© © N O O A~ W N =

Learning from Preferences and Mixed Demonstrations
in General Settings

Anonymous Author(s)
Affiliation
Address

email

Abstract

Reinforcement learning is a general method for learning in sequential settings,
but it can often be difficult to specify a good reward function when the task is
complex. In these cases, preference feedback or expert demonstrations can be
used instead. However, existing approaches utilising both together are either
ad-hoc or rely on domain-specific properties. Building upon previous work, we
develop a mathematical framework for learning from human data and based on
this we introduce LEOPARD: Learning Estimated Objectives from Preferences
And Ranked Demonstrations. LEOPARD can simultaneously learn from a broad
range of data, including negative/failed demonstrations, to effectively learn reward
functions in general domains. It does this by modelling the human feedback as
reward-rational partial orderings over available trajectories. We find that when a
limited amount of preference and demonstration feedback is available, LEOPARD
outperforms baselines by a significant margin. Furthermore, we use LEOPARD to
investigate learning from many types of feedback compared to just a single one,
and find that a combination of feedback types is often beneficial.

1 Introduction

Reinforcement Learning (RL) is a branch of machine learning where an agent learns a behavioural
policy by interacting with an environment and receiving rewards. These rewards are determined by
a reward function that mathematically encodes the objective of the agent. For real-world practical
applications of RL, such as robotics or Large Language Model (LLM) finetuning, the specification of
the reward function poses a difficult challenge. Two popular RL subfields try to solve this problem by
leveraging human data in order to learn what the reward function should be, typically by optimising a
parameterised function such as a neural network.

Inverse RL (IRL) utilises human-provided demonstrations of the correct behaviour and tries to learn a
reward function for which only the demonstrations, or similar behaviour, are near-optimal (Ng et al.,
2000; |Ziebart et al., 2008; [Wulfmeier et al,2015)). RL from Human Feedback (RLHF) presents the
human with pairs of agent—behaviour examples. For each pair, the human decides which piece of
behaviour is better, and the reward function is trained to re-produce this preference (Christiano et al.
2017). Both methods iterate between reward model and agent training. For more details on IRL
and RLHF, see Sections [2.T]and [2.2] respectively. For many applications it might be possible and
desirable to generate and learn from both of these feedback types, rather than committing to a single
one. The current standard approach is to first train on demonstrations and then finetune the resulting
model with preferences (Ibarz et al., 2018}; [Palan et al.l |2019; B1yik et al., 2022). Some methods
have been proposed to more effectively leverage the information encoded in both the preferences and
demonstrations, but this is still largely ad-hoc or specific to certain domains (Krasheninnikov et al.|
2021; Mehta & Loseyl, 2023; Brown et al., 2019). We discuss these methods further in Section

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

64

'lStep la:
Teacher provides demonstrations of
good and bad behaviour, 7, 7,.

Step 1b: -
Teacher samples agent's attempts and 1 Step 3:
provides pairwise preference feedback. Train agent via RL.
Go to step 1b and repeat.
777777777 Environment
) : Step 2: .
Tp 3Tp aees : Feedback is used to train parameters i :
‘rn(l), ‘r"m, .. Mixed H for a reward function. ; ;

Demonstrations \ H

o Ty j LEOPARD c,D RRPO Loss Minimisation i* Reward Model <
P : Encoding) —log Prrro(CD,6) | Ry(s,a)

Human / :

Teacher Preferences / r

a
—_——
Sample 74, 7 H
Dagent <

| T Agent ;
Agent Trajectories ; e -

Figure 1: High-level overview of the LEOPARD algorithm. A teacher provides ranked examples
of positive and negative demonstrations, as well as providing preference feedback over the agent’s
behaviour. This is used to train a reward model that the agent optimises via standard RL. The process
is iterative. The LEOPARD encoding is given in Equations @ and , and Prrpo 1s detailed in

Equation ().

In an attempt to solve this problem for general domains—and for many types of feedback including
preferences and demonstrations—Jeon et al.| (2020) propose Reward-Rational Choice (RRC). This
frames the human feedback data as Boltzmann-Rational choices according to a probability distribution
which has been induced by some unknown true reward function. Learning the reward function can
then be cast as a supervised learning problem where we try to replicate these choices. Unfortunately,
RRC is often difficult to implement in practice. For example, in the case of demonstration feedback,
they treat it as a choice over all possible behaviours. This space is incredibly difficult to optimise over
if it is very large and our reward function is non-linear, as is often the case for practical problems.
Additionally, it cannot encode multiple selections for the ‘optimal choice’, nor can it encode more
complex relationships between behaviours such as rankings or dis-preference.

To address these limitations, we introduce a new mathematical framework which frames the human
feedback as reward-rational partial orderings over trajectories (RRPO). These partial orderings are
then encoded by sets of Boltzmann-Rational choices, analogous to the Plackett-Luce ranking model
(Marden, [1996). From this we derive LEOPARD: Learning Estimated Objectives from Preferences
And Ranked Demonstrations, which is outlined in Figure[T] In addition to preferences and ranked
(positive) demonstrations, LEOPARD can also learn from ranked negative/failed demonstrations.
Preferences are interpreted as they are in RRC, but positive demonstrations are interpreted as
being preferred to the agent’s current and future behaviour, or the opposite in the case of negative
demonstrations. Demonstration rankings, if available, are also cleanly translated into partial orderings.

LEOPARD can utilise a wide range of feedback types simultaneously, making it effective at learn-
ing useful reward functions in general environments. We find that when preference and positive
demonstration feedback is available, it outperforms the standard baseline of performing DeepIRL on
the demonstration data, and then finetuning using preferences. It also beats Adversarial Imitation
Learning with Preferences (AILP), another preference and positive demonstration learning algorithm.
Additionally, when only positive demonstration feedback is available, LEOPARD outperforms or
matches DeepIRL and AILP due to its ability to exploit ranking data. Finally, we use LEOPARD to
investigate learning from a variety of feedback types, compared to learning from a single one.

In summary, we make the following contributions:
1. We introduce RRPO, a practical and general framework for interpreting human feedback.

2. We introduce LEOPARD, an effective and scalable method for learning from preferences,
and positive/negative ranked demonstrations.

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86

87
88
89

90
91
92
93
94
95

96
97
98
99
100
101
102
103

104

105
106
107
108
109
110
111
112

3. We investigate learning from many types of feedback vs focussing on only a single one.

2 Related Work and Background

2.1 Demonstration-Based RL

A popular paradigm for learning from demonstrations is Inverse RL (IRL), where the demonstrations
are used to learn a reward function (Ng et al., 2000). This overcomes many issues of behavioural
cloning, which aims to directly mimic the given demonstrations (Bratko et al.,|1995)). Many current
methods for IRL are based on the principle of maximum (causal) entropy (MaxEnt; MCE), established
by [Ziebart et al.| (2008}, 2010). This learns a reward function that captures the fact that the human
demonstrations are optimal, but beyond this, it tries to have as much uncertainty about the reward
dynamics as possible. Assuming a deterministic environment simplifies MCE into MaxEnt, and
this assumption has been used to extend this class of methods into settings with high-dimensional
observation spaces, e.g. DeepIRL (Wulfmeier et al.,[2015)). Advanced extensions of DeepIRL have
been proposed, leveraging methods such as importance sampling (Finn et al., 2016), or GAN-style
architectures (Fu et al.,2018)). For a more comprehensive introduction to MCE and its derivatives, see
Gleave & Toyer] (2022). Our proposed algorithm does not reduce to a MaxEnt-derived method in the
demonstration only case, but is still inspired by the principle and is of a similar form. Bayesian meth-
ods in IRL have also been explored (Ramachandran & Amir, [2007; [Brown et al., 2020)), highlighting
how a probabilistic framing of the inverse learning problem can be useful.

2.2 Preference-Based RL

RLHF (Christiano et al.,|2017)) uses preferences—pairwise comparisons of agent behaviour—to learn
a reward function for high-dimensional RL environments via the Bradley-Terry preference model
(Bradley & Terry, |1952):

exp(Ro(7a))

PRLHF(TH. - Tb|9) = exp(RQ(Ta)) + eXp(RQ(Tb))’

ey

where Ry is a parameterised reward function and 7, and 73, are trajectory—fragmentﬂ A 3-step
iterative procedure is used: sampling of new comparisons of recent agent behaviour, fitting the reward
model to the comparison dataset, and training of the policy on the learnt reward function. The reward
model is fitted by minimising the average negative log-likelihood of the preference model across all
pairs of trajectory-fragments. |Wirth et al.| (2017) provides a survey of other preference based RL
methods prior to RLHF.

Recently, RLHF has been used for instruction and safety-finetuning large language models (LLMs)
into chat systems (Ouyang et al., [2022} |Bai et al., 2022} [Bahrini et al., 2023)). These are referred to
as ‘PPO-based’ to disambiguate them from other methods which finetune LLMs from preferences
without learning a reward function, such as DPO (Rafailov et al., 2024). Often the LLM is trained on
demonstrations via behavioural cloning before PPO/DPO. Concerns for the safety, reliability, and
misuse of LLMs has led to a plethora of research on how best to utilise human preferences/rankings
to train these models (Cao et al., 2024; (Chaudhari et al.,2024)). Despite this, there is a broad lack of
principled use of other feedback types for LLM safety and finetuning.

2.3 Combining Demonstrations and Preference Feedback

As mentioned in the case for LLMs, demonstration and preference feedback are typically combined by
pre-training on the demonstration data using IRL/behavioural-cloning methods, and then finetuning
the resulting reward model on preferences using RLHF (Ibarz et al.l 2018 |Palan et al., [2019; Biy1ik
et al.| 2022)). This works well in practice, but it is unclear how to add in further reward information,
such as negative demonstrations or the relative rankings of demonstrations. Additionally, information
that is present only in the demonstrations might be forgotten or never used, especially if strong
regularisation is applied to the reward model, or the RL policy does not sufficiently explore when
training on the demonstrations.

!Contiguous subsequences of trajectories.

