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ABSTRACT

Deep learning models have demonstrated impressive performance in various do-
mains. However, the prolonged training time of these models remains a critical
problem. Manually designed parallel training strategies could enhance efficiency
but require considerable time and deliver little flexibility. Hence, automatic par-
allelism is proposed to automate the parallel strategy searching process. Even
so, existing approaches suffer from sub-optimal strategy space because they treat
automatic parallelism as two independent processes, namely inter- and intra-layer
parallelism. To address this issue, we propose UniAP, which utilizes mixed integer
quadratic programming to unify inter- and intra-layer automatic parallelism. To the
best of our knowledge, UniAP is the first work to optimize these two parallelism
dimensions jointly for a globally optimal strategy. The experimental results show
that UniAP outperforms state-of-the-art methods by up to 1.7× in throughput
and reduces strategy searching time by up to 107× across four Transformer-like
models.

1 INTRODUCTION

Deep learning models have been widely used in many applications. For example, BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), and T5 (Raffel et al., 2020) achieved state-of-the-art (SOTA)
results on different natural language processing (NLP) tasks. For computer vision (CV), Transformer-
like models such as ViT (Dosovitskiy et al., 2021) and Swin Transformer (Liu et al., 2021) deliver
excellent accuracy performance upon multiple tasks.

At the same time, training deep learning models has been a critical problem troubling the community
due to the long training time, especially for those large models with billions of parameters (Brown
et al., 2020). In order to enhance the training efficiency, researchers propose some manually designed
parallel training strategies (Narayanan et al., 2021b; Shazeer et al., 2018; Xu et al., 2021). However,
selecting, tuning, and combining these strategies require extensive domain knowledge in deep
learning models and hardware environments. With the increasing diversity of modern hardware
architectures (Flynn, 1966; 1972) and the rapid development of deep learning models, these manually
designed approaches are bringing heavier burdens to developers. Hence, automatic parallelism is
introduced to automate the parallel strategy searching for training models.

There are two main categories of parallelism in deep learning models: inter-layer parallelism (Huang
et al., 2019; Narayanan et al., 2019; 2021a; Fan et al., 2021; Li & Hoefler, 2021; Lepikhin et al.,
2021; Du et al., 2022; Fedus et al., 2022) and intra-layer parallelism (Li et al., 2020; Narayanan et al.,
2021b; Rasley et al., 2020; FairScale authors, 2021). Inter-layer parallelism partitions the model
into disjoint sets on different devices without slicing tensors. Alternatively, intra-layer parallelism
partitions tensors in a layer along one or more axes and distributes them across different devices.

Current automatic parallelism techniques focus on optimizing strategies within these two categories.
However, they treat these two categories separately. Some methods (Zhao et al., 2022; Jia et al.,
2018; Cai et al., 2022; Wang et al., 2019; Jia et al., 2019; Schaarschmidt et al., 2021; Liu et al.,
2023) overlook potential opportunities for inter- or intra-layer parallelism, the others optimize inter-
and intra-layer parallelism hierarchically (Narayanan et al., 2019; Fan et al., 2021; He et al., 2021;
Tarnawski et al., 2020; 2021; Zheng et al., 2022). As a result, current automatic parallelism techniques
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often fail to achieve the global optima and instead become trapped in local optima. Therefore, a
unified approach to jointly optimize inter- and intra-layer parallelism is needed to enhance the
effectiveness of automatic parallelism.

This paper aims to find the optimal parallelism strategy while simultaneously considering inter- and
intra-layer parallelism. It enables us to search in a more extensive strategy space where the globally
optimal solution lurk. However, optimizing inter- and intra-layer parallelism jointly brings us two
challenges. Firstly, to apply a joint optimization process on the inter- and intra-layer automatic
parallelism, we should not formalize them with separate formulations as prior works. Therefore, how
can we express these parallelism strategies in a unified formulation? Secondly, previous methods
take a long time to obtain the solution with a limited strategy space. Therefore, how can we ensure
that the best solution can be obtained in a reasonable time while expanding the strategy space?

To solve the above challenges, we propose UniAP. For the first challenge, UniAP adopts the mixed
integer quadratic programming (MIQP) (Lazimy, 1982) to search for the globally optimal parallel
strategy automatically. It unifies the inter- and intra-layer automatic parallelism in a single MIQP
formulation. For the second challenge, our complexity analysis and experimental results show that
UniAP can obtain the globally optimal solution in a significantly shorter time.

The contributions of this paper are summarized as follows:

• We propose UniAP, the first framework to optimize inter- and intra-layer automatic paral-
lelism jointly with a unified formulation.

• UniAP demonstrates its scalability in terms of training throughput of optimal parallel
strategies and strategy searching time.

• The experimental results show that UniAP speeds up model training on four Transformer-
like models by up to 1.7× and reduces the strategy searching time by up to 107×, compared
with the SOTA method.

2 BACKGROUND

2.1 INTER- AND INTRA-LAYER PARALLELISM

In general, there exist two main categories of parallelism strategies for deep learning models: inter-
and intra-layer parallelism. If we want to divide them further, inter-layer parallelism mainly includes
pipeline parallelism (PP) in our context. Meanwhile, intra-layer parallelism mainly includes data
parallelism (DP), tensor parallelism (TP), and fully sharded data parallelism (FSDP). Most manual
and automatic parallelism approaches search for the optimal strategy within these dimensions.

