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Abstract
As large language models (LLMs) based on the
Transformer architecture continue to achieve im-
pressive performance across diverse tasks, this pa-
per explores whether Transformers can ultimately
achieve artificial general intelligence (AGI). We
argue that Transformers have significant poten-
tial to achieve AGI, supported by the following
insights and arguments. (1) A Transformer is
expressive enough to simulate a programmable
computer equipped with random number gener-
ators and, in particular, to execute programs for
meta-tasks such as algorithm design. (2) By the
Extended Church-Turing thesis, if some realistic
intelligence system (say, a human with pencil and
paper) achieves AGI, then in principle a single
Transformer can replicate this capability; Besides,
we suggest that Transformers are well-suited to
approximate human intelligence, because they ef-
fectively integrate knowledge and functions repre-
sented in network form (e.g. pattern recognition)
with logic reasoning abilities. (3) We argue that
Transformers offer a promising practical approxi-
mation of Hutter’s AIXI agent, which is an ideal
construction to achieve AGI but is uncomputable.

1. Introduction
Large language models (LLMs) (Achiam et al., 2023; Gem-
ini et al., 2023; Anthropic, 2024; Dubey et al., 2024) have
demonstrated remarkable capabilities across a broad range
of challenging tasks. For example, OpenAI’s o-series (Ope-
nAI, 2024) model achieves 71.7% accuracy on the software
engineering benchmark SWE-bench (Jimenez et al., 2023),
87.7% on the graduate-level question answering task GPQA
(Rein et al., 2023), and 96.7% on a competition-level math-
ematics reasoning task (Hendrycks et al., 2021). Notably,
these results surpass human-expert performance. As LLMs
evolve, their capabilities are expected to advance further.

1Anonymous Institution, Anonymous City, Anonymous Region,
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These successes are grounded in the Transformer architec-
ture (Vaswani et al., 2017), which has proven to be highly
effective across a wide range of domains, extending beyond
natural language processing to areas such as computer ver-
sion (Dosovitskiy, 2020) and decision-making (Chen et al.,
2021). Given the impressive achievements of Transform-
ers in tackling challenging tasks across various domains, a
fundamental question arises:

Question 1: Can Transformers ultimately achieve artificial
general intelligence (AGI)?

To answer this question, we must first establish a rigorous
definition of intelligence. Intelligence is multifaceted, en-
compassing abilities such as creativity, problem-solving,
pattern recognition, classification, and reasoning. However,
formulating a single, comprehensive definition that captures
all these aspects is challenging. As pointed out by Hut-
ter (2005), most, if not all, aspects of intelligence can be
framed in terms of goal-driven behavior, or more precisely,
as the maximization of some (often unknown) utility (re-
ward) function. This aligns with the “reward is enough”
hypothesis (Silver et al., 2021), which suggests that the
pursuit of maximizing reward alone is sufficient to drive
behaviors that exhibit a wide range of capabilities, many of
which are traditionally studied in both natural and artificial
intelligence.

In this paper, we follow the definition that intelligence can
be broadly categorized into two types of reasoning abilities:

• Learning an unknown utility function (inductive rea-
soning): This involves drawing generalizations from
specific observations, where the conclusions are prob-
able but not certain. This type of reasoning is exten-
sively explored in the context of inverse reinforcement
learning (Ng et al., 2000; Hadfield-Menell et al., 2017).
Examples of inductive reasoning include pattern recog-
nition, natural language processing, prediction, and
scientific research, where repeated observations lead
to hypotheses or theories.

• Maximizing a known utility function (deductive rea-
soning): In this case, the solution depends entirely on
the explicit, provided information. Successful applica-
tions includes AlphaGo (Silver et al., 2016), Muzero
(Schrittwieser et al., 2020), AlphaProof (AlphaProof
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& Teams, 2024), and OpenAI-o1 (OpenAI, 2024).

In this paper, we argue in favor of Question 1, supporting
the potential of Transformers to achieve AGI with the
following insights and arguments.

1. A single Transformer can simulate a probabilistic pro-
grammable computer. Prior works (e.g. (Merrill & Sab-
harwal, 2024)) have shown that Transformers (with chain-
of-thoughts) can efficiently simulate deterministic Turing
machines (DTMs). We extend this result to the potentially
more powerful probabilistic Turing machine (PTM) model,
proving that Transformers can efficiently simulate PTMs as
well (Theorem 2.2).

At first glance, Theorem 2.2 may suggest adherence to a
one-model-one-task paradigm, where different tasks require
different transformers. This misaligns with the current prac-
tice of training a single general-purpose transformer to per-
form various tasks. In fact, Theorem 2.2 provides deeper
insights: as also observed in related work (e.g. (Qiu et al.,
2024)), it implies that a single Transformer can simulate a
probabilistic universal Turing machine (UTM), a formaliza-
tion of a general-purpose programmable computer equipped
with random number generators.

Furthermore, while Transformers do not follow the one-
model-one-task paradigm, they appear to adhere to a one-
prompt-one-task paradigm, where different tasks require
different PTMs (or equivalently, programs) to be specified
in the prompt or pre-injected during training. We argue
that this is not the case. Specifically, beyond algorithms for
specific tasks, a PTM T can also serve as a program for meta-
tasks, such as designing other algorithms (meta-algorithms),
or even higher-order tasks, such as meta-meta-algorithms.

