
Learning from Preferences and Mixed Demonstrations
in General Settings

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reinforcement learning is a general method for learning in sequential settings,1

but it can often be difficult to specify a good reward function when the task is2

complex. In these cases, preference feedback or expert demonstrations can be3

used instead. However, existing approaches utilising both together are either4

ad-hoc or rely on domain-specific properties. Building upon previous work, we5

develop a mathematical framework for learning from human data and based on6

this we introduce LEOPARD: Learning Estimated Objectives from Preferences7

And Ranked Demonstrations. LEOPARD can simultaneously learn from a broad8

range of data, including negative/failed demonstrations, to effectively learn reward9

functions in general domains. It does this by modelling the human feedback as10

reward-rational partial orderings over available trajectories. We find that when a11

limited amount of preference and demonstration feedback is available, LEOPARD12

outperforms baselines by a significant margin. Furthermore, we use LEOPARD to13

investigate learning from many types of feedback compared to just a single one,14

and find that a combination of feedback types is often beneficial.15

1 Introduction16

Reinforcement Learning (RL) is a branch of machine learning where an agent learns a behavioural17

policy by interacting with an environment and receiving rewards. These rewards are determined by18

a reward function that mathematically encodes the objective of the agent. For real-world practical19

applications of RL, such as robotics or Large Language Model (LLM) finetuning, the specification of20

the reward function poses a difficult challenge. Two popular RL subfields try to solve this problem by21

leveraging human data in order to learn what the reward function should be, typically by optimising a22

parameterised function such as a neural network.23

Inverse RL (IRL) utilises human-provided demonstrations of the correct behaviour and tries to learn a24

reward function for which only the demonstrations, or similar behaviour, are near-optimal (Ng et al.,25

2000; Ziebart et al., 2008; Wulfmeier et al., 2015). RL from Human Feedback (RLHF) presents the26

human with pairs of agent–behaviour examples. For each pair, the human decides which piece of27

behaviour is better, and the reward function is trained to re-produce this preference (Christiano et al.,28

2017). Both methods iterate between reward model and agent training. For more details on IRL29

and RLHF, see Sections 2.1 and 2.2, respectively. For many applications it might be possible and30

desirable to generate and learn from both of these feedback types, rather than committing to a single31

one. The current standard approach is to first train on demonstrations and then finetune the resulting32

model with preferences (Ibarz et al., 2018; Palan et al., 2019; Bıyık et al., 2022). Some methods33

have been proposed to more effectively leverage the information encoded in both the preferences and34

demonstrations, but this is still largely ad-hoc or specific to certain domains (Krasheninnikov et al.,35

2021; Mehta & Losey, 2023; Brown et al., 2019). We discuss these methods further in Section 2.3.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Step 3:
Train agent via RL.
Go to step 1b and repeat.

Reward ModelLEOPARD
Encoding

RRPO Loss Minimisation

Human
Teacher

Agent

Environment

Sample

Mixed
Demonstrations

Step 1a:
Teacher provides demonstrations of
good and bad behaviour, .

Step 1b:
Teacher samples agent's attempts and
provides pairwise preference feedback.

Preferences

Step 2:
Feedback is used to train parameters
for a reward function.

Agent Trajectories

Figure 1: High-level overview of the LEOPARD algorithm. A teacher provides ranked examples
of positive and negative demonstrations, as well as providing preference feedback over the agent’s
behaviour. This is used to train a reward model that the agent optimises via standard RL. The process
is iterative. The LEOPARD encoding is given in Equations (6) and (7), and PRRPO is detailed in
Equation (4).

In an attempt to solve this problem for general domains—and for many types of feedback including37

preferences and demonstrations—Jeon et al. (2020) propose Reward-Rational Choice (RRC). This38

frames the human feedback data as Boltzmann-Rational choices according to a probability distribution39

which has been induced by some unknown true reward function. Learning the reward function can40

then be cast as a supervised learning problem where we try to replicate these choices. Unfortunately,41

RRC is often difficult to implement in practice. For example, in the case of demonstration feedback,42

they treat it as a choice over all possible behaviours. This space is incredibly difficult to optimise over43

if it is very large and our reward function is non-linear, as is often the case for practical problems.44

Additionally, it cannot encode multiple selections for the ‘optimal choice’, nor can it encode more45

complex relationships between behaviours such as rankings or dis-preference.46

To address these limitations, we introduce a new mathematical framework which frames the human47

feedback as reward-rational partial orderings over trajectories (RRPO). These partial orderings are48

then encoded by sets of Boltzmann-Rational choices, analogous to the Plackett-Luce ranking model49

(Marden, 1996). From this we derive LEOPARD: Learning Estimated Objectives from Preferences50

And Ranked Demonstrations, which is outlined in Figure 1. In addition to preferences and ranked51

(positive) demonstrations, LEOPARD can also learn from ranked negative/failed demonstrations.52

Preferences are interpreted as they are in RRC, but positive demonstrations are interpreted as53

being preferred to the agent’s current and future behaviour, or the opposite in the case of negative54

demonstrations. Demonstration rankings, if available, are also cleanly translated into partial orderings.55

LEOPARD can utilise a wide range of feedback types simultaneously, making it effective at learn-56

ing useful reward functions in general environments. We find that when preference and positive57

demonstration feedback is available, it outperforms the standard baseline of performing DeepIRL on58

the demonstration data, and then finetuning using preferences. It also beats Adversarial Imitation59

Learning with Preferences (AILP), another preference and positive demonstration learning algorithm.60

Additionally, when only positive demonstration feedback is available, LEOPARD outperforms or61

matches DeepIRL and AILP due to its ability to exploit ranking data. Finally, we use LEOPARD to62

investigate learning from a variety of feedback types, compared to learning from a single one.63

In summary, we make the following contributions:64

1. We introduce RRPO, a practical and general framework for interpreting human feedback.65

2. We introduce LEOPARD, an effective and scalable method for learning from preferences,66

and positive/negative ranked demonstrations.67

2

3. We investigate learning from many types of feedback vs focussing on only a single one.68

2 Related Work and Background69

2.1 Demonstration-Based RL70

A popular paradigm for learning from demonstrations is Inverse RL (IRL), where the demonstrations71

are used to learn a reward function (Ng et al., 2000). This overcomes many issues of behavioural72

cloning, which aims to directly mimic the given demonstrations (Bratko et al., 1995). Many current73

methods for IRL are based on the principle of maximum (causal) entropy (MaxEnt; MCE), established74

by Ziebart et al. (2008, 2010). This learns a reward function that captures the fact that the human75

demonstrations are optimal, but beyond this, it tries to have as much uncertainty about the reward76

dynamics as possible. Assuming a deterministic environment simplifies MCE into MaxEnt, and77

this assumption has been used to extend this class of methods into settings with high-dimensional78

observation spaces, e.g. DeepIRL (Wulfmeier et al., 2015). Advanced extensions of DeepIRL have79

been proposed, leveraging methods such as importance sampling (Finn et al., 2016), or GAN-style80

architectures (Fu et al., 2018). For a more comprehensive introduction to MCE and its derivatives, see81

Gleave & Toyer (2022). Our proposed algorithm does not reduce to a MaxEnt-derived method in the82

demonstration only case, but is still inspired by the principle and is of a similar form. Bayesian meth-83

ods in IRL have also been explored (Ramachandran & Amir, 2007; Brown et al., 2020), highlighting84

how a probabilistic framing of the inverse learning problem can be useful.85

2.2 Preference-Based RL86

RLHF (Christiano et al., 2017) uses preferences—pairwise comparisons of agent behaviour—to learn87

a reward function for high-dimensional RL environments via the Bradley-Terry preference model88

(Bradley & Terry, 1952):89

PRLHF(τa ≻ τb|θ) =
exp(Rθ(τa))

exp(Rθ(τa)) + exp(Rθ(τb))
, (1)

where Rθ is a parameterised reward function and τa and τb are trajectory-fragments1. A 3-step90

iterative procedure is used: sampling of new comparisons of recent agent behaviour, fitting the reward91

model to the comparison dataset, and training of the policy on the learnt reward function. The reward92

model is fitted by minimising the average negative log-likelihood of the preference model across all93

pairs of trajectory-fragments. Wirth et al. (2017) provides a survey of other preference based RL94

methods prior to RLHF.95

Recently, RLHF has been used for instruction and safety-finetuning large language models (LLMs)96

into chat systems (Ouyang et al., 2022; Bai et al., 2022; Bahrini et al., 2023). These are referred to97

as ‘PPO-based’ to disambiguate them from other methods which finetune LLMs from preferences98

without learning a reward function, such as DPO (Rafailov et al., 2024). Often the LLM is trained on99

demonstrations via behavioural cloning before PPO/DPO. Concerns for the safety, reliability, and100

misuse of LLMs has led to a plethora of research on how best to utilise human preferences/rankings101

to train these models (Cao et al., 2024; Chaudhari et al., 2024). Despite this, there is a broad lack of102

principled use of other feedback types for LLM safety and finetuning.103

2.3 Combining Demonstrations and Preference Feedback104

As mentioned in the case for LLMs, demonstration and preference feedback are typically combined by105

pre-training on the demonstration data using IRL/behavioural-cloning methods, and then finetuning106

the resulting reward model on preferences using RLHF (Ibarz et al., 2018; Palan et al., 2019; Bıyık107

et al., 2022). This works well in practice, but it is unclear how to add in further reward information,108

such as negative demonstrations or the relative rankings of demonstrations. Additionally, information109

that is present only in the demonstrations might be forgotten or never used, especially if strong110

regularisation is applied to the reward model, or the RL policy does not sufficiently explore when111

training on the demonstrations.112

1Contiguous subsequences of trajectories.

