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Abstract

We provide a setting and a general approach to fair online learning with stochastic
sensitive and non-sensitive contexts. The setting is a repeated game between the
Player and Nature, where at each stage both pick actions based on the contexts.
Inspired by the notion of unawareness, we assume that the Player can only access
the non-sensitive context before making a decision, while we discuss both cases of
Nature accessing the sensitive contexts and Nature unaware of the sensitive contexts.
Adapting Blackwell’s approachability theory to handle the case of an unknown
contexts’ distribution, we provide a general necessary and sufficient condition for
learning objectives to be compatible with some fairness constraints. This condition
is instantiated on (group-wise) no-regret and (group-wise) calibration objectives,
and on demographic parity as an additional constraint. When the objective is not
compatible with the constraint, the provided framework permits to characterise the
optimal trade-off between the two.

1 Introduction

Classically, the goal of the decision maker in sequential environment is purely performance driven —
she wants to obtain as high reward as if she has had a complete information about the environment.
In contrast, algorithmic fairness shifts the attention from the performance-driven behavior by taking
into account additional ethical considerations. The latter is often formalized via the notion of fairness
constraint [10, 26, 6] on the decision maker’s strategies. The goal of this work is to bring to light
Blackwell’s approachability theory as a suitable theoretical formalism for fair online learning under
group fairness constraints. The appealing feature of this theory is two-fold: first, it gives explicit
criteria when learning is possible; second, if this criteria is met, it comes with an explicit strategy.

It is well known that Blackwell’s approachability theory may be used to characterize online learning
problems that are tractable and to design strategies to solve them—for instance, for no-regret learning
or calibration. Extensive references to such uses may be found in Cesa-Bianchi and Lugosi [5],
Perchet [23] and Abernethy et al. [1]. Actually, as noted by the latter two references, no-regret
learning, calibration, and approachability imply each other in some sense. The main first achievement
of this article is to extend this use to online learning under fairness constraints. This idea, though
natural and intuitive, requires some extensions to Blackwell’s approachability theory, like ignoring
the target set and having to estimate it.

Related works in fair online learning. Several frameworks have been proposed to tackle various
problems of fairness arising in online learning. Blum et al. [4] consider the problem of online
prediction with experts and define fairness via (approximate) equality of average payoffs. Hébert-
Johnson et al. [16], Gupta et al. [14] consider the problem of group-wise calibration. (In passing,
we may note that Gupta et al. [14] consider some techniques with a flavor of approachability.)
Bechavod et al. [2] consider the problem of online binary classification with partial feedback and
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equal opportunity constraint [15]. We treat the above works as sources of inspiration; they all differ in
the specific (sensitive and non-sensitive) information that the Player may or may not access before or
after taking an action. We apply the general formalism of approachability theory to give new insights
into online learning under fairness constraints, and approach this goal in a unified (and geometric)
way. In particular, the generality of this formalism allows to derive (im)possibility results nearly
effortlessly. But we also go beyond such a mere compatibility/incompatibility check between the
learning objectives and fairness constraints, and note that approachability theory also gives a clear
strategy for the study of trade-offs between incompatible learning objectives and fairness constraints,
which often arise in batch setup [6].

Outline. We describe our approachability setting in Section 2 and provide some learning objectives (no-
regret and calibration) and fairness constraints (group-wise controls, demographic parity, equalized
average payoffs) that fit our framework. A slight extension of the classical result of Blackwell [3] is
required and discussed in Section 3. We then support the generality of our framework by deriving
(im)possibility results for some objective–constraint pairs in Section 4. We also illustrate in Section 5
how this formalism can be used to derive optimal trade-offs (Pareto frontiers) between performance
and fairness for incompatible objective–constraint pairs; as an example, we deal with group-wise
calibration (studied by [16, 14]) under demographic parity constraint. For the sake of exposition,
we deal in Sections 2–5 with stochastic sensitive contexts whose distribution is known; Section 6
explains how to overcome this and develops a theory of approachability relying on ignoring but
estimating the target set.

Notation. The Euclidean norm is denoted by ‖ · ‖, while the `1 norm is denoted by ‖ · ‖1. Given a
convex closed set C ⊂ Rd, we denote by ProjC(·) the projection operator onto C in Euclidean norm.

2 Fair online learning cast as an approachability problem

In this section, we propose a setting for fair online learning based on approachability—a theory
introduced by Blackwell [3] (see also the more modern expositions by Perchet [25] or Mertens et al.
[22]). More precisely, we consider the following repeated game between a Player and Nature, with
stochastic contexts. The existence of these contexts is a (minor) variation on the classical statement
of the approachability problem.

The Player and Nature have respective finite action sets A and B. The sets of sensitive and non-
sensitive contexts are respectively denoted by S and X . The set X is a general Borel set, while S is
a finite set with cardinality denoted by |S|. Typical choices are S = {0, 1} and X = Rm for some
m ∈ N. A joint distribution Q on X × S is fixed and is unknown to the Player. Finally, a (bounded)
Borel-measurable vector-valued payoff function m : A × B × X × S → Rd, as well as a closed
target set C ⊆ Rd, are given and known by the Player.

