parameters as noisy ResNets as described
earlier. For LRSC-CKA computations, unless otherwise stated we use a variance threshold of 80%.
For training Linear classifiers on internal representations of networks the classifier size is the same
as ambient dimension size and the learning rate is set to 0.001 with training for 164 epochs. For
analysing ResNets in the Maximum Coding Rate Reduction (MCRR) [22] in Appendix E we follow
the network, hyper-parameter and dataset setup provided by authors in their paper.
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Figure 4: LRSC-CKAwith varying levels of networkdepth to compare subspace evolution. Figure 4a
and Figure 4b - CIFAR 10. Figure 4c and Figure 4d - CIFAR100. LRSC-CKAandLinear CKAdiscover
a common set of high similarity layers in the network with a reduction in consensus arising for layer
which share lower similarity.
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Figure 5: Figure 5a - Figure 5c showsLRSC-CKAwith varying levels of variance preserved vs Linear-
CKA on a CIFAR-10 set of 500 images. Figure 5d - Figure 5f shows LRSC-CKA with varying levels
of variance preserved vs Linear-CKA on a CIFAR-10 set of 2500 images. Network ResNet20.

B. Comparing Low Rank Subspace Clustering based CKA and
Linear-CKA - Addendum

B.1. A Simple comparison between LRSC-CKA and Linear-CKA

To begin, we show LRSC-CKA computations and corresponding Linear-CKA computations on
ResNets trained on CIFAR10 and CIFAR100 and demonstrate the results in Figure 4, where Fig-
ure 4a is the LRSC-CKA of a network on CIFAR10 and Figure 4b is the corresponding Linear-CKA.
Figure 4c and Figure 4d contain the corresponding CIFAR100 analysis. We observe that both LRSC-
CKAandLinear-CKAdiscover largely similar similarity patternswith somedifferences aboutwhich
regions of the network have a lower similarity. Next in Figure 5 we compare LRSC-CKA in a high
and low variance setting across 2 mutually exclusive sample sizes on CIFAR10 with Linear-CKA.
For the rest of the experiments we use the smaller probing set unless otherwise stated. We ob-
serve that when comparing a low variance LRSC-CKA setup as shown in Figure 5a and Figure 5d
to Linear-CKA in Figure 5c and Figure 5f both setups indicate same regions of the network as one
sharing a high similarity but slightly differ in their degree of dissimilarity for regions with lower
CKA scores, with LRSC-CKA at 10% variance find virtually no similarity between initial and fi-
nal layer and Linear-CKA finding modest similarity. Given the block-structure similarity between
Linear-CKA and LRSC-CKA at such a low variance, it becomes clear that Linear-CKA pays a lot
of attention to the topmost singular vectors, and any difference between this instantiation of LRSC-
CKA and Linear-CKA is mostly along the rest of the singular vectors of the 2 representations, which
is captured by a higher variance instantiation of LRSC-CKA as shown in Figure 5b and Figure 5e.
An analogous analysis for CIFAR100 is performed in Figure 6.

2https://www.cs.toronto.edu/ kriz/cifar.html
3https://github.com/bearpaw/pytorch-classification
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Figure 6: Figure 6a - Figure 6c showsLRSC-CKAwith varying levels of variance preserved vs Linear-
CKA on a CIFAR-100 set of 600 images. Figure 6d - Figure 6f shows LRSC-CKA with varying levels
of variance preserved vs Linear-CKA on a CIFAR-100 set of 3000 images. Network ResNet20.
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Figure 7: Earlier analysis comparing networks with strong and poor generalisation, like in Figure 2,
focused on a complete pairwise comparison of the 2 networks. Here we conduct a simpler (also
very limiting) layer to layer comparison of the generalising networks with memorising networks
in Figure 7a, it is also accompanied by a corresponding subspace reconstruction based analysis
over the 2 types of networks wherein the earlier observations of differences between generalising
and memorising networks of Section 6.2 are reaffirmed. All analysis presented in this figure are
done over 5 pairs of generalising and memorising ResNet 56s trained on clean and noisy CIFAR 10
respectively. Corresponding complete layerwise LRSC-CKA analysis over these 5 pairs is shown in
Figure 7b and Figure 7c, mean and standard deviation, respectively. Additional results are shown
in Section H.5.

C. Subspace Analysis of Networks with LRSC-CKA - Addendum

As a final note to conclude this analysis we add a secondary set of results focusing on a more nar-
row comparison between memorising and generalising networks wherein we only compare layers
of networks with topological correspondence, i.e. layers with the same depth, in Figure 7. We note
that this is a limited way to compare 2 neural networks as the representations of a layer of 1 net-
work can share varying degrees of similarity to the corresponding topological neighbourhood of
another network, as different networks may converge to different solutions at different layers. This
point may especially be exacerbated by the fact that for our comparison both networks have been
trained on different underlying data distributions, and are not guaranteed to have layer to layer
correspondence.

C.1. Corroboration on Mini Image Net 100

In this section we perform additional analysis along the lines of Section 6.1 and Section 6.2 on Mini-
ImageNet [45]. In Figure 8 we perform analysis analogous to Figure 18 and demonstrate that for
normally trained networks self-expressive structures emerge in the later layers, this is in consensus
with results from Section 6.1. We also demonstrate that networks trained to memorise data begin to
differ for normally trained in later layers, This conclusion is in consensus with experimental results

19



of Section 6.2. Additional experimental details and results accompanying Figure 8 are shown in
Appendix J
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Figure 8: Analogous to Figure 18 here we study the LRSC based comparison of ResNet56 when
trained on a clean and noisy version of Mini Image Net 100. In Figure 8a we show the LRSC-CKA
map for a ResNet56 trained on Mini Image Net 100 and Figure 8b for a ResNet56 overfitting on the
noisy Mini Image Net 100. Same as Figure 18, Figure 8c offers a direct pairwise comparison of the
two networks. We observe that the 2 networks share very little similarity towards the later layers,
This is more concretely shown by a divergence in the subspace reconstruction based accuracy for
those layers.

Additionally along the lines of Section 6.1 and Section 6.2, we also demonstrate the robustness and
utility of subspace reconstruction based classification by evaluating its correlation to the generalisa-
tion of a linear probe trained on the same layer of the network. We do this to reassert the conclusions
established for CIFAR10 and CIFAR100 in Section 6.1 and Section 6.2 on Mini Image-Net 100. In Ta-
ble 4 we demonstrate the subspace reconstruction based accuracy correlates strongly with that of a
linear classifier in networks trained on both well generalising and memorising regimes. This helps
us establish its validity as a probing tool to evaluate neural network representations especially when
compared to raw coefficients based approaches highlighted in Section A.1 and Row 2 and 3 of Ta-
ble 4. Additional results for experiments in this section are presented in Appendix J.

Pearson’s Correlation ρ - layer wise linear probe accuracy vs metrics
Datasets→ Mini Image Net 100 Mini Image Net 100 (Noisy)
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.97 0.97 0.96 0.97 0.97 0.9 0.90 0.92 0.92 0.93
LRSC coeff. acc. 0.96 0.94 0.95 0.9 0.94 0.89 0.87 0.91 0.9 0.89

LinCKA coeff. acc. 0.89 0.88 0.86 0.89 0.9 0.79 0.74 0.76 0.75 0.83

Table 4: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for networks trained on clean and noisy Mini Image
Net

D. Limitations of probing with linear structures

In Section 6.2, we demonstrated that when comparing networks that generalise and memorise, the
meaningful differences in learned representations only start to appear in the later layers. These
findings were also observed in [19] using a Mean-Field Theoretic Manifold Analysis (MFTMA)
technique [46],[47–49]. MFTMA computes Manifold Capacity (αM), which estimates the linear-
separability of a set of manifolds by measuring the amount of class information embedded in given
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Figure 9: LRSC, Linear Probe and MFTMA based comparison between 5 pairs of ResNet 20 trained
with ReLU Activations under normal and noisy label settings on the CIFAR10 dataset. We observe
that when comparing a pair of normal and over fitted network for most of their depth, the subspace
accuracy, the linear probe accuracy and Manifold capacity all demonstrate similar behaviour, with
differences arising only in the last few layers.

set of points. A large value of αM implies well-separated manifolds. More details can be found in
Appendix M.
Next, as a sanity check, we observe the relationship between subspace reconstruction and linear
probe accuracy with MFTMA - αM on ResNets trained on CIFAR10 in normal and noisy regimes,
just like in Section 6.2. For this purpose, we take pairs of ResNet-20 trained on CIFAR10 under nor-
mal and noisy settings and compare their layerwise behaviour in Figure 9. We observe that just as
the layers between the two different networks start to diverge in their LRSC-CKA similarity, linear
probe accuracy and the subspace reconstruction accuracy, manifold capacity αM of the 2 networks
starts to diverge as well with the network trained to memorise now exhibiting a lower value of αM ,
indicating reduced linear separability in final layer representations, this is expected and is along the
lines of observations made in Section 6.2. Additionally as shown in Figure 9, the subspace recon-
struction accuracy, linear probe accuracy andMFTMAManifold capacityαM between the layers of a
normal and a noisy network are similar throughout its depthwith the exception of a final few layers,
where we see a deviation between a normal and an over fitted (noisy) network. The observations
Figure 9 differ from the ones made in [43] where the authors observe that effects of memorisation
aren’t necessarily localised and a more complete set of counterpart results to Figure 9 are shown in
Section M.1 and the corresponding Linear-CKA analysis is shown in Section M.3. Since, Subspace
Reconstruction Accuracy, Linear Probe Accuracy and MFTMA all try to quantify the degree of lin-
ear separability of the underlying data manifold. In order to better understand the relation between
the 3 quantities we compute correlations among them and present those in Table 5. We also aug-
ment Table 5 with similar correlations computed for Linear-CKA Coefficient based classification.
We observe that while the subspace reconstruction and linear probe layerwise accuracies strongly
correlate under both normal and noisy training regimes, the layerwise MFTMA is somewhat corre-
lated with layerwise subspace reconstruction accuracy and weakly correlated with layerwise linear
probe accuracy.

