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ABSTRACT

The proliferation of Vision-Language Models (VLMs) in the past several years calls
for rigorous and comprehensive evaluation methods and benchmarks. This work
analyzes existing VLM evaluation techniques, including automated metrics, AI-
based assessments, and human evaluations across diverse tasks. We first introduce
Robin - a novel suite of VLMs that we built by combining Large Language Models
(LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify
shortcomings of current evaluation approaches across scales. Next, to overcome the
identified limitations, we introduce CHIRP - a new long form response benchmark
we developed for more robust and complete VLM evaluation. We provide open
access to the Robin training code, model suite, and CHIRP benchmark to promote
reproducibility and advance VLM research.

1 INTRODUCTION

Recently, a lot of significant advances have been made in Vision-Language Models (VLMs), driven
by breakthroughs in computer vision and natural language processing Chen et al. (2022); Li et al.
(2023b); Liu et al. (2023b); Sun et al. (2023). However, existing VLM benchmarks, often designed
for specific tasks (e.g., VQAv2 Goyal et al. (2017)), struggle to accurately reflect real-world VLM
performance and capture nuanced differences between models Hsieh et al. (2024). This is particularly
evident when evaluating models with significant architectural variations, where standard benchmark
scores remain similar despite noticeable differences in human-perceived model quality.

To address this issue, we introduce CHIRP, a hybrid VLM benchmark that combines automated
metrics’ scalability with human evaluators’ nuanced judgment. We argue that this approach is crucial
for capturing the complexities of VLM behavior, which traditional benchmarks often fail to represent.

To demonstrate the limitations of existing benchmarks and the efficacy of our proposed method, we
introduce Robin, a suite of VLMs trained at various scales, inspired by the Pythia language model
suite Biderman et al. (2023). By systematically varying the Vision Encoder (VE) and the Large
Language Model (LLM) sizes, we will show that while benchmark scores remain largely unaffected,
human evaluations reveal significant differences in the models’ outputs quality.

Our findings underscore the need for more robust and human-centric VLM evaluation methodologies.
CHIRP paves the way for developing more reliable and informative VLM benchmarks, ultimately
leading to the creation of more effective and impactful VLMs.

Our Contributions:

• We investigate the drawbacks of relying on automatic metrics and show the benefits of
AI-based and human-based evaluations of VLMs.

• We present CHIRP, an open-ended question-and-answer benchmark.

• We train and release an open-source collection of VLMs named Robin. Robin is a scaling
suite based on LLMs and VEs of different sizes. This allows to study the effects of scaling
both language and vision components on downstream performance of VLMs.

• We compare the performance of the trained VLMs using a wide range of evaluation ap-
proaches: automated metrics, AI-based evaluations, and human evaluations.
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2 RELATED WORK

Scaling Suites. Scaling laws have recently emerged as one of the central research areas in large
foundation models Aghajanyan et al. (2023); Isik et al. (2024). These laws enable performance
prediction based on variations in compute time, dataset size, and model parameters, facilitating
efficient resource allocation by extrapolating results from small-scale experiments.

Kaplan et al. Kaplan et al. (2020) pioneered the application of scaling laws to language models,
demonstrating a power-law relationships between loss and model size, dataset size, and compute
time. This has led to practical applications, such as the Pythia suite Biderman et al. (2023), which
comprises of identically trained language models with varying parameter sizes, empirically verifying
these scaling laws.

Cherti et al. Cherti et al. (2023) investigated the scaling laws of the CLIP vision encoders, training
and comparing different sizes of the CLIP vision encoders on the same data. These models indeed
verified the aforementioned scaling laws and have become a very popular suite of models.

AI-based Evaluation. The advent of powerful foundation models like GPT-4V offers a new way
to evaluate weaker models, moving beyond traditional, rigid metrics such as exact string matching,
as done in Hudson & Manning (2019); Mishra et al. (2019); Singh et al. (2019). Early evidence
from benchmarks like MM-Vet Yu et al. (2023) and VQA tasks Agrawal et al. (2016) suggests that
evaluating with stronger models offers a promising path towards more comprehensive and insightful
evaluation, surpassing the limitations of static, string-based methods Ji et al. (2023); Lee et al. (2024).
This shift towards leveraging the semantic understanding of LLMs for evaluation promises to unlock
a better understanding of model capabilities.

Zheng et al. Zheng et al. (2023) introduce two benchmarks, MT-Bench and Chatbot Arena, to explore
the feasibility of employing LLMs as judges. Their findings indicate that advanced LLMs, such
as GPT-4, closely align with human preferences, achieving over 80% of agreement Rafailov et al.
(2024). Similarly, AlpacaEval Li et al. (2023a) utilizes LLMs to assess instruction-following models.

Wu et al. Wu & Aji (2023) focused on the bias in evaluations conducted by both human and LLM
annotators, particularly noting a preference for flawed content if it avoids brevity or grammatical
errors, and introduced the Multi-Elo Rating System (MERS) for more nuanced assessments. A
study by Koo et al. Koo et al. (2023) pointed out significant biases of LLMs evaluators, with an
average Rank-Biased Overlap (RBO) score of 49.6%, suggesting a misalignment between machine
and human preferences.

3 ROBIN VLM SUITE: TRAINING METHODOLOGY

Table 1: Parameter counts of the differ-
ent CLIP VEs used. The largest CLIP
model chosen is indeed "g" and not "big
G".

Model Parameter Count
CLIP ViT B 86 million
CLIP ViT L 307 million
CLIP ViT H 632 million
CLIP ViT g 1 billion

We review the methodology used to train our scaling suite,
and the different experiments conducted with the trained
models.

3.1 MODEL ARCHITECTURES

Our models are based on the LLaVA architecture Liu et al.
(2023a;b) and consist of three components: a pretrained
vision encoder, a MultiLayer Perceptron (MLP) projection
that converts image features to text space, and a language
model that uses self-attention to process both visual and
textual tokens. Each component can be individually tuned
during training. The exact training process, including
steps, data composition, and hyperparameters, is detailed
in Appendix A.

3.2 EXPERIMENTAL DESIGN

To design a scaling suite for VLMs, we vary the language encoder and vision encoder. Our setup is
based on the Pythia suite Biderman et al. (2023), which maintains consistent training data and order,
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Figure 1: Log-log plots showing the scaling laws with VE size and LLM size respectively. The loss is
calculated as an average over the last 10 iterations of training.

leaving model size as the only variable. Similarly, the CLIP Radford et al. (2021) vision encoders
released by LAION follow this pattern. We train VLMs using 5 Pythia sizes (410M, 1.4B, 2.8B,
6.9B, and 12B parameters) paired with 4 CLIP models (Base, Large, Huge, and gigantic). The sizes
of these CLIP models are detailed in Table 1, resulting in 20 Robin models. The scaling laws for the
Robin suite over VE size and LLM size is shown in Figure 1.