At each round t > 1 the pair of non-sensitive and sensitive contexts (xt, st) ∼ Q is generated
independently from the past. The Player observes only the non-sensitive context xt; while Nature
also observes xt, it may or may not observe the sensitive context st. Then, Nature and the Player
simultaneously pick (possibly in a randomized fashion) bt ∈ B and at ∈ A, respectively. The Player
finally accesses the obtained reward m(at, bt, xt, st) and the sensitive context st, while Nature has a
more complete monitoring and may observe at and st. We introduce an observation operation G to
indicate whether Nature observes xt only—i.e.,G(xt, st) = xt, the case of Nature’s unawareness—or
whether Nature observes both contexts—i.e., G(xt, st) = (xt, st), the case of Nature’s awareness.

We consider the short-hand notation mt := m(at, bt, xt, st),

mT :=
1

T

T∑
t=1

m(at, bt, xt, st), and cT = ProjC
(
mT

)
= arg min

v∈C
‖mT − v‖

for the instantaneous and average payoffs of the player, as well as the Euclidean projection of the
latter onto the closed set C, respectively. The distance of mT to C thus equals dT := ‖mT − cT ‖.
The game protocol is summarized on the next page.

We recall that the Player does not know the context distribution Q.
Definition 1. A target set C is called m–approachable by the Player under the distribution Q if
there exists a strategy of the Player such that, for all strategies of the Nature, mT → C a.s.
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PROTOCOL 2.1

Parameters: Observation operator G for Nature; distribution Q on X × S
For t = 1, 2, . . .

1. Contexts (xt, st) are sampled according to Q, independently from the past;
2. Simultaneously,

• Nature observes G(xt, st) and picks bt ∈ B;
• the Player observes xt and picks an action at ∈ A;

3. The Player observes the reward m(at, bt, xt, st) and the sensitive context st,
while Nature observes (at, bt, xt, st).

Aim: The Player wants to ensure that mT → C a.s., i.e., dT = ‖mT − cT ‖ → 0 a.s.

Remark 1 (Awareness for the Player). We are mostly interested in a Player unaware of the sensitive
contexts st (Gajane and Pechenizkiy [13]). However, the setting above also covers the case of a
Player aware of these contexts: simply consider the lifted non-sensitive contexts x′t = (xt, st).

We now describe payoff functions and target sets corresponding to online learning objectives or online
fairness constraints. They may be combined together. For instance, vanilla calibration corresponds
below to the mcal–approachability of a set Ccal, demographic parity, to the mDP–approachability
of a set CDP, so that vanilla calibration under a demographic parity constraint translates into the
(mcal,mDP)–approachability of the product set Ccal × CDP. We therefore consider each objective and
each constraint as some elementary brick, to be combined with one or several other bricks. We recall
that S is a finite set and will indicate the cases where we only consider S = {0, 1}.
We discuss two objectives: no-regret and approximate calibration, as well as three fairness constraints:
group-wise (per-group) control, demographic parity, and equal average payoffs.

2.1 Statement of the objectives

For the sake of a more compact exposition, we define the objectives in two forms: global objectives
(the vanilla form of objectives) and group-wise objectives. We denote γs = P(st = s), so that
(γs)s∈S corresponds to the marginal of Q on S.

Objective 1: (Vanilla and group-wise) no-regret. The definition is based on some payoff func-
tion r, possibly taking contexts into account: at each round t, the Player obtains the payoff
r(at, bt, xt, st). The aim is to get, on average, almost as much payoff as the best constant action, all
things equal. The vanilla (average) regret equals

RT = min
a∈A

1

T

T∑
t=1

(
r(at, bt, xt, st)− r(a, bt, xt, st)

)
,

while the group-wise (average) regret equals

Rgr,T = min
s∈S

min
a′s∈A

1

T

T∑
t=1

(
r(at, bt, xt, st)− r(a′s, bt, xt, st)

)
I{st = s} .

The aim is that lim inf RT > 0 a.s. (no-regret) and lim inf Rgr,T > 0 a.s. (group-wise no-regret),
respectively. We could replace the 1/T factor by a 1/(γsT ) factor in the definition of Rgr,T , as we
will do for the CT calibration criterion, but given the wish of a non-negative limit, this is irrelevant.

Denote by N = |A| the cardinality of A. No-regret corresponds to the mreg–approachability of(
[0,+∞)

)N
, with the global payoff function mreg(a, b, x, s) =

(
r(a, b, x, s) − r(a′, b, x, s)

)
a′∈A.

We also duplicate mreg into the group-wise payoff function

mgr-reg(a, b, x, s) =
(
mreg(a, b, x, s) I{s′ = s}

)
s′∈S .

