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ABSTRACT

Differential equations can be used to design neural networks. For instance, neural
ordinary differential equations (neural ODEs) can be considered as a continuous
generalization of residual networks. In this work, we present a novel partial
differential equation (PDE)-based approach for image classification, where we
learn both a PDE’s governing equation for image classification and its solution
approximated by our neural network. In other words, the knowledge contained
in the learned governing equation can be injected into the neural network which
approximates the PDE solution function. Owing to the recent advancement of
learning PDEs, the presented novel concept, called PR-Net, can be implemented.
Our method shows comparable (or better) accuracy and robustness for various
datasets and tasks in comparison with neural ODEs and Isometric MobileNet
V3. Thanks to the efficient nature of PR-Net, it is suitable to be deployed in
resource-scarce environments, e.g., deployed instead of MobileNet.

1 INTRODUCTION

It has been discovered that combining neural networks and differential equations is possible by several
independent research groups (Weinan, 2017; Ruthotto & Haber, 2019; Lu et al., 2018; Ciccone et al.,
2018; Chen et al., 2018; Gholami et al., 2019). For instance, the seminal neural ordinary differential
equation (neural ODE) research work, which considers the general architecture in Figure 1 (a), is to
learn a neural network approximating ∂h(t)

∂t
, where h(t) is a hidden vector at layer (or time) t (Chen

et al., 2018). As such, a neural network is described by a system of ODEs, each ODE of which
describes a dynamics of a hidden element. While neural ODEs have many preferred characteristics,
they also have limitations as follows:

1. Neural ODEs can interpret t as a continuous variable and we can have hidden vectors at any
layer (or time) l by h(l) = h(0) +

∫ l
0
o(h(t), t;θo) dt, where o(h(t), t;θo) = ∂h(t)

∂t
is a neural

network parameterized by θo.
2. Neural ODEs sometimes have smaller numbers of parameters than those of other conven-

tional neural network designs, e.g., (Pinckaers & Litjens, 2019).
3. Neural ODEs’ forward-pass inference can take a long time in solving integral problems,

e.g., a forward-pass time of 37.6 seconds of ODE-Net vs. 9.8 seconds of our method in
Table 2. Several countermeasures have been proposed to enhance the inference time, but it
is unavoidable to solve integral problems (Zhuang et al., 2020; Finlay et al., 2020; Daulbaev
et al., 2020).

To tackle the limitation, we propose the concept of partial differential equation (PDE)-regularized
neural network (PR-Net) to directly learn a hidden element, denoted h(d, t) at layer (or time) t ∈ [0, T ]
and dimension d ∈ Rm. Under general contexts, a PDE consists of i) an initial condition at t = 0, ii) a
boundary condition at a boundary location of the spatial domain Rm, and iii) a governing equation
describing ∂h(d,t)

∂t
. As such, learning a PDE from data can be reduced to a regression-like problem to

predict h(d, t) that meets its initial/boundary conditions and governing equation.

In training our proposed PR-Net, h(0) is provided by an earlier feature extraction layer, which is
the same as neural ODEs. However, an appropriate governing equation is unknown for downstream
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Figure 1: Our PR-Net avoids solving integral problems by learning a regression model that conforms
with a learned governing equation.

machine learning tasks. Therefore, we propose to train a regression model for predicting h(d, t) and
its governing equation simultaneously (see Figure 1 (b)). In other words, neural ODEs directly learn
a governing equation only (i.e., ∂h(t)

∂t
), whereas PR-Net learns a governing equation in conjunction

with a regression model that conforms with the learned governing equation. The key advantage in our
approach is that we can eliminate the necessity of solving integral problems; in neural ODEs, where
we learn a governing equation only, solving integral problems is mandatory.

Such forward and inverse problems (i.e., solving PDEs for h(d, t) and identifying governing equations,
respectively) arise in many important computational science problems and there have been many
efforts applying machine learning/deep learning techniques to those problems (e.g., in earth science
(Reichstein et al., 2019; Bergen et al., 2019) and climate science (Rolnick et al., 2019)). Recently,
physics-informed or physics-aware approaches (Battaglia et al., 2016; Chang et al., 2017; de Bezenac
et al., 2018; Raissi et al., 2019; Sanchez-Gonzalez et al., 2018; Long et al., 2018) have demonstrated
that designing neural networks to incorporate prior scientific knowledge (e.g., by enforcing physical
laws described in governing equations (Raissi et al., 2019)) greatly helps avoiding over-fitting and
improving generalizability of the neural networks. There also exist several approaches to incorporate
various ideas of classical mechanics in designing neural-ODE-type networks (Greydanus et al., 2019;
Chen et al., 2020; Cranmer et al., 2020; Zhong et al., 2020; Lee & Parish, 2020). However, all these
works are concerned with solving either forward or inverse problems whereas we solve the two
different problem types at the same time for downstream tasks. The most similar existing work to our
work is in (Long et al., 2018). However, this work studied scientific PDEs and did not consider t as a
continuous variable but use a set of discretized points of t.

Compared to previous approaches, our proposed method has a distinct feature that forward and
inverse problems are solved simultaneously with a continuous variable t. Due to this unique feature,
the method can be applied to general machine learning downstream tasks, where we do not have a
priori knowledge on governing equations, such as image classification.

We conduct experiments mainly for image classification for its appropriateness (see Appendix A). We
introduce our in-depth studies for various aspects of image classification, including adversarial attacks,
out-of-distribution classification, feature map analyses, and so forth. Throughout the experiments, our
PR-Net shows the best robustness, which is well aligned with our preliminary extrapolation study of
a PDE in Appendix C. One can understand the adversarial attack and out-of-distribution classification
experiments are challenging extrapolation tasks in image classification. Learning governing equations
show great robustness for extrapolation in our experiments. Our proposed PR-Net has the following
characteristics:

1. PR-Net trains a regression model that outputs a scalar element h(d, t) (without solving any
integral problems), and we can consider both d and t as continuous variables. Therefore, it
is possible to construct flexible hidden vectors at arbitrary dimensions and layers.

2. PR-Net does not solve integral problems whereas neural ODEs need to solve integral
problems.

3. By learning a governing equation, we can regularize the overall behavior of PR-Net. This
greatly enhances the robustness of model as shown in our experiments.

2 PARTIAL DIFFERENTIAL EQUATIONS

The key difference between ODEs and PDEs is that PDEs can have derivatives of multiple variables
whereas ODEs should have only one such variable’s derivative. Therefore, our PDE-based method
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Figure 2: A network predicts solutions at d, t
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Table 1: Two types of PDE problems

Type Data What to infer
Forward
Problem

- Initial condition
- Governing equation Solution h(d, t)

Inverse
Problem

- Solution h(d, t)
- Initial condition Governing equation

interprets both the layer of neural network and the dimension of hidden vector as continuous variables,
which cannot be done in neural ODEs. In our context, h(d, t) means a hidden scalar element at layer
t ∈ R and dimension d ∈ Rm, e.g., m = 1 if h(t) is a vector, m = 3 if h(t) is a convolutional feature
map, and so on.

In this section, we first introduce the forward and inverse problems of PDEs in general contexts (see
Table 1). Then, we extend them to design our proposed method in deep-learning contexts.