2. Implication of the Extended Church-Turing thesis.
The Extended Church-Turing thesis (ECT) (Yao, 2003;
Aharonov & Vazirani, 2013), an extension of the Church-
Turing thesis in the modern computer science literature from
a complexity-theoretic perspective, asserts that the PTM
model is not as expressive as but also as efficient as any
realistic physical device (say, a human brain, a society, or a
future neural network). Specifically, any function that can
be computed by a realistic finite physical system can also be
computed by a PTM with at most a polynomial slowdown.
Consequently, if some realistic intelligence system (say, a
human brain with pencil and paper) achieves AGI, then in
principle, a single Transformer can achieve AGI as well
(Thesis 1).

In particular, Thesis 1 suggests that a single Transformer has
the potential to achieve human-level intelligence. Moreover,
we suggest that Transformers are particularly well-suited
as approximations of human intelligence, because they ef-
fectively integrate knowledge and functions represented in
network form with logical reasoning abilities, and thus can

leverage results from both connectionism AI and symboli-
cism AI.

3. Algorithmic approximations of general intelligence:
Besides mimicking the human reasoning process, another
line of research, inspired by algorithmic information theory,
seeks to reach or even outperform human intelligence by
establishing a formal theory of general intelligence. Several
constructions have been proposed to address meta-tasks,
including:

Levin’s universal search algorithm: Many deductive rea-
soning tasks, such as theorem proving, planning, and gen-
eral NP-complete problems, can be effectively modeled as
search problems. Levin’s universal search is an algorithm
that can solve all search problems as quickly as the fastest al-
gorithm for each, up to a large constant factor (Levin, 1973;
1984). The basic idea is to run all programs p in parallel with
relative computation time 2−ℓ(p); i.e. a time fraction 2−ℓ(p)

is dedicated to executing p. Here, we describe programs
as Boolean strings using a prefix-free encoding, where ℓ(p)
denotes the length of the description of p. Note that the sum
of all these time fractions satisfies

∑
p 2

−ℓ(p) ≤ 1.

Solomonoff’s universal induction: Every inductive reason-
ing task, such as continuing a number of series in an IQ test,
classification in machine learning, stock-market forecast-
ing, or scientific research, can be described as a sequence
prediction problem, more precisely, predicting future data
from past observations (Hutter, 2005). Solomonoff’s uni-
versal induction (Solomonoff, 1964; 1978) is an optimal
approach for all sequence prediction problems, where the
data is sampled from a computable probability distribution,
or equivalently generated by a realistic physical system ac-
cording to the physical version of Church-Turing thesis. The
basic idea is to do Bayesian prediction, using Solomonoff
prior as the prior belief, which assigns higher probabilities
to simpler hypotheses with shorter descriptions, aligning
with Occam’s razor.

Hutter’s AIXI agent: AIXI is a theoretical agent that
achieves AGI (Hutter, 2005). AIXI is somehow a com-
bination of Solomonoff’s universal induction and Levin’s
universal search. Specifically, AIXI replaces the unknown
environment in the Bellman equation with a generalized
Solomonoff prior and then invokes M ϵ

p∗ (Hutter, 2005), an
enhancement of Levin’s universal search, to solve the Bell-
man equation. Like Solomonoff induction, AIXI tends to
hypothesize the environment as shortest possible programs,
in line with Occam’s razor.

While these constructions are theoretically optimal, they are
often intractable in practice or even uncomputable. However,
we argue that Transformers provide a promising tractable
approximation of these universal constructions. Specifically,

Universal search: By Theorem 2.2, a single Transformer, by
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simulating Levin search, can theoretically solve all search
problems as efficiently as the fastest algorithm for each
problem. To enhance tractability, Transformers can leverage
prior knowledge embedded during training to assign the
relative computation time proportion in a more adaptive and
efficient way. In addition, Transformers can continually
refine search strategies by learning from past experiences.

Universal induction: Recent works (Müller et al., 2022;
Hollmann et al., 2023; Grau-Moya et al., 2024; Goldblum
et al., 2024; Young & Witbrock, 2024) have demonstrated
that Transformers align with Occam’s razor, the core prin-
ciple of Solomonoff induction. Specifically, Transformers
tend to output sequences generated by shorter programs
(a.k.a. with lower Kolmogorov complexity). The align-
ment with Occam’s razor enables Transformers to gener-
alize effectively across diverse tasks and data modalities,
making them good approximations of general-purpose pre-
dictors. Furthermore, Young & Witbrock (2024) put forth
and explore a hypothesis that Transformers approximate
Solomonoff induction better than any other extant sequence
prediction method, highlighting their potential as practical
implementations of universal induction.

AIXI agent: we suggest that Transformers have the potential
to offer a practical approximation of AIXI for the following
reasons: as we just discussed, (i) Transformers have the
potential to approximately implement Solomonoff univer-
sal induction; (ii) Transformers has potential to implement
universal search in practice, enabling efficient solutions for
a wide range of deductive reasoning tasks; and (iii) Trans-
formers integrate prior knowledge effectively, leveraging
human experience to enhance their practical applicability.

2. Transformers Can Efficiently Simulate
Probabilistic Programmable Computers

We assume that the reader is familiar with the definitions of
the Transformer architecture, Turing machine (TM), prob-
abilistic Turing machine (PTM), and universal Turing ma-
chine (TUM). For the convenience of readers, we present a
background of TM in the appendix.

