
Large Pre-trained time series models for cross-domain
Time series analysis tasks

Harshavardhan Kamarthi
College of Computing

Georgia Institute of Technology
harsha.pk@gatech.edu

B. Aditya Prakash
College of Computing

Georgia Institute of Technology
badityap@cc.gatech.edu

Abstract

Large pre-trained models have been vital in recent advancements in domains
like language and vision, making model training for individual downstream tasks
more efficient and provide superior performance. However, tackling time-series
analysis tasks usually involves designing and training a separate model from
scratch leveraging training data and domain expertise specific to the task. We tackle
a significant challenge for pre-training a foundational time-series model from multi-
domain time-series datasets: extracting semantically useful tokenized inputs to the
model across heterogenous time-series from different domains. We propose Large
Pre-trained Time-series Models (LPTM) that introduces a novel method of adaptive
segmentation that automatically identifies optimal dataset-specific segmentation
strategy during pre-training. This enables LPTM to perform similar to or better
than domain-specific state-of-art model when fine-tuned to different downstream
time-series analysis tasks and under zero-shot settings. LPTM achieves superior
forecasting and time-series classification results taking up to 40% less data and
50% less training time compared to state-of-art baselines.

1 Introduction

Time-series analysis tasks are important well-studied problems such as forecasting (Hyndman and
Athanasopoulos, 2018) and classification (Chowdhury et al., 2022) with applications in wide-ranging
domains such as retail, meteorology, economics, and health. Recent works (Chen et al., 2021; Wang
et al., 2022; Zeng et al., 2023) have shown the efficacy of purely data-driven deep learning models.
However, most state-of-art neural models are known to be data-hungry and require substantial training
data. Motivated by language and vision foundational models Bommasani et al. (2021), recent body of
works build pre-trained time-series models Das et al. (2023b); Ansari et al. (2024); Jin et al. (2024);
Rasul et al. (2023). These models are trained on diverse datasets from different domains during
pre-training. They require less training resources and data and produce superior performance. These
models can also be deployed without any training, in a zero-shot or few-shot setting.

These foundational models, however, require large amounts of data for pre-training, which is still a
challenge for time-series datasets. Moreover, they do not provide consistent performance improvement
across all the domains. We identify an important challenge to building a unified pre-trained model
for time-series that is pre-trained on and deployed to multiple domains: representation of diverse
time-series input into these models.

Most neural sequential models input time-series values for each time-step separately. However,
unlike text data, each individual time stamp may not provide enough semantic meaning about local
temporal patterns of the time series. To tackle this, Nie et al. (2022) proposed to segment the time
series and input each segment as individual tokens to their transformer-based model. This simple
segmentation method of tokenizing time-series has been used by recent pre-trained models Woo et al.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(2024); Das et al. (2023b) to provide superior performance across multiple applications. However,
segmenting input time-series uniformly with fixed-length segments, while simple, can be a very
inflexible tokenizing method, especially when dealing with datasets from multiple domains with
different set of underlying generative dynamics, sampling rate, noise, etc. For example, among two
datasets, a dataset with a lower sampling rate (such as GDP time-series) may require longer segments
than those with higher sampling rates to capture similar patterns in the model (such as heart sensors
collecting data in milliseconds). However, note that the dynamics of the same time-series may vary
with time Liu et al. (2024a). For, time intervals that are smoother with less complex dynamics, using
longer segment sizes may suffice but intervals where time-series are complex and have multiple
temporal patterns may require finer-grained segmentation. For example, for seasonal epidemics,
time-series is smoother during the off-season and has more complex dynamics during outbreaks and
times of higher incidence.

We tackle this important problem of representing diverse time-series datasets when training a pre-
trained foundational model for time-series and propose Large Pre-trained Time-series Models
(LPTM), a novel method for generating pre-trained models for time-series data across multiple
domains. LPTM uses a simple transformer-based architecture and leverages masking-based self-
supervised pre-training to train on multiple datasets from different domains. Our main contribution
focuses on how we input time-series segments as tokens to the transformer. To overcome the
challenges associated with segmentation on diverse datasets discussed above, we propose a novel
adaptive segmentation module that segments the time-series of each domain based on how well it
performs on self-supervised pre-training. The segmentation module uses a novel scoring mechanism
during pre-training to identify an effective segmentation strategy for a domain. LPTM can be fine-
tuned or deployed in a zero-shot setting to various forecasting and classification tasks in domains
such as epidemiology, energy, economics, behavioural datasets, etc. LPTM provides performance on
par with state-of-art models with lesser pre-training data, training data and fewer training steps. Our
main contributions can be summarized as follows:

•Multi-domain Pre-trained time-series model We propose a framework for generating foundational
pre-trained models for time-series that are trained on multiple datasets across varied domains. LPTM
solves the tokenization problem for cross-domain time-series data and proposes a novel adaptive
segmentation module which is important to build pre-trained models for time-series similar to
foundational models for text and vision.

• Adaptive segmentation for cross-domain pre-training To optimally extract semantically useful
information from time-series of different domains with varied dynamics and sampling rates for
pre-training, we propose a novel adaptive segmentation module that learns segmentation strategy for
each domain based on losses from self-supervised learning tasks.

• State-of-art and efficient performance in diverse downstream time-series tasks We evaluate
LPTM on downstream forecasting and classification tasks from multiple domains and observe that
LPTM consistently provides performance similar to or better than previous state-of-art models
usually under zero-shot evaluation as well as when fine-tuned with lesser training data and compute
time. Overall, we also observe that LPTM typically requires less than 80% of training data used by
state-of-art baselines to provide similar or better performance.

2 Problem Setup

Time-series analysis tasks Our pre-trained model can be used for many time-series tasks including
forecasting and classification from multiple benchmarks and domains. For a given downstream task
let DT be the time-series dataset consisting of time series y1...T . A time-series analysis task’s goal is
to predict important properties of the time-series. For example, the forecasting task involves predicting
the future values yT+1...T+K whereas classification involves predicting the class label of the input
time-series based on labelled training data.

Self-supervised pre-training on multi-domain datasets The goal of our work is to learn useful
knowledge and patterns from time-series datasets from time-series from different domains. Formally,
we have access to time-series datasets from K domains where the datasets of domain k is denoted as
D′

k = {D′
k,i}

N(k)
i=1 where N(k) is the number of datasets in domain k. Examples of these domains

include epidemiology, energy forecasting, macroeconomics, traffic prediction, etc. The entire set of

2



heterogenous multi-domain pre-train dataset is denoted as Dpre = {D′
1,D′

2, . . . ,D′
K}. In order to

effectively pre-train LPTM on Dpre we formulate the problem as a set of self-supervised learning
tasks Tpre = {Ti}Ri=1 on the set of pre-training datasetsDpre. During pre-training, we sample (D′

k,i, k),
a dataset and its domain label from Dpre and train the model on each of the self-supervised learning
tasks in Tpre. The tasks in Tpre are self-supervised and do not require additional labels or other ground
truth. These tasks mask patches of the input data and train the model to recover the original input.

Therefore, our problem can be formally stated as: Given a heterogeneous set of multi-domain datasets
Dpre and their domain labels, we train a model leveraging SSL tasks Tpre that learns important
patterns and knowledge that can be leveraged on fine-tuning the model to any time-series analysis
task on any novel dataset from any of the domains d ∈ {1, 2, . . . ,K}.