2.1 FORWARD PROBLEM OF PDES IN GENERAL CONTEXTS

The forward PDE problem in general contexts is to find a solution h(d, t), where d is in a spatial
domain Rm and t is in a time domain [0, T ], given i) an initial condition h(d, 0), ii) a boundary condition
h(dbc, t), where dbc is a boundary location of the spatial domain Rm, and iii) a governing equation
g (Raissi et al., 2019) We note that the boundary condition can be missing in some cases (Kim, 2018).
The governing equation is typically in the following form with particular choices of αi,j (Raissi,
2018; Peng et al., 2020):

g(d, t;h)
def
=ht −

(
α0,0 + α1,0h+ α2,0h

2 + α3,0h
3 + α0,1hd + α1,1hhd + α2,1h

2hd + α3,1h
3hd

+ α0,2hdd + α1,2hhdd + α2,2h
2hdd + α3,2h

3hdd

+ α0,3hddd + α1,3hhddd + α2,3h
2hddd + α3,3h

3hddd
)
,

(1)

where ht = ∂h(d,t)

∂t
, hd = ∂h(d,t)

∂d
, hdd = ∂2h(d,t)

∂d2
, and hddd = ∂3h(d,t)

∂d3
. We also note that g is always

zero in all PDEs, i.e., g(d, t;h) = 0.

In many cases, it is hard to solve the forward problem and hence general purpose PDE solvers do
not exist. Nevertheless, one can use the following optimization to train a neural network f(d, t;θ) to
approximate the solution function h(d, t) as shown in Figure 2 (Raissi et al., 2019):

argmin
θ

LI + LB + LG, (2)

LI
def
=

1

NI

∑
d

(
f(d, 0;θ)− h(d, 0)

)2
, (3)

LB
def
=

1

NB

∑
(dbc,t)

(
f(dbc, t;θ)− h(dbc, t)

)2
, (4)

LG
def
=

1

NG

∑
(d,t)

g(d, t; f,θ)2, (5)

where NI , NB, NG are the numbers of training samples, LI is to train θ for the initial condition,
LB is for the boundary condition, and LG is for the governing equation. Because the governing
equation is always zero, we simply minimize its squared term. Note that i) ft, fd, fdd, fddd can be
easily constructed using the automatic differentiation implemented in TensorFlow or PyTorch, and ii)
we only need h(d, 0), h(dbc, t), which are known a priori, to train θ.

2.2 INVERSE PROBLEM OF PDES IN GENERAL CONTEXTS

The inverse problem is to find a governing equation given i) an initial condition h(d, 0) and ii) a
solution function h(d, t) (Raissi, 2018). It learns αi,j in Eq. 1 with the following loss:

argmin
αi,j

1

NG

∑
(d,t)

g(d, t;h)2.
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Algorithm 1 How to train PR-Net
Input: training data X , validating data V , max iteration

number max iter
Output: θ, (d, t) ∈ H , and αi,j for all i, j

1 Initialize θ, (d, t) ∈ H , and αi,j for all i, j;
2 k ← 0;
3 Lsum ←∞;
4 while Lsum is not converged and k < max iter do
5 Train θ, Feature Extractor, and Classifier with LT ;
6 Train θ with LT + L̂I + L̂G ;
7 Train (d, t) ∈ H with LT ;
8 Train αi,j for all i, j with L̂G +RG;
9 Validate with V and update the best model;

10 Lsum ← LT + L̂I + L̂G +RG;
11 k ← k + 1;
12 return θ, (d, t) ∈ H , and αi,j for all i, j;

Figure 3: The general architecture and the training algorithm of PR-Net

Given a solution function h and its partial derivative terms, we train αi,j by minimizing the objective
loss. Note that we know h in this case. Therefore, the objective loss is defined with h rather than
with f , unlike Eq. 5. The optimal solution of αi,j is not unique sometimes. However, we note that no
trivial solutions, e.g., αi,j = 0 for all i, j, exist for the inverse problem.

3 PDE-REGULARIZED NEURAL NETWORKS

Before describing our method, we note the importance of learning governing equations illustrated in
Appendix C. In all cases, learning governing equations leads to reliable extrapolation results when
solving PDEs. Therefore, it is a key part in our work to discover and learn an appropriate governing
equation.

Our goal in this work is to replace a system of ODEs (cf. Figure 1 (a)) with a PDE. Assuming that a
target task-specific PDE is known a priori, given an initial condition h(0) extracted by the feature
extractor from a sample x, a forward problem can be solved via the method described in Section
2.1. However, a target task-specific PDE is not known a priori in general, and thus, the governing
equation should be learned from data via solving the inverse problem. Unfortunately, the solution
function h(d, t) is not known a priori either in our setting. Therefore, we make an assumption on the
governing equation that it consists of the most common partial derivative terms (cf. Eq. 1) and then
propose to solve the forward and the inverse problems alternately: to train θ, we fix its governing
equation g (more precisely, αi,j for all i, j), and to train αi,j for all i, j, we fix θ.

How to Solve Forward Problem. We customize the method presented in Section 2.1 by i) adding
a task-specific loss, e.g., cross-entropy loss for image classification, ii) parameterizing the neural
network f by the initial condition h(0), and iii) dropping the boundary condition. Let f(h(0), d, t;θ)
be our neural network to approximate h(d, t) given the varying initial condition h(0). The definition
of the governing equation is also extended to g(d, t; f,h(0),θ)1. In order to exploit the key benefit of
our framework that we can extract any hidden element by querying (d, t) to f , we define that H is a
set of (d, t) pairs, where d ∈ R≥0, t ∈ R≥0, with which we construct the hidden vector htask that will be

1The governing equation g, which consists of partial derivatives of f , is also a neural network. We call the
proposed concept as neural partial differential equations and the neural network f trained with the concept as
PDE-regularized neural networks.
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used for a downstream task (cf. Figure 3). We use the following loss definition to train θ:

argmin
θ

LT + L̂I + L̂G, (6)

L̂I
def
=

1

NX

∑
x∈X

( 1

dim(h)

∑
d

(
f(h(0), d, 0;θ)− h(d, 0)

)2)
, (7)

L̂G
def
=

1

NX

∑
x∈X

( 1

NH

∑
(d,t)∈H

g(d, t; f,h(0),θ)2
)
, (8)

where LT is a task-specific loss, X is a training set, NX is the number of training sample, and NH is
the number of elements in htask, i.e., dim(htask).

We query f(h(0), d, t;θ) with the (d, t) pairs in H to construct htask. One more important point to note
is that in order to better construct htask, we can train even the pairs in H as follows: argmin(d,t)∈H LT
(line 7 in Alg. 1). Thus, the elements of htask can be collected from different dimensions and layers. A
similar approach to optimize the end time of integral was attempted for neural ODEs in (Massaroli
et al., 2020). To train H, we use only LT because hlast that will be fed into the classifier should work
well for a downstream task. The feature extractor and the classifier are also trained only with LT

How to Solve Inverse Problem. After fixing θ, we train αi,j for all i, j by using the following L1

regularized loss with a coefficient w:

argmin
αi,j

L̂G +RG, (9)

where RG
def
= w

∑
i,j
|αi,j |. We minimize the sum of |αi,j | to induce a sparse governing equation

according to Occam’s razor since in many PDEs, their governing equations are sparse. This optimiza-
tion allows us to choose the sparsest solution among many possible governing equations. In many
cases, therefore, our regularized inverse problem can be uniquely solved.

