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Abstract

Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-
free paths for a set of agents confined to a graph. In conventional MAPF scenarios,
the graph and the agents’ start and goal locations are known in advance. Thus,
a centralized planning algorithm can be utilized to generate a solution. In this
work, we investigate the decentralized MAPF setting, in which the agents can
not share the information and must independently navigate toward their goals
without knowing the other agents’ goals or paths. We focus on the lifelong variant
of MAPF, which involves continuously assigning new goals to the agents upon
arrival to the previous ones. To address this complex problem, we propose a
method that integrates two complementary approaches: planning with heuristic
search and reinforcement learning (RL) through policy optimization. Planning
is utilized to maintain an individual path, while RL is employed to discover the
collision avoidance policies that effectively guide an agent along the path. This
decomposition and intrinsic motivation specific for multi-agent scenarios allows
leveraging replanning with learnable policies. We evaluate our method on a wide
range of setups and compare it to the state-of-the-art competitors (both learnable
and search-based). The results show that our method consistently outperforms the
competitors in challenging setups when the number of agents is high.

1 Introduction

Multi-agent pathfinding (MAPF) [1] is a challenging problem that gets increasing attention recently.
It is often studied in the AI community with the following assumptions. The agents are confined to a
graph, and at each time step an agent can either move to an adjacent vertex or stay at the current one.
A central controller possesses information about the graph and the agents’ start and goal locations.
This unit is in charge of constructing a set of conflict-free plans for all the agents. Thus, a typical
setting for MAPF can be attributed as centralized and fully observable.

In many real-world domains, however, the central controller does not exist, or, even if it does, it may
not possess full information about the environment. For example, consider a fleet of service robots
delivering some items in a human-shared environment, e.g., the robots delivering drugs in the hospital.
Each of these robots is likely to have access to the global map of the environment (e.g., the floor
plan), possibly refined through the robot’s sensors. However, the connection to the central controller
may not be consistent. Thus, the latter may not have accurate data on the robots’ locations and,
consequently, cannot provide valid MAPF solutions. In such scenarios, decentralized approaches
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to the MAPF problems, when the robots themselves have to decide their future paths, are essential.
Moreover, decentralized approaches may be preferable due to the poor scalability of the centralized
ones. In this work, we aim to develop such an efficient decentralized approach.
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Figure 1: An example of a decentralized
LMAPF instance is depicted below. Each
agent is represented by a filled circle. The red
agent has visibility limited to the positions of
other agents within its field of view, indicated
by a dotted red line. The red circles with num-
bers represent the goals that the agent needs
to reach. The next goal is revealed only after
the previous one is achieved. The small red
circle indicates the subgoal the agent needs to
accomplish to progress towards its goal.

It is natural to frame the decentralized MAPF as a
sequential decision-making problem where at each
time step, each agent must choose and execute an
action that will advance it to the goal and, at the same
time, will not disallow other agents to reach their
goals as well. The result of solving this problem
is a policy that, at each moment, tells which action
to execute. To form such a policy, learnable meth-
ods are commonly used, for example, reinforcement
learning (RL), which is especially beneficial in tasks
with incomplete information [2, 3, 4]. However, even
state-of-the-art model-free RL methods generally can-
not efficiently solve long-horizon problems with the
involved casual structure [5, 6], and they are often
inferior to the seach-based methods when solving
problems with hard combinatorial structure.

The additional challenges that make the MAPF prob-
lems challenging for RL are as follows. First, we
want the policy to be highly generalizable to previ-
ously unseen environments, which may differ sig-
nificantly in scale and topology from the ones used
during the learning stage. In MAPF, our primary in-
terest lies not in how well the agents learn to behave
in the environment(s) used for training, but rather how
well they perform in any arbitrary (even out-of-the-
distribution) environment. Second, MAPF problems
are naturally dependent on the goal locations of the
agents, meaning that even in the same environment
(map), the goals may vary significantly. Finally, ef-
fectively training in a complex observation and action spaces poses challenges even for state-of-the-art
multi-agent reinforcement learning (MARL) methods.

To this end, in this work we suggest not to solve the MAPF problem directly by RL but rather to
decompose it into a series of sub-tasks utilizing heuristic search algorithms and then solve these
sub-tasks efficiently with a learnable policy, that is obtained through the decentralized training. The
general pipeline of our solution is the following. Each agent plans an individual path to its goal by
the conventional heuristic search algorithm without considering the other agents (we also introduce
an additional technique to penalize paths that are likely to cause deadlocks). Then a waypoint on this
path is chosen in some vicinity of the agent, which becomes its local goal. To reach it, a learnable
policy is utilized, which takes both static obstacles and the locally observable agents into account.
Once a waypoint is reached, or the agent goes too far away from it the cycle repeats.