3

More sophisticated combinations of preferences and demonstrations have been considered. Krashenin-113

nikov et al. (2021) sampled trajectories according to reward functions optimal for the preferences, and114

applied MCE-IRL. This approach is computationally expensive and limited to linear reward functions115

over tabular MDPs. Mehta & Losey (2023) combine preferences and demonstrations alongside116

corrections (Bajcsy et al., 2017), but leverage domain-specific properties of robotics and encode117

their demonstrations using trajectory-space perturbations. This method is not applicable outside of118

robotics, and loses information about how demonstrations are better than most of trajectory-space, not119

just better than nearby trajectories. Brown et al. (2019) and Brown & Niekum (2019) both subsample120

ranked demonstrations to produce preferences for training the reward model, giving good results121

but still losing information about how those demonstrations might be preferred to other trajectories.122

Taranovic et al. (2022) combines a novel preference loss with adversarial imitation learning. This123

is the closest to our work, and so we test against it as a baseline. We also note that none of these124

methods can be easily extended to other types of feedback.125

2.4 Learning From Other Types of Feedback126

Other types of feedback have been explored in isolation, such as negative demonstrations (Xie et al.,127

2019),2 improvements (Jain et al., 2015), off-signals (Hadfield-Menell et al., 2017a), natural language128

(Matuszek et al., 2012), proxy reward functions (Hadfield-Menell et al., 2017b), rankings (Myers129

et al., 2022), scalar feedback (Knox & Stone, 2008; Wilde et al., 2021), and even the initial state (Shah130

et al., 2019). Of these, Myers et al. (2022) is most similar to our work, as they use a Plackett-Luce131

model to to interpret rankings to train a reward model. We differ by considering many more types132

of feedback, showing how they can also be interpreted as orderings, and then use this to learn from133

preferences and mixed demonstrations.134

Jeon et al. (2020) interpret many of types of feedback as part of an overarching formalism, reward-135

rational (implicit) choice (RRC), providing a mathematical theory for reward learning that combines136

different types of feedback. RRC interprets each piece of human feedback as a Boltzmann-Rational137

choice C from some (possibly implicit) set of choices D with rationality coefficient β. A grounding138

function, ψ, maps choices to distributions over trajectories. The expected reward over these distribu-139

tions gives the value for each choice under the Boltzmann-Rational model, according to some reward140

function Rθ. For a deterministic ψ simplifies to:141

PRRC(C|D, θ) =
exp(βRθ(ψ(C)))∑

C′∈D exp(βRθ(ψ(C ′)))
. (2)

Many of the formalisms of feedback in RRC, such as demonstrations, are not generally directly142

applicable as they naively require a large—possibly infinite—set of choices. Practical applications143

may rely on finite state-spaces, linear reward functions, unbounded surrogate loss functions, or144

sampling-based methods, each with their own pros and cons. We take inspiration from RRC, but145

show that formulating feedback as orderings leads to some more natural interpretations for mixed146

demonstrations without the need for such additional methods.147

3 Method148

We propose LEOPARD, a method for learning from preferences, positive demonstrations, negative149

demonstrations, and partial rankings over the given demonstrations. It is practical, flexible, and150

applicable to many environments. The aim is that a practitioner can give any and all feedback possible151

to the learning algorithm, and this feedback can be continuously learnt from and added to. First, we152

develop a general mathematical framework, reward-rational partial ordering (RRPO), extending that153

of deterministic reward-rational choice (RRC, Jeon et al. (2020)). Then, we apply this to the specific154

case of learning from preferences and mixed demonstrations.155

3.1 Reward Rational Partial Orderings156

To ensure the general applicability of our theoretical formalisms, we assume that only the trajectories157

our reward optimisation procedure has access to are provided directly. These could be generated158

2They refer to these as ‘failed demonstrations’.

4

during the agent’s training or provided by the human in the case of demonstrations. This is assumed159

as sensible/relevant trajectories could sit on an unknown manifold in (a high-dimensional) observation160

space, crippling random-sampling based approaches.3 We’d expect that reward functions capturing161

complex desirable behaviour would not be linear, but that they could at least be approximated162

sufficiently by some differentiable parameterised function.163

Our key insight is to interpret human feedback as a set of Boltzmann-Rational choices encoding164

strict partial orderings over the trajectory-fragments we have direct access to, where a fragment165

is a contiguous subsequence of a trajectory. For each item in the partial order, we ‘choose’ that166

element out of a set containing itself and all elements strictly less than it. This is analogous to the167

Plackett-Luce ranking model (Marden, 1996), and is equivalent when the ordering can be viewed as168

a total ordering embedded in some larger set. Similar to RRC, each partial ordering is assumed to169

be independent given the reward function. Since a partial order may encode a single element being170

greater than all others with no other relations, this generalises deterministic choices of RRC.171

Formally, let D = {τi}i be the set of all possible fragments of trajectories we have access to,172

C = {<j}j the set of human feedback, and Rθ our non-linear reward function parameterised by θ.173

Note that <i is used to denote some partial ordering i. We define the likelihood of θ under RRPO as174

follows:175

PRRPO(C|D, θ) =
∏

(τi,<j)∈D×C

P (<j |τi), (3)

P (<j |τi) =
eβjRθ(τi)

eβjRθ(τi) +
∑

τk∈D 1τk<jτie
βjRθ(τk)

, (4)

where βj is the rationality coefficient for feedback j. βs should be equal if the type and source of176

feedback is the same, e.g. two pairwise preferences given by the same person. Note that when the177

partial orderings are sparse, many terms of the product become unity and can be ignored. We perform178

gradient descent on the negative-log of Equation (4) combined with a regularising term, giving the179

loss function below:180

LRRPO(θ) =− logPRRPO(C|D, θ) + LSmooth(D, θ). (5)

The smoothing term penalises the first derivative of the reward function over trajectories and leads181

to better shaped reward functions that are easier for the RL agent to learn from. It is inspired by182

previous work (Finn et al., 2016), and empirically we found it works well. Specific details are given183

in Section A.1.3.184

A nice property of LRRPO is that when minimised it faithfully represents the partial orderings. More185

precisely, upper bounds on the loss give rise to lower bounds on all reward differences between186

fragments that are related by some partial ordering. This is stated formally and proved in Theorem D.1187

of Appendix D. As a special case, if the loss is below log 2 then all reward differences must have the188

correct sign, i.e. the reward function induces an ordering compatible with all the partial orderings.189

3.2 LEOPARD190

Whilst we can apply the framework above to many types of feedback, we now focus on the case of191

combining preferences with mixed demonstrations. By mixed demonstrations, we mean ones which192

may be positive, negative and, within these two groups, we may have access to the relative rankings193

of each demonstration.194

A pairwise preference of τa ≻ τb is simply interpreted as a partial ordering with only τb < τa.4 Posi-195

tive demonstrations are interpreted as a single partial ordering that prefers all positive demonstrations196

to any agent trajectories and encodes the relative rankings of the positive demonstrations themselves.197

Negative demonstrations are interpreted likewise, but these partial orderings prefer agent trajectories198

over the negative demonstrations.199

Formally, let Dpos, <pos, and Dneg, <neg be the sets of trajectories and partial orderings encoding200

rankings from positive and negative demonstrations, respectively. Let Dagent be the set of trajectories201

3For example, consider the space of all images vs ones which are plausible 3D scenes.
4By interpreting each preference as its own partial ordering, we avoid potential issues of symmetry and

non-transitivity.

5

sampled from the agent’s behaviour. Let P = {(τa, τb)i}i be the set of ordered pairs of trajectory-202

fragments in which the first is preferred, andRθ our parameterised reward function. Then we optimise203

the loss function, Equation (5), with:5204

C = {<Demo} ∪ CPref, (6)

D =
⋃
{Dpos,Dneg,Dagent,Dpref}, (7)

where the demonstration and preference partial orderings are given by:205

<Demo= <pos ∪ <neg ∪ {τn < τa < τp,

|(τn, τa, τp) ∈ Dneg ×Dagent ×Dpos},
CPref = {{τb < τa}|(τa, τb) ∈ P},

Dpref =
⋃

(τa,τb)∈P

{τa, τb}.

Like in the case for RLHF, our dependencies on agent behaviour means we need to iterate between206

sampling new preferences, optimising for Equation (5), and training the agent’s policy.6 Our algorithm207

is illustrated in Figure 1 and the full training procedure is given in Algorithm 1 in Appendix A, along208

with details on reward model training.209

4 Experiments210

4.1 Experimental Setup211

We test our method on several environments against common baselines in order to evaluate its perfor-212

mance across a broad variety of domains. Additionally, we also vary the proportions and amounts213

of different types of feedback used for learning to investigate the effects of this on performance.214

In order to reduce the cost of testing our method and facilitate hyperparameter tuning with many215

repetitions, we synthetically generate preferences, demonstrations, and their rankings. We generate216

preferences by sampling using the sigmoid of the reward difference between the two fragments under217

comparison as the probability of preference. We generate demonstrations by training an agent on218

the ground truth reward function and then sampling its trajectories, with their ground truth reward219

determining their relative rankings. For further details, see Section A.2. For each combination of220

environment, algorithm, and amount of feedback, we run 16 random seeds and report the average221

results with 1-σ standard error. Standard errors are computed via the typical method of dividing the222

empirical variance by the square root of the sample size.223

We evaluate on four environments from the Gymnasium (Towers et al., 2024) test suite: Half Cheetah224

(MuJoCo), Cliff Walking (Toy Text), Lunar Lander (Box2D), and Ant (MuJoCo). This covers a range225

of continuous and discrete observation and action spaces, reward sparsities, and overall complexities.226

We require a finite horizon to reduce complications from the preference and demonstration learning, so227

some environments required modification. These and other environment details and hyperparameters228

are given in Appendix B.229

In order to get a good number of preferences and demonstrations to test with, we see how many230

preferences or positive demonstrations LEOPARD needs to get good performance in the single231

feedback type case, and then use a normalised weighted combination of these.7 This allows us to be232

confident there is enough feedback for learning, but not so much that it’s too easy.233

6

1 2 3 4 5 6 7 8
Iteration

1000

0

1000

2000

3000

4000

5000

6000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
AILP, best

(a) Half Cheetah, ndemos = 4, nprefs = 256

1 2 3 4 5 6 7 8
Iteration

2000

1500

1000

500

0

500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
AILP, best

(b) Cliff Walking, ndemos = 2, nprefs = 64

1 2 3 4 5 6 7 8
Iteration

3000

2500

2000

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
AILP, best

(c) Lunar Lander, ndemos = 4, nprefs = 256

1 2 3 4 5 6 7 8
Iteration

1000

0

1000

2000

3000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
AILP, best

(d) Ant, ndemos = 4, nprefs = 512

Figure 2: Comparison of LEOPARD with the baselines of AILP and DeepIRL followed by RLHF,
when positive demonstrations and preferences are available. The lines denote the mean of the
ground truth reward function, with shaded standard errors across 16 random seeds, against algorithm
iterations—alternations between optimising the reward model and the agent. Solid lines are smoothed
means for clarity, dashed lines give raw values. A breakdown of the performance of the baseline
methods for different reward model training epochs per iteration is given in Figures 7 and 8.

4.2 LEOPARD vs Baselines234

In Figure 2 we compare LEOPARD against Adversarial Imitation Learning with Preferences (AILP,235

Taranovic et al. (2022))8 and a standard pipeline of training on demonstrations with DeepIRL and236

then preference finetuning with RLHF.237

We see that without exception LEOPARD outperforms both baselines by a considerable margin.238

Since LEOPARD can utilise all the data all the time, preferences can be used to aid early exploration,239

and demonstrations can continue to be trained against even in the latter stages. Rankings over240

demonstrations provide an additional information source the baselines are unable to make use241

of. Additionally, as it trains the reward model to rough convergence each iteration it allows for242

adequate learning without over-fitting, and does not require tuning a ‘reward model training epochs’243

hyperparameter.244

When training the reward model with LEOPARD, we keep training until the loss has loosely converged245

(see Section A.1.2 for details). This is not possible with DeepIRL as the maximum-entropy ‘loss’246

function is not bounded from below, thus the number of training epochs for the reward model is fixed.247

We try a variety of values and compare against the best, for a full breakdown see Figure 7. For AILP,248

5An exception to this formulation is used for Cliffwalking, where agent trajectories can easily be as bad as
negative demonstrations. The demo partial rankings are in this case split, one preferring positive demonstrations
to agent trajectories, and another preferring positive to negative demonstrations.

6If there were an existing set of preferences and agent trajectories, the method could be applied offline by
simply optimising for Equation (5).

