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ABSTRACT

Multi-domain learning (MDL) refers to learning a set of models simultaneously,
with each one specialized to perform a task in a certain domain. Generally, high
labeling effort is required in MDL, as data need to be labeled by human experts
for every domain. Active learning (AL), which reduces labeling effort by only
using the most informative data, can be utilized to address the above issue. The
resultant paradigm is termed multi-domain active learning (MDAL). However,
currently little research has been done in MDAL, not to mention any off-the-shelf
solution. To fill this gap, we present a comprehensive comparative study of 20 dif-
ferent MDAL algorithms, which are established by combining five representative
MDL models under different information-sharing schemes and four well-used AL
strategies belonging to different categories. We evaluate the algorithms on five
datasets, involving textual and visual classification tasks. We find that the models
which capture both domain-dependent and domain-specific information are more
likely to perform well in the whole AL loops. Besides, the simplest informative-
based uncertainty strategy surprisingly performs well on most datasets. As our
off-the-shelf recommendation, the combination of Multinomial Adversarial Net-
works (MAN) with the best vs second best (BvSB) uncertainty strategy shows its
superiority in most cases, and this combination is also robust across datasets and
domains.

1 INTRODUCTION

Building classifiers on the data which are collected from different domains is common. These do-
mains usually refer to different datasets which have different distributions. For example, in a senti-
ment classification task for product reviews, the goal is to predict the polarity of reviews from differ-
ent categories of products. These categories are considered as domains. The conventional approach
is to independently build models on each domain to guarantee the performance, or jointly build one
single model on the data from all the domains. However, independent training requires sufficient
labeled data on each domain and neglects the correlation among domains, and the joint training
eliminates the unique information from each domain. When the number of domains is large, such
limitation could be more serious. Under this circumstance, multi-domain learning (MDL)(Dredze
& Crammer, 2008) attracts much attention. MDL is proposed to capture both the domain-invariant
information and the domain-specific information to overcome the mentioned limitations.

However, MDL still requires a well-annotated training set which contains the instances from all
the domains. In the real life, obtaining such a training set usually costs a lot. Active learning
AL (Settles, 2010) is developed to reduce the annotating cost for decades by selecting the most
informative instances. So it is natural to use AL to reduce the annotating cost in MDL. However,
most of the current researches on AL are designed for single domain learning setting, and it is
unclear how to efficiently apply AL on MDL setting.

In this paper, utilizing AL on MDL setting is referred to as MDAL. Different from single-domain
active learning, if the active strategy only selects the instances which most benefit to one specific
domain, the model would fail to use the information shared across domains and waste the budget.
The goal of MDAL is to actively select the most helpful instances from all the domains and train
models under the MDL setting with as few labeled instances as possible.
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Despite the practical importance of MDAL, there only exists few works in the literature. In par-
ticular, these MDAL works are based on the specific models for specific applications, e.g. Support
Vector Machines (SVMs) for sentiment classification (Li et al., 2012), Rating-Matrix Generative
Model (RMGM) for collaborate filtering (Zhang et al., 2016). The AL strategies designed by these
works cannot be used on other models, such as the more recent, state-of-the-art Deep Neural Net-
works (DNNs). So there is a research gap for MDAL. In this paper, our goal is to provide an
off-the-shelf solution for MDAL. Thus, a comparative study is necessary.

The major contributions of this work could be summarized as follows:

• We provided a formal definition of MDAL. Besides, the relative works are thoroughly
reviewed in the way how they share information among domains in the model level.

• As far as we know, this is the first comparative work for MDAL setting. According to the
experiment results, we provided an off-the-shelf solution for MDAL. As our recommenda-
tion, MAN model with the BvSB uncertainty strategy shows its superiority in most cases,
and it is robust over different datasets and domains.

2 PROBLEM DESCRIPTION

In this section, we will give a formal definition of the MDAL setting.

