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Abstract

Contrastive Vision-Language Models (VLMs) have demonstrated strong zero-shot
capabilities. However, their cross-modal alignment remains biased toward English
due to limited multilingual multimodal data. Recent multilingual extensions have
alleviated this gap but enforce instance-level alignment while neglecting the global
geometry of the shared embedding space. We address this problem by introducing
ToMCLIP (Topological Alignment for Multilingual CLIP), a topology-aware
framework aligning embedding spaces with topology-preserving constraints. The
proposed method applies persistent homology to define a topological alignment
loss and approximates persistence diagram with theoretical error bounds using
graph sparsification strategy. This work validates the proposed approach, showing
enhanced structural coherence of multilingual representations, higher zero-shot
accuracy on the CIFAR-100, and stronger multilingual retrieval performance on
the xFlickr&CO. Beyond VLMs, the proposed approach provides a general method
for incorporating topological alignment into representation learning.

1 INTRODUCTION

Contrastive Vision-Language Models (VLMs), such as CLIP (Radford et al.l 2021) and ALIGN (Jia
et al.,[2021) have demonstrated strong zero-shot transfer capabilities by learning a shared embedding
space for images and texts (Bordes et al., |2024). These models align paired samples through
contrastive learning, enabling diverse downstream tasks without task-specific supervision. Although
autoregressive multimodal large language models such as LLaVA (Liu et al., |2024c), Qwen-VL (Bai
et al., [2023)), and Gemini (Team et al., 2023) have recently achieved vision-language understanding
via generative training, contrastive VLMs remain effective for retrieval tasks and computational
efficiency.

Despite recent multilingual extensions (Carlsson et al.,|[2022; |Chen et al., 2023 Yang et al., [2024),
representation spaces remain structurally misaligned. Most approaches enforce instance-level align-
ment via distillation or continual learning, but they fail to preserve the global geometry in the
shared embedding space. This structural misalignment causes unstable cross-lingual retrieval and
inconsistent semantic clustering.

As illustrated in Figure[T] the English and Korean text embeddings produced by the CLIP encoder are
not aligned. Even the multilingual CLIP (MCLIP; |Carlsson et al., 2022) fails to achieve cross-lingual
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Figure 1: Visualization of text embeddings (English and Korean) in the latent space using t--SNE (Maaten and

2008)), from CLIP and multilingual CLIP (MCLIP; [Carlsson et all},[2022)) text encoders. The Fashion
Product Images dataset (Aggarwal||2019) was used, where the productDisplayName field serves as the input
caption to the text encoders. Colors indicate the corresponding masterCategory of each product.

alignment, with multiple semantic categories remaining intermixed in the center of the embedding
space. To address this limitation, we propose ToMCLIP: Topological Alignment for Multilingual
CLIP, a topology-aware training framework that enforces structural consistency across languages
using topological data analysis. This approach is motivated by the hypothesis that performance gaps
between English and other languages stem from differences in the topological structure of their latent
representations.

The contributions of this work are as follows:

* We introduce a topology-aware training framework for multilingual contrastive VLMs. It
formalizes the structural misalignment across languages and addresses it with a topological
alignment loss that enforces structural alignment in the shared embedding space.

* We develop a scalable approximation for persistence diagrams. The approach constructs
sparse graphs using MST-based sparsification and provides theoretical error bounds of
approximation.

* We validate the proposed method using case studies on multilingual vision-language tasks.
The experiments reveal improved cross-lingual structural coherence, higher zero-shot accu-
racy on the CIFAR-100, and stronger multilingual retrieval performance on the xFlickr&CO.

Appendix [A]reviews related work on contrastive VLMs, autoregressive multimodal large language
models and topological analysis of the embedding space.

2 TOPOLOGICAL ALIGNMENT

Figure [2] presents an overview of our proposed alignment framework. Appendix [B] presents the
preliminaries of the persistent homology, including persistence diagrams and the (sliced) Wasserstein
distance.

We integrated topological alignment loss with MCLIP. The MCLIP proposes a teacher-student
framework that applies machine-translated captions for training. A set of English captions X is
translated into a target language to form X *. The CLIP text encoder Er (teacher) encodes the original
captions X, and the MCLIP text encoder E's (student) encodes the translated captions X *. Then Eg
is trained to align with the teacher by minimizing the mean squared error (MSE) between the output
embeddings:

Ly = MSE(Er(X), Es(X")). (1)

This approach focuses on point-wise alignment, overlooking the structural consistency of the embed-
ding space across languages.
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Figure 2: Overview of the proposed alignment framework between CLIP (£7) and multilingual CLIP (MCLIP;
E's) text encoders. Eg is trained to align with the frozen E'r using a combination of loss functions; Ly, enforces
point-wise alignment; L, and Lg, promote geometric alignment by preserving topological structures. The
evaluation is conducted by pairing F's with the pretrained CLIP image encoder, enabling cross-lingual retrieval
in the shared embedding space.