7E.g. 50% of the maximum number of preferences + 50% of the maximum number of positive demonstrations.
8For our implementation of AILP we only use the relevant loss functions and disregard the extraneous parts

of the method, namely initially optimising the policy to maximise visited state entropy and sampling preferences
according to maximum entropy. We use the same RL algorithms as LEOPARD uses, as detailed in Appendix A.
Overall this enables a fair comparison with LEOPARD, and we note that AILP’s additional tweaks could be
symmetrically applied to LEOPARD if desired.

7

we try using both our dynamic stopping and a fixed number of training epochs again comparing249

against the best, see Figure 8 in Appendix C for a breakdown of these results.250

Whilst not the focus of our algorithm, we additionally show that with only positive demonstrations251

LEOPARD either beats or performs similarly to the baselines. This is shown in Appendix C, Figure 6,252

with the breakdowns of DeepIRL and AILP’s results for different numbers of training epochs given253

in Figures 9 and 10 respectively.254

Table 2 in Appendix C gives a numerical breakdown of final scores for each algorithm in each255

environment, including the different settings of AILP and DeepIRL.256

Note that for the analysis of the Cliff Walking environment, outliers have been removed These were257

due to excessively large negative rewards from walking off the cliff many times before learning this258

was bad. A detailed breakdown is given in Appendix C, Table 4.259

4.3 Learning from a Mixture of Feedback Types260

1 2 3 4 5 6 7 8
Iteration

0

1000

2000

3000

4000

5000

6000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

512 Prefs
256 Prefs, 4 Pos Demos
256 Prefs, 2 Pos Demos, 2 Neg Demos
8 Pos Demos
4 Pos Demos, 4 Neg Demos

(a) Half Cheetah

1 2 3 4 5 6 7 8
Iteration

1500

1000

500

0

500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

128 Prefs
64 Prefs, 2 Pos Demos
64 Prefs, 1 Pos Demo, 1 Neg Demo
4 Pos Demos
2 Pos Demos, 2 Neg Demos

(b) Cliff Walking

1 2 3 4 5 6 7 8
Iteration

600

500

400

300

200

100

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

512 Prefs
256 Prefs, 4 Pos Demos
256 Prefs, 2 Pos Demos, 2 Neg Demos
8 Pos Demos
4 Pos Demos, 4 Neg Demos

(c) Lunar Lander

1 2 3 4 5 6 7 8
Iteration

1000

0

1000

2000

3000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

1024 Prefs
512 Prefs, 4 Pos Demos
512 Prefs, 2 Pos Demos, 2 Neg Demos
8 Pos Demos
4 Pos Demos, 4 Neg Demos

(d) Ant

Figure 3: Comparison of LEOPARD’s performance when varying types of feedback are available.
The lines denote the mean of the ground truth reward function, with shaded standard errors across 16
random seeds, against algorithm iterations—alternations between optimising the reward model and
the agent. Solid lines are smoothed means for clarity, dashed lines give raw values.

In Figure 3 we investigate the performance of LEOPARD when learning from a variety of different261

feedback proportions. Final scores are detailed in Appendix C, Table 3. The results are somewhat262

mixed and noisy, but we see that preferences combined with positive demonstrations consistently263

performs well.264

5 Discussion265

5.1 Generality of RRPO266

Reward-rational preference orderings, the basis of LEOPARD, are a generalisation of the deterministic267

reward-rational choice framework (Jeon et al., 2020), but offers several distinct advantages. Recall268

that RRC frames the human feedback as a choice over some set, and then maps elements of that set269

into distributions over trajectories. Instead, RRPO maps the human feedback directly into a set of270

partial orderings. These two approaches have differing flexibility, and different feedback types might271

lend themselves more readily to one or the other. However, as RRPO is explicit in its construction272

8

that it operates only over directly-accessible trajectories, it becomes much more general in a practical273

sense.274

Furthermore, RRPO does not assume any particular properties about the space of reward functions,275

nor the space of trajectories. In general, one can think of optimal trajectories as a small part of276

some feasible-trajectory manifold, which itself is a small part in a larger trajectory feature space.277

Methods which rely on domain-specific properties of these spaces, such as linearity or computable278

perturbations, inherently limit themselves from being more broadly applied. For example, Mehta &279

Losey (2023) leverages inverse kinematics models to interpret demonstration feedback (alongside280

preferences) in robotics domains. Whilst effective for this application, it renders the broader method281

impossible outside of robotics. RRPO and LEOPARD on the other hand, could be easily applied to282

environments very different to the ones we have tested on. For example, they could be used for Large283

Language Model (LLM) finetuning.284

5.2 Limitations and Future Work285

Whilst we have tested LEOPARD on a range of environments with differently structured observation286

and action spaces, a more comprehensive study would investigate an even wider range of tasks, such287

as more complex robotics, Atari games, and even LLM finetuning. Furthermore, with additional288

resources, it would be instructive to more closely interrogate how performance depends on the289

proportions of different feedback used for learning. For instance, future work could vary the feedback290

proportions with greater precision and then fit and analyse simple predictive models on this.291

Additionally, there are other methods that seek to learn from both preference and demonstration data,292

or even negative/failed demonstrations, as detailed in Sections 2.3 and 2.4. Whilst these are less293

general in application than LEOPARD; a comparison of performance would still be interesting. We294

have chosen the baselines of AILP and ‘DeepIRL followed by RLHF’ to test against as they have295

similar simplicity and generality to our own method, as well as the latter being common practice.296

We introduce RRPO as a theoretical backdrop for LEOPARD, however our investigation of its297

properties and encodings for many types of feedback is limited. Due to its similarity to RRC and the298

Placket-Luce choice model, we do not see this as a critical failing, as it will inherit many properties299

from those models, and deterministic RRC formulations can be trivially encoded under RRPO.300

Nevertheless, there are likely important theoretical properties and applications of RRPO that are of301

relevance to reward learning that ought to be investigated.302

6 Conclusion303

We have shown that LEOPARD can perform effective reward inference, learning from many sources304

of reward information simultaneously. It is more effective than standard baselines for learning305

from preferences and demonstrations, and can additionally incorporate more information such as306

demonstration rankings and negative/failed demonstrations. We have also investigated how many307

sources of reward information could be more beneficial than relying on only large amounts of a single308

type. The generality and simplicity of our method makes it very powerful and applicable to important309

current problems such as high dimensional robotics, and LLM finetuning. Furthermore, it opens the310

door to exploring the use of a much wider range of feedback in many RL settings.311

9

References312

Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., and313

Pasehvar, M. Chatgpt: Applications, opportunities, and threats. In 2023 Systems and Information314

Engineering Design Symposium (SIEDS), pp. 274–279. IEEE, 2023.315

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D.,316

Henighan, T., et al. Training a helpful and harmless assistant with reinforcement learning from317

human feedback. arXiv preprint arXiv:2204.05862, 2022.318

Bajcsy, A., Losey, D. P., O’malley, M. K., and Dragan, A. D. Learning robot objectives from physical319

human interaction. In Conference on robot learning, pp. 217–226. PMLR, 2017.320

Bıyık, E., Losey, D. P., Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D. Learning reward321

functions from diverse sources of human feedback: Optimally integrating demonstrations and322

preferences. The International Journal of Robotics Research, 41(1):45–67, 2022.323

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,324

A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of325

Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.326

Bradley, R. A. and Terry, M. E. Rank analysis of incomplete block designs: I. the method of paired327

comparisons. Biometrika, 39(3/4):324–345, 1952.328

Bratko, I., Urbančič, T., and Sammut, C. Behavioural cloning: phenomena, results and problems.329

IFAC Proceedings Volumes, 28(21):143–149, 1995.330

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrapolating beyond suboptimal demonstrations331

via inverse reinforcement learning from observations. In International conference on machine332

learning, pp. 783–792. PMLR, 2019.333

Brown, D., Niekum, S., and Petrik, M. Bayesian robust optimization for imitation learning. Advances334

in Neural Information Processing Systems, 33:2479–2491, 2020.335

Brown, D. S. and Niekum, S. Deep bayesian reward learning from preferences. arXiv preprint336

arXiv:1912.04472, 2019.337

Cao, B., Lu, K., Lu, X., Chen, J., Ren, M., Xiang, H., Liu, P., Lu, Y., He, B., Han, X., et al. Towards338

scalable automated alignment of llms: A survey. arXiv preprint arXiv:2406.01252, 2024.339

Chaudhari, S., Aggarwal, P., Murahari, V., Rajpurohit, T., Kalyan, A., Narasimhan, K., Deshpande,340

A., and da Silva, B. C. Rlhf deciphered: A critical analysis of reinforcement learning from human341

feedback for llms. arXiv preprint arXiv:2404.08555, 2024.342

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. Deep reinforcement343

learning from human preferences. Advances in neural information processing systems, 30, 2017.344

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden,345

D., Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones, C., Hemsley, R.,346

Hennigan, T., Hessel, M., Hou, S., Kapturowski, S., Keck, T., Kemaev, I., King, M., Kunesch, M.,347

Martens, L., Merzic, H., Mikulik, V., Norman, T., Papamakarios, G., Quan, J., Ring, R., Ruiz, F.,348

Sanchez, A., Sartran, L., Schneider, R., Sezener, E., Spencer, S., Srinivasan, S., Stanojević, M.,349

Stokowiec, W., Wang, L., Zhou, G., and Viola, F. The DeepMind JAX Ecosystem, 2020. URL350

http://github.com/google-deepmind.351

Finn, C., Levine, S., and Abbeel, P. Guided cost learning: Deep inverse optimal control via policy352

optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.353

Fu, J., Luo, K., and Levine, S. Learning robust rewards with adversarial inverse reinforcement354

learning, 2018. URL https://arxiv.org/abs/1710.11248.355

Gleave, A. and Toyer, S. A primer on maximum causal entropy inverse reinforcement learning, 2022.356

URL https://arxiv.org/abs/2203.11409.357

10

http://github.com/jax-ml/jax
http://github.com/google-deepmind
https://arxiv.org/abs/1710.11248
https://arxiv.org/abs/2203.11409

Hadfield-Menell, D., Dragan, A., Abbeel, P., and Russell, S. The off-switch game. In Workshops at358

the Thirty-First AAAI Conference on Artificial Intelligence, 2017a.359

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and Dragan, A. Inverse reward design.360

Advances in neural information processing systems, 30, 2017b.361

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., and van Zee, M. Flax: A362

neural network library and ecosystem for JAX, 2024. URL http://github.com/google/363

flax.364

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and Amodei, D. Reward learning from human365

preferences and demonstrations in atari. Advances in neural information processing systems, 31,366

2018.367

Jain, A., Sharma, S., Joachims, T., and Saxena, A. Learning preferences for manipulation tasks from368

online coactive feedback. The International Journal of Robotics Research, 34(10):1296–1313,369

2015.370

Jeon, H. J., Milli, S., and Dragan, A. Reward-rational (implicit) choice: A unifying formalism for371

reward learning. Advances in Neural Information Processing Systems, 33:4415–4426, 2020.372

Knox, W. B. and Stone, P. Tamer: Training an agent manually via evaluative reinforcement. In 2008373

7th IEEE international conference on development and learning, pp. 292–297. IEEE, 2008.374