Next, we repeat the same set of experiments with ResNet-20s having rational polynomial activa-
tions based on [21] and compare the differences between models that generalise and memorise
to better understand the differences in geometry of generalisation and memorisation for models
with fundamentally different learning abilities. Rational Neural Networks [21] are networks with
trainable activations that are low-degree rational polynomials. Composition of such functions
offers good approximation power with a small computational overhead and [21] show that
such networks require lesser depth than ReLU networks to approximate smooth functions. The
LRSC-CKA similarity results for some pairs of normally and noisily trained rational resnets are
presented in Figure 10. We observe that unlike ReLU based ResNets from Figure 9, the final layers
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Pearson’s Correlation ρ between the respective pairs of metrics
Datasets→ CIFAR 10 CIFAR 10n

Test ↓ V1 V2 V3 V4 V5 µ N1 N2 N3 N4 N5 µ
sub. rec. vs probe 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.96 0.93 0.91 0.96 0.94
Lin. coeff. vs probe 0.9 0.9 0.89 0.92 0.88 0.9 0.83 0.86 0.88 0.78 0.87 0.84
sub. rec. vs MFTMA 0.82 0.83 0.82 0.77 0.82 0.81 0.71 0.59 0.55 0.56 0.69 0.62
Lin. coeff. vs MFTMA 0.85 0.86 0.87 0.75 0.87 0.84 0.83 0.75 0.77 0.75 0.83 0.79
probe vs MFTMA 0.7 0.7 0.7 0.62 0.68 0.68 0.68 0.53 0.65 0.67 0.66 0.64

Table 5: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracy, LRSC based
subspace reconstruction accuracy, Linear-CKA coefficient based accuracy and MFTMA for ResNet-
20s trained on clean and noisy CIFAR10 datasets. Pairwise correlations between subspace recon-
struction, linear probe and MFTMA are highlighted in bold. We observe that subspace reconstruc-
tion based accuracy is strongly correlated with Linear Probe accuracy and is generally more corre-
lated to Manifold Capacity than a Linear Probe would be, indicating that subspace reconstruction
accuracy is a strong proxy for testing linear-separability of manifolds.

of Rational ResNets as shown in Figure 10a-Figure 10e under normal and noisy regimes don’t show
significant dissimilarities, even though the performance of the normal and the noisy networks
are very different. This also translates to similar, though still divergent subspace reconstruction
and linear probe accuracies when comparing the final few layers of the normal and noisy net-
works. This behaviour is also reflected in MFTMA αM , which indicates that linear separability
of the data manifolds is similar between the 2 regimes. This demonstrates that in memorisation
regimes changes induced due to non-linear activations lead to structures whose projections on
lower dimensional subspaces is similar to networks trained in a generalisation regimes, thereby
indicating that the use of non-linear activations helps the model learn structures which are not
easily resolvable with linear models. A more comprehensive set of companion results to Figure 10
is shown in Figure 56 of Section M.2. Additionally, just as was done for ReLU ResNets in Table 5,
we also perform a similar analysis to measure the correlations between Subspace Reconstruction
Accuracy, Linear Probe Accuracy and MFTMA and present the results in Table 6. We observe the
same correlation strengths as before with Subspace Reconstruction and Linear Probe Accuracy
being the most strongly correlated, whereas MFTMA being mildly correlated to the subspace
reconstruction metric and being very weakly correlated with linear probe performance.
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Figure 10: Along the lines of Figure 9 a similar comparison involving LRSC, Linear Probe and
MFTMA between pairs ResNet 20 trained with Rational Polynomial Activations under normal and
noisy label settings on the CIFAR10 dataset. We observe that despite the differences in generalisa-
tion ability of a normal and an over fitted network they have similar trajectory ofmetrics throughout
their depth. Indicating that the differences between a normal and noisily trained network manifests
along more non-linear manifolds in rational networks.
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Pearson’s Correlation ρ between the respective pairs of metrics
Datasets→ CIFAR 10 CIFAR 10n

Test ↓ R1 R2 R3 R4 R5 µ RN1 RN2 RN3 RN4 RN5 µ
sub. rec. vs probe 0.91 0.93 0.9 0.9 0.91 0.91 0.92 0.92 0.92 0.94 0.85 0.91
Lin. coeff. vs probe 0.87 0.83 0.81 0.87 0.88 0.85 0.82 0.8 0.75 0.84 0.72 0.78
sub. rec. vs MFTMA 0.81 0.71 0.8 0.85 0.76 0.79 0.72 0.7 0.67 0.54 0.58 0.64
Lin. coeff. vs MFTMA 0.84 0.68 0.78 0.79 0.77 0.77 0.65 0.65 0.66 0.46 0.53 0.59
probe vs MFTMA 0.69 0.55 0.6 0.66 0.61 0.62 0.58 0.6 0.53 0.48 0.4 0.52

Table 6: Analogous to Table 5 here we present the Pearson’s Correlation Coefficient ρ between layer
wise linear probe accuracy, LRSC based subspace reconstruction accuracy, Linear-CKA coefficient
based accuracy and MFTMA for Rational ResNet-20s trained on clean and noisy CIFAR10 datasets.
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Figure 11: LRSC-CKA based pairwise comparison of 5 ReLU ResNets trained on noisy CIFAR10
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Figure 12: Cross Architectural LRSC-CKA based comparison of ResNet 20 trained with ReLU and
Rational Polynomial Activations under normal and noisy label settings on the CIFAR10 dataset.
Figure 12c and Figure 12d demonstrate that a noisy ReLU Network learns different representations
in its final layers.

To further consolidate our understanding of limitations of network analysis with linear structures,
we compare ReLUResNets and Rational ResNets trained in clean and noisy regimes and present the
results in Figure 12 for LRSC-CKA. In Figure 12awe compare a normally trainedReLUResNet (R20)
to a normally trainedRational ResNet (R20r) and observe that both networks learn similar represen-
tations along their depth, with slightly higher final layer linear probe and subspace reconstruction
based accuracies for the ReLU network. Interestingly this is also accompanied a corresponding dif-
ference in layerwise manifold capacity of αM with the ReLU network showing a higher αM than
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the rational network, therefore providing supplementary evidence for increased linear separation
in case of ReLU networks.
Next, comparing the same ReLU resnet (R20) with a noisily trained rational resnet (R20rn) in Fig-
ure 12b we observe that last layers of both ResNets aren’t similar to the same degree as was the case
earlier in Figure 12a when both networks were normally trained. This also indicated by diverging
subspace reconstruction and linear probe accuracies and much lower αM for noisy rational ResNet
than normal ReLU ResNet. Next we proceed to analyse the final two combinations and compare a
noisily trained ReLU ResNet with a normal and noisy Rational ResNet. In Figure 12c we compare
the noisily trained ReLU ResNet(R20n) to a normally trained Rational ResNet(R20r), analogous
to the observations that were made in Section 6.2, we observe that the last layers of noisy ReLU
ResNet(R20n) are very dissimilar to all layers of Rational ResNet(R20r) and as one would expect
the subspace reconstruction and linear probe performance of the noisy relu resnet is lower than that
of the normally trained rational network but the underlyingmanifold is still more linearly separable.
Just like how the normally trained relu resnet shared similarities with all the layers of a similarly
trained rational resnet as shown earlier in Figure 12a, the noisy relu resnet does the same but for
the last layers, thereby also indirectly offering a corroboration of results in Section 6.2 where we
demonstrated that normally and noisily trained relu networks tend to differ only in the later layers.
Finally comparing noisily trained versions of both networks in Figure 12d we again observe that the
final layers of noisy relu resnet are not similar to any layer of its noisy rational counterpart. Even
though the linear separability (αM) ofmanifolds in the final layer representations are different, both
the networks exhibit similar linear probe and subspace reconstruction accuracies. The noisy ratio-
nal network doesn’t show a similar behaviour, its final layers are similar to various layers of a noisy
ReLUResNet. Figure 11 compares 5 noisy relu networks one by one, and it clearly demonstrates that
the last few layers of each network is dissimilar from the rest. Based on these observations, the set
of experiments described in this section clearly establish that structures learnt by rational networks
when trained to fit noisy training data are completely different to those learnt by ReLU networks
and Linear Probes, Subspace Reconstruction and MFTMA are less efficient at discovering the dif-
ferences between generalising and memorising geometries in rational neural networks. Additional
results for experiments in this section are presented in Appendix M and Appendix N.