Group-wise no-regret then corresponds to the mgr-reg–approachability of Cgr-reg =
(
[0,+∞)

)N |S|
.
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Objective 2: Approximate (vanilla or group-wise) calibration. Online calibration was first
solved by Foster and Vohra [12] and Foster [11]; see the monograph by Cesa-Bianchi and Lugosi
[5, Section 4.8] for references to other solutions and extensions. For simplicity, we focus on binary
outcomes bt ∈ {0, 1} and ask the Player to provide at each round forecasts at in [0, 1], and even in a
discretization of [0, 1] based on a fixed number N > 2 of points:

A =
{
a(k) := (k − 1/2)/N, k ∈ {1, . . . , N}

}
.

Each x ∈ [0, 1] can be approximated by some a(k) ∈ A with |x− a(k)| 6 1/(2N). At each round,
the Player picks kt ∈ {1, . . . , N} and forecasts at = a(kt). The action set A can thus be identified
with {1, . . . , N}.
This problem is actually called 1/N–calibration or approximate calibration. The global (vanilla)
form of the criterion reads

CT =

N∑
k=1

∣∣∣∣∣ 1

T

T∑
t=1

(
a(k) − bt

)
I{kt = k}

∣∣∣∣∣ ,
while the approximate group-wise calibration criterion is defined as

Cgr,T =
∑
s∈S

N∑
k=1

∣∣∣∣∣ 1

γsT

T∑
t=1

(
a(k) − bt

)
I{kt = k} I{st = s}

∣∣∣∣∣ .
The aim is that lim supCT 6 1/N a.s. or lim supCgr,T 6 1/N , respectively. Note that unlike vanilla
calibration, its group-wise version requires to be calibrated on each sensitive attribute s ∈ S. In
particular, the classical 1/T factor is replaced by 1/(γsT ), the expected number of appearances of
st = s for t = 1, . . . , T .

Mannor and Stoltz [18] and Abernethy et al. [1] rewrote the problem of approximate calibration as
an approachability problem as follows: introduce the global payoff function

mcal(k, b) =
(
(a(1) − b) I{k = 1}, . . . , (a(N) − b) I{k = N}

)
,

and duplicate it into the group-wise payoff function as follows:

mgr-cal(k, b, s) =
(
mcal(k, b) I{s = s′}/γs′

)
s′∈S .

The calibration criteria CT and Cgr,T can now be rewritten as the `1–norms of the average pay-
off vectors mcal,T and mgr-cal,T . Approximate vanilla calibration thus corresponds to the mcal–
approachability of Ccal =

{
v ∈ RN : ‖v‖1 6 1/N

}
, while approximate group-wise calibration

corresponds to the mgr-cal–approachability of Cgr-cal =
{
v ∈ RN |S| : ‖v‖1 6 1/N

}
.

Note that non-sensitive contexts play no role in the calibration objectives, but the Player can (and must)
leverage these non-sensitive contexts to possibly infer sensitive contexts when handling group-wise
calibration.

2.2 Statement of the fairness constraints

Fairness constraint 1: Group-wise objectives. We already considered possibly group-wise objec-
tives above and Section 4 will show that handling them is already a challenge in our setting where the
Player is unaware of the sensitive contexts.

Fairness constraint 2: Demographic parity. We will consider it only in the setting of approximate
calibration and further restrict our attention to the case of two groups: S = {0, 1}. The demographic
parity criterion measures the difference between the average forecasts issued for the two groups:

DT =

∣∣∣∣∣ 1

γ0T

T∑
t=1

at I{st = 0} − 1

γ1T

T∑
t=1

at I{st = 1}

∣∣∣∣∣ .
Given the discretization used, the wish is that lim supDT 6 1/N . Abiding by a demographic parity
constraint is equivalent to mDP–approaching CDP =

{
(u, v) ∈ R2 : |u− v| 6 1/N

}
, where

mDP(k, s) =
(
a(k) I{s = 0}/γ0, a

(k) I{s = 1}/γ1

)
.
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Fairness constraint 3: Equalized average payoffs. This criterion is to be combined with a no-
regret criterion; in particular, a base payoff function r is considered. We restrict our attention to the
case of two groups, S = {0, 1}, and measure the difference of average payoffs:

PT =

∣∣∣∣∣ 1

γ0T

T∑
t=1

r(at, bt, xt, st) I{st = 0} − 1

γ1T

T∑
t=1

r(at, bt, xt, st) I{st = 1}

∣∣∣∣∣ .
Ensuring lim supPT 6 ε corresponds to meq-pay–approaching Ceq-pay =

{
(u, v) ∈ R2 : |u− v| 6 ε

}
,

where
meq-pay(a, b, x, s) =

(
r(a, b, x, 0) I{s = 0}/γ0, r(a, b, x, 1) I{s = 1}/γ1

)
.

Remark 2. Note that in this general form, the equality of average payoffs encompasses the demo-
graphic parity constraint. Indeed, the latter is obtained by setting r(a, b, x, s) = a and ε = 1/N .