113
114
115
116
117
118
119
120
121
122
123
124
125

126

127
128
129

131
132
133
134

135
136
137
138
139
140
141

142
143
144
145
146
147

148

149
150
151
152
153
154
155

156

157
158

More sophisticated combinations of preferences and demonstrations have been considered. [Krashenin,
nikov et al.|(2021) sampled trajectories according to reward functions optimal for the preferences, and
applied MCE-IRL. This approach is computationally expensive and limited to linear reward functions
over tabular MDPs. Mehta & Losey| (2023) combine preferences and demonstrations alongside
corrections (Bajcsy et al.| [2017), but leverage domain-specific properties of robotics and encode
their demonstrations using trajectory-space perturbations. This method is not applicable outside of
robotics, and loses information about how demonstrations are better than most of trajectory-space, not
just better than nearby trajectories. [Brown et al.|(2019) and Brown & Niekum| (2019) both subsample
ranked demonstrations to produce preferences for training the reward model, giving good results
but still losing information about how those demonstrations might be preferred to other trajectories.
Taranovic et al.[(2022) combines a novel preference loss with adversarial imitation learning. This
is the closest to our work, and so we test against it as a baseline. We also note that none of these
methods can be easily extended to other types of feedback.

2.4 Learning From Other Types of Feedback

Other types of feedback have been explored in isolation, such as negative demonstrations (Xie et al.,
2019)|improvements (Jain et al.,[2015), off-signals (Hadfield-Menell et al., 2017a)), natural language
(Matuszek et al.,[2012)), proxy reward functions (Hadfield-Menell et al.| 2017b)), rankings (Myers
et al.,2022)), scalar feedback (Knox & Stonel [2008; |Wilde et al.,2021)), and even the initial state (Shah
et al.}2019). Of these, Myers et al.| (2022)) is most similar to our work, as they use a Plackett-Luce
model to to interpret rankings to train a reward model. We differ by considering many more types
of feedback, showing how they can also be interpreted as orderings, and then use this to learn from
preferences and mixed demonstrations.

Jeon et al.| (2020) interpret many of types of feedback as part of an overarching formalism, reward-
rational (implicit) choice (RRC), providing a mathematical theory for reward learning that combines
different types of feedback. RRC interprets each piece of human feedback as a Boltzmann-Rational
choice C' from some (possibly implicit) set of choices D with rationality coefficient 8. A grounding
function, v, maps choices to distributions over trajectories. The expected reward over these distribu-
tions gives the value for each choice under the Boltzmann-Rational model, according to some reward
function Ry. For a deterministic ¢ simplifies to:

Prre(C|D, 0) = exp(BRo(¥(C))) o

B Zc/eb exp(BRe((C")))

Many of the formalisms of feedback in RRC, such as demonstrations, are not generally directly
applicable as they naively require a large—possibly infinite—set of choices. Practical applications
may rely on finite state-spaces, linear reward functions, unbounded surrogate loss functions, or
sampling-based methods, each with their own pros and cons. We take inspiration from RRC, but
show that formulating feedback as orderings leads to some more natural interpretations for mixed
demonstrations without the need for such additional methods.

3 Method

We propose LEOPARD, a method for learning from preferences, positive demonstrations, negative
demonstrations, and partial rankings over the given demonstrations. It is practical, flexible, and
applicable to many environments. The aim is that a practitioner can give any and all feedback possible
to the learning algorithm, and this feedback can be continuously learnt from and added to. First, we
develop a general mathematical framework, reward-rational partial ordering (RRPO), extending that
of deterministic reward-rational choice (RRC, Jeon et al.|(2020)). Then, we apply this to the specific
case of learning from preferences and mixed demonstrations.

3.1 Reward Rational Partial Orderings

To ensure the general applicability of our theoretical formalisms, we assume that only the trajectories
our reward optimisation procedure has access to are provided directly. These could be generated

They refer to these as ‘failed demonstrations’.

159
160
161
162
163

164
165
166
167

169
170
171

172
173
174
175

176
177
178
179
180

181
182
183
184

185
186
187
188
189

190

191
192
193
194

195
196
197
198
199

200
201

during the agent’s training or provided by the human in the case of demonstrations. This is assumed
as sensible/relevant trajectories could sit on an unknown manifold in (a high-dimensional) observation
space, crippling random-sampling based approachesE] We’d expect that reward functions capturing
complex desirable behaviour would not be linear, but that they could at least be approximated
sufficiently by some differentiable parameterised function.

Our key insight is to interpret human feedback as a set of Boltzmann-Rational choices encoding
strict partial orderings over the trajectory-fragments we have direct access to, where a fragment
is a contiguous subsequence of a trajectory. For each item in the partial order, we ‘choose’ that
element out of a set containing itself and all elements strictly less than it. This is analogous to the
Plackett-Luce ranking model (Marden| |1996), and is equivalent when the ordering can be viewed as
a total ordering embedded in some larger set. Similar to RRC, each partial ordering is assumed to
be independent given the reward function. Since a partial order may encode a single element being
greater than all others with no other relations, this generalises deterministic choices of RRC.

Formally, let D = {7;}, be the set of all possible fragments of trajectories we have access to,
C = {<,}; the set of human feedback, and Ry our non-linear reward function parameterised by 6.
Note that <; is used to denote some partial ordering . We define the likelihood of § under RRPO as
follows:

PreoCD,0) =[] P(<;Im), 3
(1i,<;)€EDXC
eBiRo(T:)

P(<j |75) = eBiRa(Ti) + Z‘rkeD 1Tk<JTieﬂjR9(Tk)v

“

where 3; is the rationality coefficient for feedback j. 3s should be equal if the type and source of
feedback is the same, e.g. two pairwise preferences given by the same person. Note that when the
partial orderings are sparse, many terms of the product become unity and can be ignored. We perform
gradient descent on the negative-log of Equation (@) combined with a regularising term, giving the
loss function below:

Lrrpo(0) = — log Prreo(C|D, 0) + Lsmoon (D, 0). (5)

The smoothing term penalises the first derivative of the reward function over trajectories and leads
to better shaped reward functions that are easier for the RL agent to learn from. It is inspired by
previous work (Finn et al.,|2016), and empirically we found it works well. Specific details are given

in Section[A.1.3l

A nice property of Lrrpo is that when minimised it faithfully represents the partial orderings. More
precisely, upper bounds on the loss give rise to lower bounds on all reward differences between
fragments that are related by some partial ordering. This is stated formally and proved in Theorem[D.T]
of Appendix D] As a special case, if the loss is below log 2 then all reward differences must have the
correct sign, i.e. the reward function induces an ordering compatible with all the partial orderings.

3.2 LEOPARD

Whilst we can apply the framework above to many types of feedback, we now focus on the case of
combining preferences with mixed demonstrations. By mixed demonstrations, we mean ones which
may be positive, negative and, within these two groups, we may have access to the relative rankings
of each demonstration.

A pairwise preference of 7, > 73 is simply interpreted as a partial ordering with only 7, < Taﬂ Posi-
tive demonstrations are interpreted as a single partial ordering that prefers all positive demonstrations
to any agent trajectories and encodes the relative rankings of the positive demonstrations themselves.
Negative demonstrations are interpreted likewise, but these partial orderings prefer agent trajectories
over the negative demonstrations.

Formally, let Dpos, <pos, and Dpeg, <peg be the sets of trajectories and partial orderings encoding
rankings from positive and negative demonstrations, respectively. Let Dygene be the set of trajectories

3For example, consider the space of all images vs ones which are plausible 3D scenes.
“By interpreting each preference as its own partial ordering, we avoid potential issues of symmetry and
non-transitivity.

202
203
204

205

206
207
208
209

210

211

212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229

230
231
232
233

sampled from the agent’s behaviour. Let P = { (7, 75); }: be the set of ordered pairs of trajectory-
fragments in which the first is preferred, and [?y our parameterised reward function. Then we optimise
the loss function, Equation (5)), with{

C= {<Demo} U C'Prefa (6)
D= U{DPOS7 Dneg7 Dagenta Dpref}a @)

where the demonstration and preference partial orderings are given by:

<pemo= <pos U <peg U {Tn < To < Tp,
|(7-n7 Tas Tp) S Dneg X Dagent X Dpos};
Cpret = {{mp < Ta}|(Ta, ™) € P},

Dpref = U {Tay Tb}'

(Ta)Tb)ep

Like in the case for RLHF, our dependencies on agent behaviour means we need to iterate between
sampling new preferences, optimising for Equation , and training the agent’s policyE] Our algorithm
is illustrated in Figure I and the full training procedure is given in Algorithm[I]in Appendix [A] along
with details on reward model training.

4 Experiments

4.1 Experimental Setup

We test our method on several environments against common baselines in order to evaluate its perfor-
mance across a broad variety of domains. Additionally, we also vary the proportions and amounts
of different types of feedback used for learning to investigate the effects of this on performance.
In order to reduce the cost of testing our method and facilitate hyperparameter tuning with many
repetitions, we synthetically generate preferences, demonstrations, and their rankings. We generate
preferences by sampling using the sigmoid of the reward difference between the two fragments under
comparison as the probability of preference. We generate demonstrations by training an agent on
the ground truth reward function and then sampling its trajectories, with their ground truth reward
determining their relative rankings. For further details, see Section[A.2] For each combination of
environment, algorithm, and amount of feedback, we run 16 random seeds and report the average
results with 1-o standard error. Standard errors are computed via the typical method of dividing the
empirical variance by the square root of the sample size.

We evaluate on four environments from the Gymnasium (Towers et al.,[2024) test suite: Half Cheetah
(MuJoCo), Cliff Walking (Toy Text), Lunar Lander (Box2D), and Ant (MuJoCo). This covers a range
of continuous and discrete observation and action spaces, reward sparsities, and overall complexities.
We require a finite horizon to reduce complications from the preference and demonstration learning, so
some environments required modification. These and other environment details and hyperparameters
are given in Appendix [B]

In order to get a good number of preferences and demonstrations to test with, we see how many
preferences or positive demonstrations LEOPARD needs to get good performance in the single
feedback type case, and then use a normalised weighted combination of these[] This allows us to be
confident there is enough feedback for learning, but not so much that it’s too easy.