3 Methodology

GRU

Segment Scoring and pruning segments

Transformer

Chosen subset of
subsequences

Output embeddings

Figure 1: Overview of LPTM. The input time-series y(1...T ) is first segmented based on a scoring
function optimized using SSL loss. The segments are fed as individual tokens to the transformer
encoder to get output embeddings of time-series that are used for downstream tasks.

Similar to model pipelines used in NLP and vision, we first train a pre-trained model M(θpre)
on multiple pre-training datasets Dpre. Most parameters of the pre-trained model θpre are trained
over all the datasets and tasks. However, we use a separate segmentation module for each dataset
domain to capture varied sizes of segments that differ across datasets. These segments are used as
tokens for a transformer model that shares the parameters across all the tasks. For each pre-trained
and downstream task, we append a final linear layer on the output embeddings of the transformer
to generate the final prediction. Note that during fine-tuning on downstream tasks we update the
parameters of all the modules of LPTM.

3.1 Adaptive Segmentation module

Previous works input each time-step of a time-series as individual tokens or fixed-sized segments.
Unlike text, individual time-steps do not typically provide any semantic meaning about the temporal
patterns of the time-series. Therefore, Nie et al. (2022) proposed to segment the input time-series
into uniform length segments and use each of the segments as tokens to the transformer model.
Segments of fixed size are also too inflexible to capture semantics of sequences that show varied
behaviour across time and across datasets. Different pre-trained datasets may have varied temporal
scales, periodicity and other temporal dynamics that cannot be encompassed by a single uniform
segmentation strategy. For example, epidemic time-series are usually observed weekly and may
have characteristic properties like seasonality, peaks and sudden outbreaks that should be captured
by segmentation. Economic time-series, in contrast, are typically captured every quarter and are
more monotone with sudden anomalies and changes in data distribution. Moreover, using a uniform
segmentation may not be ideal for time series with multi-scale trends with some time-stamps having
denser temporal information requiring finer-graned segmentation than others. Therefore, our goal is
to identify an independent segmentation strategy for each domain of time-series dataset.

Overview LPTM automatically identifies an effective segmentation strategy for each dataset
domain during pre-training. The overarching goal of the segmentation module involves identifying
segments that lead to lower SSL loss. The segmentation module first scores all possible segments of

3



the input time-series and the segments with the highest scores are then chosen as the output segments
used to tokenise the time-series. The scoring function is trained such that the score of the segments
will reflect how likely the chosen segments will lower the SSL loss.

Details For a given input time-series y(1...t), we pass it through a GRU to get hidden embeddings
{z(i)}ti=1 that models the temporal patterns of the input:

{z(i)}ti=1 = GRU1({y(i)}ti=1). (1)
We then introduce a segment score function s that provides a scalar score for any subsequence of the
input time-series:

s(i, j) = vT tanh (W1zi +W2zj + b) . (2)
Intuitively, the score s(i, j) for a subsequence from time-stamp i to j denotes how good the given
segment is for the dataset when optimizing for the SSL loss.

In next step, we sample subset S(y(1...t)) of subsequences over the time-series that a) covers the
entire input time-series, b) has a high score function value. While retrieving the optimal S(y(1...t)) is
an interesting combinatorial optimization problem, we generate S(y(1...t)) using a simple process as
follows: for each i ∈ {1, 2, . . . , t − 1}, we denote h(i) = argmaxj∈{i+1...,t−1} s(i, j) as the best
segment starting from time-step i. Then we generate the set of segments Ŝ(y(1...t)) = {(i, h(i))}t−1

i=1 .
To reduce the number of segments, we iteratively remove the lowest-scoring segments until we
cannot remove any more segments without having time-steps not covered by any segments in the
set. The final set of segments after pruning is denoted as S(y(1...t)). The segmentation procedure is
summarized in Alg. 1.

Algorithm 1: Adaptive Segmentation Module

Input :Time-series y(1...t) = {y(i)}ti=1

1 Procedure GetScores(y(1...t))
2 {z(i)}ti=1← GRU({y(i)}ti=1) ; // Encode time-series with GRU
3 for i ∈ {1, 2, . . . , t− 1} do
4 for j ∈ {i+ 1, . . . , t} do
5 s(i, j)← vT tanh

(
W1z

(i) +W2z
(j) + b

)
; // Scores for all segments

6 return {s(i, j)}i<j
i,j∈{1,...,t};

7 Procedure ChooseSegments({s(i, j)}i<j
i,j∈{1,...,t})

8 for i ∈ {1, 2, . . . , t− 1} do
9 h(i)← argmaxj∈{i+1,...,t} s(i, j); // Best segment starting at index i

10 Ŝ ← {(i, h(i))}t−1
i=1;

11 i← argminj:(j,h(j))∈Ŝ h(j); // Select lowest scoring segment

12 while Segments in Ŝ − {(i, h(i))} doesn’t cover all time-steps {1, 2, . . . , t} do
13 Ŝ ← Ŝ − {(i, h(i))};
14 i← argminj:(j,h(j))∈Ŝ h(j);

15 return S ← Ŝ;

To generate the token embeddings ê(i, j) for each segment (i, j), we pass the embeddings
{z(i), z(i+1), . . . , z(j)} through a self-attention layer used in transformers and aggregate the output
embeddings.

ê(i, j) =

j∑
k=i

Self-Atten{z(i), z(i+1), . . . , z(j)} (3)

Additionally, we concatenate the following features to the token embedding of each segment token to
provide information regarding the position and length of the segment: (1) Positional encoding of the
starting time-step of the segment pos(i) defined as:

pos(i) =
{
sin(i/105i/D) if i is even
cos(i/105(i−1)/D) if i is odd.

(4)

4



where D is the dimensions of output embedding of self-attention over {êi, êi+1, . . . , êR}. (2) Po-
sitional encoding of the length of the segment pos(j − i). The final output of the segmentation
module is a sequence {ei}Ri=1 where R number of segments. The segments are arranged based on the
ascending order of the first time-stamp of each segment. The token embeddings are fed into a stack
of transformer layers similar to the encoder of the transformer Vaswani et al. (2017). The output of
the transformer layers is a sequence of output embeddings denoted as {oi}Ri=1.

3.2 Self-supervised learning Tasks

Pre-training on a wide range of heterogeneous datasets from multiple domains helps LPTM learn
from useful patterns and latent knowledge across these domains that can be generalized to range
downstream tasks on different domains. We propose two general self-supervised learning tasks
motivated by pre-trained language models to enable LPTM to learn from all pre-trained datasets. We
leverage a transformer model and use the segment token embeddings of the segmentation module.
The two pre-training SSL tasks are Random Masking (RANDMASK) and Last token masking
(LASTMASK). RANDMASK allows the model to extrapolate and interpolate masked segments of
the input time-series. RANDMASK has also been explored for representation learning in previous
works (Zerveas et al., 2021; Nie et al., 2022) but are applied on the same dataset as that used for
training unlike our data and task-agnostic pre-training setup. Formally, we mask each input segment
token with a probability of γ and decode the values of time-series of the masked segments from
the output embeddings of the transformer. We use a simple GRU with a single hidden layer on the
output embedding of the masked token to decode the values of the segment. We use mean-squared
error as the loss LSSL. LASTMASK is similar to RANDMASK except we mask last γ fraction of the
segments. This allows the model to forecast the future values of the time-series, an important task in
many time-series domains.