Empirically we compare our method, which we name FOLLOWER, to a range of both learnable and
non-learnable state-of-the-art competitors and show that it i) consistently outperforms the competitors
when the number of agents is high; ii) better generalizes to unseen environments compared to other
learnable solvers; iii) may outperform a centralized search-based solver in certain setups.

2 Related Works

Lifelong MAPF LMAPF is an extension of MAPF when the agents are assigned new goals upon
reaching their current ones. Similarly, in (online) multi-agent pickup and delivery (MAPD), agents
are continuously assigned tasks, comprising two locations that the agent has to visit in a strict order
– pickup location and delivery location. Typically, the assignment problem is not considered in
LMAPF/MAPD. However, there exist works that include the assignment task into the problem,
see [7, 8] for example.
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In [9], several variants to tackle MAPD were proposed differing in the amount of data the agents
share. Yet, even the decoupled (as attributed by the authors) algorithms based on Token Swapping
rely on global information, i.e., the one provided by the central unit. An enhanced Token Swapping
variant that considers kinematic constraints was introduced in [10]. In [11], an efficient rule-based re-
planning approach to solve MAPF was introduced that is naturally capable of solving LMAPD/MAPD
problems. It did not rely on the several restrictive assumptions of Token Swapping and was empirically
shown to outperform the latter.

Finally, one of the most recent and effective LMAPF solvers is the RHCR algorithm presented in [12].
It relies on the idea of bounded planning, i.e., constructing not a complete plan but rather its initial
part. RHCR is a centralized solver that relies on the full knowledge of the agents’ locations, their
current paths, goals, etc. In this work we empirically compare with RHCR and show that our method
is superior when the number of agents is high.

Decentralized MAPF This setting entails that the paths/actions of the agents are decided not by a
central unit but by the agents themselves. Numerous approaches, especially the ones tailored to the
robotics applications, boil this problem down to reactive control, see [13, 14, 15] for example. These
methods, however, are often prone to deadlocks. Several MAPF algorithms can also be implemented
in a decentralized manner. For example, in [16] MAPP algorithm was introduced that relies on the
individual pathfinding for each agent and a set of rules to determine priorities and choose actions to
avoid conflicts when they happen along the paths. In [11] PIBT algorithm was introduced in which
the agents also pick their actions individually (at each time step) based on specific rules. In general,
most rule-based MAPF solvers, like [17], can be implemented in such a way that each agent decides
its actions. However, in this case, the implicit assumption is that the agents can communicate to share
the relevant information (or that they have access to the global MAPF-related data). In contrast, our
work assumes that the agents are unable to communicate with one another or a central unit, which
significantly increases the complexity of the problem.

Learnable MAPF This direction has been getting increased attention recently. In [18], a seminal
PRIMAL method that utilized reinforcement learning and imitation learning to solve MAPF in a
decentralized fashion was introduced. Later in [19], it was also tailored to solve LMAPF. The new
version got the name PRIMAL2. Since that, numerous learning-based MAPF solvers emerged, and
it became common to compare against PRIMAL/PRIMAL2 (we also compare with it in our work).
For example, in [20], another learning-based approach was proposed, tailored explicitly to agents
with a non-trivial dynamic model, such as quadrotors. In [21] DHC method that utilized the agents’
communications to solve decentralized MAPF efficiently was described. Another communication-
based learnable approach, PICO, was presented in [22]. Overall, currently, a wide range of learnable
decentralized MAPF solvers exist. However, to the best of our knowledge, they all rely on the
communication between the agents or on access to the global MAPF-related data (like in PRIMAL,
where each agent knows the goal locations of the others). We lift these assumptions in this work.

MARL A separate direction in RL can be distinguished that specifically considers the multi-agent
setting (MARL) [23]. Mainly these approaches consider game environments (like Starcraft [24])
in which pathfinding is not of the primary importance. However, several MARL methods, such as
QMIX [3], MAPPO [25], have been adapted specifically for the MAPF task [26]. However they rely
on the information sharing between agents.

Much attention is paid to multi-agent learnable methods in robotics [27]. Often, the value-based
approaches are used to control small groups of agents on simple maps lile in [28] where a group
of 4 agents is considered. In [29], a combination of Particle Swarm Optimization and Q-Learning
controlling up to 100 agents is used. In [30], the model-based DynaQ method is used to learn agents
in the knowledge exchange mode. Some works [31, 32] use value-based approaches with prior
knowledge of how to interact with other agents. In [33] (MAPPER) an evolutionary reinforcement
learning was used for MAPF task. This work also uses a global planner to determine sub-goals in
learning one agent. In multi-agent mode, agents using ineffective polices are eliminated and only
successful agents continue to be trained.
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3 Background

Multi-agent Pathfinding In (Classical) Multi-agent pathfinding [1], the timeline is discretized to
the time steps, T = 0, 1, 2, ... and the workspace, where K agents operate, is discretized to a graph
G = (V,E), whose vertices correspond to the locations and the edges to the transitions between
these locations. K start and goal vertices are given and each agent i has to reach its goal gi 2 V
from the start si 2 V . At each time step, an agent can either stay in its current vertex or move to an
adjacent one. An individual plan for an agent pi1 is a sequence of actions that transfers it between
two designated vertices. The plan’s cost is the time step when the agent reaches the goal.