2.2 MANUAL PARALLELISM

Manual parallelism refers to parallel computing strategies designed and optimized by human experts.
Representative methods include Megatron-LM (Narayanan et al., 2021b), Mesh-TensorFlow (Shazeer
et al., 2018), and GSPMD (Xu et al., 2021). Megatron-LM is a high-performance computing library
for parallel Transformer training. It exhibits superior efficiency in both computing and scaling on
clusters. Mesh-TensorFlow and GSPMD require users to annotate the desired intra-layer parallel
computing mode. Such methods rely on expert design and manual tuning, challenging their automatic
application to other models.

2.3 AUTOMATIC PARALLELISM

Inter- or intra-layer-only automatic parallelism For inter-layer-only automatic parallelism,
GPipe (Huang et al., 2019) and vPipe (Zhao et al., 2022) employ a balanced partition algorithm and a
dynamic layer partitioning middleware to partition pipelines, respectively. The parallel strategies they
generate could be more optimal because both algorithms are greedy. For intra-layer-only automatic
parallelism, OptCNN (Jia et al., 2018), TensorOpt (Cai et al., 2022), and Tofu (Wang et al., 2019)
employ dynamic programming methods to solve DP and TP together. Meanwhile, FlexFlow (Jia
et al., 2019) and Automap (Schaarschmidt et al., 2021) use a Monte Carlo approach to find the
parallel execution plan. Colossal-Auto (Liu et al., 2023) utilizes integer programming techniques to
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Figure 1: Overview of UniAP.

generate strategies for intra-layer parallelism. These methods explore a more limited strategy space
for automatic parallelism and do not produce a globally optimal solution.

Inter- and intra-layer automatic parallelism Auto-MAP (Wang et al., 2020) presents a Deep
Q-Network (DQN) for DP-only, TP-only, and PP-only strategy searching, which requires relatively
high model training time. PipeDream (Narayanan et al., 2019), DAPPLE (Fan et al., 2021), and
PipeTransformer (He et al., 2021) use pure dynamic programming to determine optimal strategies for
both DP and PP. DNN-partitioning (Tarnawski et al., 2020) adopts integer and dynamic programming
to explore DP and PP strategies. All of these approaches neglect potential optimization opportunities
in TP. Piper (Tarnawski et al., 2021) and Alpa (Zheng et al., 2022) adopt a hierarchical approach to
automatic parallelism, considering DP, TP, and PP. The main difference is that Piper searches for
strategies in layer granularity, while Alpa searches for operator granularity. This perspective produces
locally near-optimal solutions rather than globally optimal ones. Galvatron (Miao et al., 2022) uses
pure dynamic programming to determine DP, TP, and FSDP strategies on a single pipeline stage. As
for PP, it partitions stages and determines micro-batch size using naive greedy algorithms. Compared
with them, UniAP holds the most extensive search space for PP, DP, TP, and FSDP.

3 METHOD

3.1 OVERVIEW

As shown in Figure 1, UniAP initially profiles runtime information for both the deep learning model
and the user’s hardware. After that, UniAP estimates inter- and intra-layer costs given the computation
graph and profiling results with its cost models. The estimated costs, along with the computation
graph, are then transformed into a MIQP problem. The objective function of the MIQP is to maximize
the training throughput, or in other words, to minimize the time-per-iteration (TPI). During its
optimization process, the off-the-shelf solver will guarantee optimality. By iteratively applying the
cost model and solver with different parameters, UniAP determines the globally minimal TPI and its
corresponding parallel strategies. We name this process the Unified Optimization Process (UOP).
Finally, UniAP interprets the solution into the execution plan for the designated model.

3.2 STRATEGY SPACE

Pipeline parallelism In PP, each worker holds a disjoint set of model layers. Adjacent layers on
different workers need to transfer activations in the forward propagation (FP) step and gradients in
the backward propagation (BP) step. UniAP focuses on synchronous PP, which performs weight
updating in each stage at the end of each iteration.

Data parallelism In DP, each worker holds a replica of the model and uniformly partitioned training
samples. In each iteration during training, each worker computes gradients and synchronizes them
with the other workers using an all-reduce collective communication (CC). All workers will observe
the same model parameters after the synchronization step.
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Tensor parallelism In TP, each worker holds a partition of the model and a replica of training
samples. In each iteration, each worker computes its local output in FP and its local gradients in BP.
If the tensor is sliced uniformly, all workers will perform the same all-reduce CC in FP and BP steps.

Fully sharded data parallelism The FSDP approach involves partitioning optimizer states, param-
eters, and gradients of the model into separate workers. During the FP and BP step of each iteration,
FSDP performs an all-gather CC to obtain the complete parameters for the relevant layer, respectively.
Following the computation of gradients, FSDP conducts a reduce-scatter CC to distribute the global
gradients among the workers.

3.3 PROFILING AND COST MODEL

UniAP collects runtime information for the hardware environment and the specific model during
profiling. Regarding the hardware environment, UniAP assesses the efficiency of all-reduce and
point-to-point (P2P) communication for various sets of devices. For instance, when profiling a node
equipped with 4 GPUs, UniAP measures the all-reduce efficiency for various combinations of DP,
TP, and FSDP across these GPUs. Additionally, UniAP ranks these GPUs from 0 to 3 and evaluates
the speed of P2P for two pipeline options: (0 → 2 and 1 → 3) and (0 → 1, 1 → 2 and 2 → 3).
Furthermore, UniAP estimates the computation-communication overlap coefficient (CCOC), a metric
previously explored by Miao et al. (2022) and Rashidi et al. (2021). Regarding the specific model,
UniAP analyzes the forward computation time per sample for different types of hidden layers during
the profiling process.