234

235
236
237

238
239
240
241
242
243
244

245
246
247
248

6000

500 1
5000

4000

—— LEOPARD
—— DeeplRL then RLHF, best
—— AILP, best

3000 5004

2000
—1000 1

Mean Ground Truth Reward
Mean Ground Truth Reward

1000

~1500 —— LEOPARD
/ —— DeeplRL then RLHF, best
—— AILP, best

—1000 — T T T T T T T ~2000 +— T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Iteration Iteration

(a) Half Cheetah, ndemos = 4, Mprets = 256 (b) Cliff Walking, ngemos = 2, Nprets = 64

0 3000

- = LEOPARD
/ —— DeeplRL then RLHF, best
-=500 —— AILP, best

e —— e 2000 4

-1000

1000 1

-2000

Mean Ground Truth Reward
L
&
g
g
Mean Ground Truth Reward

~2500 ~ . 7
—— LEOPARD 7
3000 —— DeeplRL then RLHF, best —1000 1
B — AILP, best

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Iteration Iteration

(c) Lunar Lander, ngemos = 4, Nprets = 256 (d) Ant, Ndemos = 4, Mprers = 512

Figure 2: Comparison of LEOPARD with the baselines of AILP and DeepIRL followed by RLHF,
when positive demonstrations and preferences are available. The lines denote the mean of the
ground truth reward function, with shaded standard errors across 16 random seeds, against algorithm
iterations—alternations between optimising the reward model and the agent. Solid lines are smoothed
means for clarity, dashed lines give raw values. A breakdown of the performance of the baseline
methods for different reward model training epochs per iteration is given in Figures and

4.2 LEOPARD vs Baselines

In Figure Qwe compare LEOPARD against Adversarial Imitation Learning with Preferences (AILP,
Taranovic et al. (ZOZZ)ﬂ and a standard pipeline of training on demonstrations with DeepIRL and
then preference finetuning with RLHF.

We see that without exception LEOPARD outperforms both baselines by a considerable margin.
Since LEOPARD can utilise all the data all the time, preferences can be used to aid early exploration,
and demonstrations can continue to be trained against even in the latter stages. Rankings over
demonstrations provide an additional information source the baselines are unable to make use
of. Additionally, as it trains the reward model to rough convergence each iteration it allows for
adequate learning without over-fitting, and does not require tuning a ‘reward model training epochs’
hyperparameter.

When training the reward model with LEOPARD, we keep training until the loss has loosely converged
(see Section[A.T.2]for details). This is not possible with DeepIRL as the maximum-entropy ‘loss’
function is not bounded from below, thus the number of training epochs for the reward model is fixed.
We try a variety of values and compare against the best, for a full breakdown see Figure[/| For AILP,

5 An exception to this formulation is used for Cliffwalking, where agent trajectories can easily be as bad as
negative demonstrations. The demo partial rankings are in this case split, one preferring positive demonstrations
to agent trajectories, and another preferring positive to negative demonstrations.

S1f there were an existing set of preferences and agent trajectories, the method could be applied offline by
simply optimising for Equation (5).

"E.g. 50% of the maximum number of preferences + 50% of the maximum number of positive demonstrations.

8For our implementation of AILP we only use the relevant loss functions and disregard the extraneous parts
of the method, namely initially optimising the policy to maximise visited state entropy and sampling preferences
according to maximum entropy. We use the same RL algorithms as LEOPARD uses, as detailed in Appendix[A]
Overall this enables a fair comparison with LEOPARD, and we note that AILP’s additional tweaks could be
symmetrically applied to LEOPARD if desired.

249
250

251
252
253
254

255
256

257
258
259

260

261
262
263
264

265

266

267
268
269
270
271
272

we try using both our dynamic stopping and a fixed number of training epochs again comparing
against the best, see Figure[8]in Appendix [C|for a breakdown of these results.

Whilst not the focus of our algorithm, we additionally show that with only positive demonstrations
LEOPARD either beats or performs similarly to the baselines. This is shown in Appendix [C Figure[6]
with the breakdowns of DeepIRL and AILP’s results for different numbers of training epochs given
in Figures[9)and [I0] respectively.

Table [2] in Appendix [C| gives a numerical breakdown of final scores for each algorithm in each
environment, including the different settings of AILP and DeepIRL.

Note that for the analysis of the Cliff Walking environment, outliers have been removed These were
due to excessively large negative rewards from walking off the cliff many times before learning this
was bad. A detailed breakdown is given in Appendix [C] Table 4]

4.3 Learning from a Mixture of Feedback Types

6000 1000+
5000 1 500 -

4000 1

30001
~500 1

2000
512 Prefs ~10004 128 Prefs

—— 256 Prefs, 4 Pos Demos / —— 64 Prefs, 2 Pos Demos

—— 256 Prefs, 2 Pos Demos, 2 Neg Demos —— 64 Prefs, 1 Pos Demo, 1 Neg Demo
7 —— 8 Pos Demos ~1500 1 —— 4 Pos Demos

0 —— 4 Pos Demos, 4 Neg Demos —— 2 Pos Demos, 2 Neg Demos

Mean Ground Truth Reward
Mean Ground Truth Reward

1000 1

1 2 3 4 5 6 7 8 1 2 3 3 5 6 7 8
Iteration Iteration

(a) Half Cheetah (b) Cliff Walking

o

1024 Prefs

—— 512 Prefs, 4 Pos Demos
—— 512 Prefs, 2 Pos Demos, 2 Neg Demos /
—— 8 Pos Demos /

2000 —— 4 Pos Demos, 4 Neg Demos

3000 1

|
o
S
3

|
~
15
3

1000

—4004
512 Prefs

—— 256 Prefs, 4 Pos Demos.

—— 256 Prefs, 2 Pos Demos, 2 Neg Demos Z

—— 8 Pos Demos _10004 7"

—— 4 Pos Demos, 4 Neg Demos

Mean Ground Truth Reward
&
g
5

Mean Ground Truth Reward

|
@
S
3

—600{ 7

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Iteration Iteration

(c) Lunar Lander (d) Ant

Figure 3: Comparison of LEOPARD’s performance when varying types of feedback are available.
The lines denote the mean of the ground truth reward function, with shaded standard errors across 16
random seeds, against algorithm iterations—alternations between optimising the reward model and
the agent. Solid lines are smoothed means for clarity, dashed lines give raw values.

In Figure 3| we investigate the performance of LEOPARD when learning from a variety of different
feedback proportions. Final scores are detailed in Appendix[C] Table[3] The results are somewhat
mixed and noisy, but we see that preferences combined with positive demonstrations consistently
performs well.

5 Discussion

5.1 Generality of RRPO

Reward-rational preference orderings, the basis of LEOPARD, are a generalisation of the deterministic
reward-rational choice framework (Jeon et al., [2020), but offers several distinct advantages. Recall
that RRC frames the human feedback as a choice over some set, and then maps elements of that set
into distributions over trajectories. Instead, RRPO maps the human feedback directly into a set of
partial orderings. These two approaches have differing flexibility, and different feedback types might
lend themselves more readily to one or the other. However, as RRPO is explicit in its construction

273
274

275
276
277
278
279
280
281
282
283
284

285

286
287
288
289
290
291

292
293
294

296

297
298
299
300
301
302

303

304
305
306
307
308
309
310
311

that it operates only over directly-accessible trajectories, it becomes much more general in a practical
sense.

Furthermore, RRPO does not assume any particular properties about the space of reward functions,
nor the space of trajectories. In general, one can think of optimal trajectories as a small part of
some feasible-trajectory manifold, which itself is a small part in a larger trajectory feature space.
Methods which rely on domain-specific properties of these spaces, such as linearity or computable
perturbations, inherently limit themselves from being more broadly applied. For example, Mehta &
Losey| (2023)) leverages inverse kinematics models to interpret demonstration feedback (alongside
preferences) in robotics domains. Whilst effective for this application, it renders the broader method
impossible outside of robotics. RRPO and LEOPARD on the other hand, could be easily applied to
environments very different to the ones we have tested on. For example, they could be used for Large
Language Model (LLM) finetuning.

5.2 Limitations and Future Work

Whilst we have tested LEOPARD on a range of environments with differently structured observation
and action spaces, a more comprehensive study would investigate an even wider range of tasks, such
as more complex robotics, Atari games, and even LLM finetuning. Furthermore, with additional
resources, it would be instructive to more closely interrogate how performance depends on the
proportions of different feedback used for learning. For instance, future work could vary the feedback
proportions with greater precision and then fit and analyse simple predictive models on this.

Additionally, there are other methods that seek to learn from both preference and demonstration data,
or even negative/failed demonstrations, as detailed in Sections [2.3]and [2.4] Whilst these are less
general in application than LEOPARD; a comparison of performance would still be interesting. We
have chosen the baselines of AILP and ‘DeepIRL followed by RLHF’ to test against as they have
similar simplicity and generality to our own method, as well as the latter being common practice.

We introduce RRPO as a theoretical backdrop for LEOPARD, however our investigation of its
properties and encodings for many types of feedback is limited. Due to its similarity to RRC and the
Placket-Luce choice model, we do not see this as a critical failing, as it will inherit many properties
from those models, and deterministic RRC formulations can be trivially encoded under RRPO.
Nevertheless, there are likely important theoretical properties and applications of RRPO that are of
relevance to reward learning that ought to be investigated.

6 Conclusion

We have shown that LEOPARD can perform effective reward inference, learning from many sources
of reward information simultaneously. It is more effective than standard baselines for learning
from preferences and demonstrations, and can additionally incorporate more information such as
demonstration rankings and negative/failed demonstrations. We have also investigated how many
sources of reward information could be more beneficial than relying on only large amounts of a single
type. The generality and simplicity of our method makes it very powerful and applicable to important
current problems such as high dimensional robotics, and LLM finetuning. Furthermore, it opens the
door to exploring the use of a much wider range of feedback in many RL settings.