3.3 Training details

Instance normalization The values of the time-series of each dataset can vary widely based on
the time-series domain. Therefore, as part of pre-processing, we first normalize the time-series of
each dataset of pre-train datasets independently. Moreover, the data distribution and the magnitude of
the time-series can vary across time. We use reversible instance normalization (REVIN) layer Kim
et al. (2021). REVIN performs instance normalization on the input time-series and reverses the
normalization of the output values. The normalization step is part of the neural model and gradients
are calculated over the normalization and reverse normalization layers.

Training the score function We use the loss from the SSL tasks to train the score function of the
segmentation module and GRU in Eqn. 1. Since there is no direct gradient flow between the score
function and the final predictions, due to the discrete nature of choosing the segments, we match the
aggregated scores of all the chosen segments in S(y(1...t)) to the negative logarithm of the total MSE
loss of both SSL tasks:

Lg =

 ∑
(i,j)∈S(y(1...t))

s(i, j) + log(LSSL)

2

(5)

where LSSL is the total loss of both SSL tasks. We also backpropagate over Lg once every 10 batches
to stabilize training since changing the segmentation strategy for every batch leads to unstable and
inefficient training.

Linear-probing and fine-tuning Kumar et al. (2022) showed that fine-tuning all the parameters of
the pre-trained model for a specific downstream task can perform worse than just fine-tuning only the
last layer (linear probing), especially for downstream tasks that are out-of-distribution to pre-trained
data. To alleviate this, they suggest performing a two-stage fine-tuning process: we first perform
linear probing followed by fine-tuning all the parameters.

4 Related Works

Neural models for time-series analysis DeepAR Salinas et al. (2020) is a popular forecasting
model that trains an auto-regressive recurrent network to predict the parameters of the forecast

5



distributions. Deep Markov models Krishnan et al. (2017); Rangapuram et al. (2018); Li et al. (2021);
Gu et al. (2021) model the transition and emission components with neural networks. Recent works
have also shown the efficacy of transformer-based models on general time-series forecasting Oreshkin
et al. (2019); Zhou et al. (2021); Chen et al. (2021); Zhou et al. (2022); Liu et al. (2021). However,
these methods do not perform pre-training and are trained independently for each application domain.
therefore, they do not leverage cross-domain datasets to generate generalized models that can be used
for a wide range of benchmarks and tasks.

Self-supervised learning for time-series Recent works have shown the efficacy of self-supervised
representation learning for time-series for various classification and forecasting tasks in a wide range
of applications such as modeling behavioral datasets Merrill and Althoff (2022); Chowdhury et al.
(2022), power generation Zhang et al. (2019), health care Zhang et al. (2022). Franceschi et al.
(2019) used triplet loss to discriminate segments of the same time-series from others. These works
use methods such as contrastive losses Eldele et al. (2021); Yue et al. (2022) or other similarity
metric-based techniques Tonekaboni et al. (2021). However, all these methods apply SSL on the
same dataset that is used for training and may not adapt well to multi-domain datasets. There has
been some recent works leveraging foundational models like LLMs for time-series forecasting across
multiple applications. One set of works directly uses LLMs without fine-tuning to perform time-series
forecasting via careful prompting Gruver et al. (2024); Jin et al. (2024); Liu et al. (2024d). Other works
fine-tune LLMs specifically for time-series forecasting Zhou et al. (2023); Rasul et al. (2023); Ansari
et al. (2024). The time-series representation used by these models includes using individual time-steps
as input Ansari et al. (2024), converting each digit of the time-series to character embeddings to be
directly used by LLMs Gruver et al. (2024); Jin et al. (2024) and uniform segmentation Das et al.
(2023b); Woo et al. (2024); Zhou et al. (2023). LPTM performs superior to these methods while
being 10x to 100x smaller than the large LLMs used as backbones.

5 Experiment Setup

Datasets We derive pre-train time-series datasets from multiple domains: • Epidemics: We use a
large number of epidemic time-series aggregated by Project Tycho (van Panhuis et al., 2018). from
1888 to 2021 for different diseases collected at state and city levels in the US. We remove time
series with missing data and use time series for 11 diseases of very diverse epidemic dynamics
such as seasonality, biology, geography, etc.: Hepatitis A, measles, mumps, pertussis, polio, rubella,
smallpox, diphtheria, influenza, typhoid and Cryptosporidiosis (Crypto.). • Electricity: We use
ETT electricity datasets (ETT1 and ETT2) collected from (Zhou et al., 2021) at 1 hour intervals
over 2 years. We use the default 12/4/4 train/val/test split and use the train split for pre-training
as well. • Traffic Datasets: We use 2 datasets related to traffic speed prediction. PEMS-Bays
(PEM-B) and METR-LA (Li et al., 2017) are datasets of traffic speed at various spots collected
by the Los Angeles Metropolitan Transportation Authority and California Transportation Agencies
over 4-5 months. • Demand Datasets: We use bike and taxi demand datasets (NY-B, NY-T) from
New York City collected from April to June 2016 sampled every 30 minutes. We all but the last
5 days of data for training and pre-training. • Stock forecasting: We also collect the time-series
of daily stock prices of Nasdaq and S&P 500 index using Yahoo finance data (Xu and Berkely,
2014) from July 2014 to June 2019. We train and pre-train using the first 800 trading days and use
the last 400 for testing. •M4 competition time-series: We also used the 3003 time-series of M4
forecasting competition (Makridakis and Hibon, 2000) which contains time-series from multiple
domains including demographics, finance, and macroeconomics. •Motion and behavioral sensor
datasets: We use the set of sensor datasets extracted from UEA archive (Bagnall et al., 2018) and
UCI Machine learning repository (Asuncion and Newman, 2007) similar to (Chowdhury et al., 2022).
Note that our publicly accessible pre-training dataset is significantly smaller than other pre-trained
datasets used by past work Ansari et al. (2024); Das et al. (2023b) some of which use confidential
data inaccessible to us. We also do not use any synthetic datasets like Das et al. (2023b); Ansari et al.
(2024).

Downstream tasks We test the pre-trained LPTM trained on datasets discussed above on multiple
forecasting and time-series classification tasks. We perform forecasting on the influenza incidence
time series in US and Japan. Specifically, we use the aggregated and normalized counts of outpatients

6



exhibiting influenza-like symptoms released weekly by CDC1. For influenza in Japan, we use
influenza-affected patient counts collected by NIID2. We forecast up to 4 weeks ahead over the period
of 2004 to 2019 flu seasons using a similar setup as Flusight competitions Reich et al. (2019).

We also perform electricity forecasting on the ETT1 and ETT2 datasets using the train/test split
mentioned previously. The last 10% of PEM-Bays dataset is used for traffic forecasting up to 1 hour
ahead and the last 5 days of New York demand datasets for demand forecasting up to 120 minutes
in the future. We also perform forecasting on the Nasdaq dataset for up to 5 days ahead and M3
time-series for 1 month ahead. We use 6 of the sensor datasets from Asuncion and Newman (2007)
for time-series classification tasks. We use an 80-20 train-test split similar to Chowdhury et al. (2022).