2.3 Summary table

The table below gives a summary of different criteria and associated pairs of payoff function and
target set. We remark that some of the payoff functions depend on the marginals (γs)s∈S . Meanwhile,
Protocol 2.1 assumes the perfect knowledge of the former. In Section 6 we will show how to bypass
this issue, transferring all the unknown quantities into the target set and estimating it.

Criterion Vector payoff function Closed convex target set

Calibration mcal(k, b) =
(
(a(k′) − b) I{k = k′}

)
k′∈A Ccal =

{
v ∈ RN : ‖v‖1 6 1/N

}
Group-calibration mgr-cal(k, b, s) =

(
mcal(k, b) I{s = s′}/γs′

)
s′∈S Cgr-cal =

{
v ∈ RN |S| : ‖v‖1 6 1/N

}
No-regret mreg(a, b, x, s) =

(
r(a, b, x, s)− r(a′, b, x, s)

)
a′∈A Creg =

(
[0,+∞)

)N
Group-no-regret mgr-reg(a, b, x, s) =

(
mreg(a, b, x, s) I{s′ = s}

)
s′∈S Cgr-reg =

(
[0,+∞)

)N |S|
Demographic parity mDP(k, s) =

(
a(k) I{s = 0}/γ0, a

(k) I{s = 1}/γ1

)
CDP =

{
(u, v) ∈ R2 : |u− v| 6 1/N

}
Equalized payoffs meq-pay(a, b, x, s) =

(
r(a, b, x, s′) I{s = s′}/γs′

)
s′∈{0,1} Ceq-pay =

{
(u, v) ∈ R2 : |u− v| 6 ε

}

3 Approachability theory adapted

We provide a rather straightforward extension of the approachability theory to deal with Protocol 2.1,
namely, with the existence of stochastic contexts, drawn according to an unknown distribution Q. We
want to characterize closed convex sets that are approachable.

Pure vs. mixed actions. To conclude the description of the setting, we provide more details on the
randomized draws of the (pure) actions at+1 and bt+1 of the Player and Nature at round t+ 1. We
denote by ht the information available to Player at the end of round t, and by Ht the full history of
the first t rounds: ht = (mt′ , xt′ , st′)t′6t and Ht = (at′ , bt′ , xt′ , st′)t′6t. At the beginning of round
t+ 1, the Player thus picks in a ht–measurable way a measurable family

(
pxt+1

)
x∈X of probability

distributions over A (i.e., a collection of distributions such that x ∈ X 7→ pxt+1 is Borel-measurable),
and then draws at+1 independently at random according to the mixed action p

xt+1

t+1 . Similarly, Nature
picks in a Ht–measurable way a measurable family

(
q
G(x,s)
t+1

)
(x,s)∈X×S of probability distributions

over B, and uses qG(xt+1,st+1)
t+1 to draw bt+1.

Approachability strategy. We adapt the original strategy by Blackwell [3] by asuming the exis-
tence of and substituting a sequence of estimates Q̂t that are ht–adapted in place of the unknown
distribution Q. We will assume that this sequence is convergent in the total variation distance in
the sense of Assumption 1 below. To state the strategy, we extend linearly m: for all probability
distributions p over A and q over B, for all (x, s) ∈ X × S,

m(p, q, x, s
)

=
∑
a∈A

∑
b∈B

p(a) q(b)m(a, b, x, s) .

Now, the Player uses an arbitrary measurable family of distributions (px1)x∈X for the first round, gets
the estimate Q̂1, and then uses, for rounds t+ 1, where t > 1:

(pxt+1)x∈X ∈ arg min
(px)x∈X

max
(qG(x,s))(x,s)∈X×S

〈
mt − ct,

∫
X×S

m
(
px, qG(x,s), x, s

)
dQ̂t(x, s)

〉
, (1)
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where the minimum and maximum are over all measurable families of probability distributions over
A and B, respectively. The Player then gets access to ht+1 and may compute the estimate Q̂t+1 to
be used at the next round.

Necessary and sufficient condition for approachability. We were able to work out such a con-
dition under the assumption that Q can be estimated well enough, e.g., faster than at a 1/ ln3(T )
rate in total variation distance. We recall that the total variation distance between two probability
distributions Q1 and Q2 on X × S equals (see, e.g., Devroye [8]):

TV(Q1,Q2) = sup
E⊆X×S

∣∣Q1(E)−Q2(E)
∣∣ =

1

2

∫
X×S

∣∣g1(x, s)− g2(x, s)
∣∣dµ(x, s) ,

where the supremum is over all Borel sets E of X × S, and where g1 and g2 denote densities of Q1

and Q2 with respect to a common dominating probability distribution µ.
Assumption 1 (fast enough sequential estimation of Q). The sequence of (ht)–adapted estimators

(Q̂t) used is such that
∑+∞
t=1

1
t

√
E
[
TV2(Q̂t,Q)

]
< +∞.