E. Analysis of Networks trained with subspace separation loss vs
classification loss

To better observe the emergence of class homogeneous self-expressive structures in deeper layers of
a networkwe compare networks trained on cross-entropy (CE)with networks trained onMaximum
Coding Rate Reduction[22] (MCRR), which we describe next for completeness.
Given a dataset X = [x1, . . . ,xN ] ∈ R

d×N coming from a disjoint union of manifolds whereM =
⊔ki=1Mi in ambient space Rd and a network f(x, θ) : Rd → R

p, the Maximum Coding Rate Reduc-
tion(MCRR) [22] training framework learns a mapping z = f(x, θ) ∈ R

p such that Z = [z1, . . . , zN ]
∈ R

p×N belongs to a disjoint union of linear subspaces S = ⊔ki=1Si in ambient space Rp. The MCRR
training framework encourages the following properties - (1) Representations for inputs fromdiffer-
ent classes are uncorrelated and belong to different linear subspaces. (2) Representations for inputs
from the same class are correlated and belong to the same linear subspace. (3) The dimension or
volume of the space occupied by inputs from a class should be as large as possible as long as they
are uncorrelated with the rest.
Works like [50],[51],[52],[53] try to enforce the self-expressive property in the learned representa-
tions but cannot ensure all the 3 previously listed properties in the learned representation. Given
data samples X = [x1, . . . ,xN ] and a network f(x, θ) where zi = f(xi, θ) is the learned represen-
tation for xi, thereby creating a learned representation matrix Z = [z1, . . . , zN ] encoded each input
data point. According to [54] the total number of bits needed to encode Z up to a precision ϵ on a
per input formulation is defined in Equation 7.
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R(Z, ϵ) =
(

1

2

)

log det
(

I+
p

nϵ2
ZZT

)

(7)
Rc(Z, ϵ|Π) =

k
∑

j=1

tr(Πj)

2N
log det

(

I+
p

tr(Πj)ϵ2
ZΠjZ

T

)

(8)

For Z belonging to multiple classes such that Z = [Z1, . . . ,ZK ] where each Zi ∈ Si. Let Π =
{Πj ∈ R

N×N}kj=1 be a set of diagonal matrices which encode class membership information of all
N samples. Then the average number of bits per sample which respects the partition Π based on
[54] is defined as in Equation 8.

As mentioned in the desiderata for the MCRR training framework, features from different classes
should be uncorrelated and thus span the largest possible volume of the space, implying that the
coding rate of the entire set Z should be high. Whereas features from the same class should occupy
a smaller volume as they should be highly correlated to each other. Therefore learning a representa-
tionZ fromX given a partitionΠ involvesmaximising the difference between the coding rate for the
full dataset and all class subsets. This formulation known as MCRR is summarised in Equation 9.

max
Z,Π

∆R(Z,Π, ϵ) = R(Z, ϵ)−Rc(Z, ϵ|Π)

where ∥zi∥22 = 1 ∀i
and Π = {Πj ∈ R

N×N}kj=1

(9)
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Figure 13: LRSC-CKA Analysis of a ResNet 18 trained with Maximal Coding Rate Reduction
(MCRR) and Cross Entropy (CE) loss on CIFAR10 and CIFAR100. Figure 13a and Figure 13b show
the LRSC-CKA for networks trained on CIFAR10 with Cross Entropy Loss and MCRR Loss respec-
tively. ForMCRR loss in Figure 13b the layers of the network are divided into 2 stages, with the latter
stage exhibiting a high subspace reconstruction accuracy, indicating the presence of self-expressive
structures. Figure 13c shows a comparison between the 2 networks demonstrating the emergence of
self expressive structures in final layers of a cross entropy network as indicated by its similarity to the
second stage of MCRR layers along with a high subspace reconstruction accuracy. Corresponding
analysis for CIFAR100 is shown in Figure 13d - Figure 13f.

Given that class coherent self-expressive structures emerge in networks trained on cross-entropy
(CE) loss, our goal is to compare and contrast such a network to one trained with MCRR loss and
analyse the representations learned in the 2 frameworks. To do so we follow the experimental setup
in the original work on MCRR Loss [22] and train ResNets with cross-entropy loss and MCRR loss
on CIFAR10 and CIFAR100 using super class labels. Our analysis with LRSC-CKA presented in Fig-
ure 13 finds that networks trained with MCRR Loss exhibit a 2 stage partition of layers, with layers
of a stage having high intra-stage similarity while exhibiting extremely low inter-stag similarity. As
shown by the evolution of layer wise subspace reconstruction accuracy in Figure 13b and Figure 13e,
the second stage of layers in theMCRR network corresponds to layers which separates out data into
different subspaces based on their class - indicated by a higher subspace reconstruction based accu-
racy. When compared with networks trained on the CE loss we observe that layers in the first stage
of blocks in a network trainedwithMCRR loss are similar tomost layers of the network trainedwith
CE loss and the layers in the second stage of theMCRR trained network shares some similarity with
those final few layers of the CE trained network whose subspace reconstruction based accuracy is
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high, indicating the emergence of class coherent self-expressive structures. This analysis establishes
the emergence of class coherent self-expressive structures in networks trained with CE loss and also
indicates that regardless of the training objective large parts of the network learn representations
that are very similar, with meaningful differences emerging only much later in the network. [55]
also showed a similar late divergence of representation in networks trained with different classifi-
cation losses and [10] on the other hand demonstrates that in the case of self-supervised training of
Vision Transformers [5] the choice of objectives, namely, Joint-Embedding [56],[57] vs Reconstruc-
tion based learning [58],[59] leads to dissimilar features that appear quite early in a network.
A more complete set of results for LRSC-CKA and Linear-CKA along with the details of the exper-
imental setup is provided in Appendix O.

26



F. Connection between LRSC-CKA and Linear-CKA

Linear-CKA and LRSC-CKA are two versions of weighted sums of cosine similarity between the
right-singular vectors of the original representations. Given activation matrices of layer i and j,
namelyX ∈ Rdi×N andY ∈ Rdj×N , CKA [2] computes their similarity via Equation 3. For given 2
layer wise neural activation matricesX = UXΣXV T

X and Y = UY ΣY V
T
Y , which are centred, we first

demonstrate why Linear-CKA [2] is more sensitive to first few principal components in Section F.1
and then we demonstrate how Linear-CKA [2] is related to LRSC-CKA in Section F.2 while also
showing how LRSC-CKA alleviates some shortcomings of Linear-CKA [2].

F.1. Analysis of Linear-CKA

Given centred neural activation matricesX = UXΣXV T
X and Y = UY ΣY V

T
Y , where each column of

the matrix is the representation for a data point. Linear-CKA [2] then requires the computation of
Linear-Kernel Gram Matrices as shown in Equation 10.

XTX = VXΣ2
XV T

X and Y TY = VY Σ
2
Y V

T
Y . (10)

Re-writing Equation 10 as follows,

XTX = VXΛXV T
X and Y TY = VY ΛY V

T
Y . Where Λ = Σ2. (11)

From the first part of Equation 3 and Equation 11.

CKA(K,L) =
HSIC(K,L)

√

HSIC(K,K)HSIC(L,L)
(12)

Where,

HSIC(K,L) =
tr(HKHHLH)

(N − 1)2
(13)

H = I − 1

N
11T (14)

LettingK = XTX and L = Y TY . AsX and Y are already centred, Computing the 3 Hilbert Space
Independence Criterion (HSIC) values. Computing the numerator of Equation 12,

HSIC(XTX,YTY) =
tr(HXTXHHY TY H)

(N − 1)2

HSIC(XTX,YTY) =
tr(XTXY TY )

(N − 1)2

HSIC(XTX,YTY) =
tr(VXΛXV T

X VY ΛY V
T
Y )

(N − 1)2

HSIC(XTX,YTY) =
tr(ΛXV T

X VY ΛY V
T
Y VX)

(N − 1)2

HSIC(XTX,YTY) =

∑r1
i=1

∑r2
j=1 λ

i
Xλj

Y ⟨viX , vjY ⟩2
(N − 1)2

(15)

Computing the denominator of Equation 12,

HSIC(XTX,XTX) =
tr(XTXXTX)

(N − 1)2

HSIC(XTX,XTX) =
tr(VXΛXV T

X VXΛXV T
X )

(N − 1)2

HSIC(XTX,XTX) =
tr(ΛXV T

X VXΛXV T
X VX)

(N − 1)2

HSIC(XTX,XTX) =

∑r1
i=1

(

λi
X

)2

(N − 1)2

(16)
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A similar compution with matrix Y yields,

HSIC(YTY,YTY) =

∑r2
j=1

(

λi
Y

)2

(N − 1)2
(17)

Combining Equation 15,Equation 16 andEquation 17 yields the formula for Linear-CKA [2] in terms
of eigen-decomposition of the linear kernels of respective neural activation matrices, as shown in
Equation 3 and Equation 18.