UniAP employs two primary cost models, namely the time cost model and the memory cost model.
To model the computation time, UniAP first multiplies the batch size and the forward computation
time per sample obtained from profiling to estimate the forward computation time. For Transformer-
like models that mainly consist of the MatMul operator, the computation time in the BP stages is
roughly twice that of the FP stages (Narayanan et al., 2021b; Li & Hoefler, 2021; Miao et al., 2022).
Additionally, UniAP estimates the communication time by dividing the size of transmitting tensors
by the profiled communication efficiency for different communication primitives. To account for
overlapping, UniAP multiplies the profiled CCOC by the overlapping interval of computation and
communication. To model the communication time between pipeline stages, UniAP calculates the
cross-stage cost between consecutive stages as the summation of P2P costs.

In addition to the time cost model, UniAP estimates the memory consumption in GPUs by multiplying
the tensor’s shape and data type for the memory cost model. Furthermore, the memory cost model
takes the context memory and activation memory into account. Overall, the cost models employed by
UniAP strike a balance between complexity and accuracy.

3.4 MIXED INTEGER QUADRATIC PROGRAMMING

This section describes our MIQP expression in terms of a formulation-oriented approach.

To begin with, it is necessary to set up a function to model our objective, which is minimizing TPI.
Currently, we choose GPipe as our PP algorithm for simplicity while preserving generality. Figure 2
depicts a typical GPipe scheduling process that incurs a non-negligible communication overhead. The
time required for applying gradients at the end of each iteration is excluded, as it is both dependent
on the optimizer and is negligible in comparison to the overall time spent on FP and BP.

We denote the cost for computation stages as P = {p1, p2, . . . , pdeg} and the cost for communication
stages as O = {o1, o2, . . . , odeg−1}. Here, deg represents the number of computation stages,
which corresponds to the degree of PP. fpi and bpi means forward and backward computation
time for computation stage i, respectively. Meanwhile, foj and boj means forward and backward
communication time for communication stage j, respectively. Hence, we have pi = fpi + bpi and
oj = foj + boj .

In a GPipe-style pipeline, we denote c as chunk size, which is equivalent to the number of micro-
batches. As visualized in Figure 2, a mini-batch is uniformly split into three chunks and the total
TPI is determined by the latency of all computation stages and communication stages and the latency
of the slowest stage. We further denote tpi as TPI in GPipe. Given that a stage with a higher FP
computation cost leads to a higher BP computation cost with high probability, we could summarize
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Figure 2: Cost decomposition of a GPipe-style PP.
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Figure 3: A contiguous set S.

the TPI of GPipe-style pipeline as follows:

tpi =

deg∑
i=1

pi +

deg−1∑
j=1

oj + (c− 1)max (P ∪O) . (1)

Subsequently, we contemplate which aspects should be considered in the constraints of the MIQP
expression. We list our main thoughts below:

1. In order to determine the total overhead for a single computation stage i, it is necessary to
aggregate all computation and communication costs associated with that stage and assign
them to pi;

2. To calculate the total overhead for a single communication stage j, we should sum the P2P
costs incurred between consecutive stages and assign them to oj ;

3. We should guarantee that no GPUs will encounter out-of-memory (OOM) exceptions;
4. The computation graph of the model must be partitioned into contiguous subgraphs to

prevent disordered assignment to different pipeline stages.

Among them, the last point might be the most ambiguous one. We further explain it here. Typically,
we can represent a deep learning model as a directed acyclic graph (DAG), namely G(V,E). Here, V
represents all layers in the model, while E represents all edge connections between these layers. We
borrow the definition of contiguity from Tarnawski et al. (2020; 2021).
Definition 1. A set S ⊆ V is contiguous if there do not exist nodes u ∈ S, v ∈ V \ S, and w ∈ S
such that v is reachable from u and w is reachable from v.

As Figure 3 illustrates, we cannot find any reachable node pairs ⟨u, v⟩ and ⟨v, w⟩ where u,w ∈ S
and v ∈ V \ S. Therefore, the set S is considered contiguous. In our scenario, our model will not be
assigned to different pipeline stages in a disordered fashion if we make sure that all subgraphs on
each computation stage are contiguous.

Based on the above considerations, the MIQP formulation can be formalized as follows:

min tpi =

deg∑
i=1

pi +

deg−1∑
j=1

oj + (c− 1)max (P ∪O) , (MIQP)

s.t.
∑
u∈V

PuiS
T
uAu +

∑
⟨u,v⟩∈E

PuiPvi(S
T
uRuvSv) = pi, ∀i ∈ {1, . . . , deg}, (2)

∑
⟨u,v⟩∈E

PujPv(j+1)(S
T
uR

′
uvSv) = oj , ∀j ∈ {1, . . . , deg − 1}, (3)

∑
u∈V

PuiS
T
uMu ⩽ m, ∀i ∈ {1, . . . , deg}, (4)

Vi = {∀u ∈ V : Pui = 1} is contiguous, ∀i ∈ {1, . . . , deg}, (5)
deg∑
i=1

Pui = 1, ∀u ∈ V, (6)
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∑
u∈V

Pui ⩾ 1, ∀i ∈ {1, . . . , deg}, (7)

|gu|∑
k=1

Suk = 1, ∀u ∈ V, (8)

Pui ∈ {0, 1}, ∀u ∈ V, i ∈ {1, . . . , deg}, (9)
Suk ∈ {0, 1}, ∀u ∈ V, k ∈ {1, . . . , |gu|}. (10)

For a given layer u ∈ V , we utilize the following notations: gu represents its set of intra-layer parallel
strategies, Auk denotes the k-th intra-layer execution cost obtained from our time cost model, and
Muk denotes the k-th intra-layer memory cost on a single device obtained from our memory cost
model. Additionally, we use Suk as a 0-1 variable indicating whether the k-th parallel strategy is
selected for the layer u, and Pui as a 0-1 variable indicating whether layer u is to be placed on the
i-th computation stage. Each edge ⟨u, v⟩ ∈ E is assigned a resharding cost denoted by Ruv if the
vertices are located within the same pipeline stage. Alternatively, if the vertices are located across
consecutive stages, the resharding cost between them is denoted by R′

uv . These two resharding costs
are constant matrices derived from our time cost model.