Krasheninnikov, D., Shah, R., and van Hoof, H. Combining reward information from multiple375

sources. arXiv preprint arXiv:2103.12142, 2021.376

Marden, J. I. Analyzing and modeling rank data. CRC Press, 1996.377

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., and Fox, D. A joint model of language and378

perception for grounded attribute learning. arXiv preprint arXiv:1206.6423, 2012.379

Mehta, S. A. and Losey, D. P. Unified learning from demonstrations, corrections, and preferences380

during physical human-robot interaction. ACM Transactions on Human-Robot Interaction, 2023.381

Myers, V., Biyik, E., Anari, N., and Sadigh, D. Learning multimodal rewards from rankings. In382

Conference on robot learning, pp. 342–352. PMLR, 2022.383

Ng, A. Y., Russell, S., et al. Algorithms for inverse reinforcement learning. In Icml, volume 1, pp. 2,384

2000.385

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,386

Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.387

Advances in neural information processing systems, 35:27730–27744, 2022.388

Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D. Learning reward functions by integrating389

human demonstrations and preferences. arXiv preprint arXiv:1906.08928, 2019.390

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., and Finn, C. Direct preference391

optimization: Your language model is secretly a reward model. Advances in Neural Information392

Processing Systems, 36, 2024.393

Raffin, A. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,394

2020.395

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3:396

Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22397

(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.398

Ramachandran, D. and Amir, E. Bayesian inverse reinforcement learning. In IJCAI, volume 7, pp.399

2586–2591, 2007.400

Shah, R., Krasheninnikov, D., Alexander, J., Abbeel, P., and Dragan, A. Preferences implicit in the401

state of the world. arXiv preprint arXiv:1902.04198, 2019.402

11

http://github.com/google/flax
http://github.com/google/flax
http://github.com/google/flax
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html

Taranovic, A., Kupcsik, A. G., Freymuth, N., and Neumann, G. Adversarial imitation learning with403

preferences. In The Eleventh International Conference on Learning Representations, 2022.404

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In 2012405

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,406

2012. doi: 10.1109/IROS.2012.6386109.407

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulão, M., Kallinteris,408

A., Krimmel, M., KG, A., et al. Gymnasium: A standard interface for reinforcement learning409

environments. arXiv preprint arXiv:2407.17032, 2024.410

Wilde, N., Bıyık, E., Sadigh, D., and Smith, S. L. Learning reward functions from scale feedback.411

arXiv preprint arXiv:2110.00284, 2021.412

Wirth, C., Akrour, R., Neumann, G., Fürnkranz, J., et al. A survey of preference-based reinforcement413

learning methods. Journal of Machine Learning Research, 18(136):1–46, 2017.414

Wulfmeier, M., Ondruska, P., and Posner, I. Deep inverse reinforcement learning. CoRR,415

abs/1507.04888, 2015.416

Xie, X., Li, C., Zhang, C., Zhu, Y., and Zhu, S.-C. Learning virtual grasp with failed demonstrations417

via bayesian inverse reinforcement learning. In 2019 IEEE/RSJ International Conference on418

Intelligent Robots and Systems (IROS), pp. 1812–1817. IEEE, 2019.419

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al. Maximum entropy inverse reinforcement420

learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.421

Ziebart, B. D., Bagnell, J. A., and Dey, A. K. Modeling interaction via the principle of maximum422

causal entropy. 2010.423

12

A Algorithm Details424

The full algorithm for LEOPARD is given in Algorithm 1. Initialisations follow standard neural425

network initialisation methods. RandomRollouts generates trajectories by sampling random actions426

and resetting the environment when necessary. TrainAgent uses the standard SAC algorithm for427

when the action space is continuous, and PPO when it’s discrete. For both algorithms we use the428

implementations provided by Stable Baselines3 (Raffin et al., 2021). It uses the learnt reward function429

to generate rewards for the RL procedure. Hyperparameters used for SAC and PPO are those given in430

RL Baselines3 Zoo (Raffin, 2020), except for Lunar Lander where we use an entropy bonus of 0.05431

instead of 0. Details on TrainRewardModel and GetPreferences are given in Sections A.1 and A.2.1432

respectively. The generation of the demonstrations and their rankings is detailed in Section A.2.2.433

Algorithm 1 LEOPARD

Input:
niters Number of iterations to perform
nrollout-steps Number of environment rollout steps
nprefs Number of preferences to sample
Dpos Positive demonstrations
<pos Positive demonstrations partial ordering
Dneg Negative demonstrations
<neg Negative demonstrations partial ordering

Output:
π Trained agent policy
Rθ Learnt reward function

nrollout-steps-per-iter ← ⌊nrollout-steps/(niters + 1)⌋
nprefs-per-iter ← ⌊nprefs/niters⌋
Dagent ← ∅ {Agent trajectory pool}
P ← ∅ {Preferences dataset}
π ← InitialiseAgent()
Rθ ← InitialiseRewardFunction()
Dnew-trajectories ← RandomRollouts(nrollout-steps-per-iter)

for i = 1 to niters do
P ← P ∪ GetPreferences(nprefs-per-iter,Dnew-trajectories,Dagent)
Dagent ← Dagent ∪ Dnew-trajectories
Rθ ← TrainRewardModel(Rθ,Dpos, <pos,Dneg, <neg,Dagent,P)
π,Dnew-trajectories ← TrainAgent(π,Rθ, nrollout-steps-per-iter)

end for

A.1 Reward Model Training434

The reward model is trained by optimising the loss function Equation (5) with the AdamW optimiser.435

Batches of Dpos,Dneg,Dagent, and P are sampled independently, and then encoded via Equations (6)436

and (7). Since we want to respect the relative proportions of each data source9 but also have437

independent batch sizes, normalisation of the loss across the batch is slightly involved. This is438

detailed in Section A.1.1. Instead of training for a fixed number of steps / epochs, training steps are439

taken until a stopping condition is reached, as detailed in Section A.1.2. Together these procedures440

could result in varying coverages for each data source, from potentially many epochs on one,10 to441

only sampling a small fraction of another.442

9E.g. if we had 1000 preferences and 1 demonstration, we’d probably care more about low average loss from
the preferences than from the demonstration.

10Since our data sources are of varying sizes and not partitioned into equal numbers of batches, the notion of
a training epoch - one complete pass over all training data - is not well-defined. We do however have notions of
data source specific epochs.

13

A.1.1 Loss Normalisation Across Batch443

As we want our gradient steps to be roughly unity in magnitude and independent of the batch size,444

we need to normalise it. Typically, this is very easy in supervised learning—one can simply take445

an average across the batch—but this is not the case for Equation (5). Expansion of the gradient of446

the loss with respect to θ, and noting our reward function operates at the level of transitions within447

trajectories, reveals the normalising factor of each data source (note this assumes a fixed length of448

fragments for each partial ordering):449 ∑
(τi,<j)∈D×C

Length(τi) · 1∃τk∈D.τk ̸=τi∧τk<jτi .

The loss term of each data source is first divided by this factor evaluated on the batch—so that they450

are all at most unity in magnitude—and then combined in a weighted sum where the weights are451

the factors evaluated on the whole dataset for that source divided by the sum of these dataset-level452

factors. Some data sources, namely Dagent, are treated as ‘in-excess’, and their dataset-level factor is453

made proportional to another data source, e.g. Dpos.454

A.1.2 Stopping Conditions455

Generally, the reward function loss from poorly-fitted demonstration rankings are much higher than456

poorly fitted preferences. This is because trajectories are typically longer than trajectory-fragments457

and demonstrations generate more ‘<’ comparisons than a preference. However, the distribution of458

demonstrations are typically quite far from that of the agent trajectories, which the preferences have459

been generated over. This makes it much easier for the reward function to separate the demonstrations460

from agent behaviour and thus achieve a low loss on the demonstration ordering, than it does for it to461

get low loss on all the preference orderings.462

The consequence of the above two facts is that if we were training on just the demonstrations, we’d463

want to do at most a few epochs (to learn fast and avoid overfitting), but if we were training on just464

the preferences we might want to do more (as learning is slower and overfitting less of a potential465

issue). Thus, as the amount of data in each dataset varies in each iteration, it does not make sense to466

have a pre-specified number of training steps, and instead a stopping condition should be used.467

Our stopping condition simply checks if the training loss has loosely converged. At each step we468

check if the change in training loss is less than 10% of the last step’s training loss. If this occurs 3469

times in a row, we stop training the reward model for that iteration, and return to agent training. There470

is a hard limit of 256 epochs on the smallest data source, though this is rarely reached. Empirically471

this strikes the balance between learning the most from the small amount of data, and avoiding472

overfitting.473

A.1.3 Smoothness Loss474

In addition to our negative log-likelihood loss term for optimising RRPO, we also have a loss term475

based on the smoothness of the reward function over trajectories, as seen in Equation (5). This is476

defined as proportional to the mean-squared first derivative in reward with respect to environment477

step for all full trajectories.11 Concretely:478

LSmooth(D, θ) = µsmooth
1

|DFull|
∑

τ
(n)
i ∈DFull

1

n− 1

n−1∑
k=1

(Rθ(sk−1, ak−1, sk)−Rθ(sk, ak, sk+1))
2,

(8)
DFull = {τi|τi ∈ D,∀τj ̸=i ∈ D. τi ̸⊂ τj}, (9)

τ
(n)
i = {(s0, a0, s1), ..., (sn−1, an−1, sn)}. (10)

We set µsmooth to 0.1 based on early empirical results.479

11I.e. not fragments used for preferences.

14

A.2 Synthetic Feedback480

A.2.1 Preferences481

In Algorithm 1, the GetPreferences function randomly samples trajectory fragments for comparison,482

with a bias to sampling from new trajectories. We are using a synthetic oracle which uses the ground483

truth reward function to noisily generate preferences, simulating the imperfect human rationality.484

More specifically, for each sampled pair of fragments, the sigmoid of their reward difference is used485

as the parameter for a Bernoulli random variable which is then sampled to generate the preference.486

A.2.2 Demonstrations487

To create demonstrations for our tasks, we simply train an agent on the ground truth reward function488

(or its negation in the case of negative demonstrations). Several agents are trained, and the best few,489

nselected, are picked. From these agents, we create a list of their trajectories, ordering from their latest490

attempts to their first, and interleaving each agent together with the best agent first. For training491

an agent from feedback, if n demonstrations are being used, the first n demonstrations from this492

list are provided. Rankings are generated automatically based on the ground truth reward of each493

demonstration, making <pos and <neg total orders.12 The ground truth reward per agent step and494

number selected, nselected, of all demonstrations trained are given in Figures 4 and 5 for positive and495

negative demonstrations respectively.496

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

500

0

500

1000

1500

2000

2500

3000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(a) Half Cheetah, nselected = 4

0 100000 200000 300000 400000 500000
Agent Step

8000

6000

4000

2000

0

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(b) Cliff Walking, nselected = 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

1500

1000

500

0

500

1000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(c) Lunar Lander, nselected = 8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

0

1000

2000

3000

4000

5000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(d) Ant, nselected = 8

Figure 4: Ground truth reward vs agent steps for the positive demonstrations that were trained in every
environment. We also state how many were selected as good examples to be used for demonstration
learning.

12They are not required to be total orders to apply the general method.