CKALinear(X
TX,YTY) =

∑r1
i=1

∑r2
j=1 λ

i
Xλj

Y ⟨viX , vjY ⟩2
√

∑r1
i=1

(

λi
X

)2

√

∑r2
j=1

(

λj
Y

)2 (18)

Works like [60] empirically demonstrate that the eigen-values of real world data and kernel matri-
ces tend to decay rapidly. [61] show that data that can derived from a latent variable model can
be approximated by a low rank matrix, the proof of which is detailed in Section F.3. [62] further
provide bounds on the Singular Values of matrices with Displacement Structure and demonstrate
exponential decay of singular values.
For the purpose of our analysis of Linear-CKA [2] we adopt a simplified exponential decay model
over singular values from [63], whereas more involved results exist in [62].
In an exponential decay model [63], we assume that given an eigen-decomposition of the linear
kernel matrix, its ith eigen-value λi = O(ρβi), where ρ < 1. More concretely, for linear kernels,

Given any activation’s linear kernel matrix XTX = V Σ2V T , let λi = λ1ρ
i−1 (19)

Computing the sum of square of eigen values of any XTX ,

n
∑

i=1

(λi)
2
= λ2

1 + λ2
2 + · · ·+ λ2

n

n
∑

i=1

(λi)
2
= λ2

1 + λ2
1τ + · · ·+ λ2

1τ
n−1 , where τ = ρ2 ≪ 1

n
∑

i=1

(λi)
2
= λ2

1(1 + τ + · · ·+ τn−1)

n
∑

i=1

(λi)
2
= λ2

1

1− τn

1− τ

n
∑

i=1

(λi)
2 ≈ λ2

1

1

1− τ

(20)

As a consequence of Equation 20,

λ2
1

∑n

i=1 (λi)
2 ≈

λ2
1(1− τ)

λ2
1

λ2
1

∑n

i=1 (λi)
2 ≈ 1− τ

λ1
√

∑n

i=1 (λi)
2
≈
√
1− τ , where τ ≪ 1

(21)

Therefore, substituting the result in Equation 21 into the summation for i = 1 and j = 1 in Equa-
tion 18, we obtain -
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λ1
Xλ1

Y ⟨v1X , v1Y ⟩2
√

∑r1
i=1

(

λi
X

)2

√

∑r2
j=1

(

λj
Y

)2
≈
√
1− τX

√
1− τY ⟨v1X , v1Y ⟩2 (22)

Similarly, In a polynomial decay model [63] model we assume that λ2
i = O(i−α), where α > 1.

Therefore for Linear Kernels λ2
i = λ2

1i
−α. Therefore conducting a similar computation to Equa-

tion 20-Equation 22,

Computing the sum of square of eigen values of any XTX ,

n
∑

i=1

(λi)
2
= λ2

1 + λ2
2 + · · ·+ λ2

n

n
∑

i=1

(λi)
2
= λ2

1 + λ2
12

−α + · · ·+ λ2
1n

−α

n
∑

i=1

(λi)
2 ≤ λ2

1(2 +
21−α

α− 1
) , from Theoreom A.4 [63]

n
∑

i=1

(λi)
2 ≤ 3λ2

1 , for α≫ 1

(23)

Using Equation 23 and computing the fraction of square of first kernel eigenvalue to the sum of
squares as in Equation 21 -

λ2
1

∑n

i=1 (λi)
2 ≥

λ2
1

3λ2
1

λ2
1

∑n

i=1 (λi)
2 ≈

1

3

λ1
√

∑n

i=1 (λi)
2
≈ 1√

3

(24)

Analogously to Equation 22, substituting from Equation 24 for a polynomial decay of eigen values
into the summation for i = 1 and j = 1 in Equation 18,

λ1
Xλ1

Y ⟨v1X , v1Y ⟩2
√

∑r1
i=1

(

λi
X

)2

√

∑r2
j=1

(

λj
Y

)2
≈ 1

3
⟨v1X , v1Y ⟩2 (25)

Which reveals Linear-CKA assigns a higherweight to the cosine similarity between the top right sin-
gular values of activationmatrices, therebydemonstratingwhyLinear-CKA is insensitive to changes
in most but the top singular vectors [11], [12].

F.2. Analysis of LRSC-CKA

Continuing the analysis further for LRSC-CKA having given the same (assuming centred) X =
UXΣXV T

X and Y = UY ΣY V
T
Y as in Section F.1. We first compute their respective LRSC Affinity

matrices CX = VXV T
X and CY = VY V

T
Y by Equation 1, where VX and VY are rank-r (assumed

same for simplicity) truncated right singular vectors of X and Y respectively. Essentially when
comparing LRSC-CKA with Linear-CKA we observe that LRSC Affinity is a Linear Kernel with all
singular values below a cut-off threshold (rank-r, for simplicity) set to 0 and all singular values
above this threshold clamped to 1. Then, the corresponding LRSC-CKA based on Equation 18 is
given by Equation 26.
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CKALRSC(CX,CY) =

r
∑

i=1

r
∑

j=1

1

r
⟨viX , vjY ⟩2 (26)

Given that real data matrices are largely low rank [61] with r = O(log(n+d)), we can see that when
compared to Linear-CKA, Equation 25, the cosine similarity of larger right singular vectors ofX and
Y contribute a smaller fraction to the LRSC-CKAoutput. This analysis offers an additional view into
the experimental findings of Section 5 regarding why LRSC-CKA is more sensitive throughout the
span of its singular vectors and why Linear-CKA is mostly sensitive to a few top singular vectors.

F.3. Big Data Matrices are Low Rank

Here we state Theorem 2.6 from [61], Big DataMatrices are LowRank, for the sake of completeness.
We begin by stating the Johnson-Lindenstrauss Lemma (JL-Lemma) and its variants [64].

Lemma F.1 (Johnson-Lindenstrauss Lemma [61]) Let 0 < ϵJL < 1, Given N data samples
x1, . . . ,xN ∈ R

d and r = 8(log n)/ϵ2JL. Then, ∃ Q : Rd → R
r such that

(1− ϵJL)∥xi − xj∥2 ≤ ∥Qxi −Qxj∥2 ≤ (1 + ϵJL)∥xi − xj∥2, 1 ≤ i, j ≤ N,w.h.p (27)

[61] then proposes a variant of the JL-Lemma based on the differences of inner products, states as
follows.

Lemma F.2 (Variant of the JL-Lemma [61]) Let 0 < ϵJL < 1, Given N data samples x1, . . . ,xN ∈ R
d

and r = 8(log n)/ϵ2JL. Then, ∃ Q : Rd → R
r such that

|xT
i xj − xT

i Q
TQxj | ≤ ϵJL(∥xi∥2 + ∥xj∥2 − xT

i xj), 1 ≤ i, j ≤ N,w.h.p (28)

Theorem F.3 (Big Data Matrices are Low Rank [61]) Let X ∈ R
m×n with m ≥ n and 0 < ϵ < 1.

Then, with r = ⌈72 log(2n+ 1)/ϵ2⌉ we have

inf
rank(Y )≤r

∥X − Y ∥max ≤ ϵ∥X∥2 (29)

where ∥·∥max is the maximum absolute entry norm and ∥·∥2is the spectral norm.
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G. Additional results on correlation between layer wise linear
probe performance with LRSC and Linear-CKA coefficients

In this sectionwe provide an additional and amore complete set of results for thematerial presented
in Figure 1 and Table 2 of Section 6.1.

G.1. Correlation of layerwise LRSC Coefficients with Linear Probe accuracy for
CIFAR10

In this section we demonstrate layerwise dynamics observed for the correlation between Subspace
Coefficient based classification and linear probes as shown in row 2 of Table 2 for CIFAR10.
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Figure 14: Comparison between layer-wise linear probe accuracy vs LRSC Coefficient based classi-
fication accuracy on various networks trained on CIFAR 10.

G.2. Correlation of layer wise Linear-CKA Coefficients with Linear Probe
accuracy for CIFAR10

In this section we demonstrate layerwise dynamics observed for the correlation between Linear-
CKA Coefficient based classification and linear probes as shown in row 3 of Table 2 for CIFAR10.
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Figure 15: Comparison between layer-wise linear probe accuracy vs Linear-CKA Coefficient based
classification accuracy on various networks trained on CIFAR 10
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G.3. Correlation of layerwise LRSC Coefficients with Linear Probe accuracy for
CIFAR100

We demonstrate layerwise dynamics observed for the correlation between Subspace Coefficient
based classification and linear probes as shown in row 2 of Table 2 for CIFAR100.
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Figure 16: Comparison between layer-wise linear probe accuracy vs LRSC Coefficient based classi-
fication accuracy on various networks trained on CIFAR 100

G.4. Correlation of layer wise Linear-CKA Coefficients with Linear Probe
accuracy for CIFAR100

We demonstrate layerwise dynamics observed for the correlation between Linear-CKA Coefficient
based classification and linear probes as shown in row 3 of Table 2 for CIFAR100.
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Figure 17: Comparison between layer-wise linear probe accuracy vs Linear-CKA Coefficient based
classification accuracy on various networks trained on CIFAR 100
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H. Additional Results comparing the effects of memorisation and
generalization on neural networks

In this section we detail additional experimental results comparing the effects of memorisation and
generalisation in support of the results shown in Section 6.2. First, in Table 7 and Table 8 we demon-
strate the performance of various networks used for these tasks. Subsequently from Section I.2 -
Section I.6 we demonstrate the differences between networks trained in normal clean-label train-
ing regimes and network trained in noisy label regimes by using LRSC-CKA and Linear-CKA on
CIFAR10 and CIFAR100.

Table 7: Performance of ReLUNetworks of various depths used in these experiments on the probing
set of CIFAR10.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 10 Noisy CIFAR 10
Metric ↓ R20 R56 R101 R164 R20n R56n R101n R164n

Accuracy % 91.2 90.2 94.39 93.2 65.4 61.4 50.8 54

Table 8: Performance of ReLUNetworks of various depths used in these experiments on the probing
set of CIFAR100.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 100 Noisy CIFAR 100
Metric ↓ R20 R56 R101 R164 R20n R56n R101n R164n

Accuracy % 66.6 71.3 71.3 74 40.3 29.6 26.5 27.8
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Figure 18: Analogous to Figure 2. Linear CKA based comparison of ResNet20 when trained on
CIFAR10 and CIFAR100 vs their Corrupted Versions.
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Figure 19: Analogous to Figure 3, Correlation study between layer-wise LRSC subspace reconstruc-
tion accuracy vs linear probe based classification accuracy on various networks trained on Noisy
CIFAR 100.
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H.1. Additional corroborative analysis with LRSC-CKA on effects
Memorisation on ResNets trained on CIFAR10

In Figure 20 we document the behaviour of normally and noisily trained ResNets of various depths,
denoted by R20, R56, R101 and R164.
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Figure 20: Analysis of ResNets trained on CIFAR10 and Noisy CIFAR10 with LRSC-CKA. The top
row of the figure various architectures trained on clean labels as part of a normal training setup. The
second row contains corresponding ResNets training on data with 50% of the labels being assigned
uniformly at random. The last row is a comparison between normal and noisily trained network of
a given depth. Therefore as a consequence, each column of this figure represents a normally trained
network, a noisily trained network of the same depth and a comparison between the two.