We explain the constraints as follows:

1. Equation 2 encodes the summation of intra-stage computation and communication costs
as pi. The first term of the polynomial represents the cost of choosing some particular
intra-layer strategies for layers placed in stage i. The second term represents total resharding
costs in stage i. Thus, this constraint term formalizes the first point of our thoughts.

2. Equation 3 encodes the inter-stage communication cost between consecutive computation
stages as oj . This term formalizes the second point of our thoughts.

3. Equation 4 formalizes the third point of our thoughts with a memory limit of m for each
device. In the case of homogeneous computing devices, the value of m remains constant
throughout all stages. However, the value of m varies in the case of heterogeneous devices.

4. Equation 5 represents the last point of our thoughts. It is worth noting that we can formulate
this constraint as a set of linear constraints as follows. Intuitively, Zvi = 1 if there exists a
node w ∈ S reachable from v. Otherwise, Zvi = 0. Please refer to Appendix A for proofs.

Zvi ⩾ Pvi, ∀v ∈ V, ∀i ∈ {1, 2, . . . , deg}, (11)
Zvi ⩽ Zui, ∀u, v ∈ V, ∀⟨u, v⟩ ∈ E, ∀i ∈ {1, 2, . . . , deg}, (12)
Zvi ⩽ Pvi − Pui + 1, ∀u, v ∈ V, ∀⟨u, v⟩ ∈ E, ∀i ∈ {1, 2, . . . , deg}. (13)

5. Equation 6, equation 7 and equation 9 represent that all layers should be placed on exactly
one pipeline stage and at least one layer should be placed on each pipeline stages.

6. Equation 8 and equation 10 represent that each layer should choose exactly one strategy.

UniAP gets the minimum TPI and all its corresponding parallel strategies by solving the above MIQP
expression using an off-the-shelf solver.

3.5 UNIFIED OPTIMIZATION PROCESS

In this section, we propose our design for UOP in UniAP. In short, UOP is mainly responsible for
invoking the cost model and MIQP algorithms based on the profiling results and the computation
graph. It eventually returns the globally optimal strategy and the corresponding TPI.

First, UOP considers pure intra-layer parallelism. Several works (Zheng et al., 2022; Liu et al., 2023)
have adopted quadratic integer programming (QIP) to solve it and achieved promising results. UniAP
provides a QIP formulation for intra-layer-only parallelism in Appendix B.

Then, UOP enumerates the pipeline degree deg for the PP strategy from 2 to n exponentially. For
each deg, UOP enumerates the chunk size from 2 to mini-batch size one by one and selects those
divisible by the mini-batch size to ensure load balancing across micro-batches. Here, we assume the
number of devices is a power of 2 and these devices are homogeneous. This assumption is made
to provide a more intuitive explanation of the overall process and how load balancing is achieved.
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However, UOP is not limited to the specific case and can be extended to other scenarios with simple
modifications as well.

For each candidate pipeline degree deg and chunk size c, UOP calculates the cost and waits for
the MIQP solver to return the optimal cost and parallelism strategy under the current configuration.
Eventually, UOP will return the minimum cost costmin and its corresponding pipeline degree degmin,
chunk size cmin, layer placement Pmin, and intra-layer strategies Smin.

Algorithm 1 summarizes this process. In the algorithm, we further denote intra-layer cost as A,
inter-layer cost as R, cross-stage cost as R′, and memory cost as M . The CalculateCost process
calculates these four costs based on the cost model described in Section 3.3. Let |V |, |g|, and n
denote the number of layers, parallel strategies, and GPUs, respectively. The time complexity of the
UOP algorithm is O(|V ||g| log(n)). For a more detailed analysis, please refer to Appendix C.

Algorithm 1 Unified Optimization Process

Input: Profiling results PR, strategy dictionary SD, mini-batch size B, computation graph G, and
the number of GPUs n.
Output: Optimal cost costmin, pipeline degree degmin, chunk size cmin, layer placement Pmin,
and intra-layer strategy Smin

degmin, cmin = 1, B
A, R, , M = CalculateCost(PR, SD[1], G, B);
costmin, Pmin, Smin = QIP(A, R, M );
for deg in {2, 4, . . . , n} do

for c = 2 to B and c | B do
Micro-batch size b = B/c;
A, R, R′, M = CalculateCost(PR, SD[deg], G, b);
cost, P , S = MIQP(A, R, R′, M , deg, c);
if cost < costmin then
costmin, degmin, cmin, Pmin, Smin = cost, deg, c, P , S;

end if
end for

end for

4 EXPERIMENT

UniAP utilizes the Gurobi Optimizer (Gurobi Optimization, LLC, 2023) to solve the MIQP problem.
We conduct experiments on three kinds of environments. EnvA refers to a node with 1 Xeon 6248
CPU, 8 V100-SXM2 32GB GPUs, and 472GB memory. EnvB refers to two nodes interconnected
with 10Gbps networks, where each node has 2 Xeon E5-2620 v4 CPUs, 4 TITAN Xp 12GB GPUs,
and 125GB memory. EnvC has four nodes, each with the same configuration as that in EnvB.