Baselines We compared LPTM’s performance in various time-series tasks against twenty two
state-of-the-art general forecasting and domain-specific baselines. First, we compare against recent
pre-trained foundational time-series models: (1) LLM-Time Gruver et al. (2024), (2) TimesFM Das
et al. (2023b), (3) Lag-LLAMA Rasul et al. (2023), (4) Chronos Ansari et al. (2024) and (5)
MOIRAI Woo et al. (2024). We skip models like Time-LLM Jin et al. (2024), MOMENT Goswami
et al. (2024) and Autotimes Liu et al. (2024b) which cannot perform zero-shot forecasting across
domains and are outperformed by the aforementioned recent models when fine-tuned. We compared
with (6) Informer Zhou et al. (2021), (7) Autoformer Chen et al. (2021), (8) iTransformer Liu et al.
(2023) and (9) PatchTST Nie et al. (2022), four state-of-the-art transformer-based forecasting models.
We also compare against other recent model (10) MICN (Wang et al., 2022), (11) TiDE Das et al.
(2023a) (12) TFT Lim et al. (2021) and (13) TimesNeT Wu et al. (2023). We also compare with (14)
N-HITS Challu et al. (2023) which uses multi-scale interpolation and (15) AutoARIMA Hyndman
and Khandakar (2008) a ARIMA based model that does automatic hyperparameter search. We also
compare it against three other state-of-art self-supervised methods for time-series: (16) TS2Vec (Yue
et al., 2022), (17) TS-TCC (Eldele et al., 2021) and (18) SimMTM Dong et al. (2024) uses masking
as pre-trained task for time-series classification.

Finally, we compared against the best models for individual tasks for each domain. For influenza
forecasting, we compared against previous state-of-art models (19) EpiFNP Kamarthi et al. (2021)
and (20) ColaGNN Deng et al. (2020) respectively. We also compare against (21) STEP Shao et al.
(2022) a SOTA model for demand forecasting, traffic prediction, and stock prediction benchmarks
among the baselines by automatically modelling sparse relations between multiple features of the
time-series. For classification tasks, we compare against (22) TARNet Chowdhury et al. (2022).

6 Results

Table 1: Average zero-shot forecast performance (measured as RMSE over 10 runs) of LPTM and
pre-trained baselines. The best model is in bold.

Model Flu-US Flu-japan ETT1 ETT2 PEM-B NY-B NY-T Nasdaq M4
LLM-Time 1.38 1411 0.57 0.54 4.3 4.5 13.53 0.29 1.189
TimesFM 1.35 1259 0.61 0.59 3.9 3.9 13.11 0.29 1.211

Lag-LLAMA 1.52 1488 0.83 1.06 5.3 3.8 12.84 0.24 1.311
Chronos 1.29 1274 0.62 0.56 4.2 3.6 13.74 0.29 1.125
MOIRAI 1.39 1411 0.69 0.52 4.2 4.4 13.82 0.27 1.192
TS2Vec 1.94 1233.1 1.33 1.82 3.7 4.1 14.39 0.87 1.616
TS-TCC 2.17 1356.15 1.14 1.57 4.1 3.8 15.72 0.92 1.492

SimMTM 2.17 1356.15 1.14 1.57 4.1 3.8 15.72 0.92 1.492
LPTM 1.14 996 0.53 0.49 3.4 3.2 13.12 0.22 0.972

The code for implementation of LPTM and datasets are provided at anonymized link3 and hyperpa-
rameters are discussed in the Appendix. LPTM consists of 10 layers for the transformer and overall
has about 100M parameters which 2x to over 10x smaller than other pre-trained time-series models.

Zero-shot forecasting An important benefit of foundational models in language and vision is their
ability to adapt to novel tasks without any fine-tuning in a zero-shot setting Brown et al. (2020). We

1https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
2https://www.niid.go.jp/niid/en/idwr-e.html
3https://github.com/AdityaLab/LPTM

7

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://www.niid.go.jp/niid/en/idwr-e.html
https://github.com/AdityaLab/LPTM


Table 2: Average forecast performance (measured as RMSE over 10 runs) of LPTM and baselines
over different domains. The best model is in bold and the second best is underlined.

Model Flu-US Flu-Japan ETT1 ETT2 PEM-B NY-B NY-T Nasdaq M4 Rank
AutoARIMA 2.14 1344 0.73 0.64 4.1 4.13 16.43 0.62 1.89 25.06

Informer 1.62 1139 0.57 0.71 3.1 2.89 12.33 0.83 1.055 15.89
Autoformer 1.41 1227 0.72 0.82 2.7 2.73 12.71 0.19 0.887 13.67
PatchTST 0.96 1113 0.52 0.63 2.5 2.64 11.95 0.15 0.877 7.5
N-HITS 1.42 1211 0.53 0.62 2.9 2.74 11.87 0.57 0.968 13.0

TiDE 1.21 1186 0.49 0.49 3.5 3.86 11.95 0.57 1.078 13.44
MICN 0.95 1145 0.49 0.57 3.6 2.61 11.56 0.13 0.931 7.77

TimesNet 1.04 1194 0.56 0.62 3.9 2.83 11.82 0.19 1.055 12.11
TFT 1.21 1876 0.52 0.51 4.6 2.95 12.55 0.24 1.18 16.11

iTransformer 1.14 1256 0.57 0.59 4.3 2.83 13.16 0.29 1.125 17.5
LLM-Time 1.21 1319 0.52 0.49 3.9 3.7 12.11 0.21 1.064 14.05
TimesFM 1.32 1214 0.58 0.49 3.7 2.8 12.19 0.22 1.07 13.44

Lag-LLAMA 1.46 1416 0.61 0.57 3.9 2.9 13.43 0.28 1.33 20.16
Chronos 1.21 1228 0.59 0.52 3.7 3.1 12.82 0.27 1.04 15.55
MOIRAI 1.31 1336 0.62 0.55 3.9 3.5 13.71 0.24 1.21 19.22

STEP 1.17 983 0.54 0.93 2.7 2.52 10.37 0.11 1.331 10.33
EpiFNP 0.52 872 0.81 1.25 4.1 2.98 12.11 0.28 1.281 16.77

ColaGNN 1.65 694 0.72 1.19 3.9 3.19 14.97 0.25 1.185 19.22
TS2Vec 1.85 905.9 0.99 1.74 3.5 3.11 13.48 0.94 1.344 21.94

SimMTM 1.31 1289 0.61 0.55 3.4 3.1 12.79 0.28 1.284 17.94
TS-TCC 1.94 1134.6 0.75 1.29 3.3 2.97 15.55 0.76 1.274 21
LPTM 0.79 704 0.49 0.46 2.5 2.37 11.84 0.17 0.872 2.55

LPTM-NoSegment 0.93 766 0.57 0.55 3.2 3.17 14.96 0.27 1.146 13.72
LPTM-NoPreTrain 0.96 827 0.46 0.57 3.7 2.66 12.43 0.25 1.271 11.66
LPTM-NoLinProb 0.92 885 0.43 0.53 3.1 2.49 12.17 0.19 1.032 6.55

LPTM-OnlyRandMask 0.87 895 0.51 0.52 2.8 2.42 12.36 0.21 1.076 8.0
LPTM-OnlyLastMask 0.79 773 0.44 0.48 2.7 2.31 12.04 0.19 0.916 3.77

evaluate the zero-shot performance of LPTM and other pre-trained baselines. Similar to Gruver et al.
(2024) we use the last 20% of the datasets for zero-shot evaluation. We do not fine-tune the models
but only input the normalized time-series for new tasks directly during inference. The results are
summarized in Table 1. LPTM outperforms all the baselines significantly. Moreover, the baselines
such as TS2Vec, TS-TCC and SimMTM which are not designed to handle datasets from multiple
domains perform much worse than other pre-trained methods. This shows the importance of adaptive
segmentation-based tokenization of LPTM to better generalize across multiple domains.