312

314
315

316
317
318

319
320

321
322

324
325
326

327
328

329
330

331

333

334
335

336
337

338
339

340
341
342

343
344

346
347
348
349
350
351

352
353

354
355

356
357

References

Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., and
Pasehvar, M. Chatgpt: Applications, opportunities, and threats. In 2023 Systems and Information
Engineering Design Symposium (SIEDS), pp. 274-279. IEEE, 2023.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D.,
Henighan, T., et al. Training a helpful and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

Bajcsy, A., Losey, D. P, O’malley, M. K., and Dragan, A. D. Learning robot objectives from physical
human interaction. In Conference on robot learning, pp. 217-226. PMLR, 2017.

Biyik, E., Losey, D. P., Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D. Learning reward
functions from diverse sources of human feedback: Optimally integrating demonstrations and
preferences. The International Journal of Robotics Research, 41(1):45-67, 2022.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

Bradley, R. A. and Terry, M. E. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324-345, 1952.

Bratko, I., Urbanci¢, T., and Sammut, C. Behavioural cloning: phenomena, results and problems.
IFAC Proceedings Volumes, 28(21):143-149, 1995.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrapolating beyond suboptimal demonstrations
via inverse reinforcement learning from observations. In International conference on machine
learning, pp. 783-792. PMLR, 2019.

Brown, D., Niekum, S., and Petrik, M. Bayesian robust optimization for imitation learning. Advances
in Neural Information Processing Systems, 33:2479-2491, 2020.

Brown, D. S. and Niekum, S. Deep bayesian reward learning from preferences. arXiv preprint
arXiv:1912.04472, 2019.

Cao, B., Lu, K., Lu, X., Chen, J., Ren, M., Xiang, H., Liu, P, Lu, Y., He, B., Han, X., et al. Towards
scalable automated alignment of 1lms: A survey. arXiv preprint arXiv:2406.01252, 2024.

Chaudhari, S., Aggarwal, P., Murahari, V., Rajpurohit, T., Kalyan, A., Narasimhan, K., Deshpande,
A., and da Silva, B. C. RIlhf deciphered: A critical analysis of reinforcement learning from human
feedback for llms. arXiv preprint arXiv:2404.08555, 2024.

Christiano, P. F.,, Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30, 2017.

DeepMind, Babuschkin, 1., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden,
D, Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones, C., Hemsley, R.,
Hennigan, T., Hessel, M., Hou, S., Kapturowski, S., Keck, T., Kemaey, L., King, M., Kunesch, M.,
Martens, L., Merzic, H., Mikulik, V., Norman, T., Papamakarios, G., Quan, J., Ring, R., Ruiz, F,,
Sanchez, A., Sartran, L., Schneider, R., Sezener, E., Spencer, S., Srinivasan, S., Stanojevi¢, M.,
Stokowiec, W., Wang, L., Zhou, G., and Viola, F. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine learning, pp. 49-58. PMLR, 2016.

Fu, J., Luo, K., and Levine, S. Learning robust rewards with adversarial inverse reinforcement
learning, 2018. URL https://arxiv.org/abs/1710.11248|

Gleave, A. and Toyer, S. A primer on maximum causal entropy inverse reinforcement learning, 2022.
URL https://arxiv.org/abs/2203.114009.

10

http://github.com/jax-ml/jax
http://github.com/google-deepmind
https://arxiv.org/abs/1710.11248
https://arxiv.org/abs/2203.11409

358
359

360
361

362
363
364

365
366
367

368
369
370

371
372

373
374

375
376

377

378
379

380
381

382
383

384
385

386
387
388

389
390

391
392
393

394
395

396
397
398

399
400

401
402

Hadfield-Menell, D., Dragan, A., Abbeel, P., and Russell, S. The off-switch game. In Workshops at
the Thirty-First AAAI Conference on Artificial Intelligence, 2017a.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and Dragan, A. Inverse reward design.
Advances in neural information processing systems, 30, 2017b.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., and van Zee, M. Flax: A
neural network library and ecosystem for JAX, 2024. URL http://github.com/google/
flaxl

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and Amodei, D. Reward learning from human
preferences and demonstrations in atari. Advances in neural information processing systems, 31,
2018.

Jain, A., Sharma, S., Joachims, T., and Saxena, A. Learning preferences for manipulation tasks from
online coactive feedback. The International Journal of Robotics Research, 34(10):1296-1313,
2015.

Jeon, H. J., Milli, S., and Dragan, A. Reward-rational (implicit) choice: A unifying formalism for
reward learning. Advances in Neural Information Processing Systems, 33:4415-4426, 2020.

Knox, W. B. and Stone, P. Tamer: Training an agent manually via evaluative reinforcement. In 2008
7th IEEE international conference on development and learning, pp. 292-297. IEEE, 2008.

Krasheninnikov, D., Shah, R., and van Hoof, H. Combining reward information from multiple
sources. arXiv preprint arXiv:2103.12142, 2021.

Marden, J. I. Analyzing and modeling rank data. CRC Press, 1996.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., and Fox, D. A joint model of language and
perception for grounded attribute learning. arXiv preprint arXiv:1206.6423, 2012.

Mehta, S. A. and Losey, D. P. Unified learning from demonstrations, corrections, and preferences
during physical human-robot interaction. ACM Transactions on Human-Robot Interaction, 2023.

Myers, V., Biyik, E., Anari, N., and Sadigh, D. Learning multimodal rewards from rankings. In
Conference on robot learning, pp. 342-352. PMLR, 2022.

Ng, A. Y., Russell, S., et al. Algorithms for inverse reinforcement learning. In Icml, volume 1, pp. 2,
2000.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D. Learning reward functions by integrating
human demonstrations and preferences. arXiv preprint arXiv:1906.08928, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., and Finn, C. Direct preference
optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

Raffin, A. RI baselines3 zoo. https://github.com/DLR-RM/rl-baselines3—-zo00,
2020.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1-8,2021. URL http://jmlr.org/papers/v22/20-1364.htmll

Ramachandran, D. and Amir, E. Bayesian inverse reinforcement learning. In IJCAI, volume 7, pp.
2586-2591, 2007.

Shah, R., Krasheninnikov, D., Alexander, J., Abbeel, P., and Dragan, A. Preferences implicit in the
state of the world. arXiv preprint arXiv:1902.04198, 2019.

11

http://github.com/google/flax
http://github.com/google/flax
http://github.com/google/flax
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html

403
404

405
406
407

408
409
410

411
412

413
414

415
416

417
418
419

420
421

422
423

Taranovic, A., Kupcsik, A. G., Freymuth, N., and Neumann, G. Adversarial imitation learning with
preferences. In The Eleventh International Conference on Learning Representations, 2022.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033. IEEE,
2012. doi: 10.1109/IROS.2012.6386109.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Gouldo, M., Kallinteris,
A., Krimmel, M., KG, A., et al. Gymnasium: A standard interface for reinforcement learning
environments. arXiv preprint arXiv:2407.17032, 2024.

Wilde, N., Bryik, E., Sadigh, D., and Smith, S. L. Learning reward functions from scale feedback.
arXiv preprint arXiv:2110.00284, 2021.

Wirth, C., Akrour, R., Neumann, G., Fiirnkranz, J., et al. A survey of preference-based reinforcement
learning methods. Journal of Machine Learning Research, 18(136):1-46, 2017.

Wulfmeier, M., Ondruska, P., and Posner, I. Deep inverse reinforcement learning. CoRR,
abs/1507.04888, 2015.

Xie, X., Li, C., Zhang, C., Zhu, Y., and Zhu, S.-C. Learning virtual grasp with failed demonstrations
via bayesian inverse reinforcement learning. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1812—1817. IEEE, 2019.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pp. 1433—-1438. Chicago, IL, USA, 2008.

Ziebart, B. D., Bagnell, J. A., and Dey, A. K. Modeling interaction via the principle of maximum
causal entropy. 2010.

12

424

425
426
427
428
429
430
431
432
433

434

436
437
438
439
440
441
442

A Algorithm Details

The full algorithm for LEOPARD is given in Algorithm[I] Initialisations follow standard neural
network initialisation methods. RandomRollouts generates trajectories by sampling random actions
and resetting the environment when necessary. TrainAgent uses the standard SAC algorithm for
when the action space is continuous, and PPO when it’s discrete. For both algorithms we use the
implementations provided by Stable Baselines3 (Raffin et al.,[2021). It uses the learnt reward function
to generate rewards for the RL procedure. Hyperparameters used for SAC and PPO are those given in
RL Baselines3 Zoo (Raffin, 2020), except for Lunar Lander where we use an entropy bonus of 0.05
instead of 0. Details on TrainRewardModel and GetPreferences are given in Sections[A.T|and [A.2.T]
respectively. The generation of the demonstrations and their rankings is detailed in Section[A.2.2]

Algorithm 1 LEOPARD

Input:
Niters Number of iterations to perform
Nrollout-steps Number of environment rollout steps
Nprefs Number of preferences to sample
Dpos Positive demonstrations
<pos Positive demonstrations partial ordering
Dheg Negative demonstrations
<neg Negative demonstrations partial ordering
Output:
0 Trained agent policy
Ry Learnt reward function

Nrollout-steps-per-iter — Lnrollout—steps/(niters + 1”
Tprefs-per-iter < |_nprefs/ nitersj

Dagent < 0 { Agent trajectory pool}

P < () {Preferences dataset}

7 < InitialiseAgent()

Ry + InitialiseRewardFunction()

Dnew—[rajectories < RandomRollouts (nrollout—steps—per—iter)

for i = 1 to njers do
P« PU GetPreferenceS(nprefs-per-itera Dnew—trajeclorieSa Dagem)
Dagent <~ Dagent) Dnew—trajectories
Ry <+ TrainRewardModel(Ry, Dpos; <poss Pnegs <negs Pagent; P)
T, Dnew—lrajectories — TrainAgent(W, Ry, Trollout-steps-per-iter

end for

A.1 Reward Model Training

The reward model is trained by optimising the loss function Equation (5) with the AdamW optimiser.
Batches of Dyos, Dreg, Dagent> and P are sampled independently, and then encoded via Equations @
and . Since we want to respect the relative proportions of each data sourcdﬂ but also have
independent batch sizes, normalisation of the loss across the batch is slightly involved. This is
detailed in Section[A.1.1] Instead of training for a fixed number of steps / epochs, training steps are
taken until a stopping condition is reached, as detailed in Section[A.T.2] Together these procedures
could result in varying coverages for each data source, from potentially many epochs on one to
only sampling a small fraction of another.