We evaluate UniAP with four Transformer-like models, BERT-Huge (Devlin et al., 2019), T5-
Large (Raffel et al., 2020), ViT-Huge (Dosovitskiy et al., 2021), and Swin-Huge (Liu et al., 2021)
with different mini-batch sizes. Overall, we follow the common practice of training these Transformer-
like models. However, to ensure fairness, we disable techniques orthogonal to parallel strategies,
such as mixed precision training (Micikevicius et al., 2018) and activation checkpointing (Chen et al.,
2016).

Our experimental evaluation focuses on two primary metrics: training throughput and strategy
searching time. The former metric is computed by averaging throughput from the 10th to the 60th
iteration of training, while the latter is determined by measuring the time of the UOP. Further
elaborations are available in Appendix D.

4.1 TRAINING THROUGHPUT AND STRATEGY SEARCHING TIME

We compare the throughput of the optimal parallel strategy and UniAP’s strategy searching time with
the baseline approach. For experiments conducted on EnvA, we select 32, 16, 128, and 128 as the
mini-batch size for BERT, T5, ViT, and Swin, respectively. As for experiments conducted on EnvB,
we set the mini-batch size as 16, 8, 64, and 32 for these four models.
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Table 1: Training throughput and strategy searching time on four Transformer-like models. The
number following the model’s name represents the number of hidden layers in the corresponding
model. MEM× indicates out-of-memory (OOM) exceptions during strategy searching, while CUDA×
indicates CUDA OOM exceptions during model training. Due to the absence of an official JAX
implementation for Swin-Huge in HuggingFace Transformers (v4.29), experiments involving Swin-
Huge for Alpa have been excluded and denoted as N/A. Additionally, the minimum and maximum
training throughput speedup is calculated by dividing the average throughput of UniAP by the
maximum and minumum average throughput of Galvatron and Alpa, repectively. Similarly, the
minimum and maximum strategy searching time speedup is obtained by dividing the minimum
and maximum average search time of Galvatron and Alpa by the average search time of UniAP,
repectively.

Env. Model Training throughput (samples/s) Minimum
speedup

Maximum
speedupGalvatron Alpa UniAP

EnvA

BERT-Huge-32 33.46 ± 0.28 31.56 ± 0.04 33.46 ± 0.28 1.00 1.06
T5-Large-48 23.29 ± 0.04 MEM× 23.29 ± 0.04 1.00 1.00
ViT-Huge-32 109.51 ± 0.07 97.66 ± 1.42 109.51 ± 0.07 1.00 1.12

Swin-Huge-48 CUDA× N/A 67.96 ± 0.12 N/A N/A

EnvB

BERT-Huge-32 6.27 ± 0.17 8.95 ± 0.06 10.77 ± 0.13 1.20 1.71
T5-Large-32 8.06 ± 0.06 MEM× 7.98 ± 0.05 0.99 0.99
ViT-Huge-32 32.20 ± 0.17 38.74 ± 0.20 45.58 ± 0.54 1.18 1.41

Swin-Huge-48 13.90 ± 0.17 N/A 19.08 ± 0.10 1.37 1.37

Env. Model Strategy searching time (min.) Minimum
speedup

Maximum
speedupGalvatron Alpa UniAP

EnvA

BERT-Huge-32 6.44 ± 0.588 > 40 0.37 ± 0.002 17.29 > 107.41
T5-Large-48 12.41 ± 0.122 MEM× 0.89 ± 0.007 13.98 13.98
ViT-Huge-32 6.29 ± 0.464 > 40 0.57 ± 0.009 10.95 > 69.60

Swin-Huge-48 11.88 ± 0.666 N/A 2.16 ± 0.004 5.49 5.49

EnvB

BERT-Huge-32 2.04 ± 0.010 > 40 1.51 ± 0.005 1.34 > 26.32
T5-Large-32 2.64 ± 0.110 MEM× 0.91 ± 0.005 2.90 2.90
ViT-Huge-32 2.37 ± 0.180 > 40 1.11 ± 0.011 2.14 > 36.01

Swin-Huge-48 4.29 ± 0.320 N/A 2.29 ± 0.010 1.87 1.87

We have selected Galvatron (Miao et al., 2022) and Alpa (Zheng et al., 2022) as our baseline due
to their recognition as the SOTA methods. Specifically, Galvatron has surpassed existing methods,
including PyTorch DDP (Li et al., 2020), Megatron-LM (Narayanan et al., 2021b), FSDP (FairScale
authors, 2021; Rajbhandari et al., 2020), GPipe (Huang et al., 2019), and DeepSpeed 3D (Microsoft,
2021) in terms of training throughput, as reported in its original publication (Miao et al., 2022).
Additionally, Alpa utilizes the Just-In-Time (JIT) compilation feature in JAX and outperforms
Megatron-LM and DeepSpeed.

Table 1 presents the training throughput and strategy search time on EnvA and EnvB. On EnvA, UniAP
and Galvatron yield the same optimal strategy for BERT-Huge-32, T5-Large-48, and ViT-Huge-32,
outperforming Alpa in terms of training throughput and strategy search time. In addition, when
handling Swin-Huge-48, UniAP finds a solution while Galvatron encounters CUDA OOM issues.
Notably, UniAP achieves a maximum search speedup that is 17× faster than Galvatron and hundreds
of times faster than Alpa on BERT-Huge-32. This is primarily due to the ability of the MIQP solver to
search for an optimal strategy with multiple threads, while the dynamic programming-based methods
like Galvatron and Alpa run on a single thread because of their strong data dependency.