Definition 1 (Multi–domain learning) Given K different data sources (domains) D = {D1,
D2, . . . ,DK}, a set of data pools P = {P1,P2, . . . ,PK} which contains both labeled and un-
labeled data could be collected from each source in advance. The labeled data from each pool
constitute a labeled data set L = {L1, L2, . . . ,LK}. MDL is to find a set of hypothesis H = {h1,
h2, . . . , hK} for K domains from the hypothesis space H by utilizing the common knowledge of
different domains, which could be expressed as follows:

min
H

Losssup(H;L) + Ω(H;P) (1)

Losssup(H;L) represents the supervised loss on the labeled set L, Ω(H;P) represents a loss on the
set of data pools P for capturing the common knowledge.

Definition 2 (Multi–domain active learning) When the collected set of data pools P is unlabeled
in the MDL setting, an oracle (e.g. human experts) could be available for annotation. MDAL is to
annotate a set of labeled data LA = {L1, L2, . . . ,LK} from P according to a selection strategy A.
A set of hypothesis H = {h1, h2, . . . , hK} would be found with the labeled dataset LA and the set
of data pools P . On the one hand, MDAL keeps the sharing of knowledge in MDL setting to improve
the performance, on the other hand, it tries to maintain the labeled set LA as small as possible to
reduce the labeling cost.

3 RELATED WORKS

There are two primary parts in MDAL. One is the model which shares information, and the other
is the AL query strategy. In this section, both concepts are reviewed. In the literature, there are too
many technologies that begin with ”multi-”, such as multi-task Learning, multi-label Learning, etc.
To avoid confusions, the relations between MDAL and many other research fields are discovered in
Appendix A.

The models which could utilize the information shared among domains are reviewed in section 3.1.
It is worth noting that these models are used either in domain adaptation or MDL. The works of
active learning in the settings where multiple domains exist are reviewed in section 3.2.

3.1 MODELS FOR MULTIPLE DOMAINS

In our taxonomy, the models are classified by how they share information among different domains.
We summarize the model-level intuitions into the following 3 categories.
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Sharing domain-invariant representations only The intuition is that if the discrepancy among
domains are small enough, the knowledge is easier to be transferred. Thus, many works try to unify
the domain distributions, then directly make predictions under the learned representations.

Matching the marginal distribution is a well-used method to reduce the difference among different
domains. Plenty of works achieve this goal by designing a discrepancy loss, usually minimizing the
Maximum Mean Discrepancy (MMD). Transfer Component Analysis (TCA) (Pan et al., 2011) is
a classic method which applies this idea with conventional kernel based models. Deep Adaptation
Networks (DAN) (Long et al., 2015), Residual Transfer Networks (RTN) (Long et al., 2016) and
Joint Adaptation Networks (JAN) (Long et al., 2017) are neural network based models adopting this
idea for domain adaptation setting.

Many other works utilized adversarial training to match the marginal distribution. The intuition is
that if a discriminator cannot tell which domain the instances are from, the representation extraction
would be effective. Domain-Adversarial Neural Network (DANN) (Ganin et al., 2016), Adversar-
ial Discriminative Domain Adaptation (ADDA) (Tzeng et al., 2017), and Conditional Adversarial
Domain Adaptation (CADA) (Long et al., 2018), add discriminators into their models for domain
adaptation. Feng et al. (2019) included discriminators to learn representations in MDL.

Some other works propose to match conditional distributions. The intuition is that the instances
in the same class from different domains are expected to be mapped nearby. Joint Distribution
Adaptation (JDA) (Long et al., 2013), Deep Supervised Domain Adaptation (Deep SDA) (Motiian
et al., 2017), Multi-Adversarial Domain Adaptation (MADA) (Pei et al., 2018), and MSTN (Xie
et al., 2018) match the distributions either by the existing true labels or the created pseudo-labels on
the target domain. Saito et al. (2018) tried to align the distribution of a target domain by matching
the decision boundaries.

Sharing domain-invariant representations with domain-specific information The intuition is
that only using the domain-invariant representation might be insufficient to contain all the original
information. Under this circumstance, domain-specific information also could be introduced to
guide the predictions with the domain-invariant representations.

Many works concatenated the domain-invariant representation and domain-specific representation
together to make prediction. III (2007) proposed Frustratingly Easy Domain Adaptation (FEDA)
for multi-domain adaptation and first applied this idea into MDL. Domain Separation Networks
(DSN) (Bousmalis et al., 2016) and multinomial adversarial networks (MAN) Chen & Cardie (2018)
utilized this concatenation into neural networks. Liu et al. (2019) further added the orthogonal
regularization between private features across domains.