2.1 Topological Alignment Loss

We introduce a novel topological alignment loss Ly, that enforces the global structural alignment. For
a batch of data comprising N image-text pairs {(I;, T;)}}¥ ,, the text representations { E7(T})} Y ;
form a geometric structure in the embedding space (Figure |I[) The MCLIP loss Ly, considers each

representation E7(T;) independently, ignoring the geometric relationships between the samples.

To address this problem, we compute the persistence diagram D7 from the point cloud { Er(T;) }Y 4,
which summarizes the topological features of the embedding distribution (e.g., connected components

and cycles). Similarly, we compute Dg from the point cloud {Eg(T;)} Y ;, where T denotes the

K3
translated caption of 7}, capturing the structure of the MCLIP. To align these spaces, we define the

topology alignment loss:

Ly = SW{)(Dr, D), )
where SW,, denotes the sliced p-Wasserstein distance (SWD, Bonneel et a1.|, 2015) and K represents
the number of projection directions. The SWD provides a fast, differentiable, and GPU-friendly
approximation of the Wasserstein distance, making it suitable as a training loss. Minimizing the
discrepancy between D and Dg enforces both embedding spaces to preserve comparable global
topological structures, complementing pointwise matching with structural alignment.

Furthermore, we define a distance matrix loss Lq,, to promote local geometric alignment between
the latent spaces. Given a point cloud X = {z;}¥ ,, the pairwise distance matrix is computed as
follows: (Mx); ; = ||z; — ;]| for 1 < 4,5 < N where ||-|| denotes the Euclidean (L) norm. The
distance matrix loss is defined as follows:

Lam = MSE(Myz, M) 3)

where M7 and Mg denote the distance matrices computed from the point clouds 7' = {E7(T})} Y,
and S = {Es(T})}X ,, respectively. The total training objective is defined as the weighted sum of
three loss components: Ligtal = 0 Lpw + 8Lta + vLam, Where «, 3, and -y are hyperparameters that
control the relative contributions of each loss term.

Stability-Based Justification of the Loss Design. Let X,Y C R" be finite point clouds. The
k-dimensional persistence diagrams are denoted by Dg?) and D§,k ), respectively. By the stability

theorem, for any p > 1, C), > 1 exists such that

W,(DY, D) < Cwe(X,Y), 4)
where W), is the p-Wasserstein distance between diagrams and W is the p-Wasserstein distance
between point clouds (iSkraba and Turnerl |2020|). Thus, if W), (Dg?), Dg/k )) > 1, then W;(X YY) >
7/C. Therefore, minimizing the distance between persistence diagrams (L4, ) reduces the certified
lower bound on the point cloud discrepancy. Moreover, because D(®) summarizes the connectivity

in the embedding space, minimizing L, between D(9)s reduces the cross-lingual semantic cluster
misalignment, encouraging semantically equivalent texts to belong to the same cluster.

However, L, and Lqy, are invariant to Euclidean isometries. If Y = RX + ¢ with R € O(n) (i.e.,
RTR =TanddetR € {£1}) and ¢ € R", then Ly, = Lam = 0 and W(X,Y’) can be arbitrarily



large. Hence, these terms alone do not reduce W or prevent rigid-motion drift. Therefore, L,y
is needed to fix the coordinate frame, while L, aligns the global topology and L4,, matches the
pairwise geometry.

2.2 Approximating Persistence Diagrams

This work employs two strategies to approximate the persistence diagram of the Vietoris-Rips (Rips)
complex with reduced computational overhead:

* We restrict the computation to O-dimensional (Hy) features and the birth times of 1-
dimensional (H;) features, which can be extracted from the minimal spanning tree
(MST) (Kruskal, [{1956) with a union-find (Tarjan, |1979). This eliminates the need to
construct the full Rips complex. Prior work has confirmed that H features are sufficient
to capture the topological structure of latent representations (Moor et al., 2020; Kim et al.,
2024).

* To reduce the computational cost of MST further, we build a sparse graph from pairwise
distances between embeddings, limiting the number of candidate edges.