Fine-tuned forecasting We also train the models with training data to evaluate fine-tuned perfor-
mance. The forecasting performance are shown in Table 2. We evaluated LPTM against seventeen
other forecasting baselines. LPTM is either the first or a close second best-performing model in
all the benchmarks. LPTM generally outperforms general time-series forecasting methods as well
as 2recent pre-trained models in all benchmarks despite its much lower parameter count (2-10x
lower). Further, it is competitive or superior in performance to domain-specific methods designed
specifically for the given domains (such as EpiFNP and STEP). LPTM beats the previous state-of-art
domain-specific baselines in five of the benchmarks and comes second in four more. Finally, LPTM
improves upon the state-of-art on electricity forecasting, traffic forecasting, and M3 datasets.

Time-series classification Unlike other autoregressive foundational models designed for forecast-
ing, LPTM can be used for classification due to its encoder-style architecture. We add a single
classification layer over pooled output embeddings {o(i)}Ri=1 to predict the class logits. We evaluate
LPTM and baselines on the classification of 35 sensor and behavioral datasets from UCI classification
repositiry(Asuncion and Newman, 2007). We report the accuracy scores in Table 3. We observe that
LPTM has highest mean rank and largest number of times it outperforms all baselines.

Data efficiency A significant advantage of leveraging pre-trained models is that we do not require
large datasets for fine-tuning to a specific task. We evaluate the efficacy of LPTM to train with a
fraction of training data. For each time-series analysis task, we fine-tune the model using only k%
of training data for different values of k. We use the first k% of the timestamps’ values. We do not
choose a random sample to prevent data mixing from the rejected portion of training data. We also
performed the similar experiment on the best baseline for each task and compare data efficiency of
baseline with LPTM. The comparison plots are shown in Figure 2. With lesser data, the performance

8



Table 3: Average classification performance (measured as accuracy score over 10 runs) of LPTM
and baselines over different domains. The best model is in bold and the second best is underlined.
The best model is statistically significant over the baselines (p ≤ 0.05) when it beats the previous
state-of-art.

Informer Autoformer TimesNet TARNet TS2Vec TS-TCC TST SimMTM CRT LPTM
BasicMotions 0.95 0.93 0.92 1.00 0.99 1.00 0.92 0.86 0.88 1.00
FaceDetection 0.51 0.49 0.59 0.63 0.51 0.54 0.62 0.73 0.78 0.79

FingerMovements 0.58 0.54 0.58 0.62 0.46 0.47 0.59 0.68 0.72 0.78
PEMS-SF 0.67 0.71 0.84 0.94 0.75 0.73 0.93 0.86 0.89 0.93

RacketSports 0.83 0.86 0.91 0.98 0.77 0.85 0.79 0.84 0.87 0.93
EigenWorms 0.49 0.62 0.73 0.89 0.84 0.77 0.72 0.82 0.79 0.94

ArticularyWordRecognition 0.83 0.82 0.79 0.97 0.89 0.97 0.92 0.92 0.88 0.98
AtrialFibrillation 0.57 0.55 0.68 1.00 0.44 0.37 0.72 0.85 0.89 0.93

CharacterTrajectories 0.57 0.55 0.68 0.97 0.98 0.96 0.99 0.97 0.93 0.98
Cricket 0.94 0.87 0.88 1.00 0.98 0.97 0.84 0.96 0.94 0.99

DuckGeese 0.54 0.44 0.56 0.75 0.39 0.57 0.74 0.58 0.55 0.79
Epilepsy 0.58 0.57 0.61 1.00 1.00 0.98 0.94 0.78 0.55 0.97
ERing 0.23 0.29 0.46 0.92 0.89 0.78 0.86 0.64 0.75 0.97

EthanolConcentration 0.14 0.27 0.34 0.32 0.45 0.37 0.46 0.34 0.21 0.53
HandMovementDirection 0.14 0.27 0.34 0.32 0.45 0.37 0.46 0.34 0.21 0.53

Handwriting 0.16 0.18 0.29 0.24 0.52 0.55 0.37 0.64 0.52 0.51
Heartbeat 0.53 0.66 0.61 0.78 0.71 0.69 0.74 0.74 0.62 0.74

InsectWingbeat 0.13 0.16 0.14 0.14 0.18 0.22 0.69 0.62 0.18 0.72
JapaneseVowels 0.87 0.96 0.94 0.99 0.97 0.98 0.99 0.94 0.99 0.98

Libras 0.72 0.64 0.75 1.00 0.85 0.92 0.91 0.82 0.88 0.95
LSST 0.36 0.44 0.32 0.97 0.54 0.62 0.65 0.53 0.48 0.98

MotorImagery 0.51 0.52 0.50 0.64 0.62 0.61 0.62 0.46 0.58 0.57
NATOPS 0.75 0.69 0.84 0.92 0.91 0.92 0.94 0.85 0.88 0.94
PenDigits 0.84 0.86 0.81 0.97 0.98 0.95 0.97 0.94 0.88 0.92
Phoneme 0.11 0.13 0.15 0.17 0.28 0.226 0.29 0.26 0.18 0.32

SelfRegulation 0.65 0.76 0.57 0.81 0.77 0.84 0.89 0.96 0.73 0.92
SpokenArabicDigits 0.92 0.96 0.92 0.98 0.94 0.97 0.99 0.96 0.94 1.00

StandWalkJump 0.21 0.10 0.34 0.53 0.28 0.31 0.61 0.52 0.11 0.58
UWaveGesture 0.79 0.86 0.82 0.87 0.91 0.92 0.86 0.74 0.82 0.94

PAMAP2 0.73 0.87 0.84 0.97 0.93 0.94 0.96 0.93 0.88 0.97
OpportunityGestures 0.73 0.66 0.68 0.83 0.92 0.74 0.74 0.62 0.72 0.92

OpportunityLocomotion 0.84 0.78 0.85 0.91 0.75 0.82 0.84 0.87 0.89 0.89
SelfRegulationSCP2 0.562 0.598 0.612 0.622 0.593 0.575 0.604 0.614 0.625 0.691

Occupancy 0.774 0.739 0.814 0.833 0.876 0.865 0.881 0.826 0.814 0.836
MosquitoSound 0.439 0.493 0.551 0.632 0.649 0.662 0.691 0.703 0.624 0.715

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

Flu-US
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.5

1.0

1.5

2.0

2.5

RM
SE

ETT2
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

4

6

8

RM
SE

NY-Bike
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

1.0

1.5

2.0

2.5

RM
SE

M3
LPTM
Best Baseline

Figure 2: Performance of LPTM and best baseline with varying fractions of training data. In most
cases LPTM significantly outperforms baselines with lower amount of data.

of the baseline is much worse whereas LPTM typically requires much less data to provide similar
performance to when we have access to the full dataset. This shows the importance of pre-training to
quickly ramp up the performance of the model with much less data, a problem we encounter is many
real-world settings such as when we need to deploy a forecasting model on novel applications such
as a new pandemic with sparse data availability.