On EnvB, UniAP consistently demonstrates competitive or faster training throughput compared to
Galvatron and Alpa. Simultaneously, UniAP’s strategy searching time is also significantly shorter
than these two baseline methods. Upon deeper examination of the parallel strategies discovered by
Galvatron and Alpa, we find that UniAP stands out by identifying a superior solution with higher
model FLOPs utilization (MFU) compared to Galvatron and Alpa. This is attributed to UniAP’s
broader strategy space, achieved by jointly optimizing inter- and intra-layer automatic parallelism

8
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(b) Strategy searching time.

Figure 4: Training throughput and strategy searching time with different number of nodes for different
models. nnodes denotes the number of nodes for the corresponding data point and bsz denotes the
mini-batch size used for evaluation.

Table 2: Ablation study on the importance of unifying strategy space. SOL× indicates no solution
during strategy searching, whereas CUDA× represents CUDA OOM exceptions during model training.

Model Training throughput (samples/s)

UniAP (Inter-only) UniAP (Intra-only) UniAP

BERT-Huge-32 SOL× 2.48 ± 0.02 10.77 ± 0.13
T5-Large-32 SOL× 2.92 ± 0.01 9.01 ± 0.06
ViT-Huge-32 45.58 ± 0.54 CUDA× 45.58 ± 0.54

Swin-Huge-48 19.08 ± 0.10 4.66 ± 0.02 19.08 ± 0.10

using a unified MIQP formulation. For further discussions, we provide a case study by visualizing
the parallel strategy discovered by UniAP and MFUs for different approaches in Appendix E.

4.2 SCALABILITY

In this section, we conduct a scalability study on EnvC for UniAP. As Figure 4 shows, the training
throughput of the optimal strategy and its strategy searching time on EnvC exhibits near-linearity
in a real-world system as the number of nodes and mini-batch size increase exponentially. This
phenomenon verifies the computational complexity analysis in Section 3.5.

4.3 ABLATION STUDY

In this section, we study the importance of strategy space on the optimality of parallel strategies.
Specifically, we reduce the strategy space to inter-layer-only and intra-layer-only strategies in UniAP
and evaluate the training throughput of the resulting optimal strategy on EnvB. We set the mini-batch
size as 16, 12, 64, and 32, respectively. Table 2 shows that constraining the strategy space can
compromise the optimality of parallel strategies or provide strategies that encounter OOM across
different models. Therefore, holding a unified view of the automatic parallelism problem is essential.

5 CONCLUSION

In this paper, we propose UniAP, the first framework to conduct a joint strategy searching in inter- and
intra-layer parallelism strategy space. Our experimental results show that UniAP speeds up model
training on four Transformer-like models by up to 1.7× and reduces the strategy searching time by
up to 107×. Moreover, the optimal parallel strategies discovered by UniAP exhibit scalability on
training throughput and strategy searching time.

9
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A PROOF OF THE LINEAR FORM FOR THE CONTIGUOUS SET

To facilitate our discussion, we adopt the linear form of the contiguous constraint as presented in
the main paper. We denote Pui as a 0-1 variable indicating whether layer u is to be placed on the
i-th computation stage, deg as the number of computation stages in the pipeline. Besides, G(V,E)
represents the computation graph for the model. Then, we formalize the theorem as follows:
Theorem 1. A subgraph Vi = {∀u ∈ V : Pui = 1} is contiguous if and only if there exists Zvi such
that equation 11, equation 12, and equation 13 are satisfied.

Previous work (Tarnawski et al., 2020) has proven this theorem. Our proof draws on the process of
this work. The details of the proof are as follows:
Proof 1. ”If”: Assume that there exists nodes u,w ∈ Vi and v /∈ Vi such that v and w are reachable
from u and v, respectively. Hence, Pui = 1, Pwi = 1, and Pvi = 0. Without losing generality, we
assume ⟨u, v⟩ ∈ E. Thus, according to equation 13, we have Zvi ⩽ Pvi − Pui + 1 = 0. By applying
equation 12 repeatedly following the path from v to w, we have Zwi ⩽ Zvi. Thus, Zwi ⩽ 0. However,
we also have Zwi ⩾ Pwi = 1 according to equation 11. A contradiction.

”Only if”: First, we define Zvi = 1 if a node w ∈ S is reachable from v. Otherwise, Zvi = 0. Thus,
equation 11 and equation 12 are satisfied according to this kind of definition. For equation 13, if
Pvi = 1, the constraint will hold true regardless of whether Pui is 1 or 0. If Pvi = 0 and Pui = 0,
Zvi ⩽ Pvi − Pui + 1 = 1 will also hold true because Zvi could be either 0 or 1. Finally, if Pvi = 0
and Pui = 1, Zvi = 0 will hold true because Vi is a contiguous set and we couldn’t find any w ∈ Vi,
such that w is reachable from v.

B QIP FORMULATION FOR INTRA-LAYER-ONLY PARALLELISM

Here we present the QIP formulation for intra-layer-only parallelism with explanations.

min tpi = p1, (QIP)

s.t.
∑
u∈V

ST
uAu +

∑
⟨u,v⟩∈E

ST
uRuvSv = p1, (14)

∑
u∈V

ST
uMu ⩽ m, (15)

|gu|∑
k=1

Suk = 1, ∀u ∈ V, (16)

Suk ∈ {0, 1}, ∀u ∈ V, k ∈ {1, . . . , |gu|}. (17)

The objective function equation QIP tends to minimize the TPI, thereby maximizing training through-
put. This function solely takes the value of p1 into account, as there is only one computation stage
involved in the intra-layer-only parallelism. Subsequently, we proceed to explain the constraints of
this formulation:

• Equation 14 encodes the intra-layer-only computation and communication costs as p1. The
first summation term for any u ∈ V represents the cost of choosing intra-layer strategies for
all layers. The second term represents the summation of resharding costs on all edges.