Training Algorithm. Our overall training algorithm is in Alg. 1. We alternately train θ, (d, t) ∈ H,
and αi,j for all i, j. The forward problem to train θ becomes a well-posed problem (i.e., its solution
always exists and is unique) if the neural network f is analytical or equivalently, uniformly Lipschitz
continuous (Chen et al., 2018). Many neural network operators are analytical, for example, softplus,
fully-connected, exponential, and so on. Under the mild condition of analytical neural networks,
therefore, the well-posedness can be fulfilled. The inverse problem can also be uniquely solved
in many cases due to the sparseness requirement. As a result, our proposed training algorithm
can converge to a cooperative equilibrium. Note that θ, (d, t) ∈ H, and αi,j for all i, j cooperate
to minimize LT + L̂I + L̂G + RG. Therefore, the proposed training method can be seen as a
cooperative game (Mas-Colell, 1989), as shown in the following theorem. (The proof can be found in
Appendix D.)
Theorem 3.1. Given a learning task, let θ∗ and α∗i,j , for all i, j, constitute a cooperative equilibrium
solution and governing equation (in terms of LT + L̂I + L̂G + RG) — in other words, we cannot
further decrease LT + L̂I + L̂G +RG only by updating either of θ∗ or α∗i,j . By alternately solving the
forward and the inverse problem, we can obtain θ∗ and α∗i,j , for all i, j.

After finishing the training process, αi,j , for all i, j, are not needed any more (because θ already
conforms with the learned governing equation at this point) and can be discarded during testing.

For complicated downstream tasks, training for LT should be done earlier than others (line 5). Then,
the PDE parameters are carefully updated (line 6) and other training procedures follow. The sequence
in Alg. 1 produces the best outcomes in our experiments. However, this sequence can be varied for
other datasets or downstream tasks.

Complexity Analyses. The adjoint sensitivity method of neural ODEs enables the space complexity
of O(1) while calculating gradients. However, its forward-pass inference time is O( 1

s
), where s is

the (average) step-size of an underlying ODE solver. Because s can sometimes be very small, its
inference via forward-pass can take a long time.

Our PR-Net uses the standard backpropagation method to train and its gradient computation com-
plexity is the same as that in conventional neural networks. In addition, the forward-pass inference
time is O(1), given a fixed network f , because we do not solve integral problems.
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4 EXPERIMENTS

In this section, we introduce our experimental evaluations with various datasets and tasks. All
experiments were conducted in the following software and hardware environments: UBUNTU 18.04
LTS, PYTHON 3.6.6, NUMPY 1.18.5, SCIPY 1.5, MATPLOTLIB 3.3.1, PYTORCH 1.2.0, CUDA 10.0,
and NVIDIA Driver 417.22, i9 CPU, and NVIDIA RTX TITAN. In Appendix K, we summarize
detailed dataset information and provide additional experiments.

PDE-based methods have shown appropriateness for many image processing tasks (as listed in
Introduction), and we believe that the main application area of the proposed method in particular is
image processing in resource-scarce environments thanks to its efficiency.

4.1 IMAGE CLASSIFICATION WITH MNIST AND SVHN

Table 2: Image classification in MNIST and SVHN. The
inference time is the time in seconds to classify a batch of
1,000 images. In general, PR-Net shows the best efficiency.

Name # Params MNIST SVHN
Test Accuracy Inference Time Test Accuracy Inference Time

ResNet 0.60M 0.9966 7.6447 0.9660 8.6721
RK-Net 0.22M 0.9970 7.4774 0.9652 13.5139

ODE-Net 0.22M 0.9964 24.8355 0.9599 37.6776
PR-Net 0.21M 0.9972 6.5023 0.9615 9.8263

We reuse the convolutional neural net-
work, called ODE-Net (Chen et al.,
2018) to classify MNIST and SVHN
and replace its ODE part with our pro-
posed PDE, denoted PR-Net in Ta-
ble 2. See Appendix E for the ar-
chitecture and the hyperparameters of
the network f in PR-Net for this ex-
periment. We reuse their codes and
strictly follow their experimental en-
vironments.

Its detailed results are summarized in Table 2. We compare with ResNet, RK-Net and ODE-Net. In
ResNet, we have a downsampling layer followed by 6 standard residual blocks (He et al., 2016). For
RK-Net and ODE-Net, we reuse the codes provided by (Chen et al., 2018). ODE-Net is trained with
the adjoint sensitivity method. Our PR-Net, which does not require solving integral problems, shows
the best performance in all aspects for MNIST. For SVHN, ResNet shows the best accuracy.

4.2 IMAGE CLASSIFICATION WITH TINY IMAGENET & CIFAR10/100

Table 3: Image classification in Tiny ImageNet. PR-Net
shows better efficiency than ODE-Net.

Name M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Width Multiplier 1 1 1 2 2 2
Mobile Blocks 4 3 3 4 3 3
ODE Blocks N/A 1 N/A N/A 1 N/A
PDE Blocks N/A N/A 1 N/A N/A 1

Accuracy (top-1) 0.5809 0.5547 0.5972 0.6076 0.5672 0.6157
Accuracy (top-5) 0.8049 0.7946 0.8166 0.8115 0.7911 0.8357

# Params 1.21M 1.36M 1.36M 4.30M 4.90M 4.56M
Inference Time 4.14 5.26 5.23 5.21 8.3 6.25

Out-of-distribution Robustness (top-1 accuracy)
Gaussian Noise 0.4495 0.4165 0.4685 0.4757 0.4474 0.4878

Random Crop & Resize 0.4636 0.4305 0.4841 0.4814 0.4419 0.4965
Random Rotation 0.3961 0.3667 0.4267 0.4256 0.3901 0.4381

Color Jittering 0.4206 0.3812 0.4429 0.4555 0.4108 0.4693
Out-of-distribution Robustness (top-5 accuracy)

Gaussian Noise 0.68 0.6619 0.7064 0.7025 0.6757 0.7205
Random Crop & Resize 0.7106 0.6935 0.7357 0.7215 0.6936 0.7442

Random Rotation 0.6372 0.6216 0.6627 0.6546 0.6319 0.6778
Color Jittering 0.6742 0.6396 0.6878 0.6874 0.6506 0.713