This approximation reduces memory and time, enabling persistence diagrams in large-scale training.
For a point cloud with IV points, computing the Rips complex has an exponential complexity of up to
O(N**+1) for k-dimensional simplices. Persistent homology via boundary-matrix reduction has a
worst case time of O(m3) and a memory of (’)(m2) (Otter et al., |2017), where m denotes the total
number of simplices in the filtration. Consequently, computing H has a cost of m = O(N?) up to
O(N®), whereas computing H; costs m = O(N?) up to O(N?). However, Hy and the birth time of
H, features can be computed via the MST, which has a computational complexity of O(F log V'),
where V' denotes the number of vertices and E represents the number of edges (Cormen et al., 2022).
Notably, for Hy, only N — 1 edges are necessary to determine the death time, corresponding to the
edges of the MST, out of a total (]g ) edges in the fully connected graph. Therefore, constructing the
MST over a complete graph is computationally inefficient. To mitigate this problem, we construct a
sparse graph G, = (V, E,) from a point cloud X = {z1,--- ,xx} C (R",d), where V = {x;} ¥,
and E. = {(z;,2;) | d(z;,x;) < €}, with d denoting a metric (e.g., Euclidean distance). This
sparsification reduces the number of edges while retaining a sufficient topological structure to
approximate the persistence diagram.

We calculate the upper bound on the approximation error of the proposed method. We construct
a weighted complete graph G = (V, E, w) from a point cloud X, where V = X, E = {(z;,z;) |
x;,xj € X, 1 # j}, and the weight function w : E — R> is defined as

d(z;, x5)
w(l(@is2y)) = =377 5)
where M = ( rna)x Ed(xi, x;). By construction, 0 < w(e) < 1foralle € E.
Zi,T5)€
Theorem 1. Let 0 < ¢ < 1and G. = (V, E,w,),
wle), ifw(e) <e
we(e) = ' (6)
1, ifw(e) > e.

Let m(e) = #{(0,d) € DEP(G) | e < d < oo}, ie., the number of finite 0-dimensional
persistence points of G whose death times exceed €. Then,

Wi(Dg™™(G), Dy™*(Ge)) < m(e)/? (1~ ¢) )
and 0 < m(e) < N — 1 where W, denotes the p-Wasserstein distance.

Appendix presents the proof of this theorem. Let ¢(¢) denote the number of connected components
in VR((G) which is equal to m(e) + 1. Therefore,

W(DEP(G), D (GL)) < (e(e) — 1)/7 (1 - o). ®)

As e increases, more edges are retained, sparsity decreases, and the number of connected components
¢(e) monotonically decreases. In particular, a critical value ¢, exists such that ¢(¢) = 1 for all



Table 1: Top-10 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).

Languages (13)
Setting  Model En F Es De It R« Pl T Da Ja Zh Ko Vi %
CLIP 9106 66.18 6369 6405 4933 1195 2203 2473 3242 3280 2156 1238 1532 39.04
MCLIP 9197 8566 87.10 8574 8823 8798 8538 87.65 87.83 53.60 89.50 8720 8626 8493

Full ToMCLIP(Lyn) 9199 8477 84.63 89.63 86.17 87.78 84.86 8735 86.88 56.27 88.11 87.94 8698 84.87
ToMCLIP(L,,) 91.48 8541 8423 87.85 8849 8943 8435 8876 87.98 5857 89.75 88.76 89.41 85.73

ToMCLIP 9140 87.59 87.37 8930 89.11 87.66 8359 88.59 87.79 5795 88.68 8836 88.17 8581
CLIP 91.06 66.18 63.69 6405 4933 1195 2203 2473 3242 3280 21.56 1238 1532 39.04
MCLIP 79.72  67.60 6220 71.41 59.68 69.80 6455 58.71 7331 60.68 7827 6543 7138 67.90

Low ToMCLIP(Lgn) 79.46 6799 6251 70.81 60.75 6930 64.02 5721 7264 5920 7743 6742 70.07 67.60
ToMCLIP(L;)  80.00 67.37 62.66 70.09 60.88 7031 6522 59.50 72.68 60.94 7736 67.01 7337 6826
ToMCLIP 80.75 68.56 63.85 7149 6291 7123 6550 60.80 73.75 6239 78.82 6796 7244 69.26

€ > €4, (i.e., VR(G) becomes connected). From an algorithmic perspective, the critical trade-off
lies in selecting € so that VR (G) remains sparse while maintaining a small number of connected
components. The experiments confirm that moderate values of ¢ already achieve near connectivity
with a low edge density, making the sparsification highly effective in practice (Section [FI)).

3 RESULTS

We evaluate TOMCLIP under two training conditions: (1) using the full available dataset and (2) using
only 1% of the data for the low-resource setting. This setup is designed to mimic realistic situations
where only a few of multilingual annotated data are available for training. Appendix [D|provides details
on dataset preparation, training and evaluation. The TOMCLIP(Lgy,), TOMCLIP(Ly,), and ToMCLIP
denote models trained with the proposed total 1oss Ly using the coefficients (o, 8,v) = (1,0.01,0),
(1,0,0.01), and (1,0.01,0.01), respectively.