°E.g. if we had 1000 preferences and 1 demonstration, we’d probably care more about low average loss from
the preferences than from the demonstration.

1Since our data sources are of varying sizes and not partitioned into equal numbers of batches, the notion of
a training epoch - one complete pass over all training data - is not well-defined. We do however have notions of
data source specific epochs.

13

443

444
445
446
447
448
449

450
451
452
453
454

455

456
457
458

460
461
462

463
464
465
466
467

468
469
470
471
472
473

474

475
476
477
478

479

A.1.1 Loss Normalisation Across Batch

As we want our gradient steps to be roughly unity in magnitude and independent of the batch size,
we need to normalise it. Typically, this is very easy in supervised learning—one can simply take
an average across the batch—but this is not the case for Equation (3. Expansion of the gradient of
the loss with respect to #, and noting our reward function operates at the level of transitions within
trajectories, reveals the normalising factor of each data source (note this assumes a fixed length of
fragments for each partial ordering):

Z Length(7;) - 137 eD.rrinmi<,mi-
(1i,<;)€EDXC

The loss term of each data source is first divided by this factor evaluated on the batch—so that they
are all at most unity in magnitude—and then combined in a weighted sum where the weights are
the factors evaluated on the whole dataset for that source divided by the sum of these dataset-level
factors. Some data sources, namely D,gey, are treated as ‘in-excess’, and their dataset-level factor is
made proportional to another data source, €.g. Dpos.

A.1.2 Stopping Conditions

Generally, the reward function loss from poorly-fitted demonstration rankings are much higher than
poorly fitted preferences. This is because trajectories are typically longer than trajectory-fragments
and demonstrations generate more ‘<’ comparisons than a preference. However, the distribution of
demonstrations are typically quite far from that of the agent trajectories, which the preferences have
been generated over. This makes it much easier for the reward function to separate the demonstrations
from agent behaviour and thus achieve a low loss on the demonstration ordering, than it does for it to
get low loss on all the preference orderings.

The consequence of the above two facts is that if we were training on just the demonstrations, we’d
want to do at most a few epochs (to learn fast and avoid overfitting), but if we were training on just
the preferences we might want to do more (as learning is slower and overfitting less of a potential
issue). Thus, as the amount of data in each dataset varies in each iteration, it does not make sense to
have a pre-specified number of training steps, and instead a stopping condition should be used.

Our stopping condition simply checks if the training loss has loosely converged. At each step we
check if the change in training loss is less than 10% of the last step’s training loss. If this occurs 3
times in a row, we stop training the reward model for that iteration, and return to agent training. There
is a hard limit of 256 epochs on the smallest data source, though this is rarely reached. Empirically
this strikes the balance between learning the most from the small amount of data, and avoiding
overfitting.

A.1.3 Smoothness Loss

In addition to our negative log-likelihood loss term for optimising RRPO, we also have a loss term
based on the smoothness of the reward function over trajectories, as seen in Equation (3). This is
defined as proportional to the mean-squared first derivative in reward with respect to environment
step for all full trajectoriesE] Concretely:

1 1 n—1
ESmooth(Da 9) = Hsmooth |,D 11| § § (Re(sk—la ak—1, Sk) — Ry (Sk; Ak, 3k+1))2,
Fu
k=1

n—1
‘r,.,(™) € Dy
3
'DFUHZ{TilTiE'D,VTj7§Z‘ e D. Ti§ZTj}, (9)
7 = {(50, a0, 81); weos (Su—1+ @n—1,5n) }- (10)

We set fismooth t0 0.1 based on early empirical results.

e. not fragments used for preferences.

14

480

481

482
483
484
485
486

487

488
489
490
491
492

494
495
496

A.2 Synthetic Feedback
A.2.1 Preferences

In Algorithm[I] the GetPreferences function randomly samples trajectory fragments for comparison,
with a bias to sampling from new trajectories. We are using a synthetic oracle which uses the ground
truth reward function to noisily generate preferences, simulating the imperfect human rationality.
More specifically, for each sampled pair of fragments, the sigmoid of their reward difference is used
as the parameter for a Bernoulli random variable which is then sampled to generate the preference.

A.2.2 Demonstrations

To create demonstrations for our tasks, we simply train an agent on the ground truth reward function
(or its negation in the case of negative demonstrations). Several agents are trained, and the best few,
Nselected> ar€ picked. From these agents, we create a list of their trajectories, ordering from their latest
attempts to their first, and interleaving each agent together with the best agent first. For training
an agent from feedback, if n demonstrations are being used, the first n demonstrations from this
list are provided. Rankings are generated automatically based on the ground truth reward of each
demonstration, making <,os and <peg total ordersB The ground truth reward per agent step and
number selected, Ngelected, O all demonstrations trained are given in Figures @] and 5] for positive and
negative demonstrations respectively.

0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00 0 100000 200000 300000 400000 500000
Agent Step 1e6 Agent Step

(a) Half Cheetah, nselected = 4 (b) CIiff Walking, nselected = 4

1000

5000

500 4000

0 & 3000

2000

-500 g

und Truth Reward
und Truth Reward

Gro

g

© 1000
~1000
0

-1500
000 025 050 075 100 125 150 175 2.

000 025 050 075 100 125 150 175 2.00 00
6 Agent Step 1e6

Agent Step lef
(c) Lunar Lander, nsciected = 8 (d) Ant, Ngelected = 8

Figure 4: Ground truth reward vs agent steps for the positive demonstrations that were trained in every
environment. We also state how many were selected as good examples to be used for demonstration
learning.

"2They are not required to be total orders to apply the general method.

15

497

499
500

501

502

503

504
505
506
507
508
509

510
511
512
513

-500
~2000

-1000

8 ~1500 —4000

th Reward

~2000

£ ~6000

d Tr

2 -2500

Ground Truth Reward

-8000

Grou

-3000

-3500 ~10000

~4000

000 025 050 075 100 125 150 175 2.00 5000 10000 15000 20000 25000 30000
Agent Step 1e6 Agent Step

(a) Half Cheetah, nselected = 8 (b) Cliff Walking, nselected = 8

~1000

-500
-1100

~1200

-1300

-1400

Ground Truth Reward

-1500

:
3
§

_—

0 50000 100000 150000 200000 250000 300000 350000 400000 0 50000 100000 150000 200000 250000 300000 350000 400000

-1600

(c) Lunar Lander, nglected = 8 (d) Ant, ngelected = 4

Figure 5: Ground truth reward vs agent steps for the negative demonstrations that were trained in every
environment. We also state how many were selected as bad examples to be used for demonstration
learning.

B Experiment and Environment Details

Here we give details on versions / modifications made for each environment, as well as environment-
specific hyperparameters summarised in Table E} We used njers = 8 and 16 random seeds for all
runs.

Table 1: Environment specific hyperparameters. ‘Trajectory Length’ refers to the fixed time horizon
for that environment, ‘Preference Fragment Length’ is the length of the contiguous trajectory subse-
quences that are used to generate preferences. Both are measured in environment timesteps.

Environment Trajectory Length Preference Fragment Length nyoliout-steps

Half Cheetah 1k 32 2M
Cliff Walking 250 16 256k
Lunar Lander 250 32 SM
Ant 1k 32 aM

B.1 Half Cheetah

The v4 version is used out-of-the-box.

B.2 CIliff Walking

The vO version is modified to have a fixed horizon of 250 timesteps and a custom reward function.
The standard version has a reward of -1 every timestep with the episode terminating when the end is
reached. Walking off the cliff gives -100 reward and returns the agent to the start. Our fixed horizon
version of this is the same except reaching the end state does not terminate the environment, and
instead grants 5 reward per timestep spent there. This was based on what lead to good learning with
PPO and access to the reward function directly.

As the reward function is sparse, for sampling preferences only, a shaped version of it is used to
simulate human intuition on what behaviours are closer to optimal. The penalty for walking off cliffs
remains the same, but otherwise the agent receives a weighted reward of -1 and 5 depending on how
close in L; norm it is to the start/end state respectively.

16

514 B.3 Lunar Lander

515 The v2 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.

st6 The reward function used is mostly the same as in the Gymnasium version, except instead of
517 terminating on game over or the lander not being awake (i.e. landed), a -1 or +1 reward is issued each
518 timestep respectively.

si9 B4 Ant

520 V4 version with terminate_when_unhealthy=False so that there are more maximum length
521 trajectories.

> C Supplementary Results

5!

n

—— LEOPARD —— LEOPARD
5000 { —— DeeplRL, best —— DeeplRL, best
—— AILP, best —— AILP, best

4000

3000

und Truth Reward
und Truth Reward
°

2000

-500
2 g
c 1000 c
2 £ -1000
4
-1500

-1000

G
Gi

5
Iteration Iteration

(a) Half Cheetah, ngemos = 8 (b) Cliff Walking, ngemos = 4

—— LEOPARD
—— DeeplRL, best
~100 7 — AILP, best

° —— LEOPARD

3000 { —— DeeplRL, best
—— AILP, best

—200 2000

'
g
8

1000

ound Truth Reward

!
IS
8
8

Mean Ground Truth Reward
Gre

0

' |
g8 g
8 8

~1000

(c) Lunar Lander, Ngemos = 8 (d) Ant, ndemos = 8

Figure 6: Comparison of LEOPARD with the baselines of AILP and DeepIRL when only positive
demonstrations are available. The lines denote the mean of the ground truth reward function, with
shaded standard errors across 16 random seeds, against algorithm iterations—alternations between
optimising the reward model and the agent. Solid lines are smoothed means for clarity, dashed lines
give raw values. A breakdown of the performance of the baseline methods for different reward model
training epochs per iteration is given in Figures E] and @}

17

Table 2: Final ground truth reward to 3 s.f. with standard error for LEOPARD against a variety
of baselines. (Top) 50/50 mix of preferences and positive demonstrations with baselines of AILP,
performing DeepIRL followed by RLHF, and performing RLHF followed by DeepIRL (Half Cheetah
only). See Figure 2] for reward vs algorithm iteration. (Bottom) Only positive demonstrations with
baselines of AILP and DeepIRL. See Figure 6] for reward vs algorithm iteration. ‘RM epochs per iter’
is the number of training epochs for the reward model on each iteration of the algorithm, required to
be fixed for DeepIRL. Best in column for section.