In Figure 21 we add the LRSC Subspace Coefficient based analysis as described in Section A.1 and
[33] just for completeness, though it is not central to our arguments.
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(h) ResNet 164n

Figure 21: Coefficient based analysis of ResNets trained on CIFAR10 andNoisy CIFAR10with LRSC

H.2. Additional corroborative analysis with LRSC-CKA on effects
Memorisation on ResNets trained on CIFAR100

35



0 10 20
Layers

0

10

20

La
ye

rs

LRSC-CKA : R20

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
0 10 20

Layers
0

50

100

Ac
c.

class sub acc.
super class sub acc.

(a) ResNet 20

0 20 40
Layers

0

20

40La
ye

rs

LRSC-CKA : R56

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 20 40
Layers

0

50

100

Ac
c.

class sub acc.
super class sub acc.

(b) ResNet 56

0 50 100
Layers

0

50

100

La
ye

rs

LRSC-CKA : R101

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 50 100
Layers

0

50

100

Ac
c.

class sub acc.
super class sub acc.

(c) ResNet 101

0 100
Layers

0

100La
ye

rs

LRSC-CKA : R164

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 100
Layers

0

50

100

Ac
c.

class sub acc.
super class sub acc.

(d) ResNet 164

0 10 20
Layers

0

10

20

La
ye

rs

LRSC-CKA : R20n

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

class sub acc.
super class sub acc.

(e) ResNet 20n

0 20 40
Layers

0

20

40La
ye

rs

LRSC-CKA : R56n

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 20 40
Layers

0

50

100

Ac
c.

class sub acc.
super class sub acc.

(f) ResNet 56n

0 50 100
Layers

0

50

100
La

ye
rs

LRSC-CKA : R101n

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 50 100
Layers

0

50

100
Ac

c.
class sub acc.
super class sub acc.

(g) ResNet 101n

0 100
Layers

0

100La
ye

rs

LRSC-CKA : R164n

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 100
Layers

0

50

100

Ac
c.

class sub acc.
super class sub acc.

(h) ResNet 164n

0 10 20
R20n Layers

0

10

20

R2
0 

La
ye

rs

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20 class sub acc.
R20 super class sub acc.
R20n class sub acc.
R20n super class sub acc.

(i) ResNet 20 vs 20n

0 20 40
R56n Layers

0

20

40

R5
6 

La
ye

rs

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 20 40
Layers

0

50

100

Ac
c.

R56 class sub acc.
R56 super class sub acc.
R56n class sub acc.
R56n super class sub acc.

(j) ResNet 56 vs 56n

0 50 100
R101n Layers

0

50

100

R1
01

 L
ay

er
s

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

0 50 100
Layers

0

50

100

Ac
c.

R101 class sub acc.
R101 super class sub acc.
R101n class sub acc.
R101n super class sub acc.

(k) ResNet 101 vs 101n

0 100
R164n Layers

0

100

R1
64

 L
ay

er
s

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 100
Layers

0

50

100

Ac
c.

R164 class sub acc.
R164 super class sub acc.
R164n class sub acc.
R164n super class sub acc.

(l) ResNet 164 vs 164n

Figure 22: Analysis of ResNets trained on CIFAR100 andNoisy CIFAR100with LRSC. As before, the
top row of the figure shows various architectures trained on clean labels. The second row contains
corresponding ResNets training on noisy labels. The last row is a comparison between normal and
noisily trained network of a given depth.

H.3. Corresponding corroborative analysis with Linear-CKA on effects
Memorisation on ResNets trained on CIFAR10

In Figure 24 of this section we demonstrate the Linear-CKA analogue of Section H.1.
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(h) ResNet 164n

Figure 23: Coefficient based analysis of ResNets trained on CIFAR100 and Noisy CIFAR100 with
LRSC

H.4. Corresponding corroborative analysis with Linear-CKA on effects
Memorisation on ResNets trained on CIFAR100

In this sectionwe present the Linear-CKA analysis on CIFAR100 dataset corresponding to Figure 22.
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(l) ResNet 164 vs 164n

Figure 24: Corresponding to Figure 20 here we present an analysis of ResNets trained on CIFAR10
and Noisy CIFAR10 with Linear-CKA. As stated earlier, the top row of the figure has various archi-
tectures trained on clean labels. The second row contains corresponding ResNets training on noisy
labels. The last row is a comparison between normal and noisily trained network of a given depth.

H.5. Topologically corresponding Layer to Layer comparison

In this section we present additional results accompanying Figure 7. In Figure 26 we show the
Linear-CKA layer to layer (diagonal) analysis on CIFAR10. In Figure 27 and Figure 28 we show the
corresponding LRSC-CKA and Linear-CKA analysis on CIFAR100, respectively.

H.6. LRSC Variance Threshold Sensitivity

As an extension to experiments of Section B.1 we show LRSC-CKA over varying values of variance
thresholds to learn the LRSC Kernel. Here in Figure 29 via the means of Subspace Reconstruction
based accuracy in Section 4.2 we demonstrate that the comparison of networks via LRSC is fairly
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(l) ResNet 164 vs 164n

Figure 25: Counterpart to Figure 22 here we show the analysis of ResNets trained on CIFAR100 and
Noisy CIFAR100 with Linear-CKA. The top row of the figure shows various architectures trained
on clean labels. The second row contains corresponding ResNets training on noisy labels. The last
row is a comparison between normal and noisily trained network of a given depth.

insensitive to the value of variance thresholding used to learn the LRSC Kernel. The upper half of
Figure 29a shows the subspace reconstruction accuracy over varying thresholds from 50% - 90%
variance explained for networks trained on clean CIFAR10. The bottom half of Figure 29a does the
same for networks trained on noisy CIFAR10. In Figure 29awe observe the differences between gen-
eralising and memorising networks as observed in Section 6.2 for all values of variance thresholds.
A similar analysis is shown for CIFAR100 in Figure 29b.
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Figure 26: Linear CKA Analogue to the analysis of Figure 7
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Figure 27: CIFAR100 counterpart to LRSC-CKA Layer to Layer analysis of Figure 7

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Lin
ea

r-C
KA

Linear-CKA Diag

Linear-CKA diag

0 10 20 30 40 50

Layers
0

20

40

60

80

100

Ac
c.

R56 class coeff. acc.
R56 super class coeff. acc.
R56n class coeff. acc.
R56 super class coeff. acc.

(a) Layer to Layer Linear-CKA and
Subspace Reconstruction Accuracy

0 20 40
R56n Layers

0

20

40

R5
6 

La
ye

rs

Linear-CKA Mean

0.0

0.2

0.4

0.6

0.8

1.0

CK
A 

- m
ea

n

(b) Linear-CKA R56 vs R56n - mean

0 20 40
R56n Layers

0

20

40

R5
6 

La
ye

rs

Linear-CKA std.

0.05

0.10

0.15

0.20

0.25

CK
A 

st
d.

 d
ev

.

(c) Linear-CKA R56 vs R56n - std.

Figure 28: Linear CKA Analogue to the analysis of Figure 27
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Figure 29: LRSC Variance parameter sensitivity analysis

I. Additional results on correlation between layer wise linear
probe performance with LRSC and Linear-CKA coefficients for
networks with memorisation

In this section we lay out detailed LRSC-CKA results for the experiments conducted in Table 3
of Section 6.2 to demonstrate the correlation of layerwise subspace reconstruction based accuracy
with layerwise linear probe accuracy for networks that memorise. In each subsection we demon-
strate LRSC-CKA outputs used to compute the correlations for each row of Table 3. Section I.1
demonstrates the layerwise subspace reconstruction and linear probe accuracies of 5 ResNets la-
beledN1-N5whichwere trained tomemorise CIFAR10. Section I.2 demonstrates the corresponding
correlations between subspace coefficient based accuracy as defined in Section A.1 and [33]. Finally
Section I.3 shows the correlations between Linear-CKA coefficient and linear probe accuracy on
CIFAR10. Section I.4 - Section I.6 host the corresponding results for CIFAR100.