The MAPF problem asks to find a set of K plans s.t. each agent reaches the goal without colliding
with other agents. Formally, two collisions are usually distinguished: vertex collision, when the
agents occupy the same vertex at the same time step, and edge collision, when the agents use the
same edge at the same time step.

Lifelong MAPF (LMAPF) is a variant of MAPF where immediately after an agent reaches its goal, it
is assigned to another one (via an external assignment procedure) and has to continue its operation.
Thus, LMAPF generally asks to find not a fixed set of K plans but rather to i) find a set of K initial
plans and ii) update each agent’s plan when it reaches the current goal and receives a new one. In
extreme cases, when some goal is reached at each step, the plans’ updates are needed constantly (i.e.,
at each time step).

The Considered Decentralized LMAPF Problem Consider a set of agents operating in the shared
environment, represented as a graph G = (V,E). The timeline is discretized to the time steps
T = 0, 1, ..., Tmax, where Tmax is the episode length. Each agent is located initially at the start
vertex and is assigned to the current goal vertex. If it reaches the latter before the episode ends, it is
immediately assigned another goal vertex. We assume that the goal assignment unit is external to the
system, and the agents’ behavior does not influence the goal assignments. An agent can reach the
goal by performing the following actions: wait at the current vertex, and move to an adjacent vertex.
The duration of each action is uniform, i.e., 1 time step. We assume that the outcomes of the actions
are deterministic and no inaccuracies occur when executing the actions.

Each agent has complete knowledge of the graph G. However, it can observe the other agents only
locally. When observing them, no communication is happening. Thus an agent does not know the
(current) goals or intended paths of the other agents. It observes only their locations. The observation
function can be defined differently depending on the type of graph. In our experiments, we use
4-connected grids and assume that an agent observes the other agents in the area of the size m⇥m,
centered at the agent’s current position.

Our task is to construct an individual policy ⇡ for each agent, i.e., the function that takes as input
a graph (global information) and (a history of) observations (local information) and outputs a
distribution over actions. Equipped with such policy, an agent at each time step samples an action
from the distribution suggested by ⇡ and executes it in the environment. This continues until time
step Tmax is reached when the episode ends. Upon that, we compute the throughput as the ratio of
the episode length to the number of goals achieved by all agents. This metric is used to compare
different policies: we say that ⇡1 outperforms ⇡2 (in a particular episode) if the throughput of the
former is higher.

Partially Observable Markov Decision Process We consider a partially observable multi-agent
Markov decision process [34, 35]: M = hS,A,U, P,R,O, �i. At each timestep, each agent u 2 U ,
where U = 1, . . . , n, chooses an action au 2 A, forming a joint action j 2 J = Jn. This joint action
leads to a change in the environment according to the transition function P (s0|s, j) : S⇥J⇥S ! [0, 1].
After that each agent receives individual observations ou 2 O based on the global observation function
G(s, a) : S ⇥ A ! O. And individual reward R(s, u, j) : S ⇥ U ⇥ J ! R, based on the current
state, agent, and joint action. To make decisions each agent maintains an action-observation history
⌧u 2 T = (O ⇥ A)⇤, which is used to condition a stochastic policy ⇡u(au|⌧u) : T ⇥ A ! [0, 1].
The task of the learning process is to optimize the policy ⇡u for individual each agent in order to
maximize the expected cumulative reward over time.

1In MAPF literature, a plan is typically denoted with ⇡. However, in RL, this is reserved to denote the policy.
As we use both MAPF and RL approaches in this work, we denote a plan as p.
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Figure 2: The general pipeline of the FOLLOWER approach. The action selection policy for each
agent is decentralized and consists of two modules: Heuristic Sub-goal Decider, which address
long-term path planning problem and Learning-based Policy optimization module, which addresses
the short-term conflict resolution task.

The suggested approach to solve the considered LMAPF problem, which we dub FOLLOWER,
comprises of the two complimentary modules combined into a coherent pipeline shown in Fig. 2.
First, a Heuristic Sub-goal Decider is used to construct an individual path to the goal and choose a
waypoint on this path that becomes the agent’s local goal, which we also call a sub-goal. Second, a
Learnable Follower is invoked to reach the sub-goal. This module decides which actions to take at
each time step until the sub-goal is reached or until the agent gets too far away from it. In both cases
the sub-goal decider in called again and the cycle repeats.