Method RM epochs Final Ground Truth Reward =+ std error
per iter Half Cheetah Cliff Walking Lunar Lander Ant

LEOPARD (ours) Dynamic 5650 + 386 670 £ 116 -140 +49.8 2630 + 322
AILP Dynamic 3.49 £+ 105 -249 £+ 6.09 -684 +£31.8 -1130+ 142
AILP 1 14.1 £ 234 -266 + 116 -2010 + 506 -237 +110
AILP 2 25.1 +£226 -172 £ 7422 -2270 £507 -300 £ 117
AILP 4 -129 + 359 -181 +85.5 -1930 + 501 150 + 131
AILP 8 -87.0 £ 38.4 -180 £+ 70.0 -813 £ 340 148 +55.0
DeepIRL then RLHF 1 -389 + 223 -46.8 + 125 -2340 + 548 -766 + 216
DeepIRL then RLHF 2 189 + 312 1.34 £+ 163 -2200 £ 537 -803 £+ 259
DeepIRL then RLHF 4 224 + 205 -61.7 £ 115 -2000 + 467 =792 + 221
DeepIRL then RLHF 8 1540 £ 374 -91.7 £ 103 -1720 £ 548 -927 £+ 192
LEOPARD (ours) Dynamic 5020 + 555 580 + 199 =344 £257 3000 £ 390
AILP Dynamic -45.0 £ 236 554 + 146 -215 £ 16.1 -489 £+ 178
AILP 1 -88.3 +£9.15 381 £ 131 -99.5 £ 545 555 £37.1
AILP 2 -61.5 +47.1 330 + 156 -131 £9.33 450 + 54.8
AILP 4 -118 £+ 6.08 205 + 133 -180 +12.3 300 £ 79.1
AILP 8 -96.2 £+ 6.36 -72.2 £93.2 -214 £ 8.62 268 +£594
DeepIRL 1 1470 + 318 828 +£92.2 -575 £ 194 -295 + 230
DeepIRL 2 1610 + 264 769 £+ 111 -164 +98.6 1320 + 426
DeepIRL 4 1290 + 216 849 + 102 -159 +18.0 1780 + 399
DeepIRL 8 1790 + 162 528 + 105 -219 +£21.3 1340 + 319

Table 3: Final ground truth reward with standard error for LEOPARD across a variety of mixture of
types of feedback. For details on feedback amounts per environment and the reward vs algorithm
iteration see Figure[3] Best in column.

Feedback types Final Ground Truth Reward =+ std error

Half Cheetah Cliff Walking Lunar Lander Ant
Preferences 4960 + 574 -252 +2.22 -163 +£19.7 1510 £ 491
Positive demonstrations 5020 + 555 580 £ 199 -34.4 £257 3000 + 390
Preferences and positive demos 5650 + 386 670 £ 116 -140 +£49.8 2630 £ 322
Positive and negative demos 2870 + 609 883 +79.0 -169 + 107 754 £+ 339
Prefs, pos and neg demos 3640 + 603 514 £ 133 -120+ 113 1580 £ 296

18

Epochs=1
—— Epochs=2 1
15001 Epochs=4
T —— Epochs=8 T
$ 1000 Z -s500
2 2
£ 500 £ -1000
2 2
g g
© o © -1500
2 2 Epochs=1
-500 2000 — Epochs=2
— Epochs=4
— Epochs=8
-1000
1 2 3 4 5 6 7 8 1 2 3 4 H 6 7 8
Iteration Iteration

(a) Half Cheetah, ngemos = 4, Nprets = (b) Cliff Walking, ndgemos = 2, Nprefs =

—1000 Epochs=1
= Epochs=2
\ — Epochs=4 Epochs=1
T -1500 S — Epochs=8 i p— sﬁgin;z
H — Epochs=4
¢ B _goo{ — Epochs=8
5 —2000 H
H &
5 H
5 S -1000
g% -2500 E
] 3 _1200
H &
~3000 g
= -1400
1 2 3 5 6 7 8
Iteration —1600
1 2 3 4 6 7 8
Iteration
(c) Lunar Lander, ndemos = 4, Mprefs =
256 (d) Ant, Ndemos = 4, Nprefs = 512

Figure 7: Breakdown of the DeepIRL followed by RLHF baseline, for different numbers of epochs
that the reward model was trained for per algorithm iteration. The lines denote the mean of the
ground truth reward function, with shaded standard errors across 16 random seeds, against algorithm
iterations. Solid lines are smoothed means for clarity, dashed lines give raw values.

—— Dynamic Stopping
200 Epochs=1 -200
— Epochs=2
§ 100{— Epochs=4 g -400
H — Epochs=8 H
z T -600
2 ° 2
= £ -800
S -100 H
H 3
& & -1000
§ -200 § ! —— Dynamic Stopping
2 2 1200 Epochs=1
— Epochs=2
-300 1400 — Epochs=4
— Epochs=8
1 2 3 4 5 6 7 8 1 2 3 4 H 6 7 8
Iteration Iteration

(a) Half Cheetah, ngemos = 4, Nprets = (b) Cliff Walking, ndgemos = 2, Nprefs =
4

=500
—_———- 500
g ~1000 250 Q—\
H
3 H
S s o
2 -1500 3
2 g om0y o ——
3 H
& 5
€ 2000 = Dynamic Stopping H -500
& Epochs=1 &
3500 | — EPochs=2 R —— Dynamic Stopping
- — Epochs=4 g Epochs=1
—— Epochs=8 -1000 o — o2
—— — Epochs=4
1 2 3 4 5 6 7 8 —1250 — Epochs=8
Iteration
1 2 3 4 5 6 7 8
Iteration
(c) Lunar Lander, ndemos = 4, Nprefs =
256 (d) Ant, Ndemos = 4, Tlprefs = 512

Figure 8: Breakdown of the AILP baseline for positive demonstrations and preferences, for different
numbers of epochs that the reward model was trained for per algorithm iteration. The lines denote
the mean of the ground truth reward function, with shaded standard errors across 16 random seeds,
against algorithm iterations. Solid lines are smoothed means for clarity, dashed lines give raw values.

19

Mean Ground Truth Reward

Mean Ground Truth Reward

2000 1000
Epochs=1 Epochs=1
— Epochs=2 — Epochs=2
1500 1 — Epochs=4 o s00{ — Epochs=4
— Epochs=8 2 — Epochs=8
1000 H
= 0
2
500 =
S -500
8
4 [
g -1000
-500 =
1000 -1500
1 2 3 6 7 8 1 2 3 6 7 8
Iteration teration
(a) Half Cheetah, ngemos = 8 (b) Cliff Walking, ngemos = 4
100 Epochs=1 2000 Epochs=1
— Epochs=2 —— Epochs=2
— Epochs=4 — Epochs=4
~2007 __ Epochs=8 B 1500 { — Epochs=8
H
-300 2
£ 1000
-400 &
K
-500 3 s00
&
-600 g
g o
~700
-500
-800

Iteration

(c) Lunar Lander, ngemos = 8

Iteration

(d) Ant, Ndemos = 8

Figure 9: Breakdown of the DeepIRL baseline, for different numbers of epochs that the reward model
was trained for per algorithm iteration. The lines denote the mean of the ground truth reward function,
with shaded standard errors across 16 random seeds, against algorithm iterations. Solid lines are
smoothed means for clarity, dashed lines give raw values.

750
2001 — Dynamic Stopping
Epochs=1 00
100{ — Epochs=2
z —— Epochs=4 2 a0
H —— Epochs=8 g
2 o H .
& E
5 -100 = 250
3 g -500
© —200 5
] § -750 —— Dynamic Stopping
= = Epochs=1
e -1000 — Epochs=2
— Epochs=4
—400 -1250 — Epochs=8
1 2 3 6 7 8 1 2 3 4 6 7 3

Iteration Iteration

(a) Half Cheetah, mgemos = 8 (b) Cliff Walking, naemes = 4

~100 600
-0 o 400 ;—" ; ——
g -300 <
: 2 200 — Dynamic Stopping
5 g Epochs=1
2. E o =
£ £ — Epochs=2
] 2 — Epochs=4
- §- — -
& -s00 & -200 Epochs=8
e —— Dynamic Stopping s
£ -600 Epochs=1 2 -4a00 —
 cpoches2 e —
00l £ — Epochs=4 -600
7 — Epochs=8
T T] 6 7 5 1 2 3 6 7 8

Iteration Iteration

(c) Lunar Lander, ngemos = 8 (d) Ant, Ngemos = 8

Figure 10: Breakdown of the AILP baseline for positive demonstrations only, for different numbers
of epochs that the reward model was trained for per algorithm iteration. The lines denote the mean
of the ground truth reward function, with shaded standard errors across 16 random seeds, against
algorithm iterations. Solid lines are smoothed means for clarity, dashed lines give raw values.

20

Table 4: Outliers for Cliff Walking that were removed from the main analysis. This is defined as
having less than -3000 reward on any iteration from the second onwards. Note there were 16 random

seeds in total. If multiple ‘RM epochs per iteration’s are given, this is the total across them all.

Method

RM epochs per iteration

Cliff Walking Outliers (%)

LEOPARD (preferences only)
LEOPARD (positive demonstrations only)

LEOPARD (positive demonstrations and preferences)

LEOPARD (mixed demonstrations)

LEOPARD (mixed demonstrations and preferences)

AILP (positive demonstrations only)

AILP (positive demonstrations and preferences)
AILP (positive demonstrations and preferences)

DeepIRL only

DeepIRL then RLHF
DeepIRL then RLHF
DeepIRL then RLHF
DeepIRL then RLHF

Dynamic
Dynamic
Dynamic
Dynamic
Dynamic

Dynamic, 1, 2,4, 8

Dynamic
1,2,4,8
1,2,4,8

o A=

0 (0%)
3 (19%)
2 (13%)
0 (0%)
2 (13%)
0 (0%)
1 (6%)
0 (0%)
0 (0%)
3 (19%)
7 (44%)
4 (25%)
1 (6%)

21

523

524

526
527
528

529

530

531

532

533

534

535

536

537

D Main Proofs

Here we more stringently define and prove the theoretical result from the end of Section[3.1] and then
prove the models considered in Appendix |[E[do not satisfy it.