We use one more convolutional neural
network to test with Tiny ImageNet.
Tiny ImageNet is the modified subset
of ImageNet with downscaled image
resolution 64× 64. It consists of 200
different classes with 100,000 training
images and 10,000 validation images.
Our baseline model is Isometric Mo-
bileNet V3 (Sandler et al., 2019). We
also compare with ODE-Net. Since
ODE-Net and PR-Net are both effi-
cient, we suppose that resource-scarce
environments, for which MobileNet
was designed, are their best applica-
tion areas. The isometric architecture
of Isometric MobileNet V3 maintains
constant resolution throughout all lay-
ers. Therefore, pooling layers are not
needed and computation efficiency is
high, according to their experiments. In addition, neural ODEs require an isometric architecture, i.e.,
the dimensionality of h(t), t ≥ 0, cannot be varied. In our PR-Net, we do not have such restrictions.
For fair comparison, however, we have decided to use Isometric MobileNet V3. We replace some of
its MobileNet V3 blocks with ODEs or PDEs, denoted ODE-Net and PR-Net in Table 3, respectively.
We train our models from scratch without using any pretrained network, with a synchronous training
setup.
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Table 3 summarizes their results. We report both of the top-1 and the top-5 accuracy, which is a
common practice for (Tiny) ImageNet. In general, our PR-Net shows the best accuracy. PR-Net
achieves an top-1 accuracy of 0.6157 with 4.56M parameters. The full Isometric MobileNet V3
marks an top-1 accuracy of 0.6578 with 20M parameters and the reduced Isometric MobileNet V3
with 4.30M parameters shows an top-1 accuracy of 0.6076. Considering the large difference on the
number of parameters, PR-Net’s efficiency is high. In particular, it outperforms others in the top-5
accuracy by non-trivial margins, e.g., 0.7911 of ODE-Net vs. 0.8115 of Isometric MobileNet V3 vs.
0.8357 of PR-Net. In addition, PR-Net shows faster forward-pass inference time in comparison with
ODE-Net. The inference time is to classify a batch of 1,000 images.

Table 4: Image classification in CIFAR10/100

Data Name Acc. Name Acc. Name Acc.
CIFAR10 M.Net V3 0.9407 ODE-Net 0.9350 PR-Net 0.9457

CIFAR100 M.Net V3 0.7603 ODE-Net 0.7243 PR-Net 0.7683

We also compare our method with MobileNet
V3 and ODE-Net for CIFAR10/100. For them,
we use the same architecture we used for Tiny
ImageNet. The detailed results are summarized
in Table 4. Our PR-Net shows the best accuracy
in both data sets. ODE-Net shows sub-optimal
outcomes.

4.3 EXPERIMENTS ON ROBUSTNESS WITH TINY IMAGENET

To check the efficacy of learning a governing equation, we conduct three additional experiments with
Tiny ImageNet: i) out-of-distribution image classification, ii) adversarial attack robustness, and iii)
transfer learning to other image datasets. We consider these experiments as extrapolations in image
classification, where learning governing equations can be a key. In the first and second experiments,
we apply many augmentation/perturbation techniques to generate out-of-distribution/adversarial
images and check how each model responds to them. Being inspired by the observations that robust
models are better transferred to other datasets (Engstrom et al., 2019a; Allen-Zhu & Li, 2020; Salman
et al., 2020), in the third experiment, we check the transfer learning accuracy to other image datasets.
We hypothesize that PR-Net shows better robustness than others, since it knows the governing
equation for classifying Tiny ImageNet (as in Appendix C for a scientific PDE problem).

Table 5: Adversarial attacks in Tiny ImageNet

Attack Method M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Top-1 accuracy Top-5 accuracy

FGSM(ε = 0.5/255) 0.3860 0.3656 0.4041 0.6492 0.6398 0.6911
FGSM(ε = 1/255) 0.2304 0.2287 0.2499 0.4751 0.4928 0.5374
FGSM(ε = 3/255) 0.0452 0.0464 0.0369 0.1232 0.1562 0.1596
PGD (ε = 0.5/255) 0.3733 0.3525 0.3910 0.6508 0.6409 0.6936
PGD (ε = 1/255) 0.1902 0.1908 0.2133 0.4579 0.4810 0.5281
PGD (ε = 3/255) 0.0218 0.0235 0.017 0.0792 0.1093 0.1144

Neural networks are typically vulner-
able to out-of-distribution and adver-
sarial samples (Shen et al., 2016; Azu-
lay & Weiss, 2019; Engstrom et al.,
2019b). More fitted to training data,
they typically show less robustness
to out-of-distribution and adversarial
samples. However, PR-Net follows
learned governing equations to pro-
cess those samples. As such, learning
a governing equations can be deemed to implant latent knowledge governing the classification
process.

Out-of-Distribution Image classification. We use four image augmentation methods: i) adding
a Gaussian noise of N (0, 0.1), ii) cropping a ceter area by size 56× 56 and resizing to the original
size, iii) rotating into a random direction for 30 degree, and iv) perturbing colors through randomly
jittering the brightness, contrast, saturation, and hue with a strength coefficient of 0.2. All these
are popular out-of-distribution augmentation methods (Shen et al., 2016; Azulay & Weiss, 2019;
Engstrom et al., 2019b).

Our PR-Net shows the best accuracy (i.e., robustness) in the all cases of Table 3. In comparison with
ODE-Net, it shows much better robustness, e.g., 0.3812 of ODE-Net vs. 0.4429 of PR-Net for the
color jittering augmentation. One interesting point is that all methods are commonly more vulnerable
to the random rotation and the color jittering augmentations than the other two augmentations.

Adversarial Attack Robustness. Since the governing equation regularizes PR-Net’s behaviors, it
can be made robust to unknown adversarial samples. We use FGSM (Goodfellow et al., 2015) and
PGD (Madry et al., 2018) to find adversarial samples, to which the robustness of PR-Net is reported
in Table 5. With various settings for the key parameter ε that controls the degree of adversarial
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perturbations, we generate adversarial samples. As the configuration of doubling the number of
channels used in each layer, denoted as “Width Multiplier 2,” showed better performance in Table 3,
we use that configuration for adversarial attack and transfer learning experiments. For all attacks
except FGSM(ε = 3/255) and PGD (ε = 3/255), PR-Net shows the best robustness in Table 5. The
performance of PR-Net is superior to others in many cases.

Table 6: Transfer learning in Tiny ImageNet

Dataset M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Top-1 accuracy Top-5 accuracy

CIFAR100 0.7676 0.7460 0.7750 0.9320 0.9270 0.9480
CIFAR10 0.9403 0.9280 0.9418 0.9963 0.9928 0.9962
Aircraft 0.6233 0.6027 0.6612 0.8509 0.8300 0.8561

Food-101 0.7317 0.7128 0.7366 0.9108 0.9036 0.9174
DTD 0.4819 0.4973 0.5113 0.7660 0.7465 0.7957
Cars 0.6313 0.5576 0.6283 0.8380 0.7998 0.8319

Transfer Learning. As reported in (En-
gstrom et al., 2019a; Allen-Zhu & Li, 2020;
Salman et al., 2020), robust models tend to
produce feature maps suitable for transfer
learning than regular models do. In this re-
gard, we check the transferability of the pre-
trained PR-Net for Tiny ImageNet to other
datasets: CIFAR100 (Krizhevsky, 2009),
CIFAR10 (Krizhevsky, 2009), FGVC Air-
craft (Maji et al., 2013), Food-101 (Bossard
et al., 2014), DTD (Cimpoi et al., 2014), and Cars (Yang et al., 2015). As shown in Table 6, PR-Net
shows the best transfer learning accuracy in all cases except Cars. The improvements over M.Net V3
and ODE-Net are significant for Aircraft and DTD.