3.1 Evaluation on CIFAR-100

We evaluate the zero-shot classification on CIFAR-100 to assess the alignment between the image
and multilingual text embeddings. At inference, we use class-name prompts translated into 13
languages (e.g., “a photo of a {class}”). Appendix [E|presents the complete prompt list. TableT]
reports the Top-10 accuracy (%) per language (the Top-1 and Top-5 are provided in Tables 6] and
in Appendix [F.2)). In the Full setting, TOMCLIP surpasses MCLIP in all but one language (Polish,
“PI”), yielding a higher average Top-10 accuracy overall (4-0.88). In the Low setting, TOMCLIP
outperforms MCLIP across all 13 languages (+1.36 on average). Note that En in the Low does
not indicate catastrophic forgetting: CLIP’s text encoder is not used when evaluating (To)MCLIP.
Although MCLIP provides multilingual support, its cross-modal alignment remains suboptimal,
whereas preserving the topological structure enables TOMCLIP to deliver more robust and consistent
multilingual representations. Table [5|(Appendix summarizes the average Top-k (k € {1,5,10})
accuracy. The ToMCLIP performs the best for all £ and both regimes. Among the ablations,
ToMCLIP( Ly, ) matches MCLIP, whereas TOMCLIP(Ly,) consistently improves upon MCLIP. Using
both losses together, TOMCLIP yields the strongest results. Adding Lgm on the baseline Ly, alone does
not yield additional cross-modal alignment, whereas L, alone induces extra alignment and improves
accuracy. Nevertheless, Lgp, is beneficial in conjunction with Ly,, suggesting a complementary role
that reinforces the alignment signal provided by Li,. Appendices[F.4]-[F.8|presents the ablation studies
on batch size, loss coefficients, homology dimension, graph sparsification threshold, and the number
of SWD projections K, respectively.

4 CONCLUSION

This work introduces TOMCLIP, a topology-aware alignment framework for multilingual contrastive
VLMs, augmenting instance-level matching with topology-preserving objectives. The ToOMCLIP
improves the zero-shot CIFAR-100 performance, and stronger multilingual retrieval performance on
the xFlickr&CO. Furthermore, TOMCLIP enhances the structural coherence of the shared embedding
space. Beyond multilingual alignment, the topological alignment loss provides a general objective
for aligning embedding spaces, encompassing cross-modal alignment, knowledge distillation, and
dimensionality reduction.
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A RELATED WORKS

A.1 Contrastive Vision-Language Models

Contrastive vision-language models (VLMs) learn joint representations of images and text by max-
imizing the similarity between matched pairs while minimizing it for unmatched pairs. CLIP
(Contrastive Language-Image Pre-training) (Radford et al.,|2021) pioneered this approach by training
dual encoders on 400 million image-text pairs collected from the internet. The model employs a
symmetric cross-entropy loss over the similarity matrix of image and text embeddings within each
batch, enabling zero-shot transfer to downstream tasks without task-specific fine-tuning.

ALIGN (Jia et al.| 2021)) scaled this approach further by leveraging a noisy dataset of over one billion
image-text pairs, demonstrating that the noise in web-scraped data can be overcome with sufficient
scale. Unlike CLIP, which uses curated data, ALIGN shows that raw alt-text data can be effective
when combined with a simple dual-encoder architecture and contrastive learning objective.

Several subsequent works have improved upon these foundations. FLIP (L1 et al., 2023b) introduced
a masking strategy during training to reduce computational costs while maintaining performance.
DeCLIP (Li et al., [2022) enhanced data efficiency through self-supervised learning and nearest-
neighbor supervision. FILIP (Yao et al.l |2022) improved fine-grained alignment by introducing
token-wise maximum similarity between image patches and text tokens.

The key advantages of contrastive models include: (1) computational efficiency during inference, as
image and text encoders can be cached and indexed separately; (2) flexibility in swapping encoders
for different modalities or languages; and (3) strong performance on retrieval tasks. These properties
make contrastive models particularly suitable for multilingual extensions, as the text encoder can be
replaced or fine-tuned for different languages while keeping the image encoder fixed.

Despite their success, contrastive models face challenges in maintaining consistency across languages
when extended to multilingual settings, particularly in preserving the geometric structure of the
shared embedding space. We address this limitation through topological alignment.

A.2 Multilingual Extensions of Contrastive VLMs.