We run experiments across all Robin models or across two main ablations:

1. LLM Size ablation - ablate the Pythia model size across the Robin models with the gigantic
CLIP vision encoder (ViT-g)

2. VE Size ablation - ablate the CLIP model size across the Robin models with a 12B parameter
Pythia LLM

4 BENCHMARK RESULTS

Figure 2: Heatmap showing the scaled
average score of the different models of
the scaling suite (higher is better).

We ran our suite of models on the following benchmarks:
ScienceQA Lu et al. (2022), GQA Hudson & Manning
(2019), VQAv2 Goyal et al. (2017), TextVQA Singh et al.
(2019), MM-Vet Yu et al. (2023), and LLaVA-Bench Liu
et al. (2023b). The complete results of the models on
these benchmarks are detailed in Appendix A.4, which
includes a complete score table (Table 5) and heatmaps
for all benchmarks (Figure 10). Figure 2 shows the
scaled average scores. Due to varying score distributions
across benchmarks, we use a scaled average. For exam-
ple, VQAv2 scores range from 40 to 60, while MM-Vet
scores range from 6 to 18. The scaled score is calculated
as follows: let S be the matrix of scores, with each row
Si,: representing the scores model i obtained on all N
benchmarks, and S:,j representing the scores of all models
on benchmark j. Let S∗ be the scaled scores vector.

S∗
i =

1

N

∑
j

Si,j −min(S:,j)

max(S:,j)−min(S:,j)

The scaled average is plotted in Figure 2. As it is shown, there is no clear relationship between
VE size and model performance. However, a slight trend between LLM size and performance is
observed. Despite this, empirical testing revealed significant differences between the models that
these benchmarks did not capture.

5 INVESTIGATING EXISTING BENCHMARKS

Empirical testing suggested that existing benchmarks might not capture all observed model capa-
bilities. We aimed to determine whether the standard evaluation methods were inaccurate or if the
benchmarks themselves were flawed.
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To rigorously assess the reliability of existing benchmarks, we sampled 100 random questions from
GQA as well as 100 from TextVQA. These questions require the model to observe the image and
answer objective facts. We examined the questions, the provided ground truth answers, and model
responses across all model size combinations.

In 100 questions sampled from GQA, we found that 9 questions had incorrect ground truth answers.
If we want to estimate the error of this value, the actual percentage of incorrect prompts p̂ is

p̂ ∈ p ± z ∗
√

p∗(1−p)
n . For a 95% confidence interval: z = 1.96, and with our sample size n of

100, we measured p = 0.09, we are 95% certain: 3.4% ≤ p̂ ≤ 14.6%. This equates to 770,769
to 3,309,773 questions of the 22,669,678 GQA questions being incorrect. Although this is a large
spread, this result rmeains quite significant, as most improvements on State of The Art (SoTA) models
are very small, regularly under 3% Li et al. (2023b). These findings lead to the conclusion that if 2
models score within 3% of each other on GQA, they could very well be equal in actual performance
on it. Representative examples of the aforementioned questions are shown in Appendix B.4.1.

Conducting the same study for TextVQA, we identified only 5 problematic questions in the sample
that either did not require reading the text in the image, or were too vague and did not correspond
to a clear correct answer. Redoing our previous calculations, we conclude with 95% certainty that
0.73% ≤ p̂ ≤ 9.27%. Although SoTA models are indeed close in performance, we are not as
confident as in the case of GQA. However, two SoTA models scoring within 0.7% of each other
on TextVQA can be considered equally good on the benchmark. Representative examples of the
aforementioned questions are shown in Appendix B.4.2.

Ultimately, after examining benchmarks and responses, we propose the following hypotheses for why
our models did not exhibit expected scaling trends:

• short responses don’t convey enough information to thoroughly evaluate model performance
• benchmarks were graded inaccurately
• vague questions with multiple possible answers and incorrect ground truth answers
• questions themselves don’t demand a detailed examination of images

In the following subsections, we test each of the above hypothesis to see if addressing these issues
reveal trends in model scale we hadn’t observed previously.

5.1 LONG VS SHORT RESPONSES (LVSR)

Most benchmarks were evaluated on short responses; with explicit instructions to "respond with one
word or phrase". However, we hypothesize that short responses do not convey sufficient information
to evaluate model performance in detail. To test this theory, we allowed models to generate longer
responses without prompting for brevity. We then collected, manually evaluated, and compared these
LvSR to see if they offered a more nuanced assessment of the models.

The GQA benchmark provides an evaluation script that grades responses using string matching
on single phrase responses. On the sample of 100 GQA questions, we prompted and manually
graded our models for LvSR to see if new trends across the LLM size ablation appear with longer
responses, the results of which are shown in Figure 3. For sufficiently large models, we did not
notice a significant improvement in overall model accuracy. However, models often got different
questions correct when responding with LvSR. To show this, we calculated a superscore, in which
responses were marked correct if either the long or short response was correct (See Figure 3). The
improved results of the superscore indicate that while long and short responses achieve a similar
overall accuracy, they tend to be accurate for a different set of questions. This suggests that evaluating
long and short responses demonstrate different model skills. In Appendix B.4.3, we’ve included
examples of differing responses when prompting for long and short answers.

5.2 INACCURATE GRADING AND LLM EVALUATIONS

Most existing automatic metrics are incapable of evaluating longer responses, and often fail in
scenarios where the models being tested do not output the answer in the expected format Hudson
& Manning (2019); Singh et al. (2019). For example, models may respond with a synonym for the
ground truth, which can cause issues with exact string matching based evaluation. These issues can
be especially prevalent with non instruction tuned models, or small scale models.
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Figure 3: Accuracy of long vs short responses on GQA sample for LLM Size ablation.

To address responses that automated evaluations cannot recognize, we utilize a the GPT-4 LLM
OpenAI (2023) to evaluate whether a given response matches the correct answer or not. We ran this
LLM evaluations on both the long and short responses, using the prompting detailed in Appendix
B.3.

On short responses, LLMs tend to mark more answers as correct when compared to existing automated
evaluations. An example of this behaviour can be found in Appendix B.4.3. By comparing LLM
evaluations to manual evaluations of LvSR in Figure 4, we calculated the accuracy of LLM evaluations
on LLM size. This analysis shows that LLM evaluations can be slightly more accurate than automated
evaluations, though not enough to reveal new model capabilities.

5.3 MULTIPLE POSSIBILITIES AND VLM EVALUATION

Our empirical analysis revealed that ground truth answers are not always representative of all possible
correct answers. In GQA and TextVQA, this issue arises from ambiguous questions that can have
multiple valid answers, as shown in Appendix B.4.1 and B.4.2. In questions where ground truth
answers don’t encompass all valid answers, LLMs don’t have sufficient information to accurately
responsed.