I.1. Correlation of layer wise LRSC subspace reconstruction accuracy with
Linear Probe accuracy for Noisy CIFAR10
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Figure 30: Correlational comparison between layer-wise LRSC subspace reconstruction accuracy vs
linear probe based classification accuracy on various networks trained on Noisy CIFAR 10

I.2. Correlation of layer wise LRSC coefficient based accuracy with Linear
Probe accuracy for Noisy CIFAR10
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Figure 31: Correlational comparison between layer-wise LRSC coefficient based accuracy vs linear
probe based classification accuracy on various networks trained on Noisy CIFAR 10

I.3. Correlation of layer wise Linear CKA coefficient based accuracy with
Linear Probe accuracy for Noisy CIFAR10
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Figure 32: Correlational comparison between layer-wise Linear-CKA coefficient based accuracy vs
linear probe based classification accuracy on various networks trained on Noisy CIFAR 10

I.4. Correlation of layer wise LRSC subspace reconstruction accuracy with
Linear Probe accuracy for Noisy CIFAR100
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Figure 33: Correlational comparison between layer-wise LRSC subspace reconstruction accuracy vs
linear probe based classification accuracy on various networks trained on Noisy CIFAR 100
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I.5. Correlation of layer wise LRSC coefficient based accuracy with Linear
Probe accuracy for Noisy CIFAR100
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Figure 34: Correlational comparison between layer-wise LRSC coefficient based accuracy vs linear
probe based classification accuracy on various networks trained on Noisy CIFAR 100

I.6. Correlation of layer wise Linear CKA coefficient based accuracy with
Linear Probe accuracy for Noisy CIFAR100
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Figure 35: Correlational comparison between layer-wise Linear-CKA coefficient based accuracy vs
linear probe based classification accuracy on various networks trained on Noisy CIFAR 100
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J. Additional results for analysis conducted onMini ImageNet 100

In this section we show additional supporting results for the analysis conducted in Section C.1. We
begin so by demonstrating the performance of networks used perform the analysis of Table 4 in
Table 9.

Table 9: Performance of ResNet 20s used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Mini ImageNet 100 Noisy Mini ImageNet 100
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

Accuracy % 57.5 58.2 58.1 58.3 59.1 29.5 29.3 29.9 29.5 30.7

Next in Table 10 we also provide the details for networks used to generate additional results supple-
menting the analysis of Figure 8, comparing Clean and Noisly Trained ResNet 56s via LRSC-CKA.
The corresponding Linear-CKA analysis is shown in Section J.1.

Table 10: Performance of ResNet 56s used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Mini ImageNet 100 Noisy Mini ImageNet 100
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

Accuracy % 64.07 63.7 65.5 62.8 61.7 22.05 22.5 21.3 22.03 21.6

J.1. Linear-CKA Analysis of the ResNet 56 on Mini ImageNet 100

Next we demonstrate the Linear-CKA counterpart analysis of Figure 8 from Section C.1. As stated
earlier in Section C.1 we trained ResNet 56s on clean and noisy versions of Mini ImageNet 100 with
the cleanly trained ResNet 56 achieving an accuracy of 64.07% on the probing set and the noisily
trained ResNet 56 achieving an accuracy of only 22.05%.
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Figure 36: Linear-CKA analogue of LRSC-CKA results in Figure 8.
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J.2. Aggregated network pairwise and one to one layer comparison of clean and
noisy ResNet 56s on Mini Image Net 100

In this section, similar to Figure 7 in Section 6.2 we show the aggregated Pairwise and One to One
Analysis of network layers analyzing clean and noisily trained ResNet 56s (5 for each setting) on
Mini Image Net 100 using LRSC-CKA in Figure 37 and Linear-CKA inFigure 38.
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Figure 37: Similar to Figure 7, All analysis presented in this figure are done over 5 pairs of gen-
eralising and memorising ResNet 56s trained on clean and noisy Mini Image Net 100 respectively.
Figure 37a shows the Layer to Layer comparison between the two networks. Corresponding com-
plete layerwise LRSC-CKA analysis over these 5 pairs is shown in Figure 37b and Figure 37c, mean
and standard deviation, respectively. As shown in Figure 37a the final layers of clean and noisy
network start to deviate significantly in their performance.
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Figure 38: Linear-CKA Counter Part to Figure 37.
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J.3. Additional LRSC-CKA Analysis of the ResNet 56s on Mini ImageNet 100
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Figure 39: LRSC-CKA Analysis on Mini Image Net comparing normally and noisily trained net-
works. First row consists of 4 normally trained ResNet 56s, the second row consists of 5 nois-
ily trained ResNet 56s. The third row is the comparison between 4 normally and noisily trained
ResNets. Therefore, each column in the figure demonstrates a normally trained ReLU network, a
noisily trained ReLU network and their comparison.
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J.4. Additional Linear-CKA Analysis of the ResNet 56s on Mini ImageNet 100
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Figure 40: Linear-CKA Analysis on Mini Image Net comparing normally and noisily trained net-
works. First row consists of 4 normally trained ResNet 56s, the second row consists of 5 nois-
ily trained ResNet 56s. The third row is the comparison between 4 normally and noisily trained
ResNets. Therefore, each column in the figure demonstrates a normally trained ReLU network, a
noisily trained ReLU network and their comparison.
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J.5. Additional LRSC-CKA Analysis of the previous networks on Mini
ImageNet 100
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Figure 41: LRSC-CKA Analysis on Mini Image Net comparing normally and noisily trained net-
works. First row consists of 5 normally trained ResNet 20s, the second row consists of 5 nois-
ily trained ResNet 20s. The third row is the comparison between 5 normally and noisily trained
ResNets. Therefore, each column in the figure demonstrates a normally trained ReLU network, a
noisily trained ReLU network and their comparison.

48



J.6. Corresponding Linear-CKA Analysis of the previous networks on Mini
ImageNet 100
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Figure 42: Linear-CKA Analysis on Mini Image Net comparing normally and noisily trained net-
works.
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K. Additional Results comparing the effects of memorisation and
generalization on Bottleneck Multi Layer Perceptrons
(B-MLP)

Corresponding the previous analysis comparing self-expressive structures in ResNets under dif-
ferent conditions of generalization in Section 6.2, Section C.1 and Appendix J, in this section we
demonstrate a similar set of results for Bottleneck MLPs [65].

K.1. Aggregated analysis - Bottleneck Multi Layer Perceptrons (B-MLP) on
CIFAR10
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Figure 43: Similar to Figure 7, All analysis presented in this figure are done over 5 pairs of gen-
eralising and memorising B-12/Wi-1024 MLPs trained on clean and noisy CIFAR 10 respectively.
Figure 43a shows the Layer to Layer comparison between the two networks. Corresponding com-
plete layerwise LRSC-CKA analysis over these 5 pairs is shown in Figure 43b and Figure 43c, mean
and standard deviation, respectively.
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Figure 44: Similar to Figure 26, All analysis presented in this figure are done over 5 pairs of gen-
eralising and memorising B-12/Wi-1024 MLPs trained on clean and noisy CIFAR 10 respectively.
Figure 43a shows the Layer to Layer comparison between the two networks. Corresponding com-
plete layerwise LRSC-CKA analysis over these 5 pairs is shown in Figure 43b and Figure 43c, mean
and standard deviation, respectively.
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K.2. Correlation LRSC analysis - Bottleneck Multi Layer Perceptrons (B-MLP)
on CIFAR10

Pearson’s Correlation - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 10 CIFAR 10n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.81 0.73 0.73 0.74 0.74 0.7 0.65 0.7 0.7 0.66
LRSC coeff. acc. 0.8 0.72 0.7 0.7 0.75 0.67 0.68 0.7 0.76 0.69

LinCKA coeff. acc. 0.72 0.63 0.66 0.69 0.7 0.69 0.61 0.69 0.71 0.63

Table 11: Pearson’s Correlation Coefficient between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for B-MLPs trained on CIFAR10.

Spearman’s Correlation - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 10 CIFAR 10n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.83 0.78 0.81 0.79 0.74 0.72 0.64 0.74 0.77 0.69
LRSC coeff. acc. 0.86 0.81 0.77 0.79 0.77 0.68 0.73 0.76 0.79 0.71

LinCKA coeff. acc. 0.74 0.64 0.69 0.73 0.7 0.71 0.63 0.71 0.75 0.65

Table 12: Spearman’s Correlation Coefficient between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for B-MLPs trained on CIFAR10.

Kendall’s tau - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 10 CIFAR 10n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.67 0.61 0.62 0.64 0.55 0.48 0.43 0.51 0.6 0.49
LRSC coeff. acc. 0.71 0.63 0.62 0.63 0.58 0.48 0.52 0.55 0.58 0.53

LinCKA coeff. acc. 0.58 0.52 0.54 0.56 0.52 0.52 0.46 0.49 0.55 0.44

Table 13: Kendall’s tau between layer wise linear probe accuracies and LRSC-CKA and Linear-CKA
metrics based accuracy for B-MLPs trained on CIFAR10.
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K.3. Aggregated analysis -Bottleneck Multi Layer Perceptrons (B-MLP) on
CIFAR100
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Figure 45: Similar to Figure 43, Corresponding analysis over CIFAR 100.
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Figure 46: Similar to Figure 44, Corresponding analysis over CIFAR 100.
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K.4. Correlation analysis - Bottleneck Multi Layer Perceptrons (B-MLP) on
CIFAR100

Pearson’s Correlation - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 100 CIFAR 100n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.83 0.8 0.79 0.85 0.8 0.62 0.71 0.63 0.57 0.54
LRSC coeff. acc. 0.77 0.67 0.71 0.76 0.74 0.65 0.64 0.6 0.55 0.49

LinCKA coeff. acc. 0.8 0.79 0.71 0.79 0.77 0.56 0.62 0.6 0.54 0.51

Table 14: Pearson’s Correlation Coefficient between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for B-MLPs trained on CIFAR100.

Spearman’s Correlation - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 100 CIFAR 100n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.91 0.88 0.91 0.92 0.93 0.58 0.73 0.61 0.52 0.49
LRSC coeff. acc. 0.81 0.68 0.78 0.79 0.81 0.64 0.67 0.57 0.47 0.48

LinCKA coeff. acc. 0.86 0.85 0.87 0.88 0.88 0.55 0.62 0.6 0.5 0.51

Table 15: Spearman’s Correlation Coefficient between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for B-MLPs trained on CIFAR100.