4.4 FEATURE MAP ANALYSES

Table 7: The silhouette score
of clustering feature maps

Name MNIST SVHN
ResNet 0.49594527 0.42278063
RK-Net 0.5053296 0.42842203

ODE-Net 0.4991746 0.42694366
PR-Net 0.5079406 0.43123975

We also analyze the feature maps created by MobileNet V3, ODE-
Net, and PR-Net in Figure 5 in Appendix B. For this, we use the
method of image representation inversion which i) is to find an
image whose representation best matches a given representation
vector, and ii) was also used in (Engstrom et al., 2019a) to check
the quality of feature maps. According to (Engstrom et al., 2019a),
robust representations are approximately invertible. For MobileNet
V3, ODE-Net, and PR-Net, we reconstruct the target image using
the representation vector produced at the third mobile block of each model and strictly follow the
inversion method used in (Mahendran & Vedaldi, 2015)2. As shown in Figure 5 in Appendix B, our
PR-Net shows the best inversion quality.

Figures 6 and 7 in Appendix B visualize the feature maps of ResNet, ODE-Net, and PR-Net for
MNIST and SVHN using t-SNE (Maaten & Hinton, 2008). In terms of human visual perception, they
all look similar. Therefore, we further employ the silhouette score to evaluate the quality of clusters
on t-SNE embeddings, where the number of clusters denotes the number of classes. PR-Net shows
the best clustering outcomes in Table 7, e.g., a silhouette score of 0.4959 for ResNet in MNIST vs.
0.4991 for ODE-Net vs. 0.5053 for RK-Net vs. 0.5079 for PR-Net.

4.5 TRAINING OVERHEAD

Table 8: Training overhead in terms of GPU memory usage
(MB) and training time (seconds per iteration) in MNIST and
SVHN

Name # Params MNIST SVHN
Memory Usage Training Time Memory Usage Training Time

ResNet 0.60M 2,359 0.155 2,363 0.206
RK-Net 0.22M 819 0.229 823 0.223

ODE-Net 0.22M 819 0.235 823 0.307
PR-Net 0.21M 836 0.289 841 0.227

Our proposed PR-Net has additional
parts to be considered during its train-
ing process, e.g., governing equation.
As such, our method requires more re-
sources in comparison with other base-
lines. However, training occurs only
once and after deployment, PR-Net
shows more efficient behaviors, e.g.,
shorter forward-pass inference time.
In this section, we compare the time
and space overhead for MNIST, SVHN, and Tiny ImageNet.

Table 8 summarizes the training overhead for MNIST and SVHN. ResNet requires the largest amount
of GPU memory but takes the smallest time per iteration. ODE-Net’s training time per iteration
is not as small as that of ResNet because it needs to solve integral problems. PR-Net has more

2https://github.com/utkuozbulak/pytorch-cnn-visualizations
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factors to consider in a training iteration and requires more memory than ODE-Net in almost all cases.
However, ODE-Net requires the longest time per iteration in SVHN because its adaptive step-size
solver needs many steps to solve the reverse-mode integral problem that calculates gradients with the
adjoint sensitivity method (Chen et al., 2018). It is worth noting that RK-Net, which has the same
architecture as ODE-Net but uses the standard backpropagation through the RK4 solver, takes much
less time than ODE-Net.

Table 9: Training overhead in terms of GPU memory
usage (MB) and training time (seconds per iteration)
in Tiny ImageNet

Name # Params Width Multiplier Tiny ImageNet
Memory Usage Training Time

M.Net V3 1.21M 1 4,989 0.038
ODE-Net 1,36M 1 5,797 0.069
PR-Net 1.36M 1 7,583 0.077

M.Net V3 4.30M 2 9,139 0.057
ODE-Net 4.90M 2 9,977 0.211
PR-Net 4.56M 2 10,685 0.190

The overhead of Tiny ImageNet is summa-
rized in Table 9. As expected, PR-Net re-
quires the largest amount of memory for its
more complicated training loss definitions
than those of baselines. However, ODE-Net
requires the longest time per iteration when
the width multiplier is set to 2. This phe-
nomenon was also observed for MNIST and
SVHN. While the reverse-mode integral of
the adjoint sensitivity method has a space
complexity of O(1), in any case it needs to
solve an integral problem, which incurs addi-
tional time complexity.

Figure 4 illustrates the curves of LT , L̂I , L̂G for MNIST. Both LT and L̂I are easier to train than
L̂G. The governing equation loss L̂G typically starts with a very large value and decreases slowly as
training goes on. On the contrary, the task loss LT decreases much faster, which shows the difficulty
of learning physical dynamics (i.e., governing equation) governing classification procedures.

5 DISCUSSIONS & CONCLUSIONS
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Figure 4: The curves of log loss values
decrease as training goes on for MNIST

It recently became popular to design neural networks based
on differential equations. In most cases, ODEs are used
to approximate neural networks. In this work, on the other
hand, we presented a PDE-based approach to design neural
networks. Our method simultaneously learns a regression
model and a governing equation that conform with each
other. Therefore, the internal processing mechanism of the
learned regression model should follow the learned gov-
erning equation. One can consider that this mechanism is
a sort of implanting domain knowledge into the regression
model. The main challenge in our problem definition is
that we need to discover a governing equation from data
while training a regression model. Thus, we adopt a joint
training method of the regression model and the governing
equation.

To show the efficacy, we conducted five experiments: i)
MNIST/SVHN classification, ii) Tiny ImageNet and CI-
FAR10/100 classification, iii) classification with out-of-
distribution samples, iv) adversarial attack robustness, and v) transfer learning. Our method shows
the best accuracy and robustness (or close to the best) except only SVHN. In particular, the chal-
lenging robustness experiments empirically prove why learning an appropriate governing equation is
important.

One limitation on this method is that it is sometimes hard to achieve a good trade-off among all
different loss and regularization terms. Our method intrinsically involves various terms and we found
that it is important to tune hyperparameters (especially for various coefficients and learning rates) in
order to achieve reliable performance. In particular, αi,j , for all i, j, are important in learning reliable
governing equations. Because the trained network f is greatly influenced by the governing equation,
hyperparameters should be carefully tuned to learn meaningful governing equations.
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6 ETHICS STATEMENT

Image classification is one of the most popular topics in deep learning and has many applications. In
general, it has more benefits than risks. We also do not see any ethical problems in our research.

7 REPRODUCIBILITY STATEMENT

We include detailed reproducibility information in Appendix. In particular, we clarify the neural
network architectures we used and their best hyperparameter sets for all experiments in our paper.
We also submit our source codes and data with appropriate shell scripts to easily reproduce some
selected results due to the 100MB limitation of the supplementary zip file.
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A PDES AND COMPUTER VISION

After the introduction of scale space (Koenderink, 1984; Witkin, 1987), PDE-based methods have
been actively studied for computer vision and image processing tasks. Starting from anisotropic
diffusion for denoising developed by Perona and Malik (Perona & Malik, 1990), PDEs have been
utilized in many different tasks including image enhancement via shock filters (Osher & Rudin,
1990), image segmentation (Li et al., 2005), and total-variation-based noise removing (Rudin et al.,
1992). Following these approaches, in the data-driven era, instead of hand-crafted PDEs, there have
been many efforts to learn PDEs from data and utilize learned PDEs in e.g., image restoration (Liu
et al., 2010; Chen & Pock, 2016; Chen et al., 2015). More recently, PDE-inspired deep learning
architectures have been developed and applied to image classification (Lu et al., 2018; Ruthotto &
Haber, 2019; Haber et al., 2019), and image denoising (Jia et al., 2019).