15

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

4000

3500

3000

2500

2000

1500

1000

500

Gr
ou

nd
 Tr

ut
h

Re
wa

rd
(a) Half Cheetah, nselected = 8

5000 10000 15000 20000 25000 30000
Agent Step

10000

8000

6000

4000

2000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(b) Cliff Walking, nselected = 8

0 50000 100000 150000 200000 250000 300000 350000 400000
Agent Step

1600

1500

1400

1300

1200

1100

1000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(c) Lunar Lander, nselected = 8

0 50000 100000 150000 200000 250000 300000 350000 400000
Agent Step

2500

2000

1500

1000

500

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(d) Ant, nselected = 4

Figure 5: Ground truth reward vs agent steps for the negative demonstrations that were trained in every
environment. We also state how many were selected as bad examples to be used for demonstration
learning.

B Experiment and Environment Details497

Here we give details on versions / modifications made for each environment, as well as environment-498

specific hyperparameters summarised in Table 1. We used niters = 8 and 16 random seeds for all499

runs.500

Table 1: Environment specific hyperparameters. ‘Trajectory Length’ refers to the fixed time horizon
for that environment, ‘Preference Fragment Length’ is the length of the contiguous trajectory subse-
quences that are used to generate preferences. Both are measured in environment timesteps.

Environment Trajectory Length Preference Fragment Length nrollout-steps

Half Cheetah 1k 32 2M
Cliff Walking 250 16 256k
Lunar Lander 250 32 8M
Ant 1k 32 4M

B.1 Half Cheetah501

The v4 version is used out-of-the-box.502

B.2 Cliff Walking503

The v0 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.504

The standard version has a reward of -1 every timestep with the episode terminating when the end is505

reached. Walking off the cliff gives -100 reward and returns the agent to the start. Our fixed horizon506

version of this is the same except reaching the end state does not terminate the environment, and507

instead grants 5 reward per timestep spent there. This was based on what lead to good learning with508

PPO and access to the reward function directly.509

As the reward function is sparse, for sampling preferences only, a shaped version of it is used to510

simulate human intuition on what behaviours are closer to optimal. The penalty for walking off cliffs511

remains the same, but otherwise the agent receives a weighted reward of -1 and 5 depending on how512

close in L1 norm it is to the start/end state respectively.513

16

B.3 Lunar Lander514

The v2 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.515

The reward function used is mostly the same as in the Gymnasium version, except instead of516

terminating on game over or the lander not being awake (i.e. landed), a -1 or +1 reward is issued each517

timestep respectively.518

B.4 Ant519

V4 version with terminate_when_unhealthy=False so that there are more maximum length520

trajectories.521

C Supplementary Results522

1 2 3 4 5 6 7 8
Iteration

1000

0

1000

2000

3000

4000

5000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
AILP, best

(a) Half Cheetah, ndemos = 8

1 2 3 4 5 6 7 8
Iteration

1500

1000

500

0

500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
AILP, best

(b) Cliff Walking, ndemos = 4

1 2 3 4 5 6 7 8
Iteration

600

500

400

300

200

100

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
AILP, best

(c) Lunar Lander, ndemos = 8

1 2 3 4 5 6 7 8
Iteration

1000

0

1000

2000

3000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
AILP, best

(d) Ant, ndemos = 8

Figure 6: Comparison of LEOPARD with the baselines of AILP and DeepIRL when only positive
demonstrations are available. The lines denote the mean of the ground truth reward function, with
shaded standard errors across 16 random seeds, against algorithm iterations—alternations between
optimising the reward model and the agent. Solid lines are smoothed means for clarity, dashed lines
give raw values. A breakdown of the performance of the baseline methods for different reward model
training epochs per iteration is given in Figures 9 and 10.

17

Table 2: Final ground truth reward to 3 s.f. with standard error for LEOPARD against a variety
of baselines. (Top) 50/50 mix of preferences and positive demonstrations with baselines of AILP,
performing DeepIRL followed by RLHF, and performing RLHF followed by DeepIRL (Half Cheetah
only). See Figure 2 for reward vs algorithm iteration. (Bottom) Only positive demonstrations with
baselines of AILP and DeepIRL. See Figure 6 for reward vs algorithm iteration. ‘RM epochs per iter’
is the number of training epochs for the reward model on each iteration of the algorithm, required to
be fixed for DeepIRL. Best in column for section.

Method RM epochs Final Ground Truth Reward ± std error
per iter Half Cheetah Cliff Walking Lunar Lander Ant

LEOPARD (ours) Dynamic 5650 ± 386 670 ± 116 -140 ± 49.8 2630 ± 322
AILP Dynamic 3.49 ± 105 -249 ± 6.09 -684 ± 31.8 -1130 ± 142
AILP 1 14.1 ± 234 -266 ± 116 -2010 ± 506 -237 ± 110
AILP 2 25.1 ± 226 -172 ± 74.2 -2270 ± 507 -300 ± 117
AILP 4 -129 ± 35.9 -181 ± 85.5 -1930 ± 501 150 ± 131
AILP 8 -87.0 ± 38.4 -180 ± 70.0 -813 ± 340 148 ± 55.0
DeepIRL then RLHF 1 -389 ± 223 -46.8 ± 125 -2340 ± 548 -766 ± 216
DeepIRL then RLHF 2 189 ± 312 1.34 ± 163 -2200 ± 537 -803 ± 259
DeepIRL then RLHF 4 224 ± 205 -61.7 ± 115 -2000 ± 467 -792 ± 221
DeepIRL then RLHF 8 1540 ± 374 -91.7 ± 103 -1720 ± 548 -927 ± 192

LEOPARD (ours) Dynamic 5020 ± 555 580 ± 199 -34.4 ± 25.7 3000 ± 390
AILP Dynamic -45.0 ± 236 554 ± 146 -215 ± 16.1 -489 ± 178
AILP 1 -88.3 ± 9.15 381 ± 131 -99.5 ± 5.45 555 ± 37.1
AILP 2 -61.5 ± 47.1 330 ± 156 -131 ± 9.33 450 ± 54.8
AILP 4 -118 ± 6.08 205 ± 133 -180 ± 12.3 300 ± 79.1
AILP 8 -96.2 ± 6.36 -72.2 ± 93.2 -214 ± 8.62 268 ± 59.4
DeepIRL 1 1470 ± 318 828 ± 92.2 -575 ± 194 -295 ± 230
DeepIRL 2 1610 ± 264 769 ± 111 -164 ± 98.6 1320 ± 426
DeepIRL 4 1290 ± 216 849 ± 102 -159 ± 18.0 1780 ± 399
DeepIRL 8 1790 ± 162 528 ± 105 -219 ± 21.3 1340 ± 319

Table 3: Final ground truth reward with standard error for LEOPARD across a variety of mixture of
types of feedback. For details on feedback amounts per environment and the reward vs algorithm
iteration see Figure 3. Best in column.

Feedback types Final Ground Truth Reward ± std error
Half Cheetah Cliff Walking Lunar Lander Ant

Preferences 4960 ± 574 -252 ± 2.22 -163 ± 19.7 1510 ± 491
Positive demonstrations 5020 ± 555 580 ± 199 -34.4 ± 25.7 3000 ± 390
Preferences and positive demos 5650 ± 386 670 ± 116 -140 ± 49.8 2630 ± 322
Positive and negative demos 2870 ± 609 883 ± 79.0 -169 ± 107 754 ± 339
Prefs, pos and neg demos 3640 ± 603 514 ± 133 -120 ± 11.3 1580 ± 296

18

1 2 3 4 5 6 7 8
Iteration

1000

500

0

500

1000

1500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(a) Half Cheetah, ndemos = 4, nprefs =
256

1 2 3 4 5 6 7 8
Iteration

2000

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(b) Cliff Walking, ndemos = 2, nprefs =
64

1 2 3 4 5 6 7 8
Iteration

3000

2500

2000

1500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(c) Lunar Lander, ndemos = 4, nprefs =
256

1 2 3 4 5 6 7 8
Iteration

1600

1400

1200

1000

800

600

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(d) Ant, ndemos = 4, nprefs = 512

Figure 7: Breakdown of the DeepIRL followed by RLHF baseline, for different numbers of epochs
that the reward model was trained for per algorithm iteration. The lines denote the mean of the
ground truth reward function, with shaded standard errors across 16 random seeds, against algorithm
iterations. Solid lines are smoothed means for clarity, dashed lines give raw values.

1 2 3 4 5 6 7 8
Iteration

300

200

100

0

100

200

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(a) Half Cheetah, ndemos = 4, nprefs =
256

1 2 3 4 5 6 7 8
Iteration

1400

1200

1000

800

600

400

200

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(b) Cliff Walking, ndemos = 2, nprefs =
64

1 2 3 4 5 6 7 8
Iteration

2500

2000

1500

1000

500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(c) Lunar Lander, ndemos = 4, nprefs =
256

1 2 3 4 5 6 7 8
Iteration

1250

1000

750

500

250

0

250

500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(d) Ant, ndemos = 4, nprefs = 512

Figure 8: Breakdown of the AILP baseline for positive demonstrations and preferences, for different
numbers of epochs that the reward model was trained for per algorithm iteration. The lines denote
the mean of the ground truth reward function, with shaded standard errors across 16 random seeds,
against algorithm iterations. Solid lines are smoothed means for clarity, dashed lines give raw values.

19

1 2 3 4 5 6 7 8
Iteration

1000

500

0

500

1000

1500

2000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(a) Half Cheetah, ndemos = 8

1 2 3 4 5 6 7 8
Iteration

1500

1000

500

0

500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(b) Cliff Walking, ndemos = 4

1 2 3 4 5 6 7 8
Iteration

800

700

600

500

400

300

200

100

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(c) Lunar Lander, ndemos = 8

1 2 3 4 5 6 7 8
Iteration

500

0

500

1000

1500

2000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(d) Ant, ndemos = 8

Figure 9: Breakdown of the DeepIRL baseline, for different numbers of epochs that the reward model
was trained for per algorithm iteration. The lines denote the mean of the ground truth reward function,
with shaded standard errors across 16 random seeds, against algorithm iterations. Solid lines are
smoothed means for clarity, dashed lines give raw values.

1 2 3 4 5 6 7 8
Iteration

400

300

200

100

0

100

200

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(a) Half Cheetah, ndemos = 8

1 2 3 4 5 6 7 8
Iteration

1250

1000

750

500

250

0

250

500

750

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(b) Cliff Walking, ndemos = 4

1 2 3 4 5 6 7 8
Iteration

700

600

500

400

300

200

100

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(c) Lunar Lander, ndemos = 8

1 2 3 4 5 6 7 8
Iteration

600

400

200

0

200

400

600

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Dynamic Stopping
Epochs=1
Epochs=2
Epochs=4
Epochs=8

(d) Ant, ndemos = 8

Figure 10: Breakdown of the AILP baseline for positive demonstrations only, for different numbers
of epochs that the reward model was trained for per algorithm iteration. The lines denote the mean
of the ground truth reward function, with shaded standard errors across 16 random seeds, against
algorithm iterations. Solid lines are smoothed means for clarity, dashed lines give raw values.

20

Table 4: Outliers for Cliff Walking that were removed from the main analysis. This is defined as
having less than -3000 reward on any iteration from the second onwards. Note there were 16 random
seeds in total. If multiple ‘RM epochs per iteration’s are given, this is the total across them all.