4.1 Heuristic Sub-goal Decider

In essence the purpose of this module is to provide a waypoint (sub-goal) in the vicinity of the agent,
pursuing which will allow agent to progress towards its (global) goal. A conventional heuristic
search algorithm, i.e. A*, is used to construct a path to the latter from the current location. Global
information on the locations of the static obstacles, i.e. the map, is used for pathfinding. The other
agents are not taken into account at this stage, thus the constructed path may go through them. Once
the path is built a node node located K steps away from the current position is chosen as the current
sub-goal. Here K is the user-specified parameter.

An crucial design choice for this module is what individual path to build. On the one hand, A* finds
the shortest (individual) path to the goal. On the other, as we noted empirically, when the number
of agents is very high and each agent is following the shortest path, congestion often arise in the
bottleneck parts of the map, such as corridors or doors. This degrades the performance dramatically.
To this end we suggest to search not for the shortest paths but rather the evenly dispersed paths. This
is implemented as follows.

At each time step the information on the locations of the locally observed agents is stored, in what we
call a heatmap, and used to compute the additional transition costs for individual pathfinding. The
number of times the other agents were seen in a certain location (grid cell in our experiments) is
multiplied by the user-defined parameter C and added to the transition cost to that location. Intuitively,
if many agents are noticed in particular areas of the map the transition costs of the latter are increased
so A* will avoid them. This balances the distribution of the agents’ paths across the map and
contributes to collision avoidance. Indeed, each agent maintains its own heatmap and performs
pathfinding individually, thus the assumption that the agents do not share any data is not violated.

4.2 Learnable Follower

This module implements a learnable policy that is tailored to achieve the provided sub-goals while
avoiding collision with the other agents. The policy function is approximated by a (deep) neural
network and, as the agents are assumed to be homogeneous, a single network is utilized during
training (a technique referred to as policy sharing). This approach is beneficial for complex tasks
and large maps where it would be infeasible to learn a separate neural network for each agent, as the
number of parameters increases linearly with the number of agents.
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The input to the neural network represents the local observation of an agent and is comprised of a
3⇥m⇥m tensor, where m⇥m is the observation range. The channels of the tensor encode the
locations of the static obstacles, other agents and the current sub-goal respectively – see Fig. 2. If the
latter is out of the agent’s field of view, it is projected into the nearest cell (similarily to [19]).

The input goes through the Spatial Encoder first, then Concat block combines both spatial and
non-spatial features (the position of the agent on a map and its global goal). This is followed by an
Action Decoder that uses the function f for approximating the state using observation history (the
positions of other agents and the presence of obstacles) to make a decision. The network’s output is a
probability distribution over possible actions.

The whole pipeline is trained with a policy optimization algorithm using the reward function separated
into the two components: upon reaching a sub-goal an agent receives a small intrinsic positive reward
of rs, whose value was determined empirically; upon reaching the global goal a conventional RL
reward rg = 1 is received. If while reaching the current goal the agent goes too far away from it, the
heuristic sub-goal decider is invoked again. This mechanism is helpful in scenarios when to progress
towards the global goal it is actually more beneficial to make a detour to avoid congestion with the
other agents. Practically wise, a goal is recalculated if the agent’s distance from its target exceeds a
certain threshold, which is determined by a hyperparameter H .

The task of the learning process is to optimize the shared policy ⇡u
✓ (i.e. the same policy for each

agent) to maximize the expected cumulative reward. During the training process, rollouts (sequences
of observation and action pairs) are gathered asynchronously from multiple environments with
varying numbers of agents. The shared policy ⇡✓ (actor network) is continually updated using the
PPO clipped loss [36]: max✓

1
N

Pn
u=1

P
j

P
⌧u ⇡✓(au|⌧u)Âclip(⌧u, au)� �H(⇡✓(·|⌧u)).

Here, � is a coefficient that controls the entropy H , and Â denotes the unclipped advantage function
calculated using returns R̂ for each step t with observation history ⌧u: Â(⌧u, au) = R̂u

t � V �(⌧u),
with R̂u

t =
PT�1

k=0 �krut+k. Here, we have a shared critic value function V�, which is optimized using

the following equation: min�
1
N

Pn
u=1

P
j

P
⌧u

⇣
V�(⌧u)� R̂u

t

⌘2
.

In practice, the observation history ⌧u is effectively modeled using a recurrent neural network (RNN)
integrated into the actor and critic networks. The actor network is parameterized by ✓, while the critic
network is parameterized by �. In our approach, we specifically utilize the GRU architecture [37].

The introduced intrinsic reward function allows the efficient training of an agent using relatively short
rollouts, as evidenced by our experimental results, which demonstrate that a rollout length of 8 is
sufficient for training. This is crucial for ensuring lifelong learning, as episodes may not have a clear
ending point.