• Equation 15 encodes that the memory consumption on a single device should not exceed its
device memory bound m. It is worth noting that m should be an identical constant across
multiple devices if these devices are homogeneous. Otherwise, the value of m varies.

• Equation 16 and equation 17 indicate that each layer should select exactly one strategy.

C COMPLEXITY ANALYSIS

Let |V |, |g|, and n denote the number of layers, parallel strategies, and the number of GPUs,
respectively. As illustrated in Algorithm 1, UniAP searches all possible pipeline stages exponentially
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Table 3: Details for four Transformer-like models.

Model Layers Hidden size Sequence length Parameter size

BERT-Huge 32 1280 512 672M
T5-Large 16/16 1024 512 502M
ViT-Huge 32 1280 196 632M

Swin-Huge 2/2/42/2 320/640/1280/2560 49*64/49*16/49*4/49*1 1.02B

until n is reached. Given a hyperparameter of mini-batch size B, UniAP invokes CalculateCost
to model each layer’s costs for each parallel strategy. Additionally, the optimization time limit of the
MIQP solver can be set as a constant hyperparameter when UniAP calls it. Therefore, the overall
computational complexity of UniAP is O(|V ||g| log(n)).

D EXPERIMENT DETAIL

Gurobi configuration When tackling the MIQP problem, UniAP employs several configurations
for the Gurobi Optimizer 10.1 (Gurobi Optimization, LLC, 2023). In particular, we set TimeLimit
to 60 seconds, MIPFocus to 1, NumericFocus to 1, and remain other configurations to default.
For instance, we establish the MIPGap parameter as the default value of 1e-4 to serve as a strict
termination criterion. Furthermore, we have implemented an early stopping mechanism to terminate
the optimization process as early as possible. There are two conditions that can activate the mechanism.
Firstly, if the current runtime exceeds 15 seconds and the relative MIP optimality gap is less than 4%,
we will terminate the optimization. Secondly, if the current runtime exceeds 5 seconds and the best
objective bound is worse than the optimal solution obtained in the previous optimization process, we
will terminate the optimization.

Model detail Table 3 presents the details of four Transformer-like models selected for our evalua-
tions. Two of these models, namely BERT-Huge (Devlin et al., 2019) and T5-Large (Raffel et al.,
2020), belong to the domain of natural language processing (NLP). At the same time, the remaining
two, ViT-Huge (Dosovitskiy et al., 2021) and Swin-Huge (Liu et al., 2021), are associated with
computer vision (CV). It is noteworthy that BERT-Huge and ViT-Huge share the same hidden layer
type, whereas T5-Large and Swin-Huge have multiple layer types. Numbers separated by slashes
represent the statistical information for different layer types. For instance, Swin-Huge comprises four
types of layers, each with 2, 2, 42, and 2 layers, respectively.

Training detail UniAP is based on the PyTorch framework and integrates models from Hugging-
Face Transformers. It employs various types of parallelism, including Pipeline Parallelism (PP), Data
Parallelism (DP), Tensor Parallelism (TP), and Fully Sharded Data Parallelism (FSDP), utilizing
GPipe (Huang et al., 2019), PyTorch DDP (Li et al., 2020), Megatron-LM (Narayanan et al., 2021b),
and FairScale (FairScale authors, 2021), respectively. For NLP models, we use the English Wikipedia
dataset (Wikimedia Foundation, 2023), while the ImageNet-1K dataset (Russakovsky et al., 2015) is
used for CV models. We train these models using the Adam optimizer (Kingma & Ba, 2015) and
precision of FP32. We omit hyperparameters here such as learning rate and weight decay as these have
minimal impact on training throughput. The model parameters in the HuggingFace Transformer are
configured to align with the specifications of each individual model. For instance, we set hidden size
to 1280, num hidden layers to 32, num attention heads to 16, and seq length to 512 for BERT-Huge.
Regarding other hyperparameters in the HuggingFace configurations, we set hidden dropout prob
and attention probs dropout prob to 0.0 for ViT-Huge. For Swin-Huge, we set drop path rate to 0.2.
We remain other configurations to default. It should be noted that the training batch sizes for each
experiment are outlined in the main paper.

E CASE STUDY: BERT-HUGE

In this section, we present a visualization of the optimal parallelism strategy discovered by UniAP.
As represented in Figure 5, the strategy pertains to training BERT-Huge with 32 hidden layers in
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Figure 5: The optimal parallel strategy for all hidden layers of BERT-Huge on EnvB. Different colors
represent different input samples in a micro-batch.
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Figure 6: Topology of a node in EnvB.

a 2-node environment EnvB with a mini-batch size of 16. Each node was equipped with 2 Xeon
E5-2620 v4 CPUs, 4 TITAN Xp 12GB GPUs, and 125GB memory. These nodes are interconnected
via a 10Gbps network. It should be noted that we only showcase the parallelism strategy for the
hidden layers here for simplicity but without losing generality.

Here, we provide further topological information for a node within EnvB. As illustrated in Figure 6,
we categorize the GPUs numbered 0 and 1 in each node and refer to them collectively as GPUGroup0.
Similarly, we label the GPUs numbered 2 and 3 as GPUGroup1. In EnvB, the interconnects within
each GPU group (i.e., PCIe) have superior bandwidth than that between different groups (i.e., QPI).
We collectively designate these two connection bandwidths as intra-node bandwidth, which is higher
than inter-node bandwidth.