Theorem D.1. Upper bounds on RRPO loss give lower bounds on reward difference of related
fragments. For all € > 0, if Lrrro < €, then for all T,, T, € D? where there exists a <, < C such that
Ta <z Tp, We have the following:

1
Ry(1) — Ro(7a) > ———log(e® — 1), (11
where (3, is the rationality coefficient of <,.

Proof. We will prove this by contrapositive, that is if:

Ro(15) — Ro(14) < —% log(e® — 1), (12)

x

for some € > 0, and there exists a <, such that 7, <, 7, then Lgrrpo > €.
Assume Equation (T2) and that the relevant <, exists. Consider Equation (3):
Lrreo () = —log Prrro(C|D, 0)
_ Z log exp (B, Ro(7i))
(4,<4)EDXC exp(BRo(7i)) + 221, ep Lr<ym exp(Bi Ro(7k))
exp(ﬁjRe(Ti)) + Z'rkGD 17’k<j7'z' eXp(ﬁjRG(Tk»
S Y oL
N exp(FRo(7)

_ ZTkED]‘Tk <jTi eXp(/BjR9 (Tk))
= 2 e (” exp(B; Ra (7)))

(1i,<;)€EDXC

Consider the term (73, <), and bring it outside the summation.

. 1, <. exp(BzRo(T
Lrrro(0) = log (1+ 2rien xk<(ﬁbR (()) o k))) + Z log (14 ...).
CXP\Pa 1o Th (Ti,<j)€DXC
(Ti’<j)7é(7b’<l')
The remaining terms are strictly positive, and 1, -, = 1.
exp(BzRo(7a)) + ...
L 8) > 1 1
RRPO() og (+ exp(ﬂmRG(Tb))
=log | 1+ exp(BsRo(7a) — BuRo(T +...>
o (14 omoRatm) e + o
> log (1 + exp (B (Ro(7a) — Ro(7)))) ,
by ignoring terms that are strictly positive. Sub in Equation (12).
1
Lrrpro(0) > log (1 + exp (ﬁl (log(e® — 1))))
=log(1+e° —1)
= 6’
as required. O

Consider a special case where ¢ = log 2, Equation (IT)) becomes:

Ry(mp) — Ry(74) > _ﬁi 1og(elog2 -1)

= ()7
Rg(Tb) > Rg(Ta).

22

538

539

541
542

543
544
545

546

547

548

549

550
551
552

553

554
555
556
557
558

559
560
561
562
563
564

565

566

568
569

E Alternative RRC-Derived Approaches

RRPO and LEOPARD are very simple and natural extensions of existing work, however, they are
not trivially so. Building off RRC, there are several approaches to preference and demonstration
learning that appear natural and are simple, and yet are deficient. Here we explore two of them in the
preference and ranked positive demonstrations only setting.

Let the notation be as defined in Section [3.2} We will assume that preferences, positive demonstration
selection, and the rankings over the positive demonstrations are all independent. Our overall likelihood
function shall be:

PFeedbaCk (C‘D, 0) = PPos—Demo (Dpos >~ Dagem|Dposa Dagentv 9)
¢ PRank(<pos |Dposv 0)
T Prne(ra - 700), (13)
(‘ra. .,Tb)EP
where Prank is something sensible.

We consider two potential candidates for Ppyspemo derived via RRC in a simple manner:

PSum—of—Choices(-") = Z PRRC(CT|DPOS U Dagenta 9)7 (14)
TEDpos
PChoose-Best-Average(-~-) = PRRC(CAvg(DPOS) |{Avg(Dp0S); Avg(Dagem)}; 0) . (15)

Thus:
> rep,, eXp(Ro(7))

Pum—o— oices\-++) = = s 16
Sum-of-Choices () > ep exp(R(,(T))+276Dwmexp(Rg(7)) (16)

pos
exp (\Diosl ZTeros Ry (T))

PChoose—Best—Average (..) = 1 1) (17)
eXp (‘Dposl ZTGDPOS Re (T)) + eXp ("Dugcnll ZTGDagcm RH (T))
with
‘CSOC = - IOg PSum—of—Choicew (1 8)
LCBA = - IOg P Choose-Best-Average - (19)

Rationality coefficients are omitted since they are not critical to this analysis. We shall show that
these models have undesirable theoretical properties, and poorer empirical performance compared to
LEOPARD.

E.1 Theoretical Properties

Neither Psym-of-Choices NOT Fehoose-Best-Average have the property that upper bounds on their negative-
log-likelihood give rise to lower bounds on reward differences between demonstrated trajectories and
ones sampled from the agent, unlike Prrpo. We prove this in Theorems and in Section m
Whilst this may not seem too critical, its combination with the potential effects of Prank, and its
interaction with exploration in RL, can cause a very undesirable failure mode.

Imagine an environment where three distinct behaviours are possible, A, B, and C. We prefer C to
B, and B to A, so we provide a demonstration of B and C each, 7, 7, and express via the ranking
model that 7. > 7. This ranking is fitted by assigning high reward to C, and low to B. Our agent is
initialised generating from A. Our demonstration model, seeing 7. have high reward, does not lower
the reward of A that much, and does not mind that 7, has low reward. We’re left with low loss and
yet a reward model that could prefer A to B.

Now consider that our environment has some unfavourable dynamics. Policies that generate A,
are quite different from those that generate C, with B being somewhere between the two. Thus, to
eventually generate C, our policy will first need to explore B. However, our reward model gives it
lower reward when it tries this, and so the agent sticks to what it thinks is best, behaviour A, much to
our disappointment.

23

570
571
572
573

574
575
576

577
578
579
580

581
583
584
585
586
587
588

589
590

592

593
594

595

596

597

598

599

Whilst a little contrived, the above story highlights a certain failure mode that could occur if one
combined demonstration rankings with a demonstration model that does not satisfy Theorem [D.I]
If it did satisfy it, such as for RRPO and LEOPARD, then low loss cannot be achieved unless the
reward model prefers B to A, preventing the issue.

Alleviating this problem by omitting the rankings is suboptimal, as we lose information. However,
Psum-of-Choices suffers further. It is shown in Section that the gradient of Lgoc with respect to 0
can be expressed in the following form.

0 0] 0
_7£SOC = Z PRRC(Ca‘Tv 9) Z PRRC(Cp|Dposv 9)7R0(7_p) - %R0(Ta) P (20)

00 00
Ta eDagenl Tp eros

where C; is the human choice for 7;, and 7 = Dpos U Dygent- We see that the reward of agent
trajectories are pushed down proportional to the probability that they would be chosen out of the
combined set of trajectories. This makes sense—if our reward model thinks highly of specific agent
trajectories, it ought to adjust its beliefs so that it no longer favours them.

However, the demonstration trajectories are also pushed up in reward proportional to the probability
that they would be chosen. That is to say, the better the reward model thinks the demonstrated
trajectory is, the more it thinks it should increase its reward, a positive feedback loop! In practice,
the reward model is going to have some initial preferences over the demonstrated trajectories due to
its initialisation. Since this will be random, it will most likely be incorrect. It will then proceed to
reinforce its own incorrect beliefs and lock-in its own ranking of the demonstrations. This means
our reward model will not provide correct rewards to guide the agent towards better behaviour in
the trajectory space around the demonstrations. Furthermore, if it generalises from these incorrect
beliefs, it could also become wrong about other parts of trajectory space, further reducing the quality
of the reward signal for the agent.

E.2 Chapter Proofs and Derivations
E.2.1 Reward Bounds

Theorem E.1. Upper bounds on Sum-of-Choices loss do not give lower bounds on reward difference
between demonstrations and agent trajectories. For all € > 0, if Ls,c < €, we cannot guarantee that

Ry(1p) — Ro(7a) > f(€) 21

forall T, 74 € Dpos X Dygens, Where f is a function of type RT — R.

Proof. We will prove this by example.
Consider

Dpos = {7—177—2}7
Dagent = {Ta}7

Ry(m1) = r1,
RG(TQ) =T,
RQ(Ta) =Tq-

We now expand Equation (I8) with Equation (I6) and the above.
e’ +em
Lsoc(0) = —1 _
soc(6) og (e”—&—e“—i—e“)
e’
=1 1+ —].
og < =+ o T e"2>
Assume Lgsoc < €, therefore
log <1 + e) <e,
e + e

re <log((ef—1)(e™ +€")).

24

600

601

602
603

604
605
606

607

608

609

610

611

612

613
614

615

616
617

618
619

Let
rq =log ((e® —1)(e™ +¢e™)).
Consider r; — r,, substituting in the above expression:
r1 — 1, =11 — log((ef — 1)(e™ +€™))
=7y —log(e® — 1) — log(e™ + ™)
<7y —log(e* —1) —ry,

as log(x + y) > log(y) for positive and y. Thus, we see that for a fixed 1 and €, we can choose
and r, such that Lg,c < €, but r; — r, can be arbitrarily negative. L]

Theorem E.2. Upper bounds on Choose-Best-Average loss do not give lower bounds on reward
difference between demonstrations and agent trajectories. For all € > 0, if Lcga < €, we cannot
guarantee that

Ro(1p) — Ro(7a) > [(e) (22)
forall T, 74 € Dpos X Dygens, Where f is a function of type RT — R.

Proof. We will proceed similarly to the above, assuming the same notation.

Expanding Equation (T9) with Equation (T7).

['CBA(Q) = — IOg (exp (%(7’1 + 7’2)))

exp (%(rl + 7“2)) + exp(rq)
. exp(ry)
= log (1 + exp (L(r1 +r2))>

1
= log (1 + exp (ra - 5(7“1 + rg))> .
Assume Lcpa < ¢, therefore

1
log (l + exp (ra - §(r1 + r2)>> <e,

1
ro <log(ef—1)+ 5(7“1 +72).
Let

1
rq = log(e — 1) + 5(7“1 +72).