Various multilingual extensions of contrastive VLMs have been developed, using knowledge dis-
tillation, continual learning, or multilingual pretraining to align images and texts across languages.
For example, MCLIP (Carlsson et al.,2022) trains a single multilingual text encoder using text-only,
machine-translation-based distillation to match the original CLIP English text space. In contrast,
mCLIP (Chen et al., [2023) retains the dual-encoder design of CLIP but aligns a multilingual text
encoder to CLIP via Triangle Cross-modal Knowledge Distillation (TriKD). The multilingual text
encoder is initialized using contrastive pretraining. Continual language learning approaches (Yang
et al.,[2024)) add languages incrementally to mitigate catastrophic forgetting.

A.3 Autoregressive Multimodal Large Language Models

While our work focuses on contrastive VLMs, we briefly review recent autoregressive multimodal
Large Language Models (LLMs) to contextualize our approach within the broader landscape of
vision-language understanding. Unlike contrastive models that learn aligned embedding spaces,
autoregressive multimodal LLMs generate text conditioned on visual inputs through next-token
prediction.

Flamingo (Alayrac et al.| 2022)) pioneered the frozen LLM approach by introducing cross-attention
layers between a pretrained vision encoder and language model, enabling few-shot learning on vision-
language tasks. BLIP-2 (L1 et al.| [2023a) proposed Q-Former, a lightweight module that bridges
frozen image encoders and LLMs through a set of learnable query tokens, significantly reducing
training costs while achieving strong performance.

LLaVA (Liu et al., 2024c) demonstrated that visual instruction tuning (training on instruction-
following data in the visual domain) can produce capable multimodal assistants. The model uses
a simple projection layer to connect CLIP visual features with an LLM, showing that architectural
simplicity combined with high-quality instruction data can be highly effective. Subsequent versions
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like LLaVA-1.5 (L1u et al.,2024a) and LLaVA-NeXT (Liu et al.,|2024b) have improved resolution
handling and reasoning capabilities.

Commercial models have pushed the boundaries further. GPT-4V (OpenAl, 2023)) demonstrates
unprecedented visual understanding and reasoning, though architectural details remain proprietary.
Gemini (Team et al.,|2023)) achieves state-of-the-art performance across numerous multimodal bench-
marks through native multimodal pretraining rather than connecting separate vision and language
models.

The Qwen series has emerged as a particularly strong line of multimodal models. Qwen-VL (Bai et al.}
2023)) introduced a versatile VLM supporting multiple languages and resolutions. Qwen2-VL (Wang
et al.,2024a) significantly improved upon this with enhanced visual reasoning, video understanding,
and multilingual OCR capabilities across 29 languages. The latest Qwen2.5-VL (Team, 2024) further
advances the architecture with dynamic resolution support and improved instruction following,
achieving state-of-the-art performance on various benchmarks while maintaining efficient inference.

Similarly, Google’s Gemma family has expanded into multimodal territory. PaliGemma (Beyer et al.,
2024) combines a SigL.IP vision encoder with Gemma language models for versatile vision-language
understanding. Gemma-2 (Team et al.,[2024)) improved the base architecture, leading to enhanced
multimodal capabilities when combined with vision encoders. These models demonstrate strong
performance while being more accessible than larger commercial offerings.

Other notable open-source alternatives include InternVL (Chen et al., |2024), which scales vision
foundation models for generic visual-linguistic tasks, and the Yi-VL series (Young et al., 2024),
which offers competitive performance with bilingual (Chinese-English) specialization.

These autoregressive models excel at complex reasoning, visual question answering, and generating
detailed descriptions. However, they require significant computational resources during inference due
to sequential token generation and cannot easily cache embeddings for retrieval tasks. Furthermore,
their multilingual capabilities typically depend on the underlying LLM’s language coverage, making
it challenging to add new languages without extensive retraining.

The fundamental architectural differences between contrastive and autoregressive approaches lead
to complementary strengths: contrastive models like CLIP excel at retrieval and classification
with efficient inference, while autoregressive models provide superior reasoning and generation
capabilities at higher computational cost. Our topology-aware alignment method specifically targets
the unique challenges of multilingual contrastive models, where maintaining geometric consistency
across languages is crucial for retrieval performance.

A.4 Topological Analysis of the Embedding Space.

Recent studies have emphasized the importance of preserving the topological structure in represen-
tation learning (Moor et al., [2020; Trofimov et al., 2023} |Zilberstein et al.,|2024). Complementary
efforts have employed topological representations enriching representation learning (Carriere et al.,
2020; Papillon et al.l |2023; |Wen et al., 2024)). Building on these advances, topology-aware techniques
have been applied in the context of VLMs to improve embedding robustness and generalization (Zhang
et al., [2024; |[Rahim et al.l 2024; Huang| [2025). Furthermore, topological representations have proven
effective for knowledge distillation and continual learning, where the latent space geometry acts as
transferable knowledge (Kim et al.| 2024} Wang et al.,[2024bj |Hai et al., [2025).