Another type of models applies domain-specific classifiers on the shared representations. Nam &
Han (2016) proposed MDNet for the multi-domain visual tracking problem. Saito et al. (2017) pro-
posed an asymmetric tri-training for unsupervised domain adaptation and the classifiers are trained
on the pseudo-labels on the target domain. Xiao et al. (2016) proposed a domain guided dropout for
the person re-identification problem on different domains.

Yuan et al. (2018) proposed a Domain Attention Model (DAM) for multi-domain sentiment analysis
to capture the specific information from different domains. When there are more than one feature
extractors (many channels), the representations (Li et al., 2019) or channels (Xiao et al., 2020) could
be weighted differently to make predictions on different domains.

Sharing model parameters without share representations Few other works share parameters
without explicitly sharing representations. This type of works normally mainly concerns how to
learn a single network that can compactly represent all the domains with minimal number of domain-
specific parameters. Rebuffi et al. (2017) and Rebuffi et al. (2018) designed networks with residual
adapters to minimize the domain-specific parameters. Li & Vasconcelos (2019) used a domain-
specific covariance normalization (CovNorm) layer instead. Rosenfeld & Tsotsos (2020) proposed
a method called Deep Adaptation Modules (DAM) that constrains newly learned filters to be linear
combinations of existing ones.
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3.2 ACTIVE LEARNING FOR MULTIPLE DOMAINS

In this section, the works of AL with the presence of multiple domains are reviewed. We follow the
taxonomy used in the previous section. We note that these researches in the literature didn’t cover
all types of the models mentioned in the previous section.

When the models share domain-invariant representations only, several AL strategies select the in-
stances which would minimize the discrepancy to learn the domain-invariant representations. Chat-
topadhyay et al. (2013) tried to select instances from the target domain by reducing MMD between
two different domains. Huang & Chen (2016) adopted this idea to another problem setting, where the
selection is from the source domain. Deng et al. (2018) trained a multi-kernel SVM classifier with
the source and target data, then they used the margin criteria to select instances. Su et al. (2020) pro-
posed Active Adversarial Domain Adaptation (AADA), where a discriminator was trained to weight
the uncertainty of the target unlabeled examples.

When the domain-specific representations are included, the predictions are made on the concate-
nated features for each domain. Li et al. (Li et al., 2012) proposed to use multiple SVM models on
the concatenated features for each domain in a MDAL setting. Their strategy selects the instances
which could most reduce the version space of the SVM models.

4 COMPARISON DESIGN

Currently, very few works have been done in MDAL. Under this circumstance, as the most conve-
nient approach, combining the models for MDL setting and conventional AL strategies might be
applicable. If so, how good and how robust would these combinations be? To discover the perfor-
mance of these combinations, a comparative work should be done.

The goal of making this comparison is to find out an off-the-shelf solution for the MDAL setting.
More specifically, we are curious:

1. What is the best model-strategy combination and how good it could be?

2. How robust the solution could be for different datasets?

3. How robust the solution could be on different domains?

In this section, we describe the details of our comparison for MDAL. The selected models, strategies,
datasets and the implementation details are introduced.

Datasets 5 datasets are selected from the MDL and domain adaptations settings. These datasets at
least contain two domains, and all the tasks are classification tasks. The details of train/test partition
for each dataset could be found in the appendix B.

• Synthetic Double and Triple Inter-Twin Moons Toy Datasets: The double inter-twin
moons toy dataset is first used in (Ganin et al., 2016). In our comparison, a variance dataset
with triple inter-tween moons is also included.

• Digits: This digit dataset is used in (Ganin et al., 2016), which contains two domains
(sub-datasets): ‘MNIST’ (LeCun et al., 1998) and ‘MNIST-M’. MNIST-M sub-dataset is
generalized in (Ganin et al., 2016) by blending digits from the MNIST set over patches
randomly extracted from color photos from BSDS500 (Arbelaez et al., 2010).