Method RM epochs per iteration Cliff Walking Outliers (%)

LEOPARD (preferences only) Dynamic 0 (0%)
LEOPARD (positive demonstrations only) Dynamic 3 (19%)
LEOPARD (positive demonstrations and preferences) Dynamic 2 (13%)
LEOPARD (mixed demonstrations) Dynamic 0 (0%)
LEOPARD (mixed demonstrations and preferences) Dynamic 2 (13%)
AILP (positive demonstrations only) Dynamic, 1, 2, 4, 8 0 (0%)
AILP (positive demonstrations and preferences) Dynamic 1 (6%)
AILP (positive demonstrations and preferences) 1, 2, 4, 8 0 (0%)
DeepIRL only 1, 2, 4, 8 0 (0%)
DeepIRL then RLHF 1 3 (19%)
DeepIRL then RLHF 2 7 (44%)
DeepIRL then RLHF 4 4 (25%)
DeepIRL then RLHF 8 1 (6%)

21

D Main Proofs523

Here we more stringently define and prove the theoretical result from the end of Section 3.1, and then524

prove the models considered in Appendix E do not satisfy it.525

Theorem D.1. Upper bounds on RRPO loss give lower bounds on reward difference of related526

fragments. For all ϵ > 0, if LRRPO ≤ ϵ, then for all τa, τb ∈ D2 where there exists a <x∈ C such that527

τa <x τb, we have the following:528

Rθ(τb)−Rθ(τa) > −
1

βx
log(eϵ − 1), (11)

where βx is the rationality coefficient of <x.529

Proof. We will prove this by contrapositive, that is if:530

Rθ(τb)−Rθ(τa) ≤ −
1

βx
log(eϵ − 1), (12)

for some ϵ > 0, and there exists a <x such that τa <x τb, then LRRPO > ϵ.531

Assume Equation (12) and that the relevant <x exists. Consider Equation (5):532

LRRPO(θ) = − logPRRPO(C|D, θ)

= −
∑

(τi,<j)∈D×C

log
exp(βjRθ(τi))

exp(βjRθ(τi)) +
∑

τk∈D 1τk<jτi exp(βjRθ(τk))

=
∑

(τi,<j)∈D×C

log
exp(βjRθ(τi)) +

∑
τk∈D 1τk<jτi exp(βjRθ(τk))

exp(βjRθ(τi))

=
∑

(τi,<j)∈D×C

log

(
1 +

∑
τk∈D 1τk<jτi exp(βjRθ(τk))

exp(βjRθ(τi))

)
.

Consider the term (τb, <x), and bring it outside the summation.533

LRRPO(θ) = log

(
1 +

∑
τk∈D 1τk<xτb exp(βxRθ(τk))

exp(βxRθ(τb))

)
+

∑
(τi,<j)∈D×C

(τi,<j)̸=(τb,<x)

log (1 + ...) .

The remaining terms are strictly positive, and 1τa<xτb = 1.534

LRRPO(θ) > log

(
1 +

exp(βxRθ(τa)) + ...

exp(βxRθ(τb))

)
= log

(
1 + exp(βxRθ(τa)− βxRθ(τb)) +

...

exp(βxRθ(τb))

)
> log (1 + exp(βx(Rθ(τa)−Rθ(τb)))) ,

by ignoring terms that are strictly positive. Sub in Equation (12).535

LRRPO(θ) > log

(
1 + exp

(
βx

(
1

βx
log(eϵ − 1)

)))
= log (1 + eϵ − 1)

= ϵ,

as required.536

Consider a special case where ϵ = log 2, Equation (11) becomes:537

Rθ(τb)−Rθ(τa) > −
1

βx
log
(
elog 2 − 1

)
= 0,

∴ Rθ(τb) > Rθ(τa).

22

E Alternative RRC-Derived Approaches538

RRPO and LEOPARD are very simple and natural extensions of existing work, however, they are539

not trivially so. Building off RRC, there are several approaches to preference and demonstration540

learning that appear natural and are simple, and yet are deficient. Here we explore two of them in the541

preference and ranked positive demonstrations only setting.542

Let the notation be as defined in Section 3.2. We will assume that preferences, positive demonstration543

selection, and the rankings over the positive demonstrations are all independent. Our overall likelihood544

function shall be:545

PFeedback(C|D, θ) = PPos-Demo(Dpos ≻ Dagent|Dpos,Dagent, θ)

· PRank(<pos |Dpos, θ)

·
∏

(τa,τb)∈P

PRLHF(τa ≻ τb|θ), (13)

where PRank is something sensible.546

We consider two potential candidates for PPos-Demo derived via RRC in a simple manner:547

PSum-of-Choices(...) =
∑

τ∈Dpos

PRRC(Cτ |Dpos ∪ Dagent, θ), (14)

PChoose-Best-Average(...) = PRRC(CAvg(Dpos)|{Avg(Dpos),Avg(Dagent)}, θ). (15)

Thus:548

PSum-of-Choices(...) =

∑
τ∈Dpos

exp(Rθ(τ))∑
τ∈Dpos

exp(Rθ(τ)) +
∑

τ∈Dagent
exp(Rθ(τ))

, (16)

PChoose-Best-Average(...) =
exp

(
1

|Dpos|
∑

τ∈Dpos
Rθ(τ)

)
exp

(
1

|Dpos|
∑

τ∈Dpos
Rθ(τ)

)
+ exp

(
1

|Dagent|
∑

τ∈Dagent
Rθ(τ)

) , (17)

with549

LSoC = − logPSum-of-Choices, (18)
LCBA = − logPChoose-Best-Average. (19)

Rationality coefficients are omitted since they are not critical to this analysis. We shall show that550

these models have undesirable theoretical properties, and poorer empirical performance compared to551

LEOPARD.552

E.1 Theoretical Properties553

Neither PSum-of-Choices nor PChoose-Best-Average have the property that upper bounds on their negative-554

log-likelihood give rise to lower bounds on reward differences between demonstrated trajectories and555

ones sampled from the agent, unlike PRRPO. We prove this in Theorems E.1 and E.2 in Section E.2.1.556

Whilst this may not seem too critical, its combination with the potential effects of PRank, and its557

interaction with exploration in RL, can cause a very undesirable failure mode.558

Imagine an environment where three distinct behaviours are possible, A, B, and C. We prefer C to559

B, and B to A, so we provide a demonstration of B and C each, τb, τc, and express via the ranking560

model that τc ≻ τb. This ranking is fitted by assigning high reward to C, and low to B. Our agent is561

initialised generating from A. Our demonstration model, seeing τc have high reward, does not lower562

the reward of A that much, and does not mind that τb has low reward. We’re left with low loss and563

yet a reward model that could prefer A to B.564

Now consider that our environment has some unfavourable dynamics. Policies that generate A,565

are quite different from those that generate C, with B being somewhere between the two. Thus, to566

eventually generate C, our policy will first need to explore B. However, our reward model gives it567

lower reward when it tries this, and so the agent sticks to what it thinks is best, behaviour A, much to568

our disappointment.569

23

Whilst a little contrived, the above story highlights a certain failure mode that could occur if one570

combined demonstration rankings with a demonstration model that does not satisfy Theorem D.1.571

If it did satisfy it, such as for RRPO and LEOPARD, then low loss cannot be achieved unless the572

reward model prefers B to A, preventing the issue.573

Alleviating this problem by omitting the rankings is suboptimal, as we lose information. However,574

PSum-of-Choices suffers further. It is shown in Section E.2.2 that the gradient of LSoC with respect to θ575

can be expressed in the following form.576

− ∂

∂θ
LSoC =

∑
τa∈Dagent

PRRC(Ca|T , θ)

 ∑
τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∂

∂θ
Rθ(τa)

 , (20)

where Ci is the human choice for τi, and T = Dpos ∪ Dagent. We see that the reward of agent577

trajectories are pushed down proportional to the probability that they would be chosen out of the578

combined set of trajectories. This makes sense—if our reward model thinks highly of specific agent579

trajectories, it ought to adjust its beliefs so that it no longer favours them.580

However, the demonstration trajectories are also pushed up in reward proportional to the probability581

that they would be chosen. That is to say, the better the reward model thinks the demonstrated582

trajectory is, the more it thinks it should increase its reward, a positive feedback loop! In practice,583

the reward model is going to have some initial preferences over the demonstrated trajectories due to584

its initialisation. Since this will be random, it will most likely be incorrect. It will then proceed to585

reinforce its own incorrect beliefs and lock-in its own ranking of the demonstrations. This means586

our reward model will not provide correct rewards to guide the agent towards better behaviour in587

the trajectory space around the demonstrations. Furthermore, if it generalises from these incorrect588

beliefs, it could also become wrong about other parts of trajectory space, further reducing the quality589

of the reward signal for the agent.590

E.2 Chapter Proofs and Derivations591

E.2.1 Reward Bounds592

Theorem E.1. Upper bounds on Sum-of-Choices loss do not give lower bounds on reward difference593

between demonstrations and agent trajectories. For all ϵ > 0, if LSoC ≤ ϵ, we cannot guarantee that594

Rθ(τp)−Rθ(τa) > f(ϵ) (21)

for all τp, τa ∈ Dpos ×Dagent, where f is a function of type R+ → R.595

Proof. We will prove this by example.596

Consider597

Dpos = {τ1, τ2},
Dagent = {τa},
Rθ(τ1) = r1,

Rθ(τ2) = r2,

Rθ(τa) = ra.

We now expand Equation (18) with Equation (16) and the above.598

LSoC(θ) = − log

(
er1 + er2

er1 + er2 + era

)
= log

(
1 +

era

er1 + er2

)
.

Assume LSoC ≤ ϵ, therefore599

log

(
1 +

era

er1 + er2

)
≤ ϵ,

ra ≤ log ((eϵ − 1)(er1 + er2)) .

24

Let600

ra = log ((eϵ − 1)(er1 + er2)) .

Consider r1 − ra, substituting in the above expression:601

r1 − ra = r1 − log((eϵ − 1)(er1 + er2))

= r1 − log(eϵ − 1)− log(er1 + er2)

≤ r1 − log(eϵ − 1)− r2,
as log(x+ y) ≥ log(y) for positive x and y. Thus, we see that for a fixed r1 and ϵ, we can choose r2602

and ra such that LSoC ≤ ϵ, but r1 − ra can be arbitrarily negative.603

Theorem E.2. Upper bounds on Choose-Best-Average loss do not give lower bounds on reward604

difference between demonstrations and agent trajectories. For all ϵ > 0, if LCBA ≤ ϵ, we cannot605

guarantee that606

Rθ(τp)−Rθ(τa) > f(ϵ) (22)

for all τp, τa ∈ Dpos ×Dagent, where f is a function of type R+ → R.607

Proof. We will proceed similarly to the above, assuming the same notation.608

Expanding Equation (19) with Equation (17).609

LCBA(θ) = − log

(
exp

(
1
2 (r1 + r2)

)
exp

(
1
2 (r1 + r2)

)
+ exp(ra)

)

= log

(
1 +

exp(ra)

exp
(
1
2 (r1 + r2)

))

= log

(
1 + exp

(
ra −

1

2
(r1 + r2)

))
.