Training efficiency An important advantage of pre-trained models is that they require much less
training time and resources to fine-tune to a downstream task compared to time required for pre-
training or even training from scratch. We compare the fine-tuning time of LPTM with baselines on
benchmarks from different domains. We also measure the average time required by LPTM to reach
the performance of the best baseline in cases where we eventually outperform them. The training
times are summarized in Appendix Table 4. We observe that the time taken by LPTM to reach the
performance of best best-performing baseline (LPTM-TB) is significantly smaller than the time
taken by any other baselines. Even when LPTM doesn’t outperform the best baseline, it typically
converges much faster.

9



Ablation and Sensitivity Studies We study the impact of our adaptive segmentation as well as
pre-training and linear probing via the ablation models LPTM-NoSegment, LPTM-NoPreTrain and
LPTM-NoLinProb. We also investigate the individual impact of both SSL task via the ablation models
LPTM-OnlyRandMask and LPTM-OnlyLastMask. The performance of the ablation variants are also
shown in Tables 2. We observe that the ablation variants’ performances are significantly worse than
the variants, underperforming some of the baselines. The worst performing variant is usually LPTM-
NoSegment, showing the importance of deriving good time-series segments to improve representation
learning of time-series for each dataset. We also examined the sensitivity of hyperparameter γ for SSL
tasks and found the optimal value at 0.4 for LASTMASK and 0.2 for RANDMASK. The sensitivity
analysis plots are in Appendix Fig. 5.

Segments generated by LPTM We also visualized the segments in Fig. 3. We observe that the
segment sizes are smaller in regions of high variance or important parts of the time-series such as
peak of the epidemic whereas simpler trends have longer segments which matches our intuition.

0 10 20 30 40 50
Time

1

2

3

4

5

Va
lu

e

(a) Flu-US

0 100 200 300 400 500 600 700
Time

4

2

0

2

4

6

8

Va
lu

e

(b) ETT1

0 20 40 60 80 100
Time

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e
(c) BasicMotions

Figure 3: Segmentation learned by LPTM

7 Conclusion

We make a significant contribution towards general pre-trained models for time-series analysis tasks
replicating the success of large pre-trained models in language and vision domains. We introduce
LPTM, a general pre-trained model that provides state-of-art performance on a wide range of
forecasting and classification tasks from varied domains and applications. LPTM provides similar to
or better performance to state-of-art domain-specific models in applications such as epidemiology,
energy, traffic, and economics and significantly beats recent time-series foundational models. We
also observe that LPTM required significantly lesser pre-training and training data to reach optimal
performance compared to other baselines in most benchmarks.

Our work mainly focuses on the important challenge of providing semantically meaningful inputs to
the model that caters to learning time-series segmentation strategies specific to each domain. This is
crucial when pre-training on diverse datasets, a key challenge for time-series data. The underlying
model architecture is a straightforward transformer encoder that uses well-known masking techniques
for self-supervised pre-training. Therefore, our method can be extended to leverage novel time-series
model architectures and SSL methods. Extending our methods to provide calibrated forecasts that
provide reliable uncertainty measures is also another important direction of research. We can also
extend it to leverage multimodal datasets like text that provide important contextual information
about the dataset Liu et al. (2024c).

Since our model can be applied to any generic time-series analysis tasks including those in critical
domains such as public health, medicine, economics, etc., important steps need to be taken to
address potential misuse of the our methods such as testing for fairness, data quality issues, ethical
implications of predictions, etc.

10



Acknowledgements

This paper was supported in part bythe NSF (Expeditions CCF-1918770, CAREER IIS-2028586,
Medium IIS-1955883, Medium IIS-2403240, Medium IIS-2106961, PIPP CCF-2200269), CDC
MInD program, Meta faculty gifts, and funds/computing resources from Georgia Tech.

References
Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,

Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
2024. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815 (2024).

Arthur Asuncion and David Newman. 2007. UCI machine learning repository.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. 2018. The UEA multivariate time series classification archive, 2018.
arXiv preprint arXiv:1811.00075 (2018).

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. 2021. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. Advances in neural information processing systems 33 (2020), 1877–1901.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. 2023. Nhits: Neural hierarchical interpolation for time series
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 6989–6997.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. 2021. Autoformer: Searching transform-
ers for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision. 12270–12280.

Ranak Roy Chowdhury, Xiyuan Zhang, Jingbo Shang, Rajesh K Gupta, and Dezhi Hong. 2022.
TARNet: Task-Aware Reconstruction for Time-Series Transformer. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 212–220.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. 2023a.
Long-term forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424
(2023).

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. 2023b. A decoder-only foundation
model for time-series forecasting. arXiv preprint arXiv:2310.10688 (2023).

Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. 2020. Cola-
GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction. In
Proceedings of the 29th ACM International Conference on Information & Knowledge Management.
245–254.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. 2024.
Simmtm: A simple pre-training framework for masked time-series modeling. Advances in Neural
Information Processing Systems 36 (2024).

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. 2021. Time-series representation learning via temporal and contextual contrasting.
arXiv preprint arXiv:2106.14112 (2021).

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised scalable represen-
tation learning for multivariate time series. Advances in neural information processing systems 32
(2019).

11



Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. 2024.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885
(2024).

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. 2024. Large language models are
zero-shot time series forecasters. Advances in Neural Information Processing Systems 36 (2024).

Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396 (2021).

Rob J Hyndman and George Athanasopoulos. 2018. Forecasting: principles and practice. OTexts.

Rob J Hyndman and Yeasmin Khandakar. 2008. Automatic time series forecasting: the forecast
package for R. Journal of statistical software 27 (2008), 1–22.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. 2024. Time-llm: Time series forecasting by
reprogramming large language models. ICLR (2024).

Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodríguez, Chao Zhang, and B Aditya Prakash.
2021. When in doubt: Neural non-parametric uncertainty quantification for epidemic forecasting.
Advances in Neural Information Processing Systems 34 (2021), 19796–19807.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. 2021.
Reversible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations.

Rahul Krishnan, Uri Shalit, and David Sontag. 2017. Structured inference networks for nonlinear
state space models. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. 2022. Fine-Tuning
can Distort Pretrained Features and Underperform Out-of-Distribution. ArXiv abs/2202.10054
(2022).

Longyuan Li, Junchi Yan, Xiaokang Yang, and Yaohui Jin. 2021. Learning interpretable deep state
space model for probabilistic time series forecasting. arXiv preprint arXiv:2102.00397 (2021).

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017).

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal fusion transformers
for interpretable multi-horizon time series forecasting. International Journal of Forecasting 37, 4
(2021), 1748–1764.

Haoxin Liu, Harshavardhan Kamarthi, Lingkai Kong, Zhiyuan Zhao, Chao Zhang, and B Aditya
Prakash. 2024a. Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant
Learning. In Forty-first International Conference on Machine Learning.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B Aditya Prakash. 2024c.
Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis. Advances in
Neural Information Processing Systems (2024).