• Amazon (as mSDA representations): In the amazon dataset, there are four domains:
‘books’, ‘dvd’, ‘electronics’ and ‘kitchen’. The original sentence data are processed by
marginalized denoising autoencoders (mSDA) (Chen et al., 2012).

• Office-31: This Office-31 dataset (Gong et al., 2012) contains 31 categories from three
domains ‘Amazon’, ‘Webcam’ and ‘DSLR’. Briefly, the DeCaf representations (Donahue
et al., 2014) are used.

• ImageCLEF-DA 1: ImageCLEF-DA is a well-balanced dataset in the ImageCLEF domain
adaptation challenge in 2014.

1https://www.imageclef.org/2014/adaptation
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Models Several representative models from the previous review are selected in our comparison.
The neural network is used as our base model due to its strong ability for representation extraction.
3 models are selected: DANN (Ganin et al., 2016), MDNet (Nam & Han, 2016) and MAN (Chen
& Cardie, 2018). Besides, 2 baseline models which do not handle the domain information are also
included: SDL-separate and SDL-joint. For SDL-separate, multiple networks are independently
trained on the corresponding domains. For SDL-joint, the differences among domains are ignored,
and a single neural network was trained on the data mixed from all the domains. The sketches of
models and the specific model structures for each dataset could be found in Appendix C.

Strategies Most of the strategies from the review are not appropriate to be combined with the
neural network models in our comparison. They either heavily depends on the models other than
neural network, or could only select instances from single target domain. So we’d rather compare
the conventional single domain AL strategies, which directly evaluate instances from the models
outputs. Here, 4 well-used strategies which could be easily implemented on neural networks are
selected as follows:

• Random: Randomly select instances from each domain.
• Uncertainty ((Joshi et al., 2009)): Best vs Second Best (BvSB) is an uncertainty measure-

ment which selects instances with the greatest difference in inference scores between the
most likely class and the second most likely class.

• EGL (Settles & Craven, 2008; Zhang et al., 2017): Expected Gradient Length (EGL) strat-
egy is designed for the models which could be optimized by gradients. The instance which
would lead the longest expected gradient length to the last fully connected layer would be
selected.

• BADGE (Ash et al., 2020): Batch Active learning by Diverse Gradient Embeddings
(BADGE) calculates the gradients of the last fully connected layer lead by the pseudo-
labels of the unlabeled instances. A k-means++ initialization is applied on all the calculated
gradients to ensure the diversity of the batches.

Neural Network Training Adam optimizer and Cross Entropy Loss are used to train our classi-
fiers. L2 regularization is used. The learning rate, weight decay, the batch size and the maximum
number of epochs are set to be the same for each model on the same dataset to ensure the fairness of
comparison. For DANN and MAN, there is a trade-off parameter for balancing the loss from clas-
sifiers and discriminators. Besides, the early stopping technique is used during the training process.
The details are listed in Table 2 in Appendix D.

Active Learning Setting We still consider this MDAL setting as a pool-based scenario. The
learning process would repeat until the budgets are consumed. The model would be totally re-trained
in each iteration. The details are listed in Table 3 in Appendix D.

5 COMPARISON RESULTS AND DISCUSSIONS

As we introduced in section 4, there are three research questions. To answer these questions, this
comparison contains four parts. At first, the selected models are compared in section 5.1 to get a
first impression. Then, in section 5.2, the strategies on each model are compared to answer the first
research question. In section 5.3, we try to discover the robustness of the combinations over datasets.
Finally, robustness over domains are discussed in section 5.4.

The average prediction accuracy on the test sets would be recorded for each model-strategy combi-
nation. As an AL process, the performances would be presented as learning curves. Usually, in a set
of learning curves, the x-axis represents the cost which has been consumed (the number of labeled
instances), and the y-axis represents the accuracy under the current cost, and each curve represents
a model-strategy combination.