During the inference phase, each agent uses a copy of the trained weights, and other parameters
remain unchanged. The proposed FOLLOWER scheme, despite its simplicity, allows the agent to
separate the two components of the overall policy transparently and does not require the involvement
of any expert data for training. The learning process is end-to-end and the number of hyperparameters
(such as K and H) that affect the result is relatively small. Finally, the reward function used is simple
and does not require involved manual shaping.

5 Experimental Evaluation

To evaluate the efficiency of the proposed method2, we have conducted a set of experiments, compar-
ing it with the existing learnable and search-based algorithms on different grid maps. The episode
length was set to 512 in all experiments. The agents field-of-view was 11 ⇥ 11. When training
FOLLOWER we used the following values of the reward components: rg = +1 and rs = +0.1. The
Spatial Encoder was realized as ResNet neural model [38], the Concat block – as a Multi-Layer
Perceptron (MLP), and the Action Decoder – as a recurrent neural network, separated for actor
and critic and based on GRU [37]. In the experiments, values of 2 and 10 were used for K and
H respectively. The weighting coefficient C for sub-goal setter was set to 0.4. More information

2We are committed to open-source FOLLOWER.
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about which (hyper) parameters were tuned and how is provided in the Appendix. After fixing all the
parameters, the final policy was trained using a single TITAN RTX GPU in approximately 1 hour.

5.1 Comparison With the Learnable Methods

In the first series of experiments, we have compared FOLLOWER with the two state-of-the-art
learnable MAPF solvers, i.e. PRIMAL2 [19] and PICO [22]. Similarly to FOLLOWER, both are
decentralized and rely on the local observations of the other agents. However, PRIMAL2 assumes
that the local observations contain not only information about the current locations of the agents but
also about their goals on the global map. PICO assumes that the agents can communicate, through
selected central agent. Recall that our solver has access neither to any information about the other
agents except their current locations nor to communication between the agents.

Figure 3: Average throughput
on maze-like environments.
The shaded area indicates 95%
confidence intervals.

As learnable methods assume training on a certain maps topology,
we use the maps suggested by the authors of the respective baselines
for a fair comparison. Specifically, we compare with PRIMAL2 on
the maze-like maps of size 65⇥ 65 on which PRIMAL2 was trained,
and we compare with PICO on the maps with random obstacles
described in the PICO paper. The visualizations of the maps are
given in Appendix. We used the readily available weights for PRI-
MAL2 neural network (from the authors’ repository). PICO was
trained by us using the open-source code of its authors. Our method,
FOLLOWER, was trained using the hyperparameters described in
Appendix, and only PRIMAL2 maps were used for training. When
training FOLLOWER, we vary the number of agents in range: 16, 32,
64, 128. After the training phase, we run the solvers on ten different
maze-like/random maps that were not used while training. Each map
was populated with varying numbers of agents: from 2 to 256. The
goals for LMAPF were generated and assigned to agents randomly.

FOLLOWER vs. PRIMAL2 results are depicted on Fig. 3. The OX axis shows the number of
agents and OY axis shows the average throughput. Indeed, when the number of agents is low both
algorithms demonstrate similar results. However, with an increasing number of agents the gap
in performance is getting pronounced. The throughput of the FOLLOWER is 11% better for 128
agents and 17% better for 256 agents. Overall, one can claim that despite having access to less
MAPF-related data FOLLOWER outperforms PRIMAL2 when the number of agents is not low, i.e. in
cases where the potential conflicts between the agents are not rare.

FOLLOWER vs. PICO results are presented in Table 1. Clearly, FOLLOWER demonstrates a
superior performance across all scenarios. The poor performance of PICO can be attributed to the
inherent difficulties in learning effective communication strategies for prioritizing large number
of agents. Authors of PICO trained their method on 8 agents. We hypothesize that this limited
population size may have impeded the acquisition of knowledge necessary for effective coordination
among a larger number of agents. Both FOLLOWER and PRIMAL2 outperform PICO showing their
ability to generalize (as they were not trained on PICO type of maps), with FOLLOWER being the
ultimate winner.

Figure 4: The results on a) and b)
maps. The shaded area indicates 95% confidence intervals.

Out of the distribution evaluation.
An important attribute of any learn-
able algorithm is the so-called gen-
eralization, i.e. the ability to solve
problem instances that are not alike
to the ones that were used for train-
ing. We have already seen that FOL-
LOWER generalizes better than PRI-
MAL2 to the PICO type of maps
(random ones). Now we run an addi-
tional test when we evaluated both al-
gorithms on two (unseen while learn-
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Table 1: The comparison of FOLLOWER with PICO on random maps with different obstacle densities,
taken from PICO evaluation setup.