In this example, UniAP has identified a parallelism strategy for inter-layer parallelism that involves a
two-stage pipeline. This strategy utilizes parallelism in a manner that is both efficient and effective.
Specifically, the communication cost of point-to-point (P2P) between two nodes is less than that of
all-reduce. Additionally, the inter-node bandwidth is lower than that of the intra-node. These factors
make the two-stage PP approach a reasonable choice. Moreover, the pipeline has been designed such
that each stage comprises an equal number of layers. This design leverages the homogeneity of the
nodes and ensures load balancing across the cluster.

UniAP employs an intra-layer parallelism strategy within each PP stage. It utilizes a 2-way DP for the
initial 12 hidden layers in each stage between GPUGroup0 and GPUGroup1. For the remaining four
hidden layers, a 2-way FSDP is utilized between GPUGroup0 and GPUGroup1 to reduce memory
footprint and meet memory constraints. Within each GPU group, UniAP employs a 2-way TP for each
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Figure 7: A candidate solution for MIQP.

layer. In general, TP incurs more significant communication volumes than DP and FSDP. In order to
achieve maximum training throughput on EnvB, it is necessary to implement parallelism strategies
that prioritize higher communication volumes within each group and lower volumes between groups.
Therefore, the strategy for BERT-Huge with 32 hidden layers combines the best elements of PP, DP,
TP, and FSDP to maximize training throughput.

In addition, we have conducted calculations for the model FLOPs utilizatio (MFU) for Galvatron,
Alpa, and UniAP in this scenario to validate our analysis. MFU is a metric introduced by Chowdhery
et al. (2023), which is independent of hardware, frameworks, or implementations. Therefore, it allows
us to examine the performance of different parallel strategies solely from a strategic perspective. For
BERT-Huge-32, the resulting MFUs for UniAP, Galvatron, and Alpa on EnvB are 23.6%, 13.7% and
19.6% , respectively. Therefore, we conclude that UniAP does utilize its larger strategy space to find
a globally optimal solution, rather than a locally optimal one.

F VISUALIZATION FOR THE CANDIDATE SOLUTION

In this section, we proceed to visually represent a potential solution for equation MIQP. Given a deep
learning model G, UniAP will determine the placement strategy P for inter-layer parallelism and the
parallel strategy S for intra-layer parallelism using an off-the-shelf solver. As depicted in Figure 7,
the solver is optimizing a 3-layer model with two pipeline stages, each assigned 4 GPUs. Throughout
this process, a potential solution could be

P =

[
1 0
1 0
0 1

]
, S =


1 0 0
0 1 1
0 0 0
...

...
...

0 0 0

 . (18)

Here, the u-th row of matrix P denotes the placement strategy for layer u, where Pui = 1 signifies
the placement of layer u on stage i, while 0 indicates otherwise. For example, Pl0 = [1, 0] denotes
the placement of layer l0 on pipeline stage 1. Additionally, the u-th column of matrix S the selected
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Table 4: Relative estimation error on the performance modeling.

Env. Model Training throughput (samples/s)
erelative (%)

Estimated Actual

EnvA

BERT-Huge-32 34.96 33.46 ± 0.28 4.46 ± 0.83
T5-Large-48 21.33 23.296 ± 0.04 8.49 ± 0.17
ViT-Huge-32 109.76 109.51 ± 0.068 0.23 ± 0.06

Swin-Huge-32 67.54 68.80 ± 0.12 1.83 ± 0.18

EnvB

BERT-Huge-32 10.17 10.77 ± 0.13 5.59 ± 1.17
T5-Large-32 8.24 7.98 ± 0.05 3.29 ± 0.56
ViT-Huge-32 43.91 45.58 ± 0.54 3.67 ± 1.19

Swin-Huge-32 19.29 19.08 ± 0.10 1.12 ± 0.54

intra-layer parallelism strategy for layer u, where Suj = 1 denotes the selection of the j-th strategy
from the intra-layer parallelism strategy set. For example, Sl0 = [1, 0, 0, · · · , 0]T indicates that
layer l0 will adopt the pure DP strategy, while Sl1 = [0, 1, 0, · · · , 0]T indicates that layer l1 will
employ a strategy where DP is performed on GPU 0, 1 and GPU 2, 3, and TP is performed across
these two GPU groups.

There exist numerous combinations of P and S. The off-the-shelf solver will automatically search for
the optimal configuration. By integrating these inter- and intra-layer strategies, along with the pipeline
stages and chunk sizes enumerated in the outer UOP process, UniAP will ultimately derive a globally
optimal parallel strategy for the deep learning model within the current hardware environment.

G EVALUATION OF PERFORMANCE MODELING

Accurate performance modeling for time-per-iteration (TPI) is crucial for evaluating candidate
strategies and identifying a globally optimal one. To this end, we compare the simulated throughput
of the optimal parallel strategy with the actual throughput obtained by testing the strategy on two
environments, namely EnvA and EnvB. In order to quantify the accuracy of the estimated training
throughput, we introduce a metric called relative estimation error erelative, which is computed using
the following equation:

erelative =
|throughputactual − throughputestimated|

throughputactual
× 100% (19)

Here, throughputestimated denotes the training throughput estimated by the automatic parallelism,
while throughputactual denotes the actual throughput profiled during the training process.

Our results, as shown in Table 4, demonstrate that UniAP achieves an average relative estimation
error of approximately 3.59%. In contrast, the average relative estimation error for Galvatron in
our experiments is 11.17%. Given that UniAP requires significantly less time for strategy searching
compared to other approaches, as depicted in Table 1, we can conclude that UniAP’s performance
modeling strikes a good balance between accuracy and efficiency.
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