Haoxin Liu, Zhiyuan Zhao, Jindong Wang, Harshavardhan Kamarthi, and B Aditya Prakash. 2024d.
LSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term
Prompting. In The 62nd Annual Meeting of the Association for Computational Linguistics. https:
//openreview.net/forum?id=wZStCNmoqN

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
2021. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
2023. itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625 (2023).

12

https://openreview.net/forum?id=wZStCNmoqN
https://openreview.net/forum?id=wZStCNmoqN


Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. 2024b. AutoTimes: Au-
toregressive Time Series Forecasters via Large Language Models. arXiv preprint arXiv:2402.02370
(2024).

Spyros Makridakis and Michele Hibon. 2000. The M3-Competition: results, conclusions and
implications. International journal of forecasting 16, 4 (2000), 451–476.

Mike A Merrill and Tim Althoff. 2022. Self-supervised Pretraining and Transfer Learning Enable Flu
and COVID-19 Predictions in Small Mobile Sensing Datasets. arXiv preprint arXiv:2205.13607
(2022).

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2022. A Time Series is
Worth 64 Words: Long-term Forecasting with Transformers. arXiv preprint arXiv:2211.14730
(2022).

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2019. N-BEATS: Neural
basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437
(2019).

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. 2018. Deep state space models for time series forecasting. Advances in neural
information processing systems 31 (2018).

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schneider,
et al. 2023. Lag-llama: Towards foundation models for time series forecasting. arXiv preprint
arXiv:2310.08278 (2023).

Nicholas G. Reich, Logan C. Brooks, Spencer J. Fox, Sasikiran Kandula, Craig J. McGowan, Evan
Moore, Dave Osthus, Evan L. Ray, Abhinav Tushar, Teresa K. Yamana, Matthew Biggerstaff,
Michael A. Johansson, Roni Rosenfeld, and Jeffrey Shaman. 2019. A collaborative multiyear,
multimodel assessment of seasonal influenza forecasting in the United States. Proceedings of
the National Academy of Sciences of the United States of America 116, 8 (2019), 3146–3154.
https://doi.org/10.1073/pnas.1812594116

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting 36, 3
(2020), 1181–1191.

Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. 2022. Pre-training enhanced spatial-temporal
graph neural network for multivariate time series forecasting. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1567–1577.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. 2021. Unsupervised representation learning
for time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750 (2021).

Willem G van Panhuis, Anne Cross, and Donald S Burke. 2018. Project Tycho 2.0: a repository to
improve the integration and reuse of data for global population health. Journal of the American
Medical Informatics Association 25, 12 (2018), 1608–1617.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems 30 (2017).

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. 2022. Micn:
Multi-scale local and global context modeling for long-term series forecasting. In The Eleventh
International Conference on Learning Representations.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. 2024.
Unified training of universal time series forecasting transformers. arXiv preprint arXiv:2402.02592
(2024).

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. 2023. Timesnet:
Temporal 2d-variation modeling for general time series analysis. ICLR (2023).

13

https://doi.org/10.1073/pnas.1812594116


Selene Yue Xu and CU Berkely. 2014. Stock price forecasting using information from Yahoo finance
and Google trend. UC Brekley (2014).

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. 2022. Ts2vec: Towards universal representation of time series. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 36. 8980–8987.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers effective for time
series forecasting?. In Proceedings of the AAAI conference on artificial intelligence, Vol. 37.
11121–11128.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
2021. A transformer-based framework for multivariate time series representation learning. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
2114–2124.

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. 2019. A deep neural network
for unsupervised anomaly detection and diagnosis in multivariate time series data. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 33. 1409–1416.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. 2022. Self-supervised
contrastive pre-training for time series via time-frequency consistency. arXiv preprint
arXiv:2206.08496 (2022).

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 11106–11115.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
Conference on Machine Learning. PMLR, 27268–27286.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. 2023. One fits all: Power general time series
analysis by pretrained lm. Advances in neural information processing systems 36 (2023), 43322–
43355.

14



Appendix for Large Pre-trained time series models for cross-
domain Time series analysis tasks

A Hyperparameters

The model is run on Intel Xeon CPU with 64 cores and 128 GB RAM. We use a single A100 GPU with
80GB memory. For GRU we use a single hidden layer of 50 hidden units. Dimension of v is also 50.
The transformer architecture consists of 10 layers with 8 attention heads each. For forecasting tasks,
we train a separate decoder module with 4 more layers during fine-tuning whereas for classification
we aggregate the embeddings {ei}Ri=1 of the last transformer layer and feed them into a single linear
layer that provides logits for all classes. The SSL pre-training was done till convergence via early
stopping with patience of 1000 epochs. We observed that LPTM takes 5000-8000 epochs to finish
pre-training which takes around 3-4 hours. (Note that pre-training is a one-time step and downstream
fine-tuning takes much less time and epochs). For both pre-training and fine-tuning, we used the
Adam optimizer with a learning rate of 0.001. The hyperparameters are tuned sparingly for both
LPTM and baselines from their default settings. For RANDMASK, we found the optimal γ = 0.4,
and for LASTMASK γ = 0.2 was optimal.

B Data efficiency

Table 4: Average training time (minutes) till convergence for LPTM and neural baselines. LPTM-TB
shows the time taken by LPTM to reach performance of top baseline (in benchmarks where LPTM
outperforms it). Since some baselines are specific to forecasting or classification and we do not beat
the state-of-art in few benchmarks we designate these cells in the table as NA.

Model Flu-US ETT2 PEM-Bays NY-Bike Nasdaq M3 BasicMotions EigenWorms
Informer 27.3 25.5 45.1 49.7 27.1 49.6 17.5 14.3

Autoformer 19.5 29.3 49.5 55.2 18.5 45.1 11.9 19.7
N-HITS 15.4 22.5 36.1 49.3 26.4 47.5 NA NA

PatchTST 12.9 29.5 36.4 45.7 18.2 49.4 NA NAg
MICN 17.6 15.7 39.7 41.1 19.2 33.9 NA NA

TimesNet 15.4 19.7 37.4 46.3 24.1 36.5 9.4 11.5
STEP 25.4 34.1 52.7 74.3 29.7 52.8 NA NA

EpiFNP 22.5 39.5 41.1 39.1 21.6 97.6 NA NA
ColaGNN 34.7 33.6 53.1 47.6 32.1 72.2 NA NA
TARNet NA NA NA NA NA NA 13.7 9.4
TS2Vec 29.3 28.2 41.9 41.9 29.8 67.4 9.3 13.2
TS-TCC 21.7 23.7 46.3 44.3 25.3 55.8 12.7 11.1
LPTM 12.2 19.3 41.9 37.5 17.3 31.2 6.1 12.7

LPTM-TB NA 12.5 29.6 32.9 NA 23.7 6.1 8.1

15



0.2 0.4 0.6 0.8 1.0
% of Training Data

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

Flu-US
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

1000

1500

2000

2500

3000

RM
SE

Flu-Japan
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.5

1.0

1.5

2.0

2.5

RM
SE

ETT2
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

ETT3
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

3

4

5

6

7

RM
SE

PEM-Bays
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

4

6

8

RM
SE

NY-Bike
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

10

20

30

RM
SE

Ny-Taxi
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.2

0.3

0.4

RM
SE

Nasdaq
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

1.0

1.5

2.0

2.5

RM
SE

M3
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.7

0.8

0.9

1.0

F1

basicMotions

LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.5

0.6

0.7

0.8

F1

FaceDetection
LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.4

0.5

0.6

0.7
F1

FingerMovements

LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.6

0.7

0.8

0.9

F1

PEMS-SF

LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.7

0.8

0.9

F1

RacketSports

LPTM
Best Baseline

0.2 0.4 0.6 0.8 1.0
% of Training Data

0.7

0.8

0.9

F1

EigenWorms

LPTM
Best Baseline

Figure 4: Performance of LPTM and best baseline with varying fractions of training data. In most
cases LPTM significantly outperforms baselines with lower amount of data.