Obstacle Density

Algorithm Agents 0% 10% 20% 30%

FOLLOWER 8 0.61 (±0.01) 0.57 (±0.02) 0.49 (±0.04) 0.38 (±0.21)
PRIMAL2 8 0.44 (±0.03) 0.39 (±0.04) 0.3 (±0.05) 0.19 (±0.11)
PICO 8 0.19 (±0.01) 0.18 (±0.03) 0.14 (±0.04) 0.05 (±0.05)

FOLLOWER 16 1.1 (±0.03) 0.96 (±0.05) 0.85 (±0.19) 0.56 (±0.34)
PRIMAL2 16 0.79 (±0.03) 0.67 (±0.06) 0.51 (±0.08) 0.31 (±0.14)
PICO 16 0.31 (±0.03) 0.25 (±0.04) 0.23 (±0.06) 0.08 (±0.06)

FOLLOWER 32 1.81 (±0.05) 1.45 (±0.15) 1.21 (±0.27) 0.84 (±0.39)
PRIMAL2 32 1.25 (±0.04) 1.02 (±0.11) 0.71 (±0.12) 0.4 (±0.16)
PICO 32 0.46 (±0.05) 0.35 (±0.1) 0.28 (±0.12) 0.12 (±0.09)

FOLLOWER 64 2.6 (±0.11) 1.88 (±0.33) 1.24 (±0.23) 0.71 (±0.36)
PRIMAL2 64 1.63 (±0.05) 1.15 (±0.15) 0.73 (±0.13) 0.44 (±0.18)
PICO 64 0.42 (±0.07) 0.41 (±0.13) 0.28 (±0.12) 0.11 (±0.1)

ing) maps from the well-known in the
MAPF community MovingAI bench-
mark [1]: and . The former map is 63 ⇥ 171 in size and
represents the warehouse environment. It is similar to a certain extent to the maze-maps on which
FOLLOWER and PRIMAL2 were trained. The latter map is a video-game map that was downscaled
by us to have size 95⇥ 95. Its topology is quite different from the one of the maps used for training
FOLLOWER and PRIMAL2. The results of these experiments are presented in Fig. 4. Note that we
did not evaluate PICO on out-of-the-distribution maps due to its poor performance in the previous
experiment.

On FOLLOWER and PRIMAL2 demonstrate similar performance, with
our method achieving slightly higher throughput. I.e. the FOLLOWER’S throughput is 9.5% higher
for 128 agents and 4% higher for the 256 agents. The results on are quite different. First
of all, both algorithms have much lower average throughput compared to maze-like and warehouse
environments. This is expected, as the topology of the game map differs a lot from the latter maps.
Second, the throughput of FOLLOWER is significantly higher, providing another evidence (in addition
to the results on PICO maps) that the generalization ability of our approach is better.

5.2 Comparison With the Centralized Search-based Solver

While most of the learnable approaches compare their results only with other learnable methods, we
have also compared FOLLOWER with the state-of-the-art search-based algorithm for solving LMAPF
– RHCR3 [12]. In contrast to the proposed method, RHCR is a centralized approach that coordinates
all the agents and does not restrict the observation and/or communication abilities of the agents. This
planner has several parameters that influence its performance. We have varied the planning horizon
(2, 5, 10, 20), the re-planning rate (1, 5) and found that the best results are achieved when the first
parameter is set to 20 and the second one to 5. The time limit for re-planning was set to either 1 or 10
seconds. The MAPF solver used in RHCR was set to PBS [39]. The rest parameters were left default.

The comparison was conducted on the same map as in the original paper [12]. The
possible placements of start and goal locations were also restricted in the same way as in the original
paper. The number of agents in this experiment reached 192 as no more agents are able to be placed
with the given restrictions to start locations. We generated 10 random instances per each number of
agents.

Besides RHCR we have also evaluated different versions of our solver. First, we want to assess the
impact of the learnable component on the FOLLOWER’S performance. To this end, we removed it
from FOLLOWER and let each agent simply plan its path with A* and perform the first action. In case
the path can not be found the action is selected randomly. We refer to this approach as Randomized
A*. We evaluated two versions of Randomized A*: the one that treats the other agents (within
field-of-view) as obstacles and the one that does not. Next, we were interested in how weighting the
transition costs for A* affects the FOLLOWER’S performance. Thus, we have created a version of
FOLLOWER that doesn’t include this weighting (i.e. C = 0) and all transitions have uniform cost.

3We used an implementation of RHCR from the authors’ repository

8



Figure 5: Average throughput (a) and runtime (b) on map. The shaded area indicates
95% confidence intervals.