The above assumption implies both 1
T

∑T−1
t=1

√
E
[
TV2(Q̂t,Q)

]
and

∑
t>T+1

1
t

√
E
[
TV2(Q̂t,Q)

]
converge to zero (with T ; see Appendix A for details). Assumption 1 is trivially satisfied in the case
when Q is known, as it is sufficient to take Q̂t = Q. When both X and S are finite sets, we may
use the empirical frequencies as estimators Q̂t; they satisfy E[TV2(Q̂t,Q)] = O(1/t); see, e.g.,
[7, Lemma 3]. The general case of an uncountable X , e.g., X = Rm requires results for density
estimation in the L1 or L2 norms; such results rely typically on moving averages or kernel estimates
and may be found, for instance, in the monographs by Devroye and Györfi [9] and Devroye [8] (see
also Tsybakov [28]). Under mild conditions, the estimation takes place at a polynomial rate in total
variation distance (e.g., a T−1/5 rate in dimension m = 1). Note that the needed rate of decrease for
E
[
TV2(Q̂t,Q)

]
in Assumption 1 is extremely slow: a 1/ ln3(T ) rate would suffice.

Assumption 2 (boundedness). We assume that ‖m‖∞,2:= max
a,b∈A×B

sup
(x,s)∈X×S

‖m(a, b, x, s)‖<+∞.

We may now state our main result; the distance of mT to C was denoted by dT in Protocol 2.1.
Theorem 1. Assume that C is a closed convex set and that Assumptions 1 (fast enough sequential
estimation of Q) and 2 (bounded reward function) are satisfied, then C is approachable if and only if

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.
∫
X×S

m
(
px, qG(x,s), x, s

)
dQ(x, s) ∈ C . (2)

In this case, the strategy of Eq. (1) achieves the following rates for L2 and almost-sure convergences:

E
[
d2
T

]
6

√
K

T
+ 4‖m‖∞,2

:=∆T︷ ︸︸ ︷
1

T

T−1∑
t=1

√
E
[
TV2(Q̂t,Q)

]
and

P
(

sup
t>T

dt > ε

)
6

3K

Tε2
+

16‖m‖∞,2
ε2

(√
K

T − 1
+ 2

(
sup
t>T

∆t

)(
∆T+

∑
t>T

1

t

√
E
[
TV2(Q̂t,Q)

]))
where K < +∞ denotes the maximal distance to C of an element of the compact set m(A,B,X ,S).

The proof lies in Appendix A. The necessity part of the theorem actually relies on no assumption
other than C being closed; it consists of showing that Nature has a stationary strategy such that there
exists α > 0 with dT > α in the limit, i.e., the average payoff vectors mT remain α–away from C in
the limit. This exactly indicates that the underlying fair online learning problem is not tractable: the
underlying objectives and underlying fairness constraints cannot be simultaneously satisfied.

4 Working out some objective–constraint pairs: (im)possibility results

In this section we apply Theorem 1 to deal with some examples of objective–constraint pairs described
in Sections 2.1 and 2.2. Some of them have been considered before in the literature (sometimes in the
batch setup) using various tools [4, 16, 21, 14], as discussed in Section 1.
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We keep the original criteria and obtain possiblity or impossibility results. This is a first step,
meanwhile, Section 5 will explain how to go further and obtain a trade-off, if needed, between the
objective and the fairness constraint.

Additional notation. We recall that γs = P(st = s) and denote by Qs the conditional distribution of
xt given st=s, so that dQ(x, s) = γs dQs(x). We denote by supp(Qs) ⊆ X the support of Qs.

Example 1: Vanilla calibration under a demographic parity constraint—achievable. Con-
sider the following payoff function and target set, obtained by simultaneously considering the
objective of vanilla calibration and the constraint of demographic parity: m = (mcal,mDP) and
C = Ccal × CDP.

Defining ψ(u1, u2) := |u1 − u2|, the approachability condition (2) then reads as follows (where we
introduce short-hand notation C and DP):

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.


C :=

∥∥∥∥∥
∫
X×{0,1}

mcal

(
px, qG(x,s)

)
dQ(x, s)

∥∥∥∥∥
1

6
1

N
;

DP := ψ

(∫
X×{0,1}

mDP(p
x, s) dQ(x, s)

)
6

1

N
.

(3)
Recalling the notation Q0 and Q1 for the conditional distributions, we observe that

DP =

∣∣∣∣∣
∫
X

N∑
k=1

px(k) a(k) dQ0(x)−

∫
X

N∑
k=1

px(k) a(k) dQ1(x)

∣∣∣∣∣ .
We now show that the condition in Eq. (3) is satisfied. For any (qG(x,s)), we define the family (px)
as the constant family

(
dirac(QA)

)
, where dirac(QA) denotes the Dirac mass supported on QA, the

closest point of A to Q :=
∫
X×{0,1} q

G(x,s)(1) dQ(x, s). We have DP = 0 as px does not depend
on x. Substituting the expression for mcal into the definition of C, we observe that for such a choice
of (px)x∈X , we have

C =

∣∣∣∣∣
∫
X×{0,1}

(
QA − qG(x,s)(1)

)
dQ(x, s)

∣∣∣∣∣ 6 1

2N
+

∣∣∣∣∣
∫
X×{0,1}

(
Q− qG(x,s)(1)

)
dQ(x, s)︸ ︷︷ ︸

=0

∣∣∣∣∣ ,
where the inequality holds by taking the effect of discretization in A into account and by the very
definition of Q. The condition of Eq. (3) is thus satisfied. Therefore, under Assumption 1 (the
existence of fast enough sequential estimators of Q) and thanks to Theorem 1, the vanilla calibration
and the demographic parity can be achieved simultaneously no matter the monitoring of the Nature.