Assume LCBA ≤ ϵ, therefore610

log

(
1 + exp

(
ra −

1

2
(r1 + r2)

))
≤ ϵ,

ra ≤ log(eϵ − 1) +
1

2
(r1 + r2).

Let611

ra = log(eϵ − 1) +
1

2
(r1 + r2).

Consider r1 − ra, substituting in the above expression:612

r1 − ra = r1 − log(eϵ − 1)− 1

2
(r1 + r2).

Again, we see that for a fixed r1 and ϵ, we can choose r2 and ra such that LSoC ≤ ϵ, but r1 − ra can613

be arbitrarily negative.614

E.2.2 Loss Gradients615

Here we will show that the gradient with respect to θ of LSoC can be expressed in the form given in616

Equation (20) of Section E.1.617

First we give a simplification of deterministic RRC with β = 1 and ψ(x) = x for all x, and some618

additional notation:619

C : ()→ D,

PRRC(Ci|D, θ) =
eRθ(τi)∑

τj∈D e
Rθ(τj)

,

T = Dpos ∪ Dagent.

25

Now we derive some useful identities.620

∂

∂θ
log
∑
τ∈D

eRθ(τ) =
∂
∂θ

∑
τi∈D e

Rθ(τi)∑
τj∈D e

Rθ(τj)

=
∑
τi∈D

∂
∂θ e

Rθ(τi)∑
τj∈D e

Rθ(τj)

=
∑
τi∈D

eRθ(τi)∑
τj∈D e

Rθ(τj)

∂

∂θ
Rθ(τi)

=
∑
τi∈D

PRRC(Ci|D, θ)
∂

∂θ
Rθ(τi), (23)

621

PRRC(Ci|A, θ) =
eRθ(τi)∑

τj∈A e
Rθ(τj)

=
eRθ(τi)∑

τj∈A e
Rθ(τj)

∑
τk∈A∪B e

Rθ(τk)∑
τk∈A∪B e

Rθ(τk)

=
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)
, (24)

622

PRRC(Ci|A, θ)− PRRC(Ci|A ∪ B, θ) =
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)
− PRRC(Ci|A ∪ B, θ)

=
PRRC(Ci|A ∪ B, θ)

(
1−

∑
τj∈A PRRC(Ci|A ∪ B, θ)

)
∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
PRRC(Ci|A ∪ B, θ)

∑
τk∈B PRRC(Ck|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
∑
τk∈B

PRRC(Ck|A ∪ B, θ)
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
∑
τk∈B

PRRC(Ck|A ∪ B, θ)PRRC(Ci|A, θ) (25)

26

Now we use these identities to derive the special form of the gradient of LSoC.623

− ∂

∂θ
LSoC =

∂

∂θ
log

∑
τ∈Dpos

eRθ(τ)∑
τ∈Dpos

eRθ(τ) +
∑

τ∈Dagent
eRθ(τ)

=
∂

∂θ
log

∑
τ∈Dpos

eRθ(τ) − ∂

∂θ
log
∑
τ∈T

eRθ(τ)

=
∑

τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∑
τi∈T

PRRC(Ci|T , θ)
∂

∂θ
Rθ(τi)

=
∑

τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∑
τp∈Dpos

PRRC(Cp|T , θ)
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τp∈Dpos

(PRRC(Cp|Dpos, θ)− PRRC(Cp|T , θ))
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τp∈Dpos

∑
τa∈Dagent

PRRC(Ca|T , θ)PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τa∈Dagent

PRRC(Ca|T , θ)

 ∑
τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∂

∂θ
Rθ(τa)

 . (26)

F Impact Statement624

This paper aims to improve our ability to leverage diverse ranges of feedback when training reward625

models for RL agents with difficult to specify objectives. This will hopefully lead to reward models626

that are more accurate and robust, reducing problems such as specification gaming and sensitivity to627

noise. In turn, this will make deployed systems that have been trained in this manner more aligned628

and less likely fail.629

G Use of Existing Assets630

The primary assets we use in this work are referenced in Table 5 alongside their respective licenses.631

Table 5: Assets used in the paper.
Name Type Reference License

Stable Baselines3 Code Raffin et al. (2021) MIT
RL Baselines3 Zoo Hyperparameters Raffin (2020) MIT
Gymnasium Code Towers et al. (2024) MIT
MuJoCo Code Todorov et al. (2012) Apache-2.0
JAX Code Bradbury et al. (2018) Apache-2.0
Flax Code Heek et al. (2024) Apache-2.0
Optax Code DeepMind et al. (2020) Apache-2.0

27

H Use of Compute632

We ran all of our experiments on a CPU server with 4 cores each. Approximate wallclock runtime633

for each environment was as follows: Cliffwalking 10 minutes; Half Cheetah 1 hour; Lunar Lander634

1 hour 45 minutes; Ant 2 hours. This runtime was consistent regardless of the reward learning635

method or amount of feedback, as the agent-environment interaction time and reinforcement learning636

was where most time was spent each run. Thus the CPU-core hours per run for each environment637

were: Cliffwalking 40 minutes; Half Cheetah 4 hours; Lunar Lander 7 hours; Ant 8 hours. For each638

combination of algorithm, feedback mixture, and environment, we ran 16 seeds to get reliable results.639

For the comparisons to baseline, we had to run two sets of seeds per environment to benchmark640

LEOPARD, and 18 sets of seeds per environment to benchmark the baselines.13 With 16 seeds641

per combination this totals to the following CPU-core hours for each environment for this set of642

experiments: Cliffwalking 213 hours, Half Cheetah 1280 hours, Lunar Lander 2240 hours, Ant 2560643

hours. The total for this experiment is thus 6293 CPU-core hours.644

For the feedback mixture experiments we had to run five sets of seeds per environment to benchmark645

each of the five feedback type mixtures with LEOPARD. With 16 seeds per combination this totals646

to the following CPU-core hours for each environment for this set of experiments: Cliffwalking 53647

hours, Half Cheetah 320 hours, Lunar Lander 560 hours, Ant 640 hours. The total for this experiment648

is thus 1573 CPU-core hours.649

The total for all experiments is therefore 7866 CPU-core hours.650

Further CPU hours were also used to obtain the synthetic demonstrations and for preliminary experi-651

ments. The synthetic demonstration generation time was negligible, and preliminary experiments652

added at most 2x to the total compute used, bringing it to around 24k CPU-core hours for the whole653

project.654

13This is due to the fact that LEOPARD uses early stopping for reward model training whereas the baselines
either couldn’t, or could’ve likely performed better with a fixed number of training epochs. Thus a small number
of reward model training epochs had to be swept over for each baseline.

28

NeurIPS Paper Checklist655

1. Claims656

Question: Do the main claims made in the abstract and introduction accurately reflect the657

paper’s contributions and scope?658

Answer: [Yes]659

Justification: Claims made are supported by relevant results in Sections 4.2 and 4.3.660

Guidelines:661

• The answer NA means that the abstract and introduction do not include the claims662

made in the paper.663

• The abstract and/or introduction should clearly state the claims made, including the664

contributions made in the paper and important assumptions and limitations. A No or665

NA answer to this question will not be perceived well by the reviewers.666

• The claims made should match theoretical and experimental results, and reflect how667

much the results can be expected to generalize to other settings.668

• It is fine to include aspirational goals as motivation as long as it is clear that these goals669

are not attained by the paper.670

2. Limitations671

Question: Does the paper discuss the limitations of the work performed by the authors?672

Answer: [Yes]673

Justification: Limitations are detailed in Section 5.2.674

Guidelines:675

• The answer NA means that the paper has no limitation while the answer No means that676

the paper has limitations, but those are not discussed in the paper.677

• The authors are encouraged to create a separate "Limitations" section in their paper.678

• The paper should point out any strong assumptions and how robust the results are to679

violations of these assumptions (e.g., independence assumptions, noiseless settings,680

model well-specification, asymptotic approximations only holding locally). The authors681

should reflect on how these assumptions might be violated in practice and what the682

implications would be.683

• The authors should reflect on the scope of the claims made, e.g., if the approach was684

only tested on a few datasets or with a few runs. In general, empirical results often685

depend on implicit assumptions, which should be articulated.686

• The authors should reflect on the factors that influence the performance of the approach.687

For example, a facial recognition algorithm may perform poorly when image resolution688

is low or images are taken in low lighting. Or a speech-to-text system might not be689

used reliably to provide closed captions for online lectures because it fails to handle690

technical jargon.691

• The authors should discuss the computational efficiency of the proposed algorithms692

and how they scale with dataset size.693

• If applicable, the authors should discuss possible limitations of their approach to694

address problems of privacy and fairness.695

• While the authors might fear that complete honesty about limitations might be used by696

reviewers as grounds for rejection, a worse outcome might be that reviewers discover697

limitations that aren’t acknowledged in the paper. The authors should use their best698

judgment and recognize that individual actions in favor of transparency play an impor-699

tant role in developing norms that preserve the integrity of the community. Reviewers700

will be specifically instructed to not penalize honesty concerning limitations.701

3. Theory assumptions and proofs702

Question: For each theoretical result, does the paper provide the full set of assumptions and703

a complete (and correct) proof?704

Answer: [Yes]705

29

Justification: One theorem is stated in Section 3.1 with a complete proof given in Ap-706

pendix D.707

Guidelines:708

• The answer NA means that the paper does not include theoretical results.709

• All the theorems, formulas, and proofs in the paper should be numbered and cross-710

referenced.711

• All assumptions should be clearly stated or referenced in the statement of any theorems.712

• The proofs can either appear in the main paper or the supplemental material, but if713

they appear in the supplemental material, the authors are encouraged to provide a short714

proof sketch to provide intuition.715

• Inversely, any informal proof provided in the core of the paper should be complemented716

by formal proofs provided in appendix or supplemental material.717

• Theorems and Lemmas that the proof relies upon should be properly referenced.718

4. Experimental result reproducibility719

Question: Does the paper fully disclose all the information needed to reproduce the main ex-720

perimental results of the paper to the extent that it affects the main claims and/or conclusions721

of the paper (regardless of whether the code and data are provided or not)?722

Answer: [Yes]723

Justification: Information required to replicate results is given across Appendices A and B.724

Guidelines:725

• The answer NA means that the paper does not include experiments.726

• If the paper includes experiments, a No answer to this question will not be perceived727

well by the reviewers: Making the paper reproducible is important, regardless of728

whether the code and data are provided or not.729

• If the contribution is a dataset and/or model, the authors should describe the steps taken730

to make their results reproducible or verifiable.731

• Depending on the contribution, reproducibility can be accomplished in various ways.732

For example, if the contribution is a novel architecture, describing the architecture fully733

might suffice, or if the contribution is a specific model and empirical evaluation, it may734

be necessary to either make it possible for others to replicate the model with the same735

dataset, or provide access to the model. In general. releasing code and data is often736

one good way to accomplish this, but reproducibility can also be provided via detailed737

instructions for how to replicate the results, access to a hosted model (e.g., in the case738

of a large language model), releasing of a model checkpoint, or other means that are739

appropriate to the research performed.740

• While NeurIPS does not require releasing code, the conference does require all submis-741

sions to provide some reasonable avenue for reproducibility, which may depend on the742

nature of the contribution. For example743

(a) If the contribution is primarily a new algorithm, the paper should make it clear how744

to reproduce that algorithm.745

(b) If the contribution is primarily a new model architecture, the paper should describe746

the architecture clearly and fully.747

(c) If the contribution is a new model (e.g., a large language model), then there should748

either be a way to access this model for reproducing the results or a way to reproduce749

the model (e.g., with an open-source dataset or instructions for how to construct750

the dataset).751

(d) We recognize that reproducibility may be tricky in some cases, in which case752

authors are welcome to describe the particular way they provide for reproducibility.753