Despite these advances, topological consistency across multilingual embeddings remains underex-
plored. This work proposes a topological alignment framework that enforces structural coherence
between the latent spaces of CLIP and MCLIP using persistent homology.

B PERSISTENT HOMOLOGY

Topological data analysis (TDA) characterizes the shape of data by extracting topological features
that are stable to small perturbations. We assume the observed points are sampled from an unknown
manifold embedded in a metric space. Given a finite point cloud X = {z;}}¥, with metric d, we
construct a nested family of simplicial complexes (e.g., a Vietoris-Rips filtration) indexed by a scale
parameter «. Persistent homology computes homology across scales and records when features, such
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as connected components and loops, are born and die. The resulting multiset of birth-death pairs is
the persistence diagram. These summaries provide geometric signals.

Point Clouds and the Vietoris-Rips Filtration. Let X = {z;}Y, C (X,d). For a > 0, the

Vietoris-Rips (Rips) complex VR (X) is the abstract simplicial complex whose k-simplices are

all (k+1)-tuples {x;,, ..., } with pairwise distances max d(z;,,x;,) < . As « increases, the
p.q

complexes are nested
VR, (X) € VR, (X) forag < ag, )

yielding the Rips filtration {VR4(X) }a>0.

Weighted Graphs and the Rips Filtration. For a weighted graph G = (V, E, w) with weight func-
tion w : E — R, we define the Rips complex VR, (G) as the abstract simplicial complex whose
1-skeleton consists of the vertex set V" and all edges (u,v) € E with w(u,v) < «. Higher-order
simplices are then included whenever all their edges are present. As « increases, the complexes form
a nested sequence VR, (G) C VR, (G) for a1 < ao, yielding the Rips filtration { VR, (G)}a>0
induced by the graph weights.

Persistent Homology and Persistence Diagrams. Fix a homological dimension k € {0, 1,2, ...}
and a coefficient field (we use Zs). The inclusion maps in the filtration induce homomorphism
between homology groups Hy(VRe,) = Hi(VRa,) for a3 < as. Each topological feature 7 (a
k-dimensional class) appears (is born) at scale b (Hy(VRy)) and disappears (dies) at scale d > b
(Hi(VRg)). The multiset of pairs (b, d) is the k-dimensional persistence diagram Dj,. For k=0, all
components are born at b=0, and deaths record the merger times of components.

Distances Between Persistence Diagrams. Let D; and D, be persistence diagrams, and let
A = {(t,t) : t € R} be the diagonal line in R?. We compare diagrams by allowing matches to
points on A. For p € [1, 00), the p-Wasserstein distance is

1/
Wy(D1,D2) = [inf > (lu=y(w)l,)?] (10)

ueDUA

where + ranges over all bijections between D; U A and Dy U A, and ||-||,, denotes L,-norm. The
special case p=oo yields the bottleneck distance

Wao(D1,D3) = inf  sup [lu—5(u)]loo- (11
Y weDiUA

These metrics enjoy well-known stability properties: small perturbations of the input metric (or
filtration function) produce small changes in the diagrams (Skraba and Turner;, [2020).

Sliced Wasserstein distance (SWD). SWD approximates the d-dimensional Wasserstein distance
by projecting the data onto many 1-dimensional lines and averaging the resulting one-dimensional
Wasserstein costs. This yields a fast O(K N log N), differentiable, and GPU-friendly objective that
is well suited as a training loss. We now give the formal definition.

Given two finite point sets X = {z;};*; C R" and Y = {y;}}_, C R (uniform weights), the
sliced p-Wasserstein distance compares them by averaging one- d1mens10nal p-Wasserstein costs of
their projections. For a unit direction § € S™~!, project s; = (z;,0) and t; = (y;,0), and let
sy <o <svy and £(qy < -+ <t be the sorted values. The 1D cost along 6 is

WlD ( Z‘S t(z >l/z>.

Averaging over directions yields
1/p
SW,(X,Y) = ( / (W, P(9))" d0(9)>
Sd—l
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where ¢ is the uniform measure on S~ 1. In practice, we approximate the integral with K directions
{60, }_ | sampled uniformly:

Mw

1/
SWI (X, Y) (1 (W, (8 ) : (12)
k=1

which can be computed in O(K N log N) time via sorting per direction.

C PROOF OF THEOREM

Theorem 1. Ler 0 < ¢ < 1. Define G, = (V, E,w,) by

wele) = {w(e)’ pete) =< (13)

1, ifw(e) > e

Let m(e) = #{(0,d) € DIP(@) | e < d < oo}, ie., the number of finite 0-dimensional
persistence points of G whose death times exceed €. Then

W(Dg'P*(G), Dy P(Ge)) < m(e)/? (1—e) (14)

and 0 < m(e) < N — 1 where W,, denotes p-Wasserstein distance.