Example 2: Group-wise no-regret—mixed picture. Let the target set be Cgr-reg =
(
[0,+∞)

)N |S|
and the payoff function be mgr-reg, i.e., we consider the case of group-wise no-regret under no
additional constraint. The approachability condition in Eq. (2) demands that

∀(qG(x,s)) ∃(px) s.t.
∫
X×S

mgr-reg

(
px, qG(x,s)

)
dQ(x, s) ∈

(
[0,+∞)

)N |S|
, i.e., (4)

∀(a′, s),

∫
supp(Qs)

∑
a∈A

px(a)

(∑
b∈B

qG(x,s)(b)
(
r(a, b, x, s)− r(a′, b, x, s)

))
dQs(x) > 0 .

No-regret seems a harmless challenge, and it is so when the sensitive context is directly observed
by the Player, which we do not assume. (In this case, the Player may simply run several no-regret
algorithms in parallel, one per sensitive group s.) In our context, the direct observation is emulated
in some sense when the non-sensitive context x reveals the sensitive context s; this is the case, for
instance, when the supports of the distributions Qs are pairwise disjoint. Note, however, that these
distributions Qs are unknown to the Player and need to be learned. The second part of Proposition 1
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shows that in this case, the group-wise no-regret may be controlled. We get a similar control in the
case of irrelevant sensitive contexts, i.e., not affecting the payoffs and not used by Nature; see the first
part of Proposition 1, which corresponds to the case of vanilla no-regret minimization. In both cases,
the group-wise no-regret can be controlled under Assumption 1, thanks to Theorem 1. However, as
we show by means of counter-examples, these are the only cases that may be favorably dealt with.
Proposition 1. The condition of Eq. (4) holds when

• the sensitive context is irrelevant, i.e., the payoff function is such that r(a, b, x, s) = r(a, b, x)
and Nature’s monitoring is G(x, s) = x;

• for all s 6= s′, it holds that supp(Qs) ∩ supp(Qs′) = ∅, no matter Nature’s monitoring G.
Otherwise, the condition of Eq. (4) may not hold.

Proof. We mimic the classical proof of no-regret by approachability for the positive results. For
the first positive result: for any (qx), we define ax ∈ arg maxa∈A

∑
b∈B q

x(b) r(a, b, x) and let
(px) =

(
dirac(ax)

)
. For the second positive result: fix any (qG(x,s)); we define (px)x∈X point-wise

as follows. For all s ∈ S, all x ∈ supp(Qs), we set px = dirac(ax), where we validly define
ax ∈ arg maxa∈A

∑
b∈B q

G(x,s)(b) r(a, b, x, s) on the union of the supports of (Qs)s∈S , since they
are pair-wise disjoint; we define the ax arbitrarily elsewhere.

Two counter-examples detailed in Appendix B back up the final part of the proposition: we show that
Eq. (4) does not hold. In the first counter-example, the monitoring is G(x, s) = x, the payoff function
depends on s, and the supports of (Qs)s∈S have non negligible intersection. In the second example,
the monitoring is G(x, s) = (x, s), the payoff function does not depend on s, and the supports of
(Qs)s∈S have non negligible intersection.

Example 3: (Vanilla) no-regret under the equalized average payoffs constraint. For the sake
of space we deal with this example in Appendix B, obtaining similar conclusions as that of Blum
et al. [4].

5 Group-wise calibration under a demographic parity constraint: trade-off

In this section, we consider the problem of group-wise calibration under the demographic parity
constraint; in particular, S = {0, 1}. As we will see, except for special cases, the corresponding
two error criteria cannot be simultaneously smaller than the desired 1/N in the limit. However, a
(possibly optimal) trade-off may be set between the calibration error ε and the violation level δ of
demographic parity. To that end, we introduce neighborhoods of the original target sets Cgr-cal and CDP:

Cεgr-cal =
{
v ∈ R2N : ‖v‖1 6 ε

}
and CδDP =

{
(u, v) ∈ R2 : |u− v| 6 δ

}
.

A pair (ε, δ) ∈ R+×R+ is said achievable when Cεgr-cal×CδDP is approachable with m = (mgr-cal,mDP).
Theorem 1 provides a characterization of this approachability as well as an associated strategy; in
particular, when (ε, δ) is achievable, this strategy ensures that the calibration error CT and the
violation DT of demographic parity satisfy: lim supCT 6 ε a.s. and lim supDT 6 δ a.s.