We explore using stronger VLMs, namely LLaVA-34B Liu et al. (2023b) and GPT-4V OpenAI
(2023), to evaluate our models responses in order to account for such cases. We ask the VLM to
individually evaluate each model’s long response, question by question. The exact prompts used for
LLaVA-34B and GPT-4V are in Appendix B.3.

A comparison of the accuracy of LLaVA-34B and GPT-4V over LLM scale can be seen in Figure 4.
GPT-4V evaluations of GQA differed from human evaluations more than LLaVA-34B due to GPT-4V
applying stricter grading criteria. Appendix B.4.3 presents a few such examples. Although LLaVA-
34B had higher accuracy, we hypothesize that further work could align GPT-4V’s grading schema
closer to the LLaVA-34B grading by prompting for a looser grading, likely leading to improved
results for GQA evaluation.

5.4 COMPARISON OF AUTOMATED, LLM, AND VLM EVALUATIONS

We graph scaling across LLM size, and VE size using all AI evaluation methods in Figure 4. AI
evaluations seem to yield different and more accurate results across the largest LLM and VE sizes.
However, despite the improved accuracy in evaluation techniques, our models still did not exhibit
expected scaling relationships, the complete results being shown in Appendix B.1. We hypothesize
that long form questions may be more conducive to extracting fine grain estimation of model
knowledge than questions from existing benchmarks.

6 CHIRP BENCHMARK

To address the drawbacks of existing benchmarks outlined in Section 5, we introduce CHIRP, a new
evaluation benchmark, which grades long form responses. CHIRP comprises of 104 open ended
questions, evaluated by either humans or VLMs. These free form questions do not correspond to
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Figure 4: Evaluating GQA and textVQA using automated string matching programs, LLMs, VLMs,
and humans evaluators. Solid lines are evaluations of responses where models were prompted for
short responses. Dashed lines have no such prompting for brevity. Left. Robin GQA and textVQA
scores across LLM size and VE size ablations, calculated using the appropriate evaluation method
for each evaluator. Right. Accuracy of those evaluation methods on the GQA and textVQA sample
over the LLM size ablation. The accuracy was determined by comparing evaluations to the human
grading.

a single "correct" answer. Instead, they require models to generate flexible, creative and complex
responses. Consequently, we evaluate models using a preference based rating in which two model’s
responses are compared side by side. Instructions on downloading the CHIRP benchmark can be
found in Appendix C.

6.1 GENERATING THE DATASET

We wrote questions along with image descriptions, which we then refined with the help of GPT-4
OpenAI (2023). The image descriptions were given to Dalle-E 3 to generate the associated images.
We would then iterate and finetune the description by hand in order to get the desired image.

The questions created are classified in 8 distinct categories: descriptive analysis, inferential reason-
ing, contextual understanding, emotional and psychological understanding, ethical evaluations,
abstract understanding, creative and subjective analysis, and visual aesthetics evaluation.
Detailed descriptions and examples of these categories can be found in Appendix C.1.

Unlike many datasets that rely on pre-existing images, our approach allows us to generate images
specifically tailored for thought-provoking questions and detailed analysis. This also removes the risk
of the model having seen the image in training. Moreover, we eliminate the risk of evaluating models
on contaminated images as all of them were validated by hand.

6.2 HUMAN BASED EVALUATIONS

We utilized CloudResearch for large scale human evaluation of our model’s responses. To this end,
we presented users with the responses of two models and asked them to indicate their preferred
response on a set of criteria. There are 5 criteria: overall preference, relevance and completeness,
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Figure 5: Mean Elo calculated over LLM Size (top row) and VE Size (bottom row) using different
evaluators (columns) and criteria (series). Graphs are calculated using bootstrapping on 1000 samples.
Each sample is drawn with low transparency and the solid lines indicate the mean over samples for
the respective category.

understanding and reasoning, hallucinations, and details. These criteria were chosen as empirical
evidence showed that these were under-evaluated in other benchmarks and the most important to
a user’s perception of the model quality. An example of the user interface as well as a detailed
description of each criterion can be found in Appendix C.2.1.

We validated this evaluation method by evaluating our suite of models on all five criteria across the
LLM size and VE size ablations. Due to limitations in time and budget, for each question of the
dataset, we randomly sample five model matchups out of all the model pairwise combinations. We
also ran evaluations across our entire suite of VLMs to judge the overall preference criteria. To this
end, we randomly selected 25 matchups from the 190 possible pairs of Robin models. Full details on
the human evaluation setup can be found in Appendix section C.2.2.

6.3 VLM BASED EVALUATIONS

To evaluate our models on CHIRP at scale, we experiment with the use of VLMs: GPT-4V and
LLaVA-34B. Rather than asking a human for model preferences, we asked the VLMs to indicate their
preferred response for each criterion. For GPT-4V, we utilized two distinct prompts: GPT-4V (S)
(simple), which directly solicited model preferences, and GPT-4V (R) (reasoning), which prompted
the VLM to reason before making a decision. We extracted the VLMs final choice using GPT-3.5.
Detailed explanations of these prompts are provided in Appendix C.2.3.

We evaluated all combinations of matchups from the LLM size and VE size ablations across all criteria.
We also ran GPT-4V (R) evaluations on a random sample of 50 matchups from all combinations of
Robin models on the overall preference criteria.

6.4 ELO RATINGS

To benchmark our models using CHIRP, we calculated Elo scores based on the evaluators’ indicated
preferences. Because Elo calculations are not order-agnostic, we performed 500 bootstrap iterations
for each Elo score.

The results from the human and VLM evaluations using this average Elo rating is shown in Figure 5.

With regards to the LLM size ablation, we note a clear scaling trend, with all the evaluators ranking
the bigger models the best performers across all categories. However, we do note that the biggest
marginal improvement occurs from the 410M Pythia-based Robin to the 1.4B Pythia-based Robin.

With regards to the VE size ablation, only the human survey results exhibit a strictly monotonically
increasing trend with scale. Indeed, AI evaluations of CHIRP do not correlate VE size with model
performance. GPT-4V (R) evaluations of CHIRP demonstrate some scaling with model size, with
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Figure 6: Robin model performance on CHIRP’s “overall” criteria measured using different evaluators.
Median Elo scores shown calculated over 1000 bootstraps on the criteria. Left. Elo calculated via
different evaluators on the LLM Size and VE Size ablation matchups. Right. Elo calculated from
GPT-4V (R) and human survey across the entire suite.

ViT-L performing surprisingly well. To the contrary, LLaVA-34B gives a very consistent score to all
models across all categories, with the exception of the “hallucination” evaluation where the trend
is similar to the one from GPT-4V (R). It is worth noting however that human surveys exhibit high
variance in Elo trends, mostly due to different evaluators having very different preferences.