Kendall’s tau - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 100 CIFAR 100n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.78 0.72 0.76 0.79 0.79 0.39 0.51 0.43 0.37 0.34
LRSC coeff. acc. 0.64 0.5 0.59 0.6 0.64 0.43 0.49 0.42 0.34 0.31

LinCKA coeff. acc. 0.69 0.68 0.72 0.72 0.72 0.35 0.38 0.41 0.35 0.37

Table 16: Kendall’s tau between layer wise linear probe accuracies and LRSC-CKA and Linear-CKA
metrics based accuracy for B-MLPs trained on CIFAR100.
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K.5. Aggregated analysis - Bottleneck Multi Layer Perceptrons (B-MLP) on
Mini Image Net 100
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Figure 47: Similar to Figure 43, Corresponding analysis over Mini Image Net 100.
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Figure 48: Similar to Figure 44, Corresponding analysis over Mini Image Net 100.
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K.6. Correlation analysis - Bottleneck Multi Layer Perceptrons (B-MLP) on
MIN100

Pearson’s Correlation - layer wise linear probe accuracy vs metrics
Datasets→ MIN 100 MIN 100n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.81 0.82 0.82 0.83 0.84 0.57 0.57 0.55 0.51 0.51
LRSC coeff. acc. 0.87 0.88 0.86 0.91 0.91 0.63 0.6 0.62 0.57 0.56

LinCKA coeff. acc. 0.66 0.56 0.64 0.6 0.63 0.51 0.58 0.53 0.55 0.57

Table 17: Pearson’s Correlation Coefficient between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for B-MLPs trained on MIN100.

Spearman’s Correlation - layer wise linear probe accuracy vs metrics
Datasets→ MIN 100 MIN 100n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.87 0.83 0.84 0.85 0.88 0.44 0.58 0.53 0.54 0.53
LRSC coeff. acc. 0.95 0.88 0.89 0.96 0.95 0.49 0.56 0.56 0.54 0.48

LinCKA coeff. acc. 0.71 0.54 0.6 0.59 0.6 0.37 0.55 0.43 0.53 0.51

Table 18: Spearman’s Correlation Coefficient between layer wise linear probe accuracies and LRSC-
CKA and Linear-CKA metrics based accuracy for B-MLPs trained on MIN100.

Kendall’s tau - layer wise linear probe accuracy vs metrics
Datasets→ MIN 100 MIN 100n
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.69 0.63 0.67 0.68 0.75 0.35 0.51 0.42 0.44 0.44
LRSC coeff. acc. 0.83 0.71 0.73 0.86 0.84 0.41 0.51 0.46 0.49 0.37

LinCKA coeff. acc. 0.51 0.39 0.45 0.43 0.46 0.3 0.44 0.34 0.42 0.42

Table 19: Kendall’s tau between layer wise linear probe accuracies and LRSC-CKA and Linear-CKA
metrics based accuracy for B-MLPs trained on MIN100.
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L. Additional Results comparing the effects of memorisation and
generalization on Kolmogorov-Arnold Networks (KANs)

Following the results shown in Appendix K, in this section we demonstrate similar results on gen-
eralisation and memorisation for Kolmogorov-Arnold Networks (KANs) [66].

L.1. Aggregated analysis - Kolmogorov-Arnold Networks (KANs) on CIFAR10
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Figure 49: Similar to Figure 43, Corresponding analysis of ResKANs on CIFAR 10.
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Figure 50: Similar to Figure 44, Corresponding analysis of ResKANs on CIFAR 10.
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L.2. Aggregated analysis - Kolmogorov-Arnold Networks (KANs) on
CIFAR100
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Figure 51: Similar to Figure 43, Corresponding analysis of ResKANs on CIFAR 100.
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Figure 52: Similar to Figure 44, Corresponding analysis of ResKANs on CIFAR 100.
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L.3. Aggregated analysis - Kolmogorov-Arnold Networks (KANs) on MIN100
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Figure 53: Similar to Figure 43, Corresponding analysis of ResKANs on MIN 100.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.2

0.4

0.6

0.8

1.0

Lin
ea

r-C
KA

Linear-CKA Diag

Linear-CKA diag

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Layers
0

20

40

60

80

100

Ac
c.

K18 coeff. acc.
K18n coeff. acc.

(a) Layer to Layer Linear-CKA and
Subspace Reconstruction Accuracy

0 10
K18n Layers

0

10

K1
8 

La
ye

rs

Linear-CKA Mean

0.0

0.2

0.4

0.6

0.8

1.0

CK
A 

- m
ea

n

(b) Linear-CKAK18 vs K18n - mean

0 10
K18n Layers

0

10

K1
8 

La
ye

rs

Linear-CKA std.

0.00

0.05

0.10

0.15

0.20

CK
A 

st
d.

 d
ev

.

(c) Linear-CKA K18 vs K18n - std.

Figure 54: Similar to Figure 44, Corresponding analysis of ResKANs on MIN 100.
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M. Additional Results on LRSC-CKA, Linear-CKA and MFTMA
analysis of Rational and ReLU networks under normal and
noisy training regimes

In this section we include additional supporting results for experiments conducted in Appendix D.
We being by first providing a brief description of manifold capacity as stated in MFTMA[19] -
Given K object manifolds with random binary labels each represented by a cloud of points in a
D-dimensional space having the same label, [19] defines manifold capacity α = K/D by the num-
ber of object manifolds where most manifold dichotomies can be separated by a hyperplane. They
[19] relate this to Cover’s function counting theorem[67], but the a key deviation being that the fun-
damental counting objects for MFTMA[19] are manifolds rather than discrete points. This allows
[19] to argue about linear separability of manifolds rather than discrete points. Earlier work [49]
showed that manifold capacity for point clouds can be formulated based on the manifold capacity
of D-dimensional balls of radius R with random orientations in the ambient space, also providing
closed form expressions for effective dimension DM and effective radius RM for the convex hulls
of general point clouds in random orientation. Subsequent advances by [47] help with estimation
of manifold capacities in real data. More specifically, it connects linear separability of class mani-
folds (αM) with the class manifold’s geometric properties like manifold dimension -DM , manifold
radius - RM and the correlations between the manifold centres - ρcenter.

In Figure 55 of Section M.1 we present the full set of results shown in Figure 9 of Appendix D and
in Section M.3 we present the corresponding analysis with Linear-CKA. Similarly, for Figure 10 of
Appendix D we present the full set of results in Figure 56 of Section M.2 and the corresponding
Linear-CKA results in Section M.4.

For all Rational Neural Nets in these experiments, we follow the rational function choices from [21]
and train networks in normal and noisy regimes on CIFAR10. The performance of ReLU ResNets
used is shown in Table 20 and the performance of Rational networks is shown in Table 21.

Table 20: Performance of ReLUNetworks (ResNet 20) used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 10 Noisy CIFAR 10
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

Accuracy % 91.2 92 93 92.2 90.6 66.6 67.8 64 64 68.2

Table 21: Performance of Rational Networks (ResNet 20 Rat) used in these experiments on the
probing set.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 10 Noisy CIFAR 10
Metric ↓ R1 R2 R3 R4 R5 RN1 RN2 RN3 RN4 RN5

Accuracy % 89 88.6 87.6 89 88 48.6 47 43.2 45.2 45.6
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M.1. LRSC-CKA, Linear Probe and MFTMA based comparison of ReLU
Networks under normal and noisy training regimes of CIFAR10
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Figure 55: Extended results of LRSC and MFTMA based comparison of ResNet 20 trained with
ReLU Activations under normal and noisy label settings on the CIFAR10 dataset. First row consists
of 5 normally trained ReLU ResNets, the second row consists of 5 noisily trained ReLU ResNets.
The third row is the comparison between 5 normally and noisily trained ReLU ResNets. Therefore,
each column in the figure demonstrates a normally trained ReLU network, a noisily trained ReLU
network and their comparison. The subsequent figures in Appendix M follow the same layout,
whether for LRSC-CKA or Linear-CKA or ReLU ResNets or Rational ResNets.
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M.2. LRSC-CKA, Linear Probe and MFTMA based comparison of Rational
Networks under normal and noisy training regimes of CIFAR10
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Figure 56: Extended results of LRSC and MFTMA based comparison of ResNet 20 trained with
Rational Activations under normal and noisy label settings on the CIFAR10 dataset. First row con-
sists of 5 normally trained Rational ResNets, the second row consists of 5 noisily trained Rational
ResNets. The third row is the comparison between 5 normally and noisily trained Rational ResNets.
Each column in the figure demonstrates a normally trained Rational network, a noisily trained Ra-
tional network and their comparison.
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M.3. Linear-CKA, Linear Probe and MFTMA based comparison of ReLU
Networks under normal and noisy training regimes of CIFAR10
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Figure 57: Extended results of Linear-CKA and MFTMA based comparison of ResNet 20 trained
with ReLU Activations under normal and noisy label settings on the CIFAR10 dataset. First row
consists of 5 normally trained ReLU ResNets, the second row consists of 5 noisily trained ReLU
ResNets. The third row is the comparison between 5 normally and noisily trained ReLU ResNets.
Each column in the figure demonstrates a normally trained ReLU network, a noisily trained ReLU
network and their comparison.
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M.4. Linear-CKA, Linear Probe and MFTMA based comparison of Rational
Networks under normal and noisy training regimes of CIFAR10
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Figure 58: Extended results of Linear-CKA and MFTMA based comparison of ResNet 20 trained
with Rational Activations under normal and noisy label settings on the CIFAR10 dataset. First row
consists of 5 normally trained Rational ResNets, the second row consists of 5 noisily trained Rational
ResNets. The third row is the comparison between 5 normally and noisily trained Rational ResNets.
Each column in the figure demonstrates a normally trained Rational network, a noisily trained ReLU
network and Rational comparison.
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N. Additional results involving comparisons between ReLU and
Rational Networks across training regimes