16



C Effect of SSL hyperparameter γ

0.2 0.4 0.6
Gamma

0.8

0.9

1.0

1.1

1.2

Sc
or

e

FLu-US
RANDMASK
LASTMASK

0.2 0.4 0.6
Gamma

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Sc
or

e

ETT1
RANDMASK
LASTMASK

0.2 0.4 0.6
Gamma

2.6

2.8

3.0

3.2

3.4

Sc
or

e

PEM-Bays
RANDMASK
LASTMASK

0.2 0.4 0.6
Gamma

0.9

1.0

1.1

1.2

1.3

Sc
or

e

M3
RANDMASK
LASTMASK

0.2 0.4 0.6
Gamma

0.18

0.20

0.22

0.24

Sc
or

e

Nasdaq

RANDMASK
LASTMASK

Figure 5: Effect of γ on performance(RMSE) for different benchmarks

17



Table 5: Std. dev across 10 runs
Model Flu-US Flu-Japan ETT1 ETT2 PEM-Bays NY-Bike NY-Taxi Nasdaq M4

AutoARIMA 0.043180 23.434077 0.014220 0.035201 0.056066 0.044572 0.151146 0.025181 0.024060
Informer 0.044072 23.918021 0.014514 0.035927 0.057224 0.045492 0.154268 0.025701 0.024557
Autoformer 0.042310 22.961906 0.013934 0.034491 0.054936 0.043674 0.148101 0.024673 0.023575
PatchTST 0.043320 23.509948 0.014266 0.035314 0.056248 0.044716 0.151636 0.025262 0.024138
N-HITS 0.048238 26.178970 0.015886 0.039324 0.062633 0.049793 0.168850 0.028130 0.026878
MICN 0.030538 16.573161 0.010057 0.024895 0.039651 0.031522 0.106894 0.017808 0.017016
TimesNet 0.021264 11.539913 0.007003 0.017334 0.027609 0.021949 0.074431 0.012400 0.011848
LLM-Time 0.040279 21.859627 0.013265 0.032836 0.052299 0.041577 0.140991 0.023489 0.022443
TimesFM 0.034938 18.961321 0.011506 0.028482 0.045365 0.036065 0.122298 0.020375 0.019468
Lag-LLAMA 0.028790 15.624783 0.009481 0.023470 0.037382 0.029719 0.100777 0.016789 0.016042
Chronos 0.040037 21.728648 0.013185 0.032639 0.051986 0.041328 0.140146 0.023348 0.022309
STEP 0.028283 15.349319 0.009314 0.023056 0.036723 0.029195 0.099001 0.016493 0.015759
EpiFNP 0.026098 14.163743 0.008595 0.021275 0.033887 0.026940 0.091354 0.015219 0.014542
ColaGNN 0.038447 20.865267 0.012661 0.031342 0.049920 0.039686 0.134578 0.022421 0.021422
TS2Vec 0.032028 17.381828 0.010548 0.026109 0.041586 0.033061 0.112110 0.018677 0.017846
SimMTM 0.053732 29.160611 0.017695 0.043802 0.069767 0.055464 0.188081 0.031334 0.029939
TS-TCC 0.044399 24.095686 0.014622 0.036194 0.057649 0.045830 0.155414 0.025892 0.024739
LPTM 0.048677 26.417645 0.016031 0.039682 0.063204 0.050247 0.170390 0.028387 0.027123
LPTM-NoSegment 0.045970 24.948198 0.015139 0.037475 0.059689 0.047452 0.160912 0.026808 0.025614
LPTM-NoPreTrain 0.058905 31.968143 0.019399 0.048020 0.076484 0.060804 0.206190 0.034351 0.032822
LPTM-NoLinProb 0.025968 14.092985 0.008552 0.021169 0.033718 0.026805 0.090898 0.015143 0.014469
LPTM-OnlyRandMask 0.039517 21.446157 0.013014 0.032214 0.051310 0.040791 0.138324 0.023045 0.022019
LPTM-OnlyLastMask 0.058067 31.513665 0.019123 0.047337 0.075397 0.059940 0.203258 0.033863 0.032355

Model Score
AutoARIMA 21.388889
Informer 14.055556
Autoformer 12.000000
PatchTST 6.833333
N-HITS 11.388889
MICN 7.277778
TimesNet 11.111111
LLM-Time 12.777778
TimesFM 12.277778
Lag-LLAMA 17.444444
Chronos 13.888889
STEP 9.111111
EpiFNP 14.666667
ColaGNN 16.500000
TS2Vec 19.111111
SimMTM 15.611111
TS-TCC 18.111111
LPTM 2.500000
LPTM-NoSegment 12.055556
LPTM-NoPreTrain 10.444444
LPTM-NoLinProb 6.222222
LPTM-OnlyRandMask 7.555556
LPTM-OnlyLastMask 3.666667

Table 6: Mean rank of models in Table 2

18



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions listed in the Introduction are clearly expanded in Methodol-
ogy and Results
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Conclusions discuss limitiations such as not applicable to probabilistic and
multivariate forecasts and potential extensions as future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19



Answer: [NA]

Justification: No theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide model architecture and training details in methodology, link to the
anonymized repo and hyperparameters in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code available in https://github.com/AdityaLab/LPTM/

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Specific details on hyperparameters are in Appendix A. Training details are in
Section 3.3. Experiment setup, dataset splits are in Sec 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform multiple (10) runs of each experiment and report the average
scores. We highlight the instances where LPTM in statistically significantly better than all
baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

https://github.com/AdityaLab/LPTM/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We mention the compute resources used in Appendix A and training time in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We went through and confirm the paper follows all the statements in the code
of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work is a general purpose time-series model that can be utilized towards
wide range of applications. Care should be taken to assess the ethics of the decision taken by
the predictions, clean the data for any sensitive information and ensure fairness and positive
utility in the resulting outcome.

22

https://neurips.cc/public/EthicsGuidelines


Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: Since this work is a general-purpose foundational work on time-series and we
do not focus on any potentially sensitive applications, providing safeguards for release of
our work is not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets in code are either created by authors or are derived from open-source
works and are cited appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

23



• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is the only original asset which is released as an anonymous repo
linked in the paper. We will make a public release of this on acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work doesn’t deal with research requiring IRB review.
Guidelines:

24

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25


	Introduction
	Problem Setup
	Methodology
	Adaptive Segmentation module
	Self-supervised learning Tasks
	Training details

	Related Works
	Experiment Setup
	Results
	Conclusion
	Hyperparameters
	Data efficiency
	Effect of SSL hyperparameter 