The heatmap of median Elo scores in Figure 6 allows us to directly compare GPT-4V (R) and human
surveys results. In the following sections, we will explore why GPT-4V (R) evaluations seem to
capture some trends more distinctly while not others.

6.5 AGREEMENT

To evaluate the efficacy of AI evaluations, we first examine the agreement between AI and human
preferences. To this end, we use Cohen’s Kappa.

6.5.1 COHEN’S KAPPA

Cohen’s Kappa Cohen (1960) is a method used for calculating inter-rater reliability, that takes into
account random chance agreement. A Cohen’s Kappa score of 1 indicates a complete agreement
between reviewers, while a Kappa of 0 indicates no agreements other than a random chance of
agreement. Further details on the calculation of Cohen’s Kappa can be found in Appendix C.2.5.
Looking at Table 2, the results indicate that both GPT-4V (S) and GPT-4V (R) have higher agreement
with human surveys compared to LLaVA-34B. We also note that GPT-4V (R) exhibits the most
agreement to the human surveys of the both of them. However, according to Landis & Koch’s
interpretation of Cohen’s Kappa Landis & Koch (1977), GPT-4V (R) only achieves “slight” to “fair”
agreement. Despite the low overall agreement, GPT-4V evaluations still exhibit very similar trends to
human evaluations.

Table 2: Agreement and Cohen’s Kappa between human surveys and AI evaluations across 2 studies

LLM size ablation VE size ablation

Models Agreement Cohen’s Kappa Agreement Cohen’s Kappa

GPT-4V (S) vs human 67.5% .10 63.7% .204
GPT-4V (R) vs human 69.3% .114 64.5% .216
LLaVA-34B vs human 60.8% .014 50% 0.0

8
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Figure 7: Percentage of CHIRP questions graded with a contradiction of preferences within a specific
criteria. Left: contradictions found in the LLM ablation study. Right: contradictions found in the
VE ablation study.

6.5.2 MODEL SIZE AGREEMENT Table 3: Model size agreement by method

Method LLM size VE size

Human Survey 68.5% 61.3%
LLaVA-34B 66.5% 53.0%
GPT-4V (S) 76.5% 65.2%
GPT-4V (R) 79.4% 66.4%

For each of our evaluation methods, we calcu-
lated the frequency with which the evaluator
preferred the larger model in any given matchup.
The results in Table 3 show that GPT-4V evalu-
ations favor models with more parameters more
frequently than human evaluators. We also see
that although users tend to prefer larger mod-
els, this is not as systematic as we had initially
believed.

6.5.3 CONTRADICTIONS

One hypothesis for why trends are better captured using AI evaluations is that a single AI evaluator
is more consistent than the combined evaluations of many different humans, as different humans
may have different preferences or leniency. We tried negating this by aggregating multiple human
surveys together however it is possible this still influenced the results. To evaluate the consistency of
AI versus human evaluators, we introduce a concept to measure contradictions in their rankings. A
contradiction occurs when an evaluator’s preferences form a cycle, such as preferring A over B, B
over C, but then C over A. A more exhaustive explanation along which sample graphs is given in
Appendix C.2.8. This inconsistency suggests a lack of transitivity in their judgments. By counting
these contradictions, we can determine how reliably an evaluator ranks models.

The results presented in Figure 7, indicate that human and LLaVA-34B based evaluations tend to
have the most contradictions, requiring more runs to average out human or model inconsistencies.
GPT-4V (R) however is the model with the least contradictions, leading us to the conclusion that a
single run is sufficient as the model is highly consistent in its responses.

6.6 OBSERVATIONS AND INSIGHTS

Although AI-based evaluations don’t consistently agree with human evaluations on a case-by-case
basis, GPT-4V (R) displays both higher agreement with humans preferences and less contradictions
than GPT-4V (S).

In general, GPT-based evaluations tend to produce lower variance results which correlate better with
training loss, as shown Appendix C.2.6. We hypothesize that these smoother results are attributed to
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the fact that GPT employs a more consistent approach to grading across evaluations, whereas multiple
different human evaluators lead to more variability, as indicated by the higher rates of contradictions.
This variability could be affecting our ability to accurately measure how well human evaluations
correlate with training loss and we hope to address this in future work.

Another possibility is that AI evaluations favor models with larger LLMs because the LLMs generate
preferable strings of words irrespective of the content of the image. However, we rule out this possi-
bility by showing that GPT-4V (R) preferences do not align with the more likely logit probabilities of
question-answer strings in Appendix C.2.7.

Furthermore, there seems to be an ideal ratio of VE size to LLM size that provides an optimal model,
which will be the preferred model for that LLM size. Although this was hinted at in both the loss
and previous benchmarks, this relationship was rather faint and is made more apparent in the human
preferences result in CHIRP. This can be seen in the complete graph of human preferences shown in
Appendix C.2.9.

Ultimately, both human and AI evaluations show that performance on CHIRP correlates with loss
more than other evaluation tasks. We take this as evidence that the CHIRP benchmark assesses a
valuable and unique skill that other benchmarks do not test for. This makes CHIRP a useful addition
to the suite of benchmarks that is currently used to evaluate VLMs.

6.7 LIMITATIONS

Although the CHIRP benchmark revealed scaling trends in our models that other benchmarks did
not, it has several notable limitations. First, it heavily relies on the strong language proficiency of the
evaluator, to evaluate a models’ perceptual capabilities.

Second, the benchmark is not very extensive as it only contains 104 questions on 104 images.
However, the small size is a deliberate choice based on the cost of evaluations. As grading the
responses requires VLM or human evaluations, cost is a major consideration when deciding the size
and 104 was seen as a good balance between evaluating the models performance and the cost or
evaluating. This is in line with other small, high quality, and well respected datasets like MM-Vet
Yu et al. (2023), 218 questions on 200 images, and LLaVA-Bench Liu et al. (2023b), 60 questions
on 24 images, which both require LLM evaluations, which itself is cheaper than VLM or human
evaluations.

Finally, models are benchmarked via pairwise matchups. Therefore models can only be compared
via a direct matchup or mutual matchups. This requires more work when validating a new model,
requiring matchups which each of the most performant models, however we believe this is a valuable
trade-off for a considerably more accurate evaluation and ranking.

7 CONCLUSIONS

In this paper, we explore the limitations of existing vision-language model (VLM) benchmarks, and
introduce CHIRP, a novel benchmark designed to address these shortcomings. Our analysis reveals
that a longer-form benchmark with open-ended questions quantifies multimodal understanding in
ways that existing benchmarks do not. While current benchmarks evaluate contextually relevant
responses, they often fail to capture the subtleties that humans value in long-form content.