Proof. Let Fg = {VR,(G)}a>0 and Fg, = {VRo(Ge) }o>0 denote the (graph-level) 1-skeleton
filtrations where

VR.(G) =V U{ee€e E|w() <a}l, VRo(Ge) =V U{e€ E|wle) <al.

Since 0-dimensional homology is depends only on 0 and 1-simplices, it suffices to consider the filtered
1-skeleton. For av < €, we have w,(e) = w(e) whenever w(e) < €, hence VR, (G) = VR, (Go).
Moreover, since w.(e) € {w(e), 1}, for every a with e < o < 1 we have VR, (G.) = VR.(G,), i.e.,
the filtration of G, is constant on [¢, 1). Consequently, in DiP®(G.) every class that is still alive at
time e dies precisely at « = 1 when all remaining edges of weight 1 are added.
In O-dimensional persistence points, all births occur at 0, and there are N points including a single
essential class. Thus, points of DR‘pS(G) with death times d < € also appear with the same deaths in
DgP3(G.), while each point with death d € (e, 1) in Di"P*(G) corresponds to a point with death 1
in DiP%(@,).
Define a bijection 7/ : Di™P*(G) U A — DiiP%(G,) U A by
0,d), d<e
/ 0 d — ( i ) —_ ) 15
vod = {G1 (20, >

and map the essential class to the essential class. (No diagonal points are used here, but allowing A
keeps the statement standard.) With the usual £, ground metric on R?, we have

_ A~ — 0, d<e
1(0,d) —~(0,d)||, = {|1_d|7 e<d<1. (1o

The number m(e) of pairs with e < d < 1 is at most N — 1 (all but the essential component).

Therefore,
S (lu=yWllp)” < mle)(1— e, (17)
ue DFPE(G)uA

and 0 < m(e) < N —1since |1 —d| < 1 — € forevery d € (e,1]. Taking the infimum over all
bijections and the p-th root yields

WDF™(G), Dy (Go) < (m(e) (1= 7)"" (s)
= m(e)'/? (1 —e), (19)
which proves the claim. O
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D DATASETS AND EXPERIMENTAL DETAILS

Datasets. We use the multilingual caption dataset introduced by (Carlsson
et al| [2022), publicly available at https://huggingface.co/datasets/M-CLIP/
ImageCaptions-7M-Translations. While the corpus provides translations for multiple
languages, Korean is not included. To incorporate Korean, we augment the corpus by replacing a
portion of captions with Korean translations; the replacement ratio and exact sampling procedure are
specified below.

Table 2: Per-language sample counts before/after adding Korean. Before: all languages except Vietnamese had
150,000; Vietnamese had 100,000; Korean was absent. Totals are preserved.

Language Before After A Language Before After A
afrikaans 150000 147000 —3000 italian 150000 147000 —3000
albanian 150000 147000 —3000 japanese 150000 147000 —3000
ambharic 150000 147000 —3000 korean 0 138000 +138000
arabic 150000 147000 —3000 macedonian 150000 147000 —3000
azerbaijani 150000 147000 —3000 malayalam 150000 147000 —3000
bengali 150000 147000 —3000 marathi 150000 147000 —3000
bosnian 150000 147000 —3000 polish 150000 147000 —3000
bulgarian 150000 147000 —3000 portuguese 150000 147000 —3000
catalan 150000 147000 —3000 romanian 150000 147000 —3000
chinese_simplified 150000 147000 —3000 russian 150000 147000 —3000
chinese_traditional 150000 147000 —3000 serbian 150000 147000 —3000
czech 150000 147000 —3000 slovenian 150000 147000 —3000
danish 150000 147000 —3000 spanish 150000 147000 —3000
dutch 150000 147000 —3000 swahili 150000 147000 —3000
english 150000 147000 —3000 swedish 150000 147000 —3000
estonian 150000 147000 —3000 tagalog 150000 147000 —3000
french 150000 147000 —3000 telugu 150000 147000 —3000
german 150000 147000 —3000 turkish 150000 147000 —3000
greek 150000 147000 —3000 turkmen 150000 147000 —3000
hindi 150000 147000 —3000 ukrainian 150000 147000 —3000
hungarian 150000 147000 —3000 uzbek 150000 147000 —3000
icelandic 150000 147000 —3000 uyghur 150000 147000 —3000
indonesian 150000 147000 —3000 vietnamese 100000 100000 0

Total Before: 7000000 After: 7000000 A: 0

Korean Augmentation. In the original corpus, Korean was absent; 46 languages had 150,000
captions each and Vietnamese had 100,000, totaling 7M samples. We added Korean while preserving
the per-language ratios and the total size by uniformly reallocating 3,000 captions from each non-
Vietnamese language to Korean. Specifically, for every language except Vietnamese (fixed at
100,000), we randomly selected 3,000 captions and replaced them with Korean translations. This
results in 147,000 samples per non-Vietnamese language (down from 150,000) and 138,000 Korean
samples in total (46 x 3,000). Table [2{summarizes the per-language counts.