The results of this experiment are depicted in Fig. 5 (a). Clearly both version of Randomized A*
are outperformed by FOLLOWER. This confirms that the learnable policy is crucial to FOLLOWER.
The introduced technique of penalizing the transitions to the areas where the other agents are often
observed is also important, as in its absence the results of FOLLOWER are on par with Randomized A*.
Only combining the learnable module with the weighting technique we end with the best-performing
method.

Both versions of RHCR significantly outperform competitors in instances with up to 128 agents.
However, when the number of agents increases to 160 and 192 the performance of RHCR with
1s time cap for re-planning degrades dramatically and it gets outperformed by FOLLOWER. This
pinpoints the principal limitation of the centralized approach – it does not scale well to large number
of agents when the time limit for finding a MAPF solution is imposed. To better understand how the
runtime of the evaluated methods is affected by the increasing number of agents, see Fig. 5 (b). Here
each data point says how much time on average was spent to solve a LMAPF instance (on a single
CPU, 1 thread). Indeed, FOLLOWER scales much better compared to RHCR. Moreover in practice it
can be parallelized, i.e. run on each agent individually, while RHCR – can not.

5.3 Summary

The observed results let us infer the following conclusions. First, the suggested approach outperforms
the learnable decentralized competitors, when it comes to a large number of agents and/or maps that
are different from the ones used for training. Second, the learnable component of FOLLOWER is
crucial to its high performance (as well as the introduced weighting technique). Third, when the
number of agents is significantly high, FOLLOWER can outperform the centralized LMAPF solver
when a (reasonable) time cap for the latter is introduced.

6 Conclusion

This study addresses the challenging problem of decentralized lifelong multi-agent pathfinding. The
proposed FOLLOWER approach utilizes a combination of a planning algorithm for constructing a
long-term plan and reinforcement learning for reaching short-term sub-goals and resolving local
conflicts. The proposed method consistently outperforms decentralized learnable competitors in
challenging scenarios. Moreover, our approach can show better results, compared to state-of-the-art
centralized planner in certain setups. Directions for future research may include: enriching the action
space of the agents, handling uncertain observations and external (stochastic) events.
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7 Limitations

As in many other works on that topic (including the ones we compare with) we rely on the following
assumptions. The map of the environment is accurate and the configuration of the static obstacles
does not change. The agents are assumed to have perfect localization and mapping abilities. The
agents execute actions accurately and their moves are synchronized. All these may be considered as
the limitations as in real world, e.g. in robotic applications, many of the assumptions do not hold.
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A Anonymized Code

The anonymized code of FOLLOWER is available at Learn-to-Follow-13223.

This repository contains everything needed to reproduce the results of FOLLOWER (train and eval
scripts, pre-trained weights, dataset of maps, etc.).

Further in this Appendix we will refer to specific maps from our dataset by the names used in the
repo.

B Hyperparameters

Table 1 presents the hyperparameters of FOLLOWER. The hyperparameters for which the tuning
range is given (e.g. learning rate, LSTM hidden size, K (distance to the sub-goal), etc.) were
optimized using Bayesian search. The observation radius was set to 11⇥11 as it is commonly used in
similar learning-based methods (with whom we compare). The parameters for the number of rollout
workers, environments per worker, and training steps were empirically determined to decrease the
overall learning time of the algorithm. For the remaining paramaters (value loss coefficient, GAE�,
activation function, network initialization) we used the default values provided in the SampleFactory
framework1.

We perform a hyperparameter sweep consisting of approximately 150 runs, totaling around 120 GPU
hours. The final model was trained using a single TITAN RTX GPU in approximetely 1 hour.

Table 1: The hyperparameters of FOLLOWER. The tune range column indicates the range for
parameters adjusted through a hyperparameter optimization procedure.

Hyperparameter Value Tune range

Adam learning rate 0.000123 0.0001 – 0.0002
� (discount factor) 0.962983 0.95 – 0.99
Rollout 8 [4, 8, 16, 32]
Clip ratio 0.076785 0.05 – 0.2
Batch size 1024 [1024, 2048, 4096]
Optimization epochs 1 [1, 5, 10]
Entropy coefficient 0.014733 0.01 – 0.02
Value loss coefficient 0.5 -
GAE� 0.95 -

ResNet residual blocks 4 [2, 4, 6, 8]
ResNet number of filters 64 [32, 64, 128]
LSTM hidden size 512 [128, 256, 512]
Activation function ReLU -
Network Initialization orthogonal -
Number of agents [16, 32, 64, 128] -
Rollout workers 8 -
Environments per worker 2 -
Training steps 60000000 -

K (sub-goal dist.) 2 [1, 2, 3, 4, 5, 6]
H (sub-goal recalc.) 10 [2, 4, 8, 10, 12]
C (add. transition cost) 0.4 [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
Observation radius 11⇥ 11 -

C Weighted Transition Cost

As explained in the main body of the paper, each agent utilizes the heatmap of frequently used grid
cells for individual pathfinding. The number of times the other agents were seen in a certain cell is
multiplied by the user-defined parameter C and added to the transition cost to that cell. This helps
each agent to avoid areas that are often used by everyone and thus to pro-actively avoid congestion.