Expensive evaluations. We acknowledge that generating and evaluating long-form responses,
especially with human evaluators, can be resource-intensive. To mitigate this challenge, we have
designed CHIRP to remain effective even at a smaller scale. Additionally, our findings suggest that
AI evaluations can serve as a reliable proxy for human assessments, demonstrating similar overall
trends in the same unique skill we aim to test for.

As VLMs continue to advance towards and beyond human-level performance on quantitative tasks,
we emphasize the need to assess models on qualitative tasks that reflect the nuances of human
preferences. Our work demonstrates that CHIRP is a viable benchmark for evaluating skills that have
not been previously reported.
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A MODEL TRAINING SETUP

A.1 PROCESS AND DATA

In order to maximize comparability between models, we train all of them with the same hyper-
parameters and data. The training of our VLMs is broken down into two phases: pretraining and
finetuning. During pretraining, only the MLP projection is unfrozen, with both vision and language
models frozen. The dataset used for this step is the LLaVA Visual Instruct Pretrain LCS-558K Liu
et al. (2023a), which is a subset of the LAION/CC/SBU dataset, filtered with a more balanced
concept coverage distribution. Following this, we do a finetuning step where we tuned all three
components: the MLP projection, language model and vision encoder. The data that was used for
this part of training is the LLaVA Visual Instruct 665K Liu et al. (2023a). This dataset contains 150K
GPT-generated multimodal instruction-following data, in addition to using images from the Coco
2017 dataset Lin et al. (2015), the GQA dataseet Hudson & Manning (2019), the OCR-VQA dataset
Mishra et al. (2019), the TextVQA dataset Singh et al. (2019), and the VisualGenome dataset Krishna
et al. (2016).

In the LLaVA 1.5 model release Liu et al. (2023a), the authors showed that when doing the finetuning
of the language model, there was little difference between doing a full finetuning as opposed to a
Low-Rank Adaptation (LoRA) Hu et al. (2021) finetuning. Therefore we trained all our models using
a LoRA finetuning for the language model.

A.2 HYPERPARAMETERS

Table 4a gives the hyper-parameters used for pretraining and Table 4b shows the hyperparameters
used for finetuning all of the models. Due to different hardware being used to train different models,
the gradient accumulation steps were changed for both the pretraining and finetuning steps in order to
keep the batch size consistent between the different runs.

On a node consisting of 4 AMD Instinct MI250 Accelerators, pretraining would take about 4 hours
and finetuning about 10 hours.

Parameter Value
Vision encoder Frozen

Language model Frozen
Projection learning rate 10−3

Use of fp16 True
Projection type mlp2x_gelu
Weight decay 0
Warmup ratio 0.03

Epochs 1
Batch size 256

(a) For the pretraining

Parameter Value

Vision encoder learning rate 5 · 10−5

Language model learning rate 2 · 10−5

Projection learning rate 2 · 10−5

Use of fp16 True
Projection type mlp2x_gelu
Weight decay 0
Warmup ratio 0.03

Epochs 1
Batch size 128
LoRA r 128
LoRA α 256

(b) For the finetuning

Table 4: Hyperparameters used during training
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A.3 FINAL LOSS PLOTS

Plots showing the average loss of the last 10 iterations of training for each model of the Robin scaling
suite.

Figure 8: Heatmap showing the loss of the different Robin models (lower is better).

Figure 9: Log-log plot showing how the loss scales with total parameter count.
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A.4 DETAILED BENCHMARK SCORES OF ALL THE ROBIN SCALING SUITE MODELS

Figure 10: Heatmaps showing the performance of the different models of the scaling suite on the
different benchmarks. For all graphs, higher is better.
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Table 5: List of the results obtained by every model of the Robin scaling suite on the different
benchmarks. Each model was run with LoRA finetuning for the LLM and unfrozen VE.
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B FURTHER EVALUATIONS OF THE GQA AND TEXTVQA PROMPTS

B.1 GRAPHS COMPARING THE ENTIRE MODEL SUITE ON THE DIFFERENT EVALUATION
METHODS

Figure 11: Accuracy of the Robin suite of models on the 100 GQA question sample calculated using
different evaluation methods. Only weak scaling trends are apparent, irrespective of the evaluation
method used.

Figure 12: Accuracy of the Robin suite of models on the 100 TextVQA question sample calculated
using different evaluation methods. Only weak scaling trends are apparent, irrespective of the
evaluation method used.
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B.2 VERIFYING THE RESULTS ON AN INDEPENDENT SOTA MODEL

While other experiments in this paper are done using our Robin scaling suite with based on the Pythia
LLMs, this section was done using LLaVA1.5-7B Liu et al. (2023a), in order to make sure that our
results translated across models. We manually graded LLaVA1.5-7B responses on our sample of
GQA questions. Using the known evaluations, we graded the accuracy of automated, LLM, and VLM
evaluation methods. Results of grading accuracy on LLaVA1.5-7B are presented in the confusion
matrix 13.

Some small, but important, usage details we noticed: The LLMs have a very low false positive rate,
especially in contrast to their false negative rate. This suggests that for actual deployment, we could
employ a two phase strategy, in which we assume the LLM is correct when it marks a long response
as correct. When the LLM responds false, we fallback to a VLM. This strategy eliminates some VLM
false negatives. The accuracy of this strategy is 88%, beating the other methods shown in Table 6.

We tried this strategy on our Robin models across the LLM size ablation. The results on GQA and
textVQA are presented in Figure 14. Our results indicate that the joint LLM and VLM strategy
provides a risk averse method of evaluation. Regardless of if the LLM or VLM evaluations are
more accurate, the combined method provides a middle ground evaluation which performs slightly
better on benchmarks where the LLM evaluates well, as GQA, but poorly when the VLM evaluation
consistently outperforms the LLM evaluation, as in TextVQA.

Figure 13: Confusion matrices of the different evaluation methods on the LLaVA1.5-7B responses.
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Table 6: Accuracy of the dif-
ferent evaluation methods on the
LLaVA1.5-7B responses.

Method Accuracy
string matching 75%

LLM on short responses 80%
LLM on long responses 82%
VLM on long responses 82%

Join LLM+VLM evaluation 88%

Figure 14: Accuracy of different evaluation methods on a sample of 100 questions from both GQA
and textVQA.
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B.3 PROMPTS USED FOR THE AI EVALUATIONS

messages = [
{"role": "system", "content": "You will be provided with a

question about some image, the correct answer to the
question, and a students response. Grade whether or not
the student answered the question correctly based on the
correct answer that is provided. Respond correct, or
incorrect, depending on the given response."},

↪→

↪→

↪→

↪→

↪→

{"role": "user", "content": f"Question: {question}\n\nCorrect
Answer: {ground_truth}\n\nStudents Answer:
{vlm_response}"}

↪→

↪→

]

Figure 15: Prompt passed to GPT-4 for the LLM evaluation of both long and short responses on GQA
and textVQA

messages = [
{"role": "user", "content": <IMAGE> + f"{question}"}
{"role": "llava", "content": LLaVAs response}
{"role": "user", "content": f"Based on your answer, grade the

following response to the same question as correct or
incorrect.\n\nResponse: {response}"}

↪→

↪→

]

Figure 16: Prompt used for LLaVA-34B evaluation of both long and short responses on GQA and
textVQA. We first asked LLaVA-34B to answer the question, then asked it to evaluate the models
response taking into account its own response.
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instruction = """
You are a helpful assisstant. You will be shown an image and

a related question, along with a response from an
assistant. The assistants' responses are meant to answer
the given question.