In this section we show additional results for Figure 12 in Appendix Dwhere we take ReLU and Ra-
tional ResNets trained across normal and noisy regimes and perform a cross comparison between
the two architectures. The goal of Figure 12 in Appendix D was to demonstrate that memorisation
in ReLU ResNets caused the final few layers to have different representations from the rest of the
network. Especially when compared to normally trained ReLU and Rational networks, additionally
we also observed that most but the last layers of a noisily trained ReLU network shared some simi-
larity with all layers of a noisily trained rational network. Indicating that the effects of memorisation
manifest differently when using highly non-linear activations. Next we show additional results for
Figure 12 of cross-comparison between the quadruplet of networks with different random initial-
isations in Figure 59 and Figure 60 of Section N.1 using LRSC-CKA. Corresponding comparisons
using Linear-CKA are shown in Figure 61 and Figure 62 of Section N.2.

N.1. LRSC-CKA based comparisons between ReLU and Rational Networks
across training regimes

64



0 10 20
R20r Layers

0

10

20

R2
0 

La
ye

rs

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
0 10 20

Layers
0

50

100

Ac
c.

R20 sub.
R20r sub.
R20 probe
R20r probe

0 10 20
R20r Layers

0.04

0.06

0.08

M

R20
R20r

(a) R20V2-R20R2

0 10 20
R20rn Layers

0

10

20

R2
0 

La
ye

rs

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20 sub.
R20rn sub.
R20 probe
R20rn probe

0 10 20
R20rn Layers

0.04

0.06

0.08

M

R20
R20rn

(b) R20V2-R20RN2

0 10 20
R20r Layers

0

10

20

R2
0n

 L
ay

er
s

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20n sub.
R20r sub.
R20n probe
R20r probe

0 10 20
R20r Layers

0.04

0.05

0.06

M

R20n
R20r

(c) R20N2-R20R2

0 10 20
R20rn Layers

0

10

20

R2
0n

 L
ay

er
s

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20n sub.
R20rn sub.
R20n probe
R20rn probe

0 10 20
R20rn Layers

0.04
0.05
0.06

M

R20n
R20rn

(d) R20N2-R20RN2

0 10 20
R20r Layers

0

10

20

R2
0 

La
ye

rs

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20 sub.
R20r sub.
R20 probe
R20r probe

0 10 20
R20r Layers

0.04

0.06

0.08

M

R20
R20r

(e) R20V3-R20R3

0 10 20
R20rn Layers

0

10

20

R2
0 

La
ye

rs

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20 sub.
R20rn sub.
R20 probe
R20rn probe

0 10 20
R20rn Layers

0.04

0.06

0.08

M

R20
R20rn

(f) R20V3-R20RN3

0 10 20
R20r Layers

0

10

20

R2
0n

 L
ay

er
s

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20n sub.
R20r sub.
R20n probe
R20r probe

0 10 20
R20r Layers

0.04

0.05

0.06

M

R20n
R20r

(g) R20N3-R20R3

0 10 20
R20rn Layers

0

10

20

R2
0n

 L
ay

er
s

LRSC-CKA

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0 10 20
Layers

0

50

100

Ac
c.

R20n sub.
R20rn sub.
R20n probe
R20rn probe

0 10 20
R20rn Layers

0.04

0.05

0.06

M

R20n
R20rn

(h) R20N3-R20RN3

Figure 59: Continuing upon Figure 12 we next show results for cross comparison of ResNet 20
trainedwith ReLUandRational PolynomialActivations under normal and noisy label settings. Each
row of this figure and the next show a inter-activation comparison of ReLU and Rational ResNets
trained in normal and noisy regimes. We demonstrate that the final layers of a noisily trained ReLU
ResNet is dissimilar to most layers of a Rational ResNet, regardless of its performance. This isn’t
true for a normally trained ReLU ResNet.

N.2. Linear-CKA based comparisons between ReLU and Rational Networks
across training regimes

In this section we show the Linear-CKA analogues for the results shown in Section N.1. Figure 61h
contains the Linear-CKA counterpart to results of Figure 59 and Figure 62 shows the corresponding
Linear-CKA results for Figure 60.
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Figure 60: Additional extended results for all pairs comparison of ResNet 20 trained with ReLU and
Rational Polynomial Activations under normal and noisy label settings on the CIFAR10 dataset.

O. Additional Results comparing the effects of training neural
networks on cross entropy vs maximum coding rate reduction
loss

Here we describe additional results for the experiments conducted in Appendix E. We begin so
by first describing the experimental setup used, which is based on the experimental setup in [22].
For the purpose of these experiments we use ResNets [6] with depths ranging from 18 to 101. The
networks used in this experiment are based on the code in this github repo4. For ResNets trained
with Cross-Entropy loss on CIFAR10 and CIFAR100 we use a learning rate of 0.1 with a weight
decay of 10−5 trained for 164 epochs with learning rate step reduction by a factor of 0.1 at epochs 81
and 122. For networks trained withMCRR loss on CIFAR10 and CIFAR100 we use a learning rate of
0.001 and a weight decay of 10−4 for 800 epochs with learning rate step reduction by 0.1 at epochs
200 and 400. When training the networks withMCRR loss on CIFAR100, we use the 20 super classes
as labels based on the protocol described in Appendix B.2 of [22].

4https://github.com/kuangliu/pytorch-cifar
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Figure 61: Part 1/2 Linear-CKA analogue of extended results shown for all pairs comparison of
ResNet 20 trained with ReLU and Rational Polynomial Activations under normal and noisy label
settings on the CIFAR10 dataset.

O.1. Additional LRSC-CKA results analyzing the effects of training ResNets
with Maximal Coding Rate Reduction and Cross Entropy losses on
CIFAR10

In this section we show the comparison of ResNets trained on Cross Entropy andMCRR loss across
different network sizes. We take 4 ResNets of different sizes, namely - 18,34,50, 101 and train them
on the two loses and then compare the same architecture over the 2 losses. The results are shown
in Figure 63. These results are an extension of results shown in Figure 13f.
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Figure 62: Part 2 - Extended results for all pairs comparison of ResNet 20 trained with ReLU and
Rational Polynomial Activations under normal and noisy label settings on the CIFAR10 dataset.

O.2. Additional LRSC-CKA results analyzing the effects of training ResNets
with Maximal Coding Rate Reduction and Cross Entropy losses on
CIFAR100

Similar to SectionO.1, in Figure 64 of this sectionwe showadditional results of comparisons between
Cross Entropy Loss and MCRR Loss on CIFAR100 that were presented in Figure 13f.
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Figure 63: LRSC Analysis of ResNets trained with Maximal Coding Rate Reduction and Cross En-
tropy loss on CIFAR10. The first row shows various ResNets trained using the Cross Entropy loss
and the second row shows the same networks trained using theMCRR loss. The third rowoffers cor-
responding pairwise comparisons between architecture’s training on Cross Entropy loss andMCRR
loss. A column of this figure therefore indicates a ResNet of a given depth trained on the Cross En-
tropy Loss, the same ResNet architecture trained onMCRR Loss and a comparison between the two
different ResNets. All the 4 columns together demonstrate the emergence of self expressive struc-
tures in Cross Entropy trained networks towards their later stages, regardless of network size. All
other subsequent figures in Appendix O, whether for LRSC-CKA or Linear-CKA for both CIFAR10
and CIFAR100 follow a similar schematic unless otherwise stated.
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Figure 64: LRSC Analysis of ResNets trained with Maximal Coding Rate Reduction and Cross En-
tropy loss on CIFAR100. As stated previously, The first row shows various ResNets trained using
the Cross Entropy loss, the second row shows the same networks trained using the MCRR loss and
the third row offers corresponding pairwise comparisons between architecture’s training on Cross
Entropy loss and MCRR loss. A column of this figure therefore indicates a ResNet of a given depth
trained on the Cross Entropy Loss, the same ResNet architecture trained onMCRR Loss and a com-
parison between the two different ResNets.

O.3. Observing and analyzing the effects of training ResNets with Maximal
Coding Rate Reduction and Cross Entropy losses on CIFAR10 with
Linear-CKA

In this section we lay down the Linear-CKA counter part of the results on CIFAR10 shown in Sec-
tion O.1 comparing Cross Entropy vs MCRR trained ResNets in Figure 65.
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Figure 65: Linear CKAAnalysis of ResNets trainedwithMaximal Coding Rate Reduction andCross
Entropy loss on CIFAR10.

O.4. Observing and analyzing the effects of training ResNets with Maximal
Coding Rate Reduction and Cross Entropy losses on CIFAR100 with
Linear-CKA

In this section we lay down the Linear-CKA counter part of the results on CIFAR100 shown in Sec-
tion O.2 comparing Cross Entropy vs MCRR trained ResNets in Figure 66.
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Figure 66: Linear CKAAnalysis of ResNets trainedwithMaximal Coding Rate Reduction andCross
Entropy loss on CIFAR100.
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