B FEATURE MAP ANALYSES

We introduce the feature map inversion quality in Figure 5 and the clustering results after projecting
each feature map onto a two-dimensional space with t-SNE in Figures 6 and 7.

C IMPORTANCE OF LEARNING GOVERNING EQUATIONS

Here, we demonstrate the importance of learning governing equations in solving forward problems
with an example, Allen–Cahn equation. The Allen–Cahn equation is a nonlinear reaction-diffusion
problem, which describes the process of phase separation in alloys:

g(d, t) = ht − 0.0001hdd + 5h3 − 5h = 0, d ∈ [−1, 1], t ∈ [0, 1], (10)

with the initial condition h(d, 0) = d2 cos(πd), ∀d ∈ [−1, 1], and the periodic boundary conditions
h(−1, t) = h(1, t) and hd(−1, t) = hd(1, t),∀t ∈ [0, 1]. We note that m = 1 and dbc ∈ {−1, 1} in this
PDE. For computing its reference solutions, a spectral Fourier discretization with 512 modes and a
fourth-order explicit Runge–Kutta temporal integrator with time-step 10−6 is used.

To show the efficacy of the training method in Eqs. 2 through 5, we compare the method with the
following naı̈ve training method with the computed reference solutions:

argmin
θ

LI + LB + LR,

LR
def
=

1

NR

∑
(d,t)

(
f(d, t;θ)− h(d, t)

)2
,

where LR is to train θ with the reference solutions of the Allen–Cahn equation with h(d, t) (t ≤ 0.8).
We note that the naı̈ve model does not learn the governing equation but learn through the supervision
with the reference solutions.

We also set NG = NR and t ≤ 0.8 to construct LG for the fair comparison with the naı̈ve model.
We adopt the neural network architecture used in (Raissi et al., 2019) and train it with the two
different training methods. As a result, one is aware of the governing equation because we use LG
and the other is ignorant of it because we use LR instead of LG. Figure 8 shows the extrapolation
results for t = {0.8150, 0.9950} obtained by using the two neural networks and we clearly see the
governing-equation-aware neural network outperforms the other. In particular, the two figures at
t = 0.9950 shows the efficacy of learning the governing equation: the prediction of the naı̈ve model
in Figure 8 (d) is not conforming to the underlying physical laws, considering that the Allen–Cahn
equation is about the separation process of alloy. On the other hand, the model in Figure 8 (c) is aware
of the existence of the valley around x = 0. This simple example demonstrates that the governing-
equation-aware regression model generalizes much better for samples with unseen characteristics,
e.g., extrapolation in the example. Thus, it is of our particular interest to make neural networks aware
of governing equations in this work.
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(a) M.Net V3 (b) ODE-Net (c) PR-Net (d) Original

(e) M.Net V3 (f) ODE-Net (g) PR-Net (h) Original

(i) M.Net V3 (j) ODE-Net (k) PR-Net (l) Original

(m) M.Net V3 (n) ODE-Net (o) PR-Net (p) Original

(q) M.Net V3 (r) ODE-Net (s) PR-Net (t) Original

Figure 5: Representation inversion with Tiny ImageNet
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(a) ResNet (b) ODE-Net (c) PR-Net

Figure 6: The visualization of feature maps for MNIST. We use t-SNE to project the feature maps
onto a two-dimensional space.

(a) ResNet (b) ODE-Net (c) PR-Net

Figure 7: The visualization of feature maps for SVHN. We use t-SNE to project the feature maps
onto a two-dimensional space.
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Figure 8: Extrapolation results by two neural networks (with identical architectures) that are aware or
ignorant of the governing equation of the Allen–Cahn equation. The blue solid lines are reference
solutions and the red dotted lines are extrapolation predictions. In all cases, better results are obtained
when a neural network is aware of the governing equation, i.e., trained with LG.
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Table 10: The architecture of the network f

Layer Design Input Dim. Output Dim.
1 Conv2d(filter size 3x3, stride 1, padding 1) 62 × 67 62 × 67
2 GroupNormalization(67 groups) 62 × 67 62 × 67
3 Conv2d(filter size 3x3, stride 1, padding 1) 62 × 67 62 × 64
4 GroupNormalizaiton(32 groups) 62 × 64 62 × 64
5 ReLU

D PROOF

Theorem D.1. Given a learning task, let θ∗ and α∗i,j , for all i, j, constitute a cooperative equilibrium
solution and governing equation (in terms of LT + L̂I + L̂G + RG) — in other words, we cannot
further decrease LT + L̂I + L̂G +RG only by updating either of θ∗ or α∗i,j . By alternately solving the
forward and the inverse problem, we can obtain θ∗ and α∗i,j , for all i, j.

Proof. We prove the theorem in the following sequence: i) we first prove that the forward problem is
well-posed so that its solution uniquely exists, ii) the inverse problem can also be uniquely solved,
and iii) we can obtain an equilibrium owing to the aforementioned uniquely-solvable characteristics.

Firstly, the forward problem is well-posed under the mild analytic condition of the following Eq. 11
— note that the following terms appear in the right-hand side of Eq. 1:

α0,0 + α1,0f + α2,0f
2 + α3,0f

3 + α0,1fd + α1,1ffd

+ α2,1f
2fd + α3,1f

3fd + α0,2fdd + α1,2ffdd + α2,2f
2fdd

+ α3,2f
3fdd + α0,3fddd + α1,3ffddd + α2,3f

2fddd + α3,3f
3fddd

(11)

For Eq. 11 to be analytic, f should be analytic w.r.t. d. All of fd, fdd, and fddd become analytic if f is
analytic, and a composition of analytical functions is still analytic. Many neural network operators
are analytic, e.g., softplus, fully-connected, exponential, and log, whereas some others are not, e.g.,
ReLU and absolute. Therefore, the analytical requirement can be fulfilled in many cases, e.g., using
softplus instead of ReLU. If well-posed, the solution of the forward problem becomes a special case
of the Cauchy problem and its solution uniquely exists.

Secondly, we prefer the sparsest governing equation that minimizes the loss. Therefore, its solution
can be also uniquely defined as our training pursues it.

Lastly, let θ(k) and α(k)
i,j , for all i, j, constitute a solution and a governing equation obtained at k-th

iteration of the algorithm. We quit the while loop when the sum of all the loss values converges and
does not decrease in Alg. 1, which corresponds to the definition of the Nash equilibrium. Therefore,
our algorithm always returns an equilibrium state.