↪→

↪→

↪→

Your task is to evaluate the response to the given question
about the image.↪→

Image:
"""

response_eval = f"""
Question: {question}

Assistants Response: {response}

Please evaluate whether this response is correct or not. You
can mark questions that include false details about the
image as incorrect. First reason about your thought
process before giving the final answer.

↪→

↪→

↪→

"""
gpt_response = openai_client(

model = "gpt-4-vision-preview",
messages=[

{
"role": "user",
"content": [

{"type": "text", "text": instruction},
{

"type": "image_url",
"image_url": {

"url": image_url,
},

},
{"type": "text", "text": response_eval},

],
}

])

final_evaluation = openai_client(
model="gpt-3.5-turbo",
messages=[

{
"role": "user",
"content": f"You will receive an evaluation of an

assistant's response to a question. Your task is
to analyze the text, and determine whether the
assistants response was correct or incorrect.
Please only respond with the word \"Correct\" or
\"Incorrect\". If the response is partially
correct, you may respond with the phrase
\"Partially Correct\".
\n\nEvaluation:\n{response}"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
]

)

Figure 17: Prompt used for GPT-4V evaluation of long responses on GQA and textVQA. We first
asked GPT-4V to evaluate the question answer pair and reason about its answer. We then asked
GPT-3.5 to parse the final answer. "Partially Correct" results were treated as incorrect.
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B.4 QUALITATIVE EXAMPLES

B.4.1 EXAMPLES OF ISSUES IN THE GQA DATASET

Question: What device is be-
hind the man?

Is the stove to the left
of a drawer?

Is there a cup near the
plate?

Ground
truth:

The device is a televi-
sion.

No, the stove is to the
left of a toaster.

No, there is a mat
near the plate.

Table 7: Examples of GQA questions from our sample that have incorrect ground truth answers.

Question: What sits next to the
street that is made of
asphalt?

What is on the motor-
bike that the person is
riding?

Does the window
look square?

Ground
truth:

The signal light sits
next to the street.

The mirror is on the
motorbike.

Yes, the window is
square.

Table 8: Examples of ambiguous GQA questions from our sample which have multiple potential
correct answers.
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B.4.2 EXAMPLES OF ISSUES IN THE TEXTVQA DATASET

Question: This railway track? Does the parking has
more space?

15:20 15:21 15:20
15:20 15:21?

Ground
truth:

yes; no; unanswer-
able; not a question;
...

yes; unanswerable;
answering does not
require reading the
text in the image; ...

yes; not a question;
unanswerable; ...

Table 9: Examples of ambiguous TextVQA questions from our sample. The TextVQA dataset
provides 10 ground truth answers per question, seperated here by “;”.

B.4.3 EXAMPLES OF THE GRADING DISAGREEMENT BETWEEN METHODS

Question: Who is wearing the
helmet?

Ground truth: the batter is wearing
the helmet

LLaVA-1.5-7B: the player

GQA evaluation: Incorrect

LLM evaluation: Correct

Table 10: A sample where the LLM marked the response correctly but the model response does not
contain a direct string match to the ground truth answer, and thus the automated evaluation fails.
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Question: What is the blue ob-
ject above the flower
pot hang from?

Do the pants look
clean or dirty?

Ground truth: hook clean

Robin used: Pythia 6.9B + ViT-g Pythia 1.4B + ViT-g

long response: The blue object above
the flower pot hang
from a hook on the
wall.

The pants on the base-
ball player appear to
be dirty.

short response: Ceiling Clean

Table 11: Examples of response differences when prompting for short vs. long responses.
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Question: What is that aircraft
called?

Which color do you
think are the pants?

Is the snow near the
sign both wet and
white?

Ground truth: That is a helicopter. The pants are light
blue.

Yes, the snow is wet
and white.

LLaVA-1.5-7B: The aircraft in the im-
age is a helicopter.

The pants are blue. Yes, the snow near
the sign is both wet
and white.

GPT-4V evaluation: Incorrect Incorrect Incorrect

GPT-4V reasoning: "...the question asks
for the specific name
of the aircraft... it is
likely a Boeing CH-
47..."

"...it does not account
for the pants of the
person on the right..."

"...determining if the
snow is wet just by
looking at the image
is not possible..."

Table 12: A few examples of how GPT-4V evaluations are stricter than ground truth or most human
evaluators.

Question: Which kind of furni-
ture is to the left of
the calculator?

The donut is in what?

Ground truth: there is no calculator
in the image

plastic tray.

LLaVA-1.5-7B: chair The donut is in a bas-
ket.

LLM evaluation: Incorrect Incorrect

VLM evaluation: Correct Correct

Table 13: Examples of VLM and LLM evaluations of GQA questions. On the left, the VLM is
more likely to hallucinate and agree with a trick question’s given answer than an LLM or automated
evaluator. On the right, the VLM shows greater flexibility in accepting alternative correct answers.
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C CHIRP

Benchmark questions and images available at https://huggingface.co/datasets/
Anonymous1234565/CHIRP

C.1 BENCHMARK DETAILS

Question Categories. We identified 8 distinct categories of questions that demand comprehensive
image analysis. For each category, we prompted GPT-4 to come up with questions and corresponding
image descriptions. After refining these by hand, we pass the image descriptions to Dall-E 3 to
generate the described image. We will aslo iterate the description untill obtaining an image of high
quality. We present the distribution of questions across different categories in Figure 18. The exact
categories and their explanations are as follow:

• Descriptive Analysis: This category involves questions that test the model’s ability to identify and
describe the physical elements in an image, including color, position, and interaction and also to
recognize specific details.

• Inferential Reasoning: It examines the model’s ability to infer things from the image, includ-
ing predicting possible subsequent events, making assumptions about previous contexts, and
hypothesizing alternative scenarios that contradict the present one in the image.

• Contextual Understanding: This category tests the model’s awareness of the importance of
context in image comprehension. This might involve understanding geographical or temporal
aspects that bear upon the image.

• Emotional and Psychological Understanding: It measures the model’s ability to gauge emotions
and psychological states from an image. This incorporates interpreting the visible emotional
expressions of characters in the image and hypothesizing about their mental state.