2.1. Transformers Can Efficiently Simulate PTMs

There is a line of theoretical works (Pérez et al., 2019; Bhat-
tamishra et al., 2020; Pérez et al., 2021; Schuurmans, 2023;
Giannou et al., 2023; Merrill & Sabharwal, 2024; Hou et al.,
2024; Liu et al., 2024; Qiu et al., 2024) studying the expres-
sive power of Transformer with chain of thought (CoT) by
connecting them with Turing machines. It turns out that
decoder-only Transformers with t CoT steps can simulate t
DTM steps.

Theorem 2.1 (Merrill & Sabharwal (2024)). Let T be a
deterministic Turing machine that, on input x of length

n, runs for at most t(n) steps. There is a constant-depth
decoder-only Transformer that, on input x, takes t(n) CoT
steps and then outputs T (x).

In this paper, we extend Theorem 2.1 to PTMs. In par-
ticular, it implies that Transformers with polynomial CoT
steps can solve all problems in BPP, the class of decision
problems solvable by a PTM in polynomial time, which is
strictly larger than the P class, which consists of all decision
problems solvable by a DTM in polynomial time, unless
BPP = P.

Theorem 2.2. Let T be a probabilistic Turing machine
that, on input x of length n, runs for at most t(n) steps.
There is a constant-depth decoder-only transformer that, on
input x, takes at most 2t(n) CoT steps and returns the same
(randomized) output as T .

Proof. We first adapt T by introducing a lazy sampling of
the coin tape. The coin tape is initially empty, filled with
blank symbols ⊥, and will be assigned random coins on the
fly during execution. At one step, if T reads a blank symbol
⊥ from the coin tape, it first tosses a fair coin and writes
the result on the coin tape at the current head position. Note
that the adapted T , denoted by T ′, runs for at most 2t(n)
steps, since each original step may include an additional
coin-tossing operation.

Next, we demonstrate how a transformer can simulate T ′

with at most 2t(n) CoT steps. We adapt the proof of The-
orem 2 in (Merrill & Sabharwal, 2024). For the i-th step
of T ′, let hτ

i ∈ Z and γτ
i ∈ Σ denote the head position and

the content on tape τ , and let qi ∈ Q denote the state. Let
∆ := Q×Σ2×{L, S,R}3, and δi ∈ ∆ denote the log at the
i-th step, indicating the state entered, symbols written, and
directions moved. The crucial observation is that the tape
contents at the current head positions can be reconstructed
from the input x and the previous logs δ0, δ1, · · · , δi−1.

As shown in (Merrill & Sabharwal, 2024), a Transformer
can first obtain all arguments (qi−1, γ

1
i , γ

2
i , γ

3
i ) for the tran-

sition function. Suppose tape 3 is the coin tape. If γ3
i ̸=⊥,

which means that the i-th step of T ′ will be deterministic
rather than the coin-tossing operation, then the Transformer
computes δi = δ(qi−1, γ

1
i , γ

2
i , γ

3
i ) with a feedforward net

outputting the one-hot encoding of δi. If γ3
i =⊥, which

means that the i-th step is a coin-tossing operation, then
the Transformer outputs the equally weighted linear combi-
nation of the one-hot encodings of (qi−1, γ

1
i , γ

2
i , 0, S, S, S)

and (qi−1, γ
1
i , γ

2
i , 1, S, S, S). The vector outputted by the

feedforward net is then processed by the finial token classifi-
cation head, which is a softmax function. One can check that
the Transformer exactly simulates the i-th step of T ′.

Remark 2.3. The Transformer architecture in Theorem 2.1 is
not exactly the same as real-world transformers, as it makes
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several assumptions, such as using saturated attention (a.k.a.
hardmax attention) instead of softmax attention and allow-
ing log-precision, that each token has O(log(n+ t(n)) bits.
These assumptions carry over to Theorem 2.2. An important
direction is to remove these assumptions and explore how
real-world Transformers can efficiently simulate PTMs.

2.2. Transformers Can Efficiently Simulate UTMs

At first glance, Theorem 2.2 appears to follow the one-
model-one-task paradigm: different tasks require different
Transformers. This misaligns with the current practice of
training a single general-purpose transformer to perform
various tasks. In fact, Theorem 2.2 provides deeper insights:
as also observed in related works (e.g. (Qiu et al., 2024)),
Theorem 2.2 implies that a single Transformer can simulate
a UTM, or equivalently a programmable computer equipped
with random number generators.

Though Transformers do not have to follow the one-model-
one-task paradigm, they appear to follow the one-prompt-
one-task paradigm: for different tasks, different PTMs
should be loaded into the prompt or pre-injected during
training. We argue that this is not the case. Specifically,
beyond algorithms for specific tasks, the PTM T can also
be taken as a program that performs meta-tasks, such as a
meta-algorithm that designs algorithms, or even meta-meta-
algorithms. For example, the Transformer can implement
the following meta procedure: it takes a problem description
and an input x as input, and then

1. run some prescribed meta-algorithm to initialize or
update a program p;

2. run p on input x, and obtain p(x);

3. evaluate p(x). If not good enough, then go to Step 1.