5.1 COMPARISONS OVER MODELS

In this section, the models are compared to get a first impression without using AL strategies. Specif-
ically, the random selection was applied to check the performance in the whole learning process. The
results on each dataset are plotted in Fig. 1.
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(a) Double Inter-Twin Moons (b) Triple Inter-Twin Moons (c) Digits

(d) Amazon (e) Office-31 (f) ImageCLEF-DA

Figure 1: The results of passive models on different datasets

To analyze the results, the whole learning process was divided into an earlier stage and a latter
stage. The earlier stage is the period at the beginning of the AL process, where the labeled instances
are relatively few. The latter stage is the period where all the budget is almost consumed, and the
labeled instances are relatively adequate. To present the results more clearly, for each dataset, the
performance at the first AL iteration and the last iteration are recorded in Table 4 in Appendix E.1.

For DANN and SDL-joint, all parts of models are trained on instances from all the domains. They
usually perform well at the earlier stage. On digits and amazon datasets, they achieve the top initial
performance as shown in Fig. 1(c,d). On the rest four datasets, they get above-average performance
at the earlier stage. At the latter stage, these two models perform worse than the other models
in the most datasets except on digits dataset. This joint training relieves the labeled data scarce
situation at the beginning. But, it fails to learn the domain-specific information, and the performance
are damaged. The learning curves of DANN and SDL-joint are relatively flatter, which means the
improvements they get from an addition of labeled instances are less than the other models. Besides,
on all the datasets, the performances of DANN and SDL-joint are very similar. It reflects that solely
adding a discriminator may not bring improvements in MDL setting.

SDL-separate and MDNet both have domain-specific classifiers. They usually do not perform good
at the earlier stage. However, their learning curves are relatively steeper than the others, which
means their performances increase rapidly with the increasing number of labeled instances. So at the
latter stage, these two models might reach or outperform other models. On amazon dataset, MDNet
performs good at the end of the learning process as shown in Fig. 1(d). It is worth to note that,
when the labeled data are adequate, training these models are equivalent to train different models
on different domain. In this case, all the information from each domain could be well captured
from adequate labeled data. But when there are only few labeled instances, these models would not
perform well.

MAN model performs well at the earlier stage. At the latter stage, MAN could also keep the su-
periority over other models in most cases. On digit dataset, MAN only get medium performance,
but it still maintains a small margin from the performance of the best model according to Table 4.
According to the good performance of MAN, we believe that the shared feature extractor ensures a
good initial performance and the domain-specific extractor captures the domain-specific information
at the latter stage of learning. In short, MAN has shown its superiority over other models in most
cases. Compared to other models, it is the best model considering the whole learning process.

6



Under review as a conference paper at ICLR 2022

Figure 2: The results of AL strategies on each model: the performance on digits, amazon, office-31
and imageCLEF-DA datasets are plotted in each column correspondingly.

5.2 COMPARISONS OVER STRATEGIES

In this section, all models and strategies are combined and compared on each dataset. We plan to
answer the first research question: which would be the best off-the-shelf model-strategy combina-
tion. The performances on four datasets (except inter-twin moons toy datasets) are plotted in Fig.
2. Each sub-graph represents the results of all the strategies with one model on one dataset. The
results from the same dataset are presented in each column, and the results from the same model are
presented in each row.

From the result in Fig. 2, the most important finding is that the uncertainty selection (BvSB) already
performs very well in most cases. In the worst case, it still maintains a very small margin from the
best performed strategies.

To reveal the best off-the-shelf model-strategy combination, the results of the best strategies on each
model for each dataset are plotted together in Fig. 3. MAN with uncertainty performs clearly better
than the others on office-31 and imageCLEF-DA datasets. On amazon dataset, DANN and MAN
with uncertainty both obtain top performance. DANN performs better at the earlier stage, while
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(a) Digits (b) Amazon (c) Office-31 (d) ImageCLEF-DA

Figure 3: The results of the best strategies from each model

MAN performs better at the latter stage. On digit dataset, DANN and SDL-joint with uncertainty
strategy perform best, and MAN with BADGE still obtains a good performance. According to Fig.
2, the performance difference between MAN with uncertainty and MAN with BADGE is small,
which means the performance of MAN with uncertainty can’t be bad at this dataset.

In this comparison, except the combination of MAN and uncertainty strategy, other combinations
would perform bad on at least one or two datasets. In conclusion, for the first research question, the
MAN model with uncertainty (BvSB) strategy would be our off-the-shelf recommendation due to
its good performance.