E IMAGE CLASSIFICATION WITH MNIST AND SVHN

We describe detailed experimental environments. Table 10 shows the detailed network architecture
of f that we used for our experiments. The list of hyperparameters that we had considered for our
experiments is as follows:

1. Train for 160 epochs with a batch size 128,
2. Use a MSE loss function for L̂G, L̂I and a cross entropy loss function for LT ,
3. Use the standard PyTorch Adam optimizer for updating the governing equation g, (d, t) ∈ H,

and the network f . On SVHN dataset, for the governing equation and (d, t) pairs, we use a
weight decay of 1e-3. For MNIST, we update the governing equation and (d, t) pairs every
epoch, and for SVHN, we update the governing equation and (d, t) pairs every 5 epochs.

4. htask is a feature map in this case and its output size is in Table 10. We note that PR-Net has
the same output size as that of ODE-Net. Refer to Section J about how we construct htask

with the set H of (d, t) pairs.
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Table 11: The architecture of the network f

Layer Design Input Dim. Output Dim.
1 Conv2d(1x1, stride 1) 162 × 67 162 × 384
2 BatchNorm2d 162 × 384 162 × 384
3 HSwish
4 GroupConv2d(5x5, stride 1, groups 384) 162 × 384 162 × 384
5 BatchNorm2d 162 × 384 162 × 384
6 SE Block 162 × 384 162 × 384
7 HSwish
8 Conv2d(1x1, stride 1) 162 × 384 162 × 64
9 BatchNorm2d 162 × 64 162 × 64

5. Utilize different learning rates for each dataset. For MNIST, we use a learning rate of 1e-3
to update the governing equation and (d, t) pairs and for SVHN, we use 3e-4 to update the
governing equation and (d, t) pairs. For every datasets, we adjust the learning rate with a
decay ratio of {0.1, 0.01, 0.001} every 60, 80 and 140 epoch.

F IMAGE CLASSIFICATION WITH TINY IMAGE NET & CIFAR10/100

We describe detailed experimental environments. Table 11 shows the detailed network architecture
of f that we used for our experiments. The list of hyperparameters that we had considered for our
experiments is as follows:

1. Hswish and SE Block in Table 11 refers to hard-swish activation function and squeeze-and-
excitation module used in (Howard et al., 2019), respectively.

2. Train for 150 epochs with a batch size of 64 and use early stopping.

3. Use a MSE loss function for L̂G, L̂I and a cross entropy loss function with label smoothing
0.1 for LT

4. Use three separate optimizers for updating the governing equation g, (d, t) ∈ H, and the
network f . For the governing equation and (d, t) pairs, we use the standard Pytorch Adam
optimizer with the L1 regularization with a coefficient of w = 2e− 5 and a weight decay of
2e-4, respectively. We update the governing equation and (d, t) pairs every 5 epochs. For
the network f , we use the SGD optimizer with 0.9 momentum and apply a weight decay of
2e-4 to the learned weights in its convolutional and fully connected layers only.

5. htask is a feature map in this case and its output size is in Table 11. We note that PR-Net has
the same output size as that of ODE-Net. Refer to Section J about how we construct htask

with the set H of (d, t) pairs.

6. Utilize different learning rates for each optimizer. For learning the governing equation and
(d, t) pairs, we use a learning rate of 1e-4. For training the network f , we gradually warm-up
the learning rate for 5 epochs and use the cosine-annealing with the minimum learning rate
set to 2e-4.

7. Use a dropout rate of 0.3 and batch-normalization layers with a momentum of 0.1.

G ADVERSARIAL ATTACK WITH TINY IMAGENET

We describe detailed experimental environments for the reported adversarial attack experiments. We
do not change the network architecture for these experiments. The list of hyperparameters of FGSM
and PGD that we considered for our experiments is as follows:

1. For FGSM attack, we used a maximum perturbation of ε = {0.5/255, 1/255, 3/255}.
2. For PGD attack, we employed a maximum perturbation of ε = {0.5/255, 1/255, 3/255} with

3 steps with a step-size of α = 1/255.
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(a) Original (b) Noise (c) Crop (d) Rotation (e) Jittering

Figure 9: Out-of-distribution examples

+  =

(a) FGSM

+  =
(b) PGD

Figure 10: Adversarial attack examples. Goldfish with a confidence of 0.8931 is perturbed to torch
with a confidence of 0.3546 in (a) and to candle with a confidence of 0.4810 in (b).

H TRANSFER LEARNING FROM TINY IMAGENET TO OTHER IMAGE
DATASETS

We describe detailed experimental environments for the reported transfer learning experiments. We
do not change the network architecture for these experiments. We adopt the weights of the Tiny
ImageNet pretrained model, and replace the last fully connected layer with a randomly initialized
one that fits a target dataset. We then fine-tune all the layers of the pretrained model. All the target
datasets are uniformly resized to 64 x 64. For data augmentation, we only used random horizontal flip
for better reproducibility of our experiment. Note that same hyperparameters and training settings are
employed for PR-Net, ODE-Net, and MobileNet V3. The list of hyperparameters that we considered
for each target dataset is as follows:

1. To transfer from Tiny ImageNet to CIFAR100, CIFAR10, Food-101, we train for 80 epochs
with a batch size of 64. We gradually warm-up the learning rate to 0.15 for 5 epochs and use
the cosine-annealing with the minimum learning rate set to 2e-4. We utilize a dropout rate
of 0.3 in fully connected layers and employ SGD optimizer with a momentum of 0.9 and a
weight decay of 1e-4 applied to the learned weights in the convolutional and fully connected
layers only.

2. To transfer from Tiny ImageNet to FGVC Aircraft and Cars, we train for 80 epochs with a
batch size of 64. We gradually warm-up the learning rate to 0.15 for 5 epochs and use the
cosine-annealing with the minimum learning rate set to 2e-4. We utilize a dropout rate of
0.3 in fully connected layers and employ SGD optimizer with a momentum of 0.9 and a
weight decay of 5e-4 applied to the learned weights in the convolutional and fully connected
layers only.

3. To transfer from Tiny ImageNet to DTD, we train for 150 epochs with a batch size of 64 and
an initial learning rate of 0.001 that drops by a factor of 10 every 50 epoch. We employed
SGD optimizer with a momentum of 0.9 and applied a weight decay of 5e-4 to the learned
weights in the convolutional and fully connected layers only.

I OUT-OF-DISTRIBUTION AND ADVERSARIAL IMAGE SAMPLES

We introduce a selected set of images that we produced for our robustness experiments. Figure 9
shows a set of image samples for the out-of-distribution image classification and Figure 10 shows
a set of images perturbed by FGSM and PGD with ε = 3/255. The original image is predicted as
goldfish with a confidence of 0.8931 by PR-Net. The perturbed image by FGSM is predicted as torch
with a confidence of 0.3546 and the perturbed image by PGD is predicted as candle with a confidence
of 0.4810.
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td2d1
Feature map
(6 * 6 * 64)

The same position in all channels (e.g., the
yellow elements) share the same index values

of d1,	d2,	and t	(e.g., the blue elements).

Figure 11: An illustration for MNIST/SVHN on how to increase the processing efficiency by
discretizing the last dimension and share (d, t) pairs.