1github.com/alex-petrenko/sample-factory

1

https://anonymous.4open.science/r/Learn-to-Follow-13223/README.md
https://github.com/alex-petrenko/sample-factory


The effect of incorporating additional transition cost is visualized in Fig. 1. Here the cells with the
higher intensity of red indicate the areas visited (by the agents) more frequently during the episode.
These heatmaps were constructed from solving a single instance with 128 agents with FOLLOWER as
well as with Randomized A* (i.e. trimmed FOLLOWER lacking a learnable policy).

Clearly, when the additional transition costs are not employed, i.e. C = 0.0, the agents tend to use
the central part of the map often. This makes it hard for the agents to avoid each other. On the other
hand, when additional transition costs are applied, the agents get evenly distributed across the map,
which prevents congestion and increase the performance (as confirmed by the experiments, reported
in the main body of the paper).

(a) FOLLOWER C = 0.0 (b) Randomized A* C = 0.0
(agents as obstacles)

(c) Randomized A* C = 0.0
(ignoring other agents)

(d) FOLLOWER C = 0.4 (e) Randomized A* C = 1.0
(agents as obstacles)

(f) Randomized A* C = 1.0
(ignoring other agents)

Figure 1: Heatmaps representations of how often the agents visited certain cells of the grid when
solving a particular LMAPF instance containing 128 agents.

D Tuning RHCR Parameters

As it was mentioned in the main text, we have tuned the parameters of RHCR before conducting the
empirical comparison to our method. We varied the values of such RHCR parameters as planning
horizon (2, 5, 10, 20), re-planning rate (1,5) and time limit for each re-planning attempt (1s, 10s).
Planning horizon parameter controls for how many time steps the resultant plans will be collision-
free. E.g. when it equals 10 it is guaranteed that for the next 10 time steps the agents following
the constructed plans will not collide. Re-planning rate determines how frequently (in time steps)
reconstruction of the plans (for all agents) occurs. Time limit parameter restricts the amount of time
(in seconds) which is alotted for each re-planning attempt.

Fig. 2 demonstrates the results of different versions of RHCR (note that planning horizon cannot be
lower than re-planning rate). The best average throughput was achieved by RHCR with re-planning
rate 5 and planning horizon 20 (denoted as (w = 5, h = 20) in the figure). The same values of these
parameters were also used for the experimental evaluation of RHCR on the map in the
original paper. Thus, the results of this version were included into the main part of our paper.
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Figure 2: Evaluation of RHCR with varied parameter settings: w – re-planning rate, h – planning
horizon.

E Impact Of the Episode Length

Figure 3: Impact of episode length on
throughput of FOLLOWER with 256 agents.

We set the episode length to 512 in all experiments.
Additionally, we examined the impact of episode
length on the throughput of FOLLOWER by run-
ning additional experiments on the maze maps with
256 agents. The results are shown in Fig. 3. The
throughput increases first, starting from 1.43, but
then plateaus at 1.65. We attribute the initial increase
to the accumulation of knowledge regarding the tran-
sition cost. We believe our choice of the episode
length (512) is reasonable.

F Maps Visualizations

Fig. 4 illustrates examples of the maps used for test-
ing. The names of the maze-like maps and Pico-maps
are the same as in the repository.

Initial positions of the agents are represented by the filled circles, while their (initial) goals are
represented by the empty ones. Each agent is assigned a unique goal initially. Subsequent LMAPF
goals are randomly generated, ensuring a feasible path from the agent’s current location to the goal
exists. The goals for each agent are generated independently using a fixed seed, ensuring consistency
and enabling fair testing of the algorithms (i.e. each algorithm gets the same start/goals locations).
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(a) Mazes-wc3-od70
65⇥ 65

(b) Lak303d
95⇥ 95

(c) Pico-s21-od30
20⇥ 20

(d) Fulfillment warehouse map
46⇥ 33

(e) Moving-ai-warehouse-10-20-10-2-1
159⇥ 60

Figure 4: Visualizations of all the maps with a maximum number of agents used during the
experimental evaluation.

G Detailed Comparison with PRIMAL2

The detailed results of a comparison between FOLLOWER and PRIMAL2 on the entire test set of
maze maps are illustrated in Fig. 5. FOLLOWER demonstrates superior performance on all maps. It is
important to note that the PRIMAL2 algorithm utilizes various heuristics to take advantage of the
topological characteristics of the maps (i.e. the presence of corridors).
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Figure 5: Average throughput on entire test set of the maze-like environments. The shaded area
indicates 95% confidence intervals.
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