5.3 ROBUSTNESS OVER DATASETS

Beside the absolute performance of the combinations, as one of our research question, their robust-
ness over datasets are also concerned. Specifically, we are curious about whether the model-strategy
combinations would obtain consistent performance on different datasets. If one combination is the
best on one dataset but the worst on another in the comparison, it won’t be a good solution.

At first, the strategy level robustness is discussed on different models. From the results in Fig. 2,
the relative orders of curves are similar at each sub-graph in the same column. It means that on
the same dataset, the strategies have similar level of superiority over models. In other words, if one
strategy performs well on one model, it is more likely to consistently perform well on the others.
The selected uncertainty strategies are robust over models.

On different datasets, the superiority of strategies varies. The uncertainty strategy consistently per-
forms well on all the datasets, but the performances of the other strategies diverse a lot. BADGE
performs better than EGL on imageCLEF-DA datasets, while it performs worse or similar to EGL
on the rest datasets. Besides, as an active selection strategy, EGL doesn’t consistently outperform
passive selection on all the datasets. In Fig. 2, EGL even significantly performs worse than random
selection on imageCLEF-DA dataset. The other strategies only perform equivalently or slightly
better than random selection as well. So from the results, only the uncertainty (BvSB) strategy is
relatively robust over different datasets and consistently achieve good performance.

In such condition, the combinations with the strategies other than uncertainty could easily perform
inconsistently on different datasets. The combination-level robustness comes from both the models
and the strategies. In section 5.1, the superiority of MAN over other models on different datasets has
been shown. In this case, the combination of MAN with uncertainty strategy shows its robustness
over datasets in general as revealed in Fig. 3.

5.4 ROBUSTNESS OVER DOMAINS

In this section, we plan to answer the third research question, how robust the combinations could be
on different domains? In MDL, although the overall performance is concerned, the performances
on each domain are also important.

For the best strategy selected for each model in the section 5.2, the domain level performances are
also plotted. On digit dataset, the results for each domain are plotted in Fig. 4. The classification
task constructed for MNIST-M is supposed to be harder due to the more complex backgrounds as
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(a) MNIST (b) MNIST-M (c) Digits (Ganin et al., 2016)

Figure 4: The results on two domains from digits dataset

shown in Fig. 4(c). The accuracy on MNIST-M is relatively lower than the accuracy on MNIST
as we expected. On domain MNIST-M, all the combinations obtain accuracy evaluations lower
than 98% when the budgets are consumed. But on domain MNIST, the accuracy of 98% has been
exceeded with less than 5000 labeled instances. Besides, the model-strategy combinations perform
more concentrated on MNIST than on MNIST-M. These facts might reflect the difficulty of the task
on domain MNIST-M. The performances of different domains on the rest datasets are plotted in
Appendix E.2. From the results, MAN with uncertainty strategy consistently performs well on each
domain.

In conclusion, from our result, the most of the model-strategy pairs doesn’t consistently outperform
the other combinations on all the domains. But our off-the-shelf recommendation MAN with uncer-
tainty relatively performs well on different domains (in the worst case, it could still obtain a medium
performance on the worst performed domain). In general, MAN with uncertainty selection shows
its robustness over different domains.

6 CONCLUSIONS

In this work, a comparative study was made for MDAL setting. At first, we provided the formal
definition of MDAL setting. Then, we thoroughly reviewed the literatures and categorized the mod-
els and the corresponding AL strategies. From the review, there isn’t many works directly related to
MDAL setting. Under this circumstance, our goal is to provide an off-the-shelf solution.

The combinations of 5 models from MDL setting with 4 AL strategies are compared. First, in the
comparison of models, we found the superiority of MAN. Then, in the comparison of AL strategies,
we found that the simplest uncertainty strategy outperforms the others. Finally, in the perspective
of model-strategy combination, combining MAN with uncertainty strategy would consistently lead
a good performance in general. The robustness and stability of this combination is also better than
the other combinations over datasets and domains. In conclusion, MAN with uncertainty strategy
would be our recommended solution for MDAL setting.
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A RELATION TO OTHER FIELDS

As shown in Fig 5, we specified our target field in the red dotted box.
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Figure 5: The relationships between different terminologies. Our focus is the MDAL in the red dot
box. The fields pointed by the red arrows are reviewed.
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B DATASETS

The details of each dataset are recorded in this section. The number of instances and the train/test
partition are included.