3. The Extended Church-Turing Thesis and Its
Implication

3.1. The Extended Church-Turing Thesis

The physical version of Church-Turing thesis (CT), as
known as Deutsch-Wolfram thesis, asserts (Wolfram, 1985;
Deutsch, 1985; Copeland & Shagrir, 2018) that every finite
physical system (say, a modern personal computer, a human
brain, a society, or a future neural network) can be simulated
to any specified degree of accuracy by a PTM. Furthermore,
there is also a strengthening, referred to as the Extended
Church-Turing thesis (ECT), of the physical Church-Turing
thesis in the modern computer science literature (Yao, 2003;
Aharonov & Vazirani, 2013) from a complexity-theoretic
perspective, asserting that the probabilistic Turing machine
model is also as efficient as any computing device can be.
That is, if a function is computable by some hardware device

in time T (n) for the input of size n, then it is computable
by a PTM in time O(T (n)k) for some constant k.
Remark 3.1. The physical version of CT and ECT are very
different from the original version proposed by Church and
Turing in the 1930s (Church, 1936; Turing, 1937), which
asserts that every algorithmic process can be carried out by
a PTM. Specifically, if a task can solved by a human being
with paper and pencil by following a finite number of exact
instructions, then the original CT asserts that it can also be
solved by a PTM. Notably, no insight, intuition, or ingenuity
is demanded on the part of the human being carrying out the
method, which is very different from the physical version.
The original Church-Turing thesis is something between
a theorem and a definition. And the physical version and
ECT are neither mathematical theorems nor definitions. If
they are true, then the truth is a consequence of the laws of
physics (of Philosophy, 2023).

By combining Theorem 2.2 and ECT, we obtain the follow-
ing thesis:

Thesis 1: If some realistic intelligence system (say, a human
brain with pencil and paper, or a future neural network)
achieves AGI, then a single Transformer can also achieve
AGI with at most a polynomial slowdown.

Remark 3.2. There is ongoing debate as to whether quantum
computers falsify ECT. In particular, it is a central problem
in quantum computational complexity theory, well-known
as the BQP =?BPP problem, whether all decision prob-
lems solvable by a polynomial-time quantum computer can
also be solved by a polynomial-time PTM. If ECT is fal-
sified by quantum computers, then a quantum variant of
Transformer that can simulate universal quantum comput-
ers (Benioff, 1980; Deutsch, 1985; Yao, 1993; Bernstein &
Vazirani, 1993) might be necessary to achieve AGI.
Remark 3.3. It is widely accepted that a human brain can
be modeled as a complex computational system (say, a
huge neural network) following classical physical laws, and
thus can be simulated by a PTM (Searle, 1992; Guttenplan
& Guttenplan, 1994). However, this traditional view of
the brain as a classical system was challenged by Penrose
(1994); Hameroff & Penrose (2014): they argued that the
brain utilizes quantum mechanical effects (e.g., quantum
coherence or entanglement) for reasoning and recognition,
and human consciousness is even non-algorithmic, though
still lack empirical validation.

3.2. Algorithmically Description of Human Reasoning

If we accept that (a) the Extended Church-Turing thesis
applies to the human’s reasoning process, meaning that the
reasoning process of humans can be efficiently simulated
by a PTM, and (b) a human brain, or a group of human
brains (say, a research community) with paper and pencil
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can achieve AGI, then by Theorem 2.2, we should also ac-
cept that in principle a single Transformer or a group of
Transformers can also achieve AGI as well. The related
challenge lies in algorithmically describing the human rea-
soning process, including cognitive functions like intuition
or creativity.

Question 2: How to algorithmically describe human rea-
soning process?

There are two kinds of general approaches to this challenge:
connectionism and symbolicism.

1. Connectionism: Simulating the Brain at the Physical
Level. Connectionism posits that human reasoning arises
from the emergent properties of biologically inspired neural
networks. By modeling the brain’s physical and biological
substrates—specifically, the interactions of neurons through
synaptic connections—this approach seeks to replicate cog-
nitive processes via distributed, parallel computation. Mod-
ern artificial neural networks, such as deep learning archi-
tectures, exemplify this paradigm. These systems learn
hierarchical representations from data, mirroring how the
brain processes sensory input and abstracts patterns (Hinton
et al., 2006; LeCun et al., 2015).

For instance, Transformer architectures (Vaswani et al.,
2017) model sequential reasoning by leveraging temporal
dependencies and attention mechanisms, achieving expert-
level performance in complex mathematical reasoning and
code generation tasks (OpenAI, 2024; Guo et al., 2025).
Connectionist models excel at pattern recognition and prob-
abilistic reasoning but often lack explicit symbolic repre-
sentations, leading to critiques about their interpretability
and inability to handle structured, rule-based logic (Mar-
cus, 2018). Recent advances in neuro-symbolic integration,
however, aim to bridge this gap by combining neural net-
works with symbolic reasoning modules (Besold et al., 2021;
Bhuyan et al., 2024).

2. Symbolicism: Abstracting General Principles of Hu-
man Thought. Symbolicism adopts a top-down perspective,
seeking to formalize the universal principles and logical
structures that underpin human reasoning. Rooted in classi-
cal AI and influenced by philosophy, linguistics, and formal
logic, this approach abstracts cognition into discrete sym-
bols and rules, independent of biological implementation.
Unlike connectionism, which emulates neural substrates,
symbolicism prioritizes computational-level explanations of
thought—asking what problems cognition solves and why,
rather than how the brain physically solves them (Pylyshyn,
1989; Newell & Simon, 2007).