• Ethical Evaluations: Questions in this category check how the model deals with the ethical
implications of images. Can it recognize potential ethical concerns and judge the public display
acceptability of an image with respect to generally accepted ethical guidelines?

• Abstract Understanding: These questions gauge the model’s capacity for abstract thought — can
it identify underlying themes or messages in the image that aren’t immediately visible? Can it
engage in philosophical interpretation?

• Creative and Subjective Analysis: This category gauges the model’s creativity and its ability to
express subjective views on the image. It includes crafting extended narratives based on the image
scenery and presenting a personal point of view for the image.

• Visual Aesthetics Evaluation: This category examines the model’s ability to evaluate the visual
aesthetics of an image including aspects like balance, symmetry, colour composition, lighting, etc.

Figure 18: CHIRP single question category distribution.
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C.2 EVALUATION PROCEDURE

C.2.1 EVALUATION CRITERIA

We evaluated pairwise comparison of responses on each of the following criteria:

• Overall Preference: Which assistant’s response do you prefer overall, considering all factors?
• Relevance and Completeness Evaluation: Which assistant’s response is more relevant to the

question and provides a more complete answer?
• Understanding and Reasoning: Which assistant’s answer displays a better understanding of

concepts and better reasoning in its response?
• Hallucination Evaluation: Which assistant accurately describes the image without adding or

describing objects or elements that don’t exist in the image?
• Detail Evaluation: Which assistant’s description of the image is more detailed, taking into

consideration both the amount and quality of the details provided?

C.2.2 HUMAN SURVEY

We use Cloud Research to conduct human evaluations of our models on the CHIRP benchmark. We
conducted 3 different studies on Cloud Research:

1. LLM Size Study. A study comparing our ViT-g VE models accross the 5 LLM sizes.
2. VE Size Study. A study comparing our 12b parameter LLM models accross the 4 VE sizes.
3. All Robin Models Study. A study comprising of matchups comparing all 20 of our models.

For each of the 104 questions, we randomly sampled a portion of all possible pairwise combinations
of models involved in the study.

For the LLM size study, 5 of the 10 combinations of matchups between models were randomly
sampled for each question. For each of those sampled matchups, we asked participants to indicate
their preference for the 5 evaluation criteria. We only allowed each participant to respond with their
preferences for a single matchup. This led to a total of 520 individual responses (104 questions ∗
5 matchups). A breakdown of the questions asked in each survey is presented in Table 14. An
example of the participant interface is shown in Figure 19.

Table 14: Breakdown of CHIRP human survey evaluation matchups.
* For All Models, evaluators were only asked to provide preferences for the overall category.

Survey CHIRP
questions

Total
Matchups

Matchups
Sampled

Participants Criteria
Evaluated

LLM Size 104 10 5 520 5
VE Size 104 6 3 312 5
All Models 104 190 25 2600 1*

For all surveys, we targeted English-speaking participants aged 18-50 who had graduated high school.
Participants were compensated at an estimated rate of $0.10 per minute, following Cloud Research
guidelines. The first two studies, which required evaluating five criteria, were estimated to take 2
minutes each, with a compensation of $0.20. The last study, requiring evaluation of one criterion,
was estimated to take 1 minute, with a compensation of $0.10. This rate ensured that participants
were paid at least minimum wage. Post-study analysis showed that average response times agreed
with our estimates, confirming compliance with minimum wage requirements.
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Figure 19: Example of survey questions displayed to a human evaluator on Cloud Research. The
same instructions and format were used for all studies conducted on Cloud Research.
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C.2.3 AI EVALUATIONS

AI evaluations were run on all 10 matchups for both the LLM size study and VE size study. For the all
Robin models study, we only ran GPT-4V (R) on a sample of 50 of the 190 possible matchups for
each question. The prompts used for the evaluation are shown in Figures 20 and 21.

category_prompts = [
"Which response do you prefer overall, considering all

factors?",↪→

"Which response is more relevant to the question and
provides a more complete answer?",↪→

"Which response displays a better understanding of
concepts and better reasoning?",↪→

"Which response more accurately describes the image
without adding or describing objects or elements
that don't exist in the image?",

↪→

↪→

"Which response’s description of the image is more
detailed, taking into consideration both the amount
and quality of the details provided?"

↪→

↪→

]

response_eval = f"""
Here are two responses to the same question:

Response 1: {response_1}
Response 2: {response_2}

{category_prompts[category]}
Respond with the number 1 or 2 corresponding to the better

answer.↪→

"""

messages = [
{"role": "user", "content": <IMAGE> + f"{question}"}
{"role": "llava", "content": LLaVAs_response}
{"role": "user", "content": response_eval}
]

Figure 20: Prompt used for LLaVA-34B evaluation of model responses on the CHIRP benchmark.
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instruction = """
You are a helpful assisstant. You will be shown an image and a related question, along

with responses from two assistants. The assistants' responses are meant to answer
the given question.

↪→
↪→

Your task is to compare and evaluate the two responses to the given question about the
image.↪→

Image:
"""
categories = [

"Which assistant's response do you prefer overall, considering all factors?",
"Which assistant's response is more relevant to the question and provides a more

complete answer?",↪→
"Which assistant's response displays a better understanding of concepts and

better reasoning?",↪→
"Which assistant accurately describes the image without adding or describing

objects or elements that don't exist in the image?",↪→
"Which assistant's description of the image is more detailed, taking into

consideration both the amount and quality of the details provided?"↪→
]

response_eval = f"""
Question: {question}

Assistant 1 Response: {response_1}

Assistant 2 Response: {response_2}

{categories[category]}
Please do not provide Tie as an evaluation. You have to select between Assistant 1 or

Assistant 2. {"Reason about your thought process before giving the final answer."
if reasoning else "Please respond with only the number corresponding to the
assistant with the preferred response."}

↪→
↪→
↪→
"""
gpt_response = openai_client(

model = "gpt-4-vision-preview",
messages=[
{

"role": "user",
"content": [

{"type": "text", "text": instruction},
{
"type": "image_url",
"image_url": {

"url": image_url,
},

},
{"type": "text", "text": response_eval},

],
}

])

if not reasoning:
return gpt_response

final_evaluation = openai_client(
model="gpt-3.5-turbo",
messages=[
{

"role": "user",
"content": f"You will receive an evaluation of two responses including the

preferred assistants response. Your task is to analyze the text, determine
which assistant's response is preferred, and output the number
corresponding to the preferred assistant (either 1 or 2). Please only
respond with the number correspondig to the preferred assistant and no
additional information. For exmaple: 2. \n\nEvaluation:\n{gpt_response}"

↪→
↪→
↪→
↪→
↪→

}
]