• Synthetic Double and Triple Inter-Twin Moons Toy Datasets: The datasets are created
by the make moon() function in scikit-learn library (Pedregosa et al., 2011) in Python. As
2-D datasets, they could be easily visualized as shown in Fig. 6(a) and Fig. 6(b). This is
a binary classification task. On double inter-twin moons dataset, we set the number of in-
stances to 1600/400/400 for training/validation/test set on each domain. The second pair of
moons is created by rotating the original distribution a small angle of 2/9π. On triple twin
moons dataset, we set the number of instances to 1000/200/200 for training/validation/test
set on each domain. The second and the third pairs of moons are created by rotating the
original distribution 1/9π and 2/9π correspondingly.

• Digits: This is a 10 class classification task. There are several examples of instances in
Fig. 4(c). For each domain, there are 50000 training samples, 10000 validation samples
and 10000 test samples. Each instance is a digit picture with dimension (28,28,3).

• Amazon (mSDA representations): After the construction of features by using mSDA (Chen
et al., 2012), each instance would have 30000 features. For each domain, there are 2000
training samples, 1000 validation samples. There are 3465/2586/4681/4945 test samples
on domain ‘books’, ‘dvd’, ‘electronics’ and ‘kitchen’ correspondingly.

• Office-31: Under the DeCaf representations (Donahue et al., 2014), the images are encoded
as vectors with length 4096. There are 2817/498/795 samples on domain ‘amazon’, ‘dslr’
and ‘webcam’ correspondingly. The ratio 6:2:2 is used to split the training/validation/task
sets.

• ImageCLEF-DA 2: This dataset contains 12 categories from 3 domains. Each image is
encoded as a vector with length 1024. There are 600 samples on each domain correspond-
ingly. The ratio 6:2:2 is used to split the training/validation/task set.

(a) Double (b) Triple

Figure 6: A visualization of inter-twin moons datasets

2https://www.imageclef.org/2014/adaptation
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C MODEL STRUCTURES

5 models were compared in this work. For the structures of models, we note that we didn’t precisely
use the structures introduced in the original paper due to the difference of the dimensions of inputs.
In the comparison, the macro-structures of the models maintain the same, i.e. the models will contain
the same number of feature extractors, classifiers and discriminators compared to the models in the
original paper. The constitution of different models was sketched in Fig. 7. For each dataset, the 5
compared models share the same micro-structure, i.e. the structure of feature extractors, classifiers
and discriminators of different models are set to be the same. The particular structures of modules
were presented in Table 1. For the datasets which is used in the corresponding paper, the model
structures are remained. The DANN models used on double inter-twin moons and digits datasets are
same to the original DANN work (Ganin et al., 2016). For other datasets, we use shallow networks
with one hidden layer.

Figure 7: Sketches of different models: F represents feature extractors. D represents domain dis-
criminators. C represents classifiers. x, y and d represent the input features, labels of instances and
the domain ID of the instances correspondingly. Arrows represent the forward propagation.

Table 1: Structures of different modules

Dataset Name
Module Name Feature Extractor Classifier Discriminator

Double Inter-Twin Moons Linear(2,15)
Sigmoid layer

Linear(15,2)
Softmax layer

Linear(15,2)
Softmax layer

Triple Inter-Twin Moons Linear(2,15)
Sigmoid layer

Linear(15,2)
Softmax layer

Linear(15,3)
Softmax layer

Digits

Conv2d(3, 32, kernel size=5)
BatchNorm2d(32)
nn.MaxPool2d(2)

ReLU
Conv2d(32, 48, kernel size=5)

BatchNorm2d(48)
Dropout2d()

MaxPool2d(2)
ReLU

Linear(48 * 4 * 4, 100)
BatchNorm1d(100)

ReLU
Dropout

Linear(100, 100)
BatchNorm1d(100)

ReLU
Linear(100, 10)
Softmax Layer

Linear(48 * 4 * 4, 100)
BatchNorm1d(100)