At its core, symbolicism assumes that reasoning can be
modeled as manipulation of explicit representations through
deterministic or probabilistic rules. For example: Occam’s
razor, a heuristic for inductive reasoning, is formalized

in algorithmic frameworks like Bayesian model selection
(Jefferys & Berger, 1992), where simpler hypotheses are
assigned higher prior probabilities. Deductive reasoning
is captured by logic-based systems (e.g., Prolog, theorem
provers) that apply syllogistic rules (e.g., modus ponens) to
derive conclusions from premises (Russell & Norvig, 2016).

Here, we argue that an effective solution requires a combi-
nation of these two approaches, since (i) abstracting general
principles offers a more tractable and generalizable frame-
work for intelligence and (ii) part of knowledge and func-
tions, such as pattern recognition and cognitive functions,
may have no representation more concise than a huge, ana-
log neural network (Graham, 2007), thus are not suitable to
be represented as logic or symbolic.

In particular, since Transformers can effectively integrate
knowledge and functions represented in network form (since
they are neural networks) with logical reasoning abilities
(Theorem 2.2), and thus can leverage benefits from both con-
nectionism and symbolicism, we suggest that Transformers
are particularly well-suited as approximations of human
intelligence.

4. Algorithmic approximations of general
intelligence

Besides mimicking the human reasoning process, another
line of research, inspired by algorithmic information theory
(Li et al., 2008), aims to achieve or even surpass human-level
intelligence by establishing a formal theory of general intel-
ligence, such as Levin’s universal search algorithm (Levin,
1973; 1984), Solomonoff’s universal induction (Solomonoff,
1964; 1978), and Hutter’s AIXI agent (Hutter, 2005). While
these constructions are theoretically optimal, they are often
intractable in practice and even uncomputable. However, we
argue that Transformers provide a promising and tractable
approximation of these universal constructions.

4.1. Levin’s Universal Search

Many deductive reasoning tasks, such as theorem proving,
planning, and general NP-complete problems, can be effec-
tively modeled as search problems.

Search problems. Let ϕ : {0, 1}∗ → {0, 1}∗ be a function
where ϕ(·) can be computed quickly (say, in polynomial
time). The search problem is defined as: given y, find an x
such that ϕ(x) = y.

For example, in the Boolean satisfiability problem (SAT),
the function ϕ : {0, 1}∗ → {0, 1} can be defined as a
verifier that checks whether a given assignment satisfies the
Boolean formula in conjunctive normal form.

Levin search. The algorithm is simple to describe: just
run and verify the output of all algorithms p in parallel
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with relative computation time 2−ℓ(p); i.e. a time fraction
2−ℓ(p) is devoted to executing p (Levin, 1973; 1984). Here,
programs are described as Boolean strings in a prefix-free
encoding, where ℓ(p) denotes the length of the description
of p. Note that

∑
p 2

−ℓ(p) ≤ 1.

Theorem 4.1 (Levin (1973; 1984); Hutter (2005)). The
computation time of Levin search is upper bounded by
minp{2ℓ(p) · time+p (y)}, where time+p (y) is the runtime
of p(y) plus the time to verify the correctness of the result
(ϕ(x) = y) by a known implementation for ϕ.

By Theorem 2.2, we conclude that in principle, a single
Transformer can solve all search problems as quickly as the
fastest algorithm for each, up to a constant factor.

We note that Levin’s universal search—which optimally allo-
cates computational effort across candidate solvers accord-
ing to their algorithmic probability (Theorem 4.1)—may
provide a theoretical foundation for the emerging paradigm
of inference-time scaling in LLMs (Brown et al., 2024; Snell
et al., 2024; OpenAI, 2024; Guo et al., 2025). This frame-
work structures LLM reasoning into two synergistic phases:
generating diverse candidate solutions (or algorithms) and
efficiently prioritizing their execution and evaluation, mir-
roring Levin’s time-optimal balance between exploration
and exploitation. By prescribing a focus on programs with
minimal description length (i.e., favoring simpler, valid so-
lutions), Levin’s principles offer guidance for designing
compute-efficient strategies.

Though Levin search is theoretically optimal for all search
problems, the large constant overhead 2ℓ(p) renders it im-
practical. A line of research (Solomonoff, 1986; Schmid-
huber et al., 1997; Schmidhuber, 1997; 2002b; 2004) has
explored adaptations of Levin’s search that leverage past ex-
perience to improve its efficiency. We note that the key lies
in generating highly successful algorithms p with the short-
est description length, ensuring they are prioritized during
the search process. Such knowledge can be acquired from
experience. For instance, a Transformer could maintain a
parameterized model (e.g., a neural network or program)
within its context and employ bootstrap methods—such as
search-and-learn processes (Arfaee et al., 2011)—to iter-
atively refine its performance. By repeatedly solving in-
creasingly challenging instances and updating the model
based on successfully solved examples, the system could
incrementally improve its problem-solving efficiency.

4.2. Solomonoff’s Universal Induction

Every inductive reasoning task, such as continuing a number
of series in an IQ test, classification in machine learning,
stock-market forecasting, or scientific research, can be de-
scribed as a sequence prediction problem, more precisely,
predicting future data from past observations (Hutter, 2005).