Table 12: Image classification datasets used in our experiments

Dataset # Classes Size (Train / Test) Evaluation Metrics
MNIST 10 60,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class
SVHN 10 73,257 / 26,032 Top-1, Top-5, Mean & Std. Per-Class

Tiny ImageNet 200 100,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class
CIFAR 100 100 50,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class
CIFAR 10 10 50,000 / 10,000 Top-1, Top-5, Mean & Std. Per-Class

FGVC Aircraft 70 6,667 / 3,333 Top-1, Top-5, Mean & Std. Per-Class
Food-101 101 75,750 / 25,250 Top-1, Top-5, Mean & Std. Per-Class

Describable Textures (DTD) 47 3,760 / 1,880 Top-1, Top-5, Mean & Std. Per-Class
Stanford Cars 196 8,144 / 8,041 Top-1, Top-5, Mean & Std. Per-Class

J DISCRETIZING FEATURE MAP DIMENSIONS FOR EFFICIENT PROCESSING

One more advantage of using PDEs is that we can discretize some dimensions3. Given a feature map
size of d1 × d2 × d3, one can design a neural network that outputs each scalar element for d ∈ R3

and t ∈ [0, T ]. However, this approach incurs a large number of queries, i.e., d1 × d2 × d3 queries,
to reconstruct the feature map. To increase the efficiency in our experiments, we discretize the last
dimension and let the network f outputs a matrix of d1 × d2 for each discretized dimension of d3, in
which case d ∈ R2. Therefore, we have d3 matrices (i.e., channels), each of which has a size of d1×d2.
To further increase the efficiency, we let all the elements in the same position of the matrices share the
same (d, t) pair where d ∈ R2 (See Figure 11 for the case of MNIST and SVHN as an example). In our
case, we append three more channels to the input feature map h(0), each channel of which contains
the index values of d1, d2, and t, respectively. When t = 0 and d1, d2 = {0, 0.2, 0.4, 0.6, 0.8, 1.0},
therefore, our network f(h(0), d, t;θ) should output its initial condition h(0) to minimize L̂I — note
that we normalize d1 and d2. To minimize LT , we construct the output feature map htask with the
various (d, t) pairs in H.

K ADDITIONAL EXPERIMENTAL RESULTS – PER-CLASS ACCURACY

All datasets we used are summarized in Table 12. Since some datasets have many classes (e.g., 200
classes in Tiny ImageNet), we introduce the mean and standard deviation of per-class accuracy for
each dataset. In this section, we use only the top-1 accuracy to calculate the mean and standard
deviation of per-class accuracy — we did not use the per-class accuracy in the main paper. We note
that lower (resp. larger) values are preferred for the standard deviation (resp. for the mean).

In Table 13, we summarize the mean and the standard deviation of per-class accuracy for our
Tiny ImageNet classification and out-of-distribution robustness experiments. In the Tiny ImageNet

3In fact, a PDE reduces to a system of ODEs after discretizing all spatial dimensions and maintaining only one
time variable, i.e., there is one ODE for each discretized dimension and a system of such ODEs can approximate
the original PDE. In this perspective, neural ODEs can be seen as that i) the hidden vector dimensions are
discretized and ii) the time variable is maintained.

19



Under review as a conference paper at ICLR 2022

Table 13: Image classification in Tiny ImageNet. We show the mean and the standard deviation of
per-class accuracy.

Name M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Width Multiplier 1 1 1 2 2 2
Mobile Blocks 4 3 3 4 3 3
ODE Blocks N/A 1 N/A N/A 1 N/A
PDE Blocks N/A N/A 1 N/A N/A 1

Mean Accuracy 0.5809 0.5547 0.5972 0.6076 0.5672 0.6157
Std. Dev. Accuracy 0.1584 0.1628 0.1473 0.1570 0.1618 0.1496

# Params 1.21M 1.36M 1.36M 4.30M 4.90M 4.56M
Inference Time 4.14 5.26 5.23 5.21 8.3 6.25

Out-of-distribution Robustness (Mean Accuracy)
Gaussian Noise 0.4495 0.4466 0.4685 0.4757 0.4474 0.4878

Random Crop & Resize 0.4636 0.4305 0.4841 0.4814 0.4419 0.4965
Random Rotation 0.3961 0.3667 0.4267 0.4256 0.3901 0.4381

Color Jittering 0.4206 0.3812 0.4429 0.4555 0.4108 0.4693
Out-of-distribution Robustness (Std. Dev. Accuracy)

Gaussian Noise 0.1747 0.1697 0.1610 0.1710 0.1754 0.1674
Random Crop & Resize 0.1768 0.1824 0.1731 0.1786 0.1862 0.1801

Random Rotation 0.1623 0.1690 0.1606 0.1719 0.1759 0.1664
Color Jittering 0.1505 0.1495 0.1462 0.1534 0.1491 0.1535

Table 14: Adversarial attacks in Tiny ImageNet. We show the mean and the standard deviation of
per-class accuracy.

Attack Method M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Mean Accuracy Std. Dev. Accuracy

FGSM(ε = 0.5/255) 0.3860 0.3656 0.4041 0.1778 0.1716 0.1685
FGSM(ε = 1/255) 0.2304 0.2287 0.2499 0.1631 0.1639 0.1561
FGSM(ε = 3/255) 0.0452 0.0464 0.0369 0.0775 0.0791 0.0653
PGD (ε = 0.5/255) 0.3733 0.3525 0.3910 0.1774 0.1726 0.1661
PGD (ε = 1/255) 0.1902 0.1908 0.2133 0.1488 0.1553 0.1467
PGD (ε = 3/255) 0.0218 0.0235 0.017 0.0506 0.0558 0.0480

classification experiment, PR-Net shows the smallest standard deviation in all cases, which means
that it achieved more uniform per-class accuracy than other baselines. In some cases, ODE-Net fails
to show more uniform per-class accuracy than MobileNet V3. We could observe similar patterns for
the standard deviation in the out-of-distribution robustness experiment.

For our adversarial attack experiment, we summarize the mean and the standard deviation of per-class
accuracy in Table 14. PR-Net shows smaller standard deviations than other baselines. Sometimes,
ODE-Net also shows good performance.

The datasets we used for our transfer learning experiments also have many classes and some of
them are not balanced, e.g., Aircraft, DTD, and Cars. In those unbalanced datasets, the mean of
per-class accuracy is different from the mean accuracy in Table 6. We summarize their means and
standard deviations of per-class accuracy in Table 15. As reported, PR-Net shows smaller standard
deviation values than baselines in many cases. For MNIST and SVHN, all methods have good
per-class accuracy distribution patterns.
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Table 15: Transfer learning in Tiny ImageNet. We show the mean and the standard deviation of
per-class accuracy.

Dataset M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Mean Accuracy Std. Dev. Accuracy

CIFAR100 0.7676 0.7460 0.7750 0.1139 0.1142 0.1146
CIFAR10 0.9403 0.9280 0.9417 0.0301 0.04 0.029
Aircraft 0.5922 0.5704 0.6364 0.1889 0.1975 0.1909

Food-101 0.7317 0.7128 0.7366 0.1156 0.1199 0.1135
DTD 0.4819 0.5016 0.5154 0.1546 0.1683 0.1515
Cars 0.6322 0.5576 0.6294 0.1358 0.127 0.1360
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