The goal of this section is to identify all achievable pairs (ε, δ). We will do so by determining, for
δ > 0 of interest, the smallest ε > 0 such that (ε, δ) is achievable1; we denote it by ε?(δ). The line(
δ, ε?(δ)

)
is a Pareto frontier.

Re-parametrization of the problem. Under Assumption 1 (the existence of fast enough sequential
estimators of Q) and thanks to Theorem 1, the (mgr-cal,mDP)–approachability of Cεgr-cal × CδDP holds if
and only if the condition of Eq. (2) is satisfied. The latter can be stated as follows:

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.



∥∥∥∥∥
∫
X×{0,1}

mgr-cal

(
px, qG(x,s)

)
dQ(x, s)

∥∥∥∥∥
1

6 ε ;

ψ

(∫
X×{0,1}

mDP(p
x, s) dQ(x, s)

)
6 δ ,

(5)
1Note that if (ε, δ) is achievable, then (ε′, δ′) with ε′ > ε and δ′ > δ is also achievable.
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where we recall that ψ(u1, u2) = |u1 − u2|. Now, one can show (see comments after Lemma 3
of Appendix C) that the ψ( . . . ) term above is always smaller than TV(Q0,Q1). Thus, we can
re-parameterize the problem and focus only on δτ = τ · TV(Q0,Q1), where τ ∈ [0, 1].

Computation of the Pareto frontier. The condition of Eq. (5) indicates that

ε?(δτ ) = max
(qG(x,s))

min
(px)

∥∥∥∥∥
∫
X×{0,1}

mgr-cal

(
px, qG(x,s), s

)
dQ(x, s)

∥∥∥∥∥
1

s.t. ψ

(∫
X×{0,1}

mDP(p
x, s) dQ(x, s)

)
6 τ · TV(Q0,Q1) .

(6)

Propositions 2 and 3 below compute the values (up to the 1/N discretization error) of ε?(δτ ) in two
scenarios, depending on whether Nature observes the sensitive contexts st.
Proposition 2 (Nature awareness: G(x, s) = (x, s)). Under Assumption 1 and with the monitoring
G(x, s) = (x, s) for Nature, the Pareto frontier

(
ε?(δτ ), δτ

)
τ∈[0,1]

of achievable pairs satisfies

δτ = τ · TV(Q0,Q1) and 1− τ · TV(Q0,Q1) 6 ε?(δτ ) 6 1− τ · TV(Q0,Q1) +
1

N
.

Proposition 3 (Nature unawareness: G(x, s) = x). Under Assumption 1 and with the monitoring
G(x, s) = x for Nature, the Pareto frontier

(
ε?(δτ ), δτ

)
τ∈[0,1]

of achievable pairs satisfies:

δτ = τ · TV(Q0,Q1) and (1− τ) · TV(Q0,Q1) 6 ε?(δτ ) 6 (1− τ) · TV(Q0,Q1) +
1

N
.

The parameter τ ∈ [0, 1] is set by the user.

We observe that in the case when the true label bt provided by the Nature can be directly influenced by
the sensitive attribute st, Proposition 2 shows that approximate group-wise calibration with ε = 1/N
is never possible, unless TV(Q0,Q1) = 1 (and τ = 1 is picked). The latter case corresponds to
the situation when the supports of Q0 and Q1 are disjoint, hence allowing the Player to infer the
sensitive context s from the non-sensitive one x, essentially reducing (up to unknown Q) the problem
to the previously studied setup of Player’s awareness [16].

When the true label bt provided by the Nature is not directly influenced by the sensitive attribute
st (it is influenced by st only via xt), Proposition 3 indicates that calibration is always possible
by setting τ = 1, no matter the value of TV(Q0,Q1). Interestingly, this proposition also shows
that if TV(Q0,Q1) = 0, i.e., the xt and the st are independent, then the Player is able to achieve
calibration and satisfy the demographic parity constraint simultaneously.

6 Approachability of an unknown target set

A limitation of the calibration problems under demographic parity constraint discussed in Section 4
(Example 1) and Section 5 is that the unknown probabilities γ0 and γ1 enter the payoff functions
mgr-cal and mDP. We already pointed out this issue in Section 2.3. Even worse, the trade-off claimed
in Propositions 2 and 3 relies on the knowledge of the unknown TV(Q0,Q1), to set the values of
the achievable pair (δ, ε) targeted; that is, the target set is unknown. To bypass the first limitation
we transfer the unknown (γ0, γ1) to the target set, which makes the payoff function fully known to
the Player. We will then be left with the problem of approaching an unknown target set only. For
instance, in the context of Section 5, we can define
m̃gr-cal(k, y, s) = (mcal(k, y) I{s = s′})s′=0,1 and m̃DP(k, s) =

(
a(k) I{s = 0}, a(k) I{s = 1}

)
,

and set m̃ := (m̃gr-cal, m̃DP). Taking into account the definition of mcal, we note that m̃ does not
depend on (γ0, γ1). Furthermore, by considering the closed convex target sets