Without loss of generality and for simplicity, we assume the
data xi ∈ {0, 1} is binary.

We first introduce some notations and definitions. Given a
subset S of {0, 1}⋆, let ⌊S⌋ denote the set obtained from S
by deleting all elements that have a prefix in S. A monotone
Turing machine is a Turing machine with one unidirectional
input tape, one unidirectional output tape, and some bidi-
rectional work tapes. The input tape is read-only, and the
output tape is write-only. We say a tape is unidirectional if
its head can only move from left to right, and bidirectional
if its head can move in both directions.

Definition 4.2 (Measure). We say a function µ : {0, 1}∗ →
[0, 1] is a measure if µ(∅) = 1 and µ(x) = µ(x1) + µ(x0).
Here, ∅ denotes the empty string.

A measure µ defines a random process generating an in-
finitely long binary sequence: start with an empty string
and repeatedly select the next bit xn ∈ {0, 1} according to
the probability µ(xn | x<n) := µ(x<nxn)/µ(x<n) condi-
tioned on the past data x<n := x1x2 · · ·xn.

We say µ is estimable if there exists a TM that, given x ∈
{0, 1}∗ and a precision ϵ, computes an ϵ-approximation of
µ(x). By the physical version of the Church-Turing thesis,
any µ implemented on a finite, realistic physical device is
estimable. Moreover, by Theorem 4.5.2 in (Li et al., 2008),
for any estimable µ, there is a monotone TM T that takes
an infinitely long uniformly random binary string as input
and generates an infinitely long binary sequence according
to µ. Let K(µ) denote the shortest description of such a T .

Sequence prediction problem. Having observed the past
data x<n := x1x2 · · ·xn−1, the task is to predict the next
bit xn. More precisely, let µ denote the unknown underlying
mechanism generating the sequence x1x2 · · · . The task is
to estimate the conditional probability µ(xn | x<n) :=
µ(x<nxn)/µ(x<n).

Solomonoff’s universal induction. Bayesian prediction
provides a framework for sequence prediction problems,
which repeatedly employs Bayes’ rule to update its be-
liefs about each hypothesis based on newly observed data.
The primary challenge is how to select the prior beliefs.
Solomonoff (Solomonoff, 1964; 1978) addressed this chal-
lenge by introducing a universal prior, rooted in the simplic-
ity of hypotheses. His approach leverages the fact that sim-
pler hypotheses, represented by shorter programs, are more
likely to generalize well—a concept aligned with Occam’s
Razor. Solomonoff showed that the Bayesian prediction
with the Solomonoff prior as the prior belief is an optimal
way for the sequence prediction problem, provided that the
underlying µ is estimable.

Definition 4.3 (Solomonoff prior (Solomonoff, 1964;
1978)). Let U be a monotone UTM. The Solomonoff prior

6
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is defined as

MU (x) :=
∑

⌊p∈{0,1}∗:U(p)=x⋆⌋

2−ℓ(p).

Here, U(p) = x⋆ means x is a prefix of U(p). Intuitively,
MU (x) is the probability that the output starts with x when
the input is an infinite-long uniformly random binary string.

Remark 4.4. For different monotone UTMs U1 and U2, the
associated Solomonoff priors are equivalent up to multi-
plicative constants: there exist two constants 0 < c1 < c2
such that c1 · MU1

(x) ≤ MU2
(x) ≤ c2 · MU2

(x) for any
x ∈ {0, 1}∗ (Solomonoff, 1978; Wood et al., 2013).

Solomonoff’s universal induction is simple to describe: use
MU (xn | x<n) = MU (xn)/MU (x<n) as an estimate of
the true conditional probability µ(xn | x<n).

Theorem 4.5 (Solomonoff central theorem (Solomonoff,
1964; 1978)). For any estimable µ, we have

+∞∑
n=1

∑
xn∈{0,1}

µ(x<n) (M(xt | x<t)− µ(xn | x<n))
2

≤ ln 2 ·K(µ) +O(1).

For any estimable µ, the upper bound ln 2 ·K(µ) is finite, so
the difference M(xt | x<t)− µ(xn | x<n) tends to zero as
n → ∞ with µ-probability 1. Consequently, M(xt | x<t)
converges rapidly to the true underlying generating process.

Unfortunately, Solomonoff prior MU (x) is inestimable:
there is no TM that, given x ∈ {0, 1}∗ and a precision ϵ, can
compute an ϵ-approximation of MU (x) in finite time. To
address this uncomputability issue, several approximations
have been proposed (Schmidhuber, 2002a; Veness et al.,
2012; Filan et al., 2016; Grau-Moya et al., 2024).