ReLU
Linear(100, 2)
Softmax Layer

Amazon Linear(30000,50)
Sigmoid layer

Linear(50,2)
Softmax layer

Linear(50,4)
Softmax layer

Office-31 Linear(4096,50)
Sigmoid layer

Linear(50,31)
Softmax layer

Linear(50,3)
Softmax layer

ImageCLEF-DA Linear(1024,50)
Sigmoid layer

Linear(50,12)
Softmax layer

Linear(50,3)
Softmax layer

15



Under review as a conference paper at ICLR 2022

D HYPER-PARAMETERS

The hyper-parameters for training the neural networks are recorded in Table 2.

Table 2: Hyper-parameters for the network training

Dataset
Name

Learning
Rate

Trade-Off
in Models

Batch
Size Epochs Patience for

Early Stopping
Inter-twin Moons (Double) 0.003 0.1 32 300 50
Inter-twin Moons (Triple) 0.003 0.1 32 300 50

Digit 0.0001 0.1 1024 300 50
Amazon 0.0001 0.05 256 300 10
Office-31 0.0001 0.1 128 300 50

ImageCLEF-DA 0.0001 0.1 32 300 50

The hyper-parameters for the AL process are recorded in Table 3. At the beginning, a part of
instances are randomly selected to train the initial model (recorded as initial labeled size), which
is referred to as a warm start process. Then, a fixed number of instances are iteratively selected
(recorded as AL batch size). When the total budget has been consumed, the AL process terminates.
The learning process are repeated multiple times (recorded as repeat time) to get the average results.

Table 3: Hyper-parameters for AL process

Dataset
Name

Total
Budget

Initial
Labeled

Size

AL Batch
Size

Repeat
Times

Inter-twin Moons (Double) 500 100 40 50
Inter-twin Moons (Triple) 500 100 40 50

Digit 20000 2000 2000 5
Amazon 4000 800 400 10
Office-31 2400 400 200 20

ImageCLEF-DA 1080 180 90 30
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E RESULTS OF COMPARISONS

E.1 RESULTS OF COMPARISONS OVER MODELS

To present the results of comparison over models more clearly, the performances are also recorded
in Table 4. For each dataset, the performance at the first selection iteration and the last selection
iteration are recorded. These two stages reflect the performances of models when the number of
labeled instances is small and large.

Table 4: The classification accuracy (%) of models on each dataset at the first and last AL iterations

Model
Datasets Double Moons Triple Moons Digit Amazon Office-31 ImageCLEF

Labeled Number 100 100 2000 800 400 180
DANN 95.20 94.90 94.22 84.45 64.48 34.83
MAN 97.54 95.95 94.03 83.94 66.01 37.44

MDNet 95.54 94.08 93.09 83.13 54.62 30.28
SDL-joint 95.04 96.02 94.08 84.37 64.42 34.59

SDL-separate 90.73 88.93 93.23 82.44 56.64 33.02
Labeled Number 1000 1000 2000 4000 2400 1080

DANN 98.54 98.32 97.47 86.33 82.28 47.91
MAN 99.93 99.87 97.12 86.67 84.01 52.28

MDNet 98.62 98.26 97.00 86.69 79.45 49.50
SDL-joint 98.86 98.66 97.39 86.17 82.21 48.02

SDL-separate 98.11 98.57 97.18 86.11 79.35 50.33
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E.2 RESULTS OF COMPARISONS OVER DOMAINS

The performances of different models on each domain of double and triple inter-twin moons are
shown in Fig. 8. The domain performances of the best model-strategy pairs on amazon, office-31
and imageCLEF-DA dataset are shown in Fig. 9 and Fig. 10.

(a) Double inter-twin moons dataset

(b) Triple inter-twin moons dataset

Figure 8: Learning curves for different domains from inter-twin moons datasets

(a) Books (b) DVD (c) Electronics (d) Kitchen

Figure 9: Learning curves for 4 different domains from amazon dataset
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(a) Office-31 dataset

(b) ImageCLEF dataset

Figure 10: Learning curves for different domains from office-31 and imageCLEF-DA datasets
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