C̃εgr-cal =
{

(v0,v1) ∈ R2N : ‖v0‖1
γ0

+‖v1‖1
γ1

6 ε
}
, C̃δDP =

{
(u, v) ∈ R2 :

∣∣ u
γ0
− v

γ1

∣∣ 6 δ
}
,

we remark that the (m̃gr-cal, m̃DP)–approachability of C̃εgr-cal × C̃δDP is equivalent to the (mgr-cal,mDP)–
approachability of Cεgr-cal × CδDP. The unknown quantities appear only in the target set C̃εgr-cal × C̃δDP (and
δ and ε count as unknown quantities given the trade-off exhibited), while the payoff m̃ is known
beforehand. Thus, it is sufficient to consider the setup of Protocol 2.1 with an unknown target set C.
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Approachability strategy for an unknown target set C. We still assume that the Player is able
to build an ht–adapted sequence of estimates Q̂t. Additionally, we assume that for Tr := 2r, with
r > 0, the Player can construct an hTr–adapted estimate Ĉr of C. We discuss this assumption at the
end of this section. We define d(Ĉr, C) = supx∈Ĉr d(x, C).

Assumption 3. There existB < +∞ and a summable non-increasing sequence (βr)r>0 such that for
all r > 0, the sets Ĉr are convex closed, with ‖v − ProjĈr (v)‖ 6 B for all v ∈m(A,B,X , {0, 1}),

P
(
C ⊂ Ĉr

)
> 1− 1/(2Tr), and max

{
E
[
d(Ĉr, C)2

]
, E
[
d(C, Ĉr)2

]}
6 β2

r .

For all r > 0 and all t ∈ {Tr, . . . , Tr+1 − 1}, define ĉt := ProjĈr (mt). The idea of the approacha-
bility strategy is to use ĉt in place of ct in Eq. (1) and update the estimate Ĉr of the target C only at
the end of rounds t = Tr. More precisely, the strategy of the Player is:

(pxt+1)x∈X ∈ arg min
(px)

max
(qG(x,s))

〈
mt − ĉt,

∫
m
(
px, qG(x,s), x, s

)
dQ̂t(x, s)

〉
. (7)

Theorem 2. Under Assumption 3 and the assumptions of Theorem 1, a convex closed set C, unknown
to the Player, is m–approachable if and only if Blackwell’s condition in Eq. (2) is satisfied. In this
case, the strategy of Eq. (7) is an approachability strategy.

Appendix D.2 provides a proof of Theorem 2. But before we do so, we discuss in Appendix D.1
why and how the target set C may be estimated by sets Ĉr satisfying Assumption 3. The construction
is idiosyncratic and strongly depends on the problem and exact setting considered (in particular,
whether the set of non-sensitive contexts X is finite or not). We provide an illustration for the target
set C = C̃εgr-cal × C̃δDP of Section 5, in the case of a finite set X .

7 Limitations of the current work and topics for future work

The anonymous reviewers of this article pointed out some limitations to or possible extensions of the
current work, which we list now.

We only considered, for the sake of readability, the case of demographic parity with two groups.
While the criterion of demographic parity easily extends to more groups, the extension of the
trade-offs stated in Section 5 is less clear. It would probably involve the total variation distances
TV(Qs,Qs′) between each pair Qs and Qs′ of marginal distributions, where s, s′ ∈ S, or the
distances TV(Qs,Q).

The complexity of the generic approachability strategy of Section 3 is at least linear in the number of
groups (if an approximate solution is used, and even polynomial in this number for an exact solution),
see Mannor and Stoltz [18, Sections 3.3 and 3.4]. The convergence rates achieved in Theorem 1
involve total variation distances that would also probably depend in at least a linear fashion on the
number of groups, unless some special structure is assumed. Both facts may be an issue for large
numbers of groups. More generally, we only provide in this article a generic strategy, that is, a
first approach to tackle a given fair online learning problem, but specific strategies may be more
efficient and get better regret bounds, in particular for large numbers of groups. (For instance, for
group-wise calibration, Gupta et al. [14] base a specific and computationally more efficient strategy
on an exponential surrogate loss: this strategy enjoys a sample complexity only logarithmic in the
number of groups.) The design of such specific strategies remains largely open.

As mentioned in the introduction, Bechavod et al. [2] consider the objective of online binary classifi-
cation and an equal-opportunity fairness constraint, under some partial monitoring known as “apple
tasting”. In this article we considered a bandit monitoring for the Player: she observes the reward
obtained at each round. Partial monitoring, which was introduced by Rustichini [27], consists of
only receiving feedback which is a (possibly) random function of the actions played by the Player
and Nature. A theory of approachability under partial monitoring was initiated by Perchet [24], who
stated a necessary and sufficient condition (see also Mannor et al. [19]); Mannor et al. [20] then
exhibited a computationally more efficient strategy, with improved convergence rates, and Kwon and
Perchet [17] finally obtained the optimal convergence rates. A question to investigate is therefore the
extension of the results of this article from a bandit monitoring to a partial monitoring.
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