)

return final_evaluation

Figure 21: Prompts used for GPT-4V evaluation of model responses on the CHIRP benchmark. The
reasoning variable in the psuedocode indicates whether the GPT-4v (R) (reasoning) or GPT-4v (S)
(simple) prompt is used. In the case of GPT-4v (R) prompts, the final choice is extracted using
GPT-3.5.
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C.2.4 ELO SCORE GRAPHS

Survey

GPT-4V (R)

LLaVA-34B

Figure 22: Elo scores calculated over LLM size and VE size on the 5 different evaluation criteria of
CHIRP using the 3 different evaluators. Graphs are calculated using bootstrapping on 500 samples.
Each sample is drawn with low transparency and the solid lines indicate the mean over samples for
the respective category. For each evaluator, the first row of graphs concerns the VE size ablation and
the second row concerns the LLM size ablation, with all X-axis being the size in log scale.
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C.2.5 COHEN’S KAPPA CALCULATION

We calculate Cohen’s Kappa to compare AI evaluations with human evaluations, whilst accounting
for the random chance of agreement. We compare only the matchups that were sampled in the
human surveys against the AI evaluations of those same matchups. Cohen’s Kappa (κ) is calculated
according to the formula:

κ =
po − pe
1− pe

po is the relative agreement: the proportion of matchups where the different evaluators agree on their
preference.

pe is the hypothetical probability of chance agreement: we calculate this term for all combinations
of matchups separately. Let pe(a,b)

be the probability pe for an individual matchup (a, b). Namely,
for each matchup of models a and b, and an evaluator E , the proportion of matchups where model a
is preferred will be represented as pE(a|a, b). The probability of two evaluators E and F agreeing
randomly for a matchup (a, b) is then:

pe(a,b)
= pE(a|a, b) ∗ pF (a|a, b) + pE(b|a, b) ∗ pF (b|a, b)

pe is then calculated by taking the weighted average over the frequency of matchups f(a,b) present in
the survey:

pe =
∑
(a,b)

f(a,b) ∗ pe(a,b)

C.2.6 CHIRP AND TRAINING LOSS CORRELATION

In the study with all the Robin models, comprising of matchups comparing all 20 of our models,
we examine the extent to which evaluation methods tend to favor the model with the lower average
training loss. In Table 15 we show the percentages of matchups where the evaluator choses the model
with the lowest loss. The lowest loss used is the average of the loss in the final 10 steps of training in
order to smooth out the spikes.

Furthermore, we compute the distance correlation Székely et al. (2007) (dCor) between the Elo scores
and the model loss. This distance correlation is shown in Table 16 and captures both linear and
non-linear associations between two vectors.

Our analysis reveals that both human surveys and GPT-4V (R) are highly correlated to the model
training loss. This indicates that the training loss remains a good first estimator of the performance of
a model on this benchmark, as in LLMs Kaplan et al. (2020); Ru et al. (2020). Furthermore, GPT-4V
(R) correlates particularly well with the model training loss. This could be due to different factors
such as the higher variance in the responses which is intrinsic to human evaluations and deserves to be
explored further in future research. The lower alignment portrayed by Table 15 of the decorrelation
of the model loss and parameter count in the larger models, based on Pythia 6.9B and 12B, as well as
the loss for different VEs on a give LLM being rather grouped, as shown in Appendix A.3.

Method Agreement

Human Survey 60.8%
GPT-4V (R) 71.2%

Table 15: Percentage of time the eval-
uators preferred the model with lower
training loss.

Method dCor

Human Survey 0.91
GPT-4V (R) 0.96

Table 16: Distance correlation between
the models’ Elo scores and training loss.

C.2.7 LOGITS AGREEMENT

To ensure that GPT-4V (R) evaluations of CHIRP considers the information from the images, we also
calculate the response’s text token probabilities. Using OpenAI’s Davinci-002 model OpenAI (2024),

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

we determine the average log probability of tokens in each model’s response to CHIRP questions.
In the study comprising of matchups from all 20 of our Robin models, the highest log probability
responses and the GPT-4V (R) evaluated responses agreed 48.7% of the time. This is practically
equivalent to random chance agreement, which would be at 50%. This near-random agreement
suggests that VLM evaluations are considering factors beyond the probability of response words
occurring together and are indeed investigating the image.

C.2.8 FURTHER EXPLANATIONS ON CONTRADICTIONS

Because human surveys were limited to 5 pairwise comparisons per question per category, we only
calculate contradictions using those same 5 comparisons in AI evaluations. In order to evaluate
logical contradictions, we start by building a directed graph where each model is a node and the link
between 2 nodes is the user preference. For instance, if the model based on Pythia 6.9B is preferred
over the model based on Pythia 2.8B, there will be a directional link from the Pythia 2.8B based
model to the Pythia 6.9B based model. A logical contradiction is when a cycle is created in the graph.

Figure 23 illustrated this, with a contradiction in sub-figure a as users indicated they preferred the
model based on Pythia 6.9B, over the one based on Pythia 1.4B, over the one based on Pythia 410M,
which implies that the model based on Pythia 6.9B should be preferred over the model based on
Pythia 410M. However, human evaluations showed that the model based on Pythia 410M is preferred
over the one on Pythia 6.9B, hence the contradiction.

Note that contradictions themselves have nothing to do with the sizes of the models, but rather if
there was an inconsistency in the transitivity of preferences for a given question.

(a) Contradiction (b) No Contradiction

Figure 23: Visualization of model preferences over multiple human evaluators for a single question.
Arrows point toward the evaluators preferred model. Contradictions take the form of cycles in the
graph. Left. Example of a contradiction in preferences. Right. Example where preferences remain
consistent.
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C.2.9 GRAPHING THE RESULTS OF CHIRP ON THE ROBIN SUITE

The graph in figure 24 shows the model preference of the human evaluators. Arrows from model A
to B indicate that users preferred the outputs of model B over model A. Not all users had the same
preference, therefore the stronger the arrow, the more a consensus was reached amongst the users on
their preferred model. A weaker, more transparent, arrow indicates that the users were more divided
on their preferred model, and that therefore this preference is less denoted. This can be seen as thicker
arrows are more trustworthy. "Ties", where as many users answered in favor of one or the other model
are not shown. We also note two main colors: the green arrows are for the user preferences which
support our hypothesis that users prefer larger models, while the red arrows indicate user preferences
that do not support this hypothesis. We see an overwhelming amount of preference for larger models,
with a notable exception for models using the CLIP ViT-B vision encoder and Pythia 410M LLM,
where this trend is reversed.

(a) Graph showing the complete user preferences in the “Overall” category of the Robin suite.

Figure 24: Visualization of model preferences over multiple human evaluators for the CHIRP
benchmark. Arrows point toward the evaluators preferred model. The expected preference indicates
when users preferred the larger model, while an unexpected preference denotes users preferring the
smaller model.
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