In particular, observing that Transformers are naturally
suited for sequence prediction tasks, a line of work (Müller
et al., 2022; Hollmann et al., 2023; Grau-Moya et al.,
2024; Goldblum et al., 2024; Young & Witbrock, 2024)
has explored whether the Transformer model can approx-
imate Solomonoff induction. Specifically, Hollmann et al.
(2023); Müller et al. (2022) showed that transformers can
do Bayesian inference. Grau-Moya et al. (2024) used Trans-
formers to approximate Solomonoff induction by training
on UTM data, and showed that increasing model size leads
to improved performance, demonstrating that model scaling
helps learning increasingly universal prediction strategies.
Young & Witbrock (2024) proposed and investigated the
hypothesis that Transformers approximate Solomonoff in-
duction better than any other extant sequence prediction
method. This hypothesis was further supported by (Gold-
blum et al., 2024; Delétang et al., 2024). Specifically, they
showed that like Solomonoff induction, transformers also
align with Occam’s Razor: transformers prefer generat-
ing data with low Kolmogorov complexity. Occam’s razor

provides transformers with good generalization on many
different problems and modalities of data, and makes them
powerful general-purpose predictors.

4.3. Hutter’s AIXI agent

In this subsection, we briefly introduce Hutter’s AIXI agent,
which is claimed to be universal in that it is independent of
the true environment (model-free) and is able to solve any
solvable problem and learn any learnable task. The main
idea of AIXI is simple to describe: just replace the unknown
environmental distribution in the Bellman equations with a
suitably generalized Solomonoff prior (Hutter, 2005).

Setting. The agent and the environment interact chrono-
logically as follows: in each cycle k, the agent performs
an action yk ∈ Y (output), and then receives a perception
xk ∈ X from the environment. The perception xk consists
of a regular part ok and a reward rk. Given the history
y1x1 · · ·xk−1yk, the probability that the environment pro-
duces perception xk is denoted µ(xk | y1x1 · · ·xk−1yk).
Here, we make no assumptions about µ other than it is
estimable. In particular, µ is allowed to depend on the
complete history y1x1 · · ·xk−1yk.

We use p to denote the agent’s policy, which can be de-
scribed as a monotone Turing machine that takes x1x2 · · ·
as input and outputs y1y2 · · · . As the optimal policy can
always be chosen to be deterministic, we assume p is a deter-
ministic monotone TM. In addition, we say y1:k = p(x<k)
if yi = p(y1x1y2x2 · · ·xi−1) for i ≤ k. We also use
µ(xk:m | y1:mx<k) as an abbreviation for Πm

i=kµ(xi |
x<i, y≤i). We define the value of policy p in environment
µ as

V p
µ :=

∑
x1:m

(r1 + · · ·+ rm)µ(x1:m | y1:m)|y1:m=p(x<m)

where m is the lifespan of the agent.

The goal of the agent is to maximize the total reward∑m
i=1 ri. Formally, the agent aims to find a policy pµ that

maximizes V p
µ .

The AIXI agent. If the environment µ is known, then the
optimal policy is

yk := argmax
yk

∑
xk

· · ·max
ym

∑
xm

(
m∑
i=k

ri

)
µ(xk:m | y1:m, x<k)

with total reward

max
y1

∑
x1

· · ·max
ym

∑
xm

(r1 + · · ·+ rm)µ(x1:m | y1:m) := V ∗
µ

The AIXI agent replaces the true but unknown µ with a
generalized Solomonoff prior. Specifically, the AIXI policy
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is

yk := argmax
yk

∑
xk

· · ·max
ym

∑
xm

(
m∑
i=k

ri

)
ξ(xk:m | y1:m, x<k)

where

ξ(x1:k | y1:k) :=
∑

monotone TM q:q(y1:k)=x1:k

2−ℓ(q).

Intuitively, the agent continually updates its belief about
hypotheses of the unknown environment µ by Bayes’ rule.
Similar to Solomonoff universal induction, environments
with lower Kolmogorov complexity are preferred, in line
with Occam’s razor. Hutter (2005) shows that AIXI’s envi-
ronment model converges rapidly to the true environment,
and its policy is Pareto-optimal and self-optimizing. Here,
we say a policy Pareto-optimal if there is no other agent
that performs at least as well as AIXI in all environments
while performing strictly better in at least one environ-
ment, and self-optimizing if 1

mV AIXI
µ → 1

mV ∗
µ for horizon

m → +∞ for all estimable µ.

Unfortunately, like Solomonoff’s universal induction, AIXI
is uncomputable. To address this issue, several computable
approximations have been proposed (Hutter, 2005; Pankov;
Veness et al., 2010; 2011; 2012; 2013; Bellemare et al.,
2013; 2014; Yang-Zhao et al., 2022; 2024). One such ap-
proximation is AlXItℓ, which performs at least as well as
any other agent bounded time t and length ℓ. Some ap-
proximations focus on restricted environment classes and
have been successfully implemented (Veness et al., 2011).
Yang-Zhao et al. (2024) studied how to inject knowledge
into the AIXI agent.

We suggest that the Transformer model has the potential
to approximate AIXI for the following reasons: (i) as pre-
viously discussed, Transformers might serve as a good ap-
proximation of Solomonoff induction, and provide a good
estimation of ξ; (ii) with an estimation of ξ, Transformers
can solve the Bellman equation using an enhanced Levin
search or an enhanced M ϵ

p∗ algorithm (Hutter, 2005), which
solves all well-defined problems as quickly as the fastest al-
gorithm for each problem; and (iii) Transformers effectively
integrate prior knowledge, leveraging human experience to
further enhance their practical applicability.

5. Alternative Views
This section discusses alternative views arguing that Trans-
formers are not a sufficient path to AGI.