Consider r; — 7, substituting in the above expression:

1
r1—re =11 — log(ef —1) — 5(7“1 +72).

Again, we see that for a fixed 71 and €, we can choose 75 and r, such that Lgoc < ¢, but r; — 7, can
be arbitrarily negative. O

E.2.2 Loss Gradients

Here we will show that the gradient with respect to 8 of Lgoc can be expressed in the form given in
Equation (20) of Section[E.T]

First we give a simplification of deterministic RRC with § = 1 and ¢(z) = « for all =, and some
additional notation:

C:()—D,
eRo(Ti)
> p

T = Dpos) Dagent-

Prre(Ci|D,0) =

25

620

621

622

Now we derive some useful identities.

%) Ro(74)
(&
9 IOg E eRg(T) o0 ZﬂGDR o
09 TED ZTJGT’e o

9 Ro(7i)
90 €
Ro (T
T, €D ZTJ'EDE 0 (73)
eRe (i) o

= r. agBe(mi)
T, €D ZTJ’ €D eRG(TJ) 90

0
= D Prre(Gi[D,0) 55 Ro(mi), (23)
T, €D
eRo(Ti)

Prac(CilA0) = R
T, EA

_ eRe(ﬂ‘) ZTkE.AUB eRQ(Tk)
ZTj A eRo(T5) ZrkeAuB eRo (k)

_ Prre(Ci| AU B, 0)
> ren Prre(C5lAU B, 0) ’

(24)

Prre(Ci| AU B, 0)
>reaPrre(C5lAUB, 0)
Prre(Ci| AU B, 0) (1 ~ Y, e Prec(CilAUB, 9))
B >, ca Prec(C;|AUB.6)
_PRRC(CAA UB,0) Zmeg Prre(Cr| AU B, 0)
>, ca Perc(Cj[AUB.)

Prre(Cy| AU B, 6)
= Prre(Cr|AUB, 6
TkZGB RRC(k|)ereAPRRC(Cj|AUB, 9)

= > Prec(CilAUB.0) Prrc(Cil A,) (25)

T EB

Prre(CilA, 0) — Prre(Ci|AU B, 0) = — Prere(CilAU B, 0)

26

623

624

625
626
627
628
629

630

631

Now we use these identities to derive the special form of the gradient of Lgoc.

B P > rep,, 7
— g Lsoc = 70 108 Ro(r) oRo(7)
90 >rep,, € +ZT€'D ‘

agent

_Y Ro(7) _ Ro(7)
6‘910g269 logZe"

7€ Dpos TET
0 0
= Z PRRC(CP‘DPOSH)80R9 Tp Z PRRC C |T 9) RG(Tz)
Tp € Dpos ET
0
= Z Prre(Cp|Dposs)BGRG Tp) Z Prre(Cpl T, 9) RG(Tp)
Tp€Dpos Tp € Dpos
Z Prre(Cal T, 9) Re(Tu)
Ta€D1zenl
o
== Z (PRRC(Cp|Dp057) PRRC(C ‘T 0)) eRO(Tp)
TPEDpos
= Y Prre(CalT, 05 RH(TG)
TaEDagent
1o}
= Y > Pree(CalT.0)Perc(Cyl Dy, 0) 55 Ro(73)
Tp erOS Ta EDagenl
1o}
— Y Pee(CdlT, 0) 50 (7a)
7'aE’Dzngenl
= > Pwe(CalT,0) | > Pree(Cy|D ‘9)339(7)7339(7) . (26)
alto PImPos 7 5e P 00 “

Ta € Dagent Tp € Dpos

F Impact Statement

This paper aims to improve our ability to leverage diverse ranges of feedback when training reward
models for RL agents with difficult to specify objectives. This will hopefully lead to reward models
that are more accurate and robust, reducing problems such as specification gaming and sensitivity to
noise. In turn, this will make deployed systems that have been trained in this manner more aligned
and less likely fail.

G Use of Existing Assets

The primary assets we use in this work are referenced in Table [5|alongside their respective licenses.

Table 5: Assets used in the paper.

Name Type Reference License
Stable Baselines3 Code Raffin et al.|(2021) MIT
RL Baselines3 Zoo Hyperparameters Raffin| (2020) MIT
Gymnasium Code Towers et al.| (2024) MIT
MuJoCo Code Todorov et al.|(2012)) Apache-2.0
JAX Code Bradbury et al.[(2018) Apache-2.0
Flax Code Heek et al.| (2024) Apache-2.0
Optax Code DeepMind et al.|(2020) Apache-2.0

27

632

633
634
635
636
637
638
639

640
641
642
643
644

645
646
647
648
649

650

651
652
653
654

H Use of Compute

We ran all of our experiments on a CPU server with 4 cores each. Approximate wallclock runtime
for each environment was as follows: Cliffwalking 10 minutes; Half Cheetah 1 hour; Lunar Lander
1 hour 45 minutes; Ant 2 hours. This runtime was consistent regardless of the reward learning
method or amount of feedback, as the agent-environment interaction time and reinforcement learning
was where most time was spent each run. Thus the CPU-core hours per run for each environment
were: Cliffwalking 40 minutes; Half Cheetah 4 hours; Lunar Lander 7 hours; Ant 8 hours. For each
combination of algorithm, feedback mixture, and environment, we ran 16 seeds to get reliable results.

For the comparisons to baseline, we had to run two sets of seeds per environment to benchmark
LEOPARD, and 18 sets of seeds per environment to benchmark the baselinesE] With 16 seeds
per combination this totals to the following CPU-core hours for each environment for this set of
experiments: Cliffwalking 213 hours, Half Cheetah 1280 hours, Lunar Lander 2240 hours, Ant 2560
hours. The total for this experiment is thus 6293 CPU-core hours.

For the feedback mixture experiments we had to run five sets of seeds per environment to benchmark
each of the five feedback type mixtures with LEOPARD. With 16 seeds per combination this totals
to the following CPU-core hours for each environment for this set of experiments: Cliffwalking 53
hours, Half Cheetah 320 hours, Lunar Lander 560 hours, Ant 640 hours. The total for this experiment
is thus 1573 CPU-core hours.

The total for all experiments is therefore 7866 CPU-core hours.

Further CPU hours were also used to obtain the synthetic demonstrations and for preliminary experi-
ments. The synthetic demonstration generation time was negligible, and preliminary experiments
added at most 2x to the total compute used, bringing it to around 24k CPU-core hours for the whole
project.

This is due to the fact that LEOPARD uses early stopping for reward model training whereas the baselines
either couldn’t, or could’ve likely performed better with a fixed number of training epochs. Thus a small number
of reward model training epochs had to be swept over for each baseline.

28

655

656

657
658

659

660

661

662

663

664
665
666

667
668

669
670

671

672

673

674

675

676
677
678
679
680
681
682
683

684
685
686

687
688
689
690
691

693

694
695

696
697
698
699
700
701

702

703
704

705

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Claims made are supported by relevant results in Sections[4.2]and [4.3]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are detailed in Section[3.2]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

29

706
707

709
710
71
712
713
714
715
716
717
718

719

720
721
722

723

724

725

726
727
728
729
730
731
732
733
734

736
737
738
739
740
741
742
743
744
745
746
747
748
749

751
752
753
754
755
756

757

759
760

Justification: One theorem is stated in Section [3.1] with a complete proof given in Ap-
pendix D]
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Information required to replicate results is given across Appendices[A]and [B]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

30

761

762
763

764

765

766
767

768
769
770
771

772
773
774

775
776

77
778
779

780
781

782
783
784

785
786
787

789

790

791

792
793

794

796

797
798

799

800

801

802
803
804
805
806
807
808
809
810

811

Answer:

Justification: We intend to release code at a later date but the main repository is currently
shared by several ongoing research projects.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Information required to replicate results is given across Appendices [A]and [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: In all plots and tables standard error across 16 random seeds is given.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

812
813

814
815
816

817
818
819
820
821

822

824
825

826

827

828

829

830
831

832
833

834
835
836

838
839

840

841

842

843

844
845

846
847
848

849
850

851

852

853

854

855
856

857
858
859
860

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute use is detailed in Appendix [H]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There are no violdations of the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: An impact statement is given in Appendix [
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

32

https://neurips.cc/public/EthicsGuidelines

861
862
863
864
865
866
867

868
869
870
871

872
873
874
875

876

877
878
879

880

881

882

883

884
885
886
887

888
889

890
891
892

893

894
895
896

897

898

899

900
901

902
903
904
905
906
907
908
909
910
911
912

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: There are no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Existing asset usage is detailed in Appendix [G]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

33

paperswithcode.com/datasets

913
914

915

916
917

918

919

920

921
922

924

925
926

927
928

929

930
931
932

933

934

935

936

937

938
939
940
941
942
943

944
945

946
947
948
949

950

951

952

953

954
955
956
957
958
959
960
961
962

963

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We are not releasing any assets as part of the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not conduct experiments on human subjects or do any crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not conduct experiments on human subjects or do any crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

34

964
965
966
967

968

969

970

971
972
973
974

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our methods do not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work and Background
	Demonstration-Based RL
	Preference-Based RL
	Combining Demonstrations and Preference Feedback
	Learning From Other Types of Feedback

	Method
	Reward Rational Partial Orderings
	LEOPARD

	Experiments
	Experimental Setup
	LEOPARD vs Baselines
	Learning from a Mixture of Feedback Types

	Discussion
	Generality of RRPO
	Limitations and Future Work

	Conclusion
	Algorithm Details
	Reward Model Training
	Loss Normalisation Across Batch
	Stopping Conditions
	Smoothness Loss

	Synthetic Feedback
	Preferences
	Demonstrations

	Experiment and Environment Details
	Half Cheetah
	Cliff Walking
	Lunar Lander
	Ant

	Supplementary Results
	Main Proofs
	Alternative RRC-Derived Approaches
	Theoretical Properties
	Chapter Proofs and Derivations
	Reward Bounds
	Loss Gradients

	Impact Statement
	Use of Existing Assets
	Use of Compute