In the case of closed-source models, it may be that access to the model is limited in754

some way (e.g., to registered users), but it should be possible for other researchers755

to have some path to reproducing or verifying the results.756

5. Open access to data and code757

Question: Does the paper provide open access to the data and code, with sufficient instruc-758

tions to faithfully reproduce the main experimental results, as described in supplemental759

material?760

30

Answer: [No]761

Justification: We intend to release code at a later date but the main repository is currently762

shared by several ongoing research projects.763

Guidelines:764

• The answer NA means that paper does not include experiments requiring code.765

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/766

public/guides/CodeSubmissionPolicy) for more details.767

• While we encourage the release of code and data, we understand that this might not be768

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not769

including code, unless this is central to the contribution (e.g., for a new open-source770

benchmark).771

• The instructions should contain the exact command and environment needed to run to772

reproduce the results. See the NeurIPS code and data submission guidelines (https:773

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.774

• The authors should provide instructions on data access and preparation, including how775

to access the raw data, preprocessed data, intermediate data, and generated data, etc.776

• The authors should provide scripts to reproduce all experimental results for the new777

proposed method and baselines. If only a subset of experiments are reproducible, they778

should state which ones are omitted from the script and why.779

• At submission time, to preserve anonymity, the authors should release anonymized780

versions (if applicable).781

• Providing as much information as possible in supplemental material (appended to the782

paper) is recommended, but including URLs to data and code is permitted.783

6. Experimental setting/details784

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-785

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the786

results?787

Answer: [Yes]788

Justification: Information required to replicate results is given across Appendices A and B.789

Guidelines:790

• The answer NA means that the paper does not include experiments.791

• The experimental setting should be presented in the core of the paper to a level of detail792

that is necessary to appreciate the results and make sense of them.793

• The full details can be provided either with the code, in appendix, or as supplemental794

material.795

7. Experiment statistical significance796

Question: Does the paper report error bars suitably and correctly defined or other appropriate797

information about the statistical significance of the experiments?798

Answer: [Yes]799

Justification: In all plots and tables standard error across 16 random seeds is given.800

Guidelines:801

• The answer NA means that the paper does not include experiments.802

• The authors should answer "Yes" if the results are accompanied by error bars, confi-803

dence intervals, or statistical significance tests, at least for the experiments that support804

the main claims of the paper.805

• The factors of variability that the error bars are capturing should be clearly stated (for806

example, train/test split, initialization, random drawing of some parameter, or overall807

run with given experimental conditions).808

• The method for calculating the error bars should be explained (closed form formula,809

call to a library function, bootstrap, etc.)810

• The assumptions made should be given (e.g., Normally distributed errors).811

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error812

of the mean.813

• It is OK to report 1-sigma error bars, but one should state it. The authors should814

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis815

of Normality of errors is not verified.816

• For asymmetric distributions, the authors should be careful not to show in tables or817

figures symmetric error bars that would yield results that are out of range (e.g. negative818

error rates).819

• If error bars are reported in tables or plots, The authors should explain in the text how820

they were calculated and reference the corresponding figures or tables in the text.821

8. Experiments compute resources822

Question: For each experiment, does the paper provide sufficient information on the com-823

puter resources (type of compute workers, memory, time of execution) needed to reproduce824

the experiments?825

Answer: [Yes]826

Justification: Compute use is detailed in Appendix H.827

Guidelines:828

• The answer NA means that the paper does not include experiments.829

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,830

or cloud provider, including relevant memory and storage.831

• The paper should provide the amount of compute required for each of the individual832

experimental runs as well as estimate the total compute.833

• The paper should disclose whether the full research project required more compute834

than the experiments reported in the paper (e.g., preliminary or failed experiments that835

didn’t make it into the paper).836

9. Code of ethics837

Question: Does the research conducted in the paper conform, in every respect, with the838

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?839

Answer: [Yes]840

Justification: There are no violdations of the code of ethics.841

Guidelines:842

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.843

• If the authors answer No, they should explain the special circumstances that require a844

deviation from the Code of Ethics.845

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-846

eration due to laws or regulations in their jurisdiction).847

10. Broader impacts848

Question: Does the paper discuss both potential positive societal impacts and negative849

societal impacts of the work performed?850

Answer: [Yes]851

Justification: An impact statement is given in Appendix F.852

Guidelines:853

• The answer NA means that there is no societal impact of the work performed.854

• If the authors answer NA or No, they should explain why their work has no societal855

impact or why the paper does not address societal impact.856

• Examples of negative societal impacts include potential malicious or unintended uses857

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations858

(e.g., deployment of technologies that could make decisions that unfairly impact specific859

groups), privacy considerations, and security considerations.860

32

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied861

to particular applications, let alone deployments. However, if there is a direct path to862

any negative applications, the authors should point it out. For example, it is legitimate863

to point out that an improvement in the quality of generative models could be used to864

generate deepfakes for disinformation. On the other hand, it is not needed to point out865

that a generic algorithm for optimizing neural networks could enable people to train866

models that generate Deepfakes faster.867

• The authors should consider possible harms that could arise when the technology is868

being used as intended and functioning correctly, harms that could arise when the869

technology is being used as intended but gives incorrect results, and harms following870

from (intentional or unintentional) misuse of the technology.871

• If there are negative societal impacts, the authors could also discuss possible mitigation872

strategies (e.g., gated release of models, providing defenses in addition to attacks,873

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from874

feedback over time, improving the efficiency and accessibility of ML).875

11. Safeguards876

Question: Does the paper describe safeguards that have been put in place for responsible877

release of data or models that have a high risk for misuse (e.g., pretrained language models,878

image generators, or scraped datasets)?879

Answer: [NA] .880

Justification: There are no such risks.881

Guidelines:882

• The answer NA means that the paper poses no such risks.883

• Released models that have a high risk for misuse or dual-use should be released with884

necessary safeguards to allow for controlled use of the model, for example by requiring885

that users adhere to usage guidelines or restrictions to access the model or implementing886

safety filters.887

• Datasets that have been scraped from the Internet could pose safety risks. The authors888

should describe how they avoided releasing unsafe images.889

• We recognize that providing effective safeguards is challenging, and many papers do890

not require this, but we encourage authors to take this into account and make a best891

faith effort.892

12. Licenses for existing assets893

Question: Are the creators or original owners of assets (e.g., code, data, models), used in894

the paper, properly credited and are the license and terms of use explicitly mentioned and895

properly respected?896

Answer: [Yes]897

Justification: Existing asset usage is detailed in Appendix G.898

Guidelines:899

• The answer NA means that the paper does not use existing assets.900

• The authors should cite the original paper that produced the code package or dataset.901

• The authors should state which version of the asset is used and, if possible, include a902

URL.903

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.904

• For scraped data from a particular source (e.g., website), the copyright and terms of905

service of that source should be provided.906

• If assets are released, the license, copyright information, and terms of use in the package907

should be provided. For popular datasets, paperswithcode.com/datasets has908

curated licenses for some datasets. Their licensing guide can help determine the license909

of a dataset.910

• For existing datasets that are re-packaged, both the original license and the license of911

the derived asset (if it has changed) should be provided.912

33

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to913

the asset’s creators.914

13. New assets915

Question: Are new assets introduced in the paper well documented and is the documentation916

provided alongside the assets?917

Answer: [NA]918

Justification: We are not releasing any assets as part of the paper.919

Guidelines:920

• The answer NA means that the paper does not release new assets.921

• Researchers should communicate the details of the dataset/code/model as part of their922

submissions via structured templates. This includes details about training, license,923

limitations, etc.924

• The paper should discuss whether and how consent was obtained from people whose925

asset is used.926

• At submission time, remember to anonymize your assets (if applicable). You can either927

create an anonymized URL or include an anonymized zip file.928

14. Crowdsourcing and research with human subjects929

Question: For crowdsourcing experiments and research with human subjects, does the paper930

include the full text of instructions given to participants and screenshots, if applicable, as931

well as details about compensation (if any)?932

Answer: [NA]933

Justification: We do not conduct experiments on human subjects or do any crowdsourcing.934

Guidelines:935

• The answer NA means that the paper does not involve crowdsourcing nor research with936

human subjects.937

• Including this information in the supplemental material is fine, but if the main contribu-938

tion of the paper involves human subjects, then as much detail as possible should be939

included in the main paper.940

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,941

or other labor should be paid at least the minimum wage in the country of the data942

collector.943

15. Institutional review board (IRB) approvals or equivalent for research with human944

subjects945

Question: Does the paper describe potential risks incurred by study participants, whether946

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)947

approvals (or an equivalent approval/review based on the requirements of your country or948

institution) were obtained?949

Answer: [NA]950

Justification: We do not conduct experiments on human subjects or do any crowdsourcing.951

Guidelines:952

• The answer NA means that the paper does not involve crowdsourcing nor research with953

human subjects.954

• Depending on the country in which research is conducted, IRB approval (or equivalent)955

may be required for any human subjects research. If you obtained IRB approval, you956

should clearly state this in the paper.957

• We recognize that the procedures for this may vary significantly between institutions958

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the959

guidelines for their institution.960

• For initial submissions, do not include any information that would break anonymity (if961

applicable), such as the institution conducting the review.962

16. Declaration of LLM usage963

34

Question: Does the paper describe the usage of LLMs if it is an important, original, or964

non-standard component of the core methods in this research? Note that if the LLM is used965

only for writing, editing, or formatting purposes and does not impact the core methodology,966

scientific rigorousness, or originality of the research, declaration is not required.967

Answer: [NA]968

Justification: Our methods do not involve LLMs.969

Guidelines:970

• The answer NA means that the core method development in this research does not971

involve LLMs as any important, original, or non-standard components.972

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/973

LLM) for what should or should not be described.974

35

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work and Background
	Demonstration-Based RL
	Preference-Based RL
	Combining Demonstrations and Preference Feedback
	Learning From Other Types of Feedback

	Method
	Reward Rational Partial Orderings
	LEOPARD

	Experiments
	Experimental Setup
	LEOPARD vs Baselines
	Learning from a Mixture of Feedback Types

	Discussion
	Generality of RRPO
	Limitations and Future Work

	Conclusion
	Algorithm Details
	Reward Model Training
	Loss Normalisation Across Batch
	Stopping Conditions
	Smoothness Loss

	Synthetic Feedback
	Preferences
	Demonstrations

	Experiment and Environment Details
	Half Cheetah
	Cliff Walking
	Lunar Lander
	Ant

	Supplementary Results
	Main Proofs
	Alternative RRC-Derived Approaches
	Theoretical Properties
	Chapter Proofs and Derivations
	Reward Bounds
	Loss Gradients

	Impact Statement
	Use of Existing Assets
	Use of Compute