Alternative view 1: Transformers miss essential capabilities
for intelligent beings, such as understanding and reasoning
about the physical world. Specifically, Transformers cannot
anchor their understanding in reality: They cannot perform
actions in the real world or learn through embodied experi-
ences, and they lack the capability for hierarchical planning,

a crucial element for understanding and interacting with the
world at multiple levels of abstraction (e.g. (Lecun, 2024)).

We acknowledge that current Transformers lack the capabil-
ities to interact with the physical world directly and employ
embodied learning. However, we do not think this repre-
sents an inherent limitation of Transformers. With minor
enhancements, Transformers could be embedded within
agent models. Specifically, such agents could utilize Trans-
formers as an approximation of universal induction (Section
4.2) to learn about the unknown environment, and subse-
quently apply them as an approximation of universal search
(Section 4.1) to perform deductive reasoning.

Besides, we argue that current Transformers really do un-
derstand. In our definition of intelligence (Section 1), under-
standing can be equated to inductive reasoning–the ability to
uncover the underlying general mechanism from specific ob-
servations. As we argued in Section 4.2, Transformers pro-
vide a promising practical approximation of Solomonoff’s
universal induction, which is a universal and optimal way
to do inductive reasoning.

In addition, as we argued in Section 2, Transformers can ex-
ecute any meta-process, such as algorithm design, when an
algorithmic description is provided. In particular, as argued
in Section 4.1, Transformers provide a promising practi-
cal approximation of Levin’s universal search algorithm,
enabling them to efficiently perform various deductive rea-
soning tasks, including planning and theorem proof.

Alternative view 2: Transformers are limited by their expen-
diture of bounded compute per input instance, e.g. the finite
context window and finite precision, thus cannot simulate
a UTM, whose tapes are infinitely long (e.g. (Lecun, 2024;
Goldblum et al., 2024; Upadhyay & Ginsberg, 2023)).

First, no finite physical system, such as a human brain or a
personal computer, can solve problems of infinite size. This
limitation naturally extends to the simulation of a UTM,
which assumes infinitely long tapes. Therefore, when dis-
cussing whether a Transformer can simulate a UTM, the
correct interpretation should follow the framework of the
logical circuit model (Arora & Barak, 2009), specifically:
“a uniform family of Transformers can simulate a UTM.”
In other words, for any arbitrarily large tape length ℓ, there
exists an efficiently constructible Transformer capable of
simulating a UTM with tape length ℓ.

In this context, while an exact simulation of a UTM is im-
possible, a sufficiently large Transformer can approximate
its behavior to an arbitrarily high degree of accuracy. This
scalability ensures that Transformers, much like circuits,
can address increasingly complex problems within practical
computational limits.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Background on Turing Machines
A.1. Background on Turing Machines

Turing machines. Turing machines (TMs) are a mathematical model of computation. A k-tape TM is defined as a tuple
⟨Σ,⊥, Q, qstart, F, δ⟩ where (i) Σ is a finite tape alphabet including a blank symbol ⊥, (ii) Q is the finite set of states
containing initial state qstart, (iii) F ⊆ Q is a set of halting states, and (iv) δ is a transition function (Q \ F ) × Σk →
Q× (Σ× {L, S,R})k.

Throughout this paper, we will assume Σ = {0, 1,⊥} for simplicity and with loss of generality.

Probabilistic Turing Machines. A probabilistic Turing Machine (PTM) is a Turing machine with an additional read-only
coin tape full of independent and uniformly random coins.

The PTM model is potentially more powerful than the deterministic Turing machine (DTM) model. An example of a
computational problem that can be solved in polynomial time by a PTM but still not known how by a DTM is the polynomial
identity testing problem (PIT) (see, e.g. (Arora & Barak, 2009)). In fact, it is a central question in complexity theory,
well-known as the BPP =?P problem, whether any decision problem solvable by a polynomial-time PTM can also be
solved by a polynomial-time DTM.

We say that a (deterministic or probabilistic) TM T is oblivious if the tape head movements of T running on input x depend
only on the input length |x|. That is, T makes the same sequence of head movements for all inputs x of the same length.
Hennie & Stearns (1966); Pippenger & Fischer (1979) proved that: for every multitape DTM T running in O(t(n)) time,
there is an equivalent oblivious two-tape DTM T ′ that runs in O(t(n) log t(n)) time. Furthermore, as observed by Schnorr
(1976), this result also holds for all relative Turing machines, including PTMs. Specifically, for any multitape PTM T
running in O(t(n)) time, there is an equivalent oblivious two-tape PTM T ′ running in O(t(n) log t(n)) with an additional
ready-only coin tape. So, w.l.o.g., in this paper unless otherwise specified, whenever we refer to DTMs or PTMs, we refer to
two-tape oblivious DTMs or PTMs respectively.

Universal Turing Machines. A universal Turing machine (UTM) is a TM that can simulate the execution of every other
(deterministic or probabilistic) TM T given T ’s description as input. Specifically, we encode PTMs as Boolean strings
in a prefix-free way. A UTM is a PTM U that takes the concatenations of the encoding of a PTM T and an input x, and
outputs the (possibly randomized) T (x). UTMs capture the notion of a “general-purpose programmable computer”, which
is a single machine that can be adapted to any arbitrary task provided an appropriate program is loaded. We remark that
the parameters of a UTM, such as alphabet size, number of states, and number of tapes are fixed, though the TM being
simulated could have much more parameters.
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