Korean translations were generated using the OpenAl API with a temperature setting of 0.0 to
ensure deterministic and consistent translations. To handle the large-scale translation task efficiently,
we implemented a batch processing pipeline with checkpoint mechanisms. The translation system
processed captions in batches of 1,000 items, with automatic checkpointing every 5,000 translations
to enable recovery from potential interruptions. Each translation request included explicit instructions
to return only the translated text without additional formatting or explanations. Failed translation
attempts were handled with exponential backoff retry logic (up to 3 attempts) to ensure robustness
against transient API failures.

Embedding Subset. Although the full dataset contains approximately 7M samples, we rely on
the 2M precomputed text embeddings released at ImageCaptions-7M-Embeddings. We use this
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subset to train both MCLIP and ToMCLIP and verify that it is sufficient to reproduce the MCLIP
performance reported in (Carlsson et al.;,[2022)). To evaluate the model under a low-resource condition,
we further subsampled 1% of the 2M samples and trained MCLIP and ToMCLIP using this reduced
training set. This setup simulates scenarios where access to multilingual annotated data is severely
limited.

Models. For multilingual text encoding, we adopt XLM-RoBERTa (Conneau et al.| [2019). We
use the CLIP (ViT-B/32) image encoder (Radford et al.,[2021). When comparing MCLIP and ToM-
CLIP, the backbone architecture, optimizer, and learning-rate schedule are identical unless otherwise
noted. We set the batch size to 256, following MCLIP (Carlsson et al.l [2022). ToMCLIP(Lgp,),
ToMCLIP(L,), and TOMCLIP denote models trained with the proposed total 10ss L, using coef-
ficients (o, 8,7) = (1,0.01,0), (1,0,0.01), and (1, 0.01,0.01), respectively. To construct a sparse
graph, let DM denote the pairwise distance matrix; we set € = mean(DM) — 0.5 * std(DM),
computed separately for each point cloud. For the sliced Wasserstein distance, we use p = 2 and
average over 50 random projection directions.

Training and Evaluation. We train under two data regimes: full-data (all available subset entries)
and a 1% low-resource setting. We report zero-shot CIFAR-100 classification across 13 languages
using top-1/5/10. All preprocessing, tokenization settings, batch sizes, learning rates, and early
stopping are the same as MCLIP (Carlsson et al.| [2022), except for the loss function, which includes
our topology-alignment objective. The results are from a single training run, consistent with standard
research practices (Radford et al., 2021} |Carlsson et al., 2022} |Chen et al.,|2023}; |Yang et al., 2024).
For the 1% low-resource setting, this work reports the mean over three independent runs.

E PROMPTS OF MULTILINGUAL LANGUAGE FOR THE EVALUATION
OF ZERO-SHOT CLASSIFICATION ON THE CIFAR-100

To perform zero-shot classification on the CIFAR-100 dataset, we construct language-specific text
prompts to match the expected format of each language. These prompts are used to generate class-
specific textual descriptions, which are then embedded using the multilingual text encoder. The
general template follows the format of “a photo of a {}” in English, where the placeholder is replaced
by the class name. Table|3|summarizes the prompt templates used for each language in our evaluation.

Table 3: Prompt templates used for each language in the zero-shot classification task. The placeholder {} is
replaced with the class name.

Language (ISO) Prompt Template

English (En) a photo of a {2}
French (Fr) une photo duan(e) {}
Spanish (Es) una foto de un(a) {3}
German (De) ein Foto von einem/einer {}
Italian (It) una foto di un(a) {}
Russian (Ru) doro {}

Polish (PI) zdjecie {}

Turkish (Tr) {} fotografi

Danish (Da) et billede af en {}
Japanese (Ja) {EFH

Chinese (Zh) —aR IR A

Korean (Ko) {37F = AR

Vietnamese (Vi)  mot bic anh vé {}

F ADDITIONAL RESULTS

F.1 Connectivity and Sparsity Analysis of Approximation Method

We evaluated the effect of the threshold parameter € on the sparsity and connectivity of the
sparsified graph G. = (V, E.). Across uniform and Gaussian random point clouds in R™ with
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N € {64,128, 256,512}, we measured the number of connected components c(e) and the average

sparsity (|E|/(%)) when e = i — Ao for A € {1.0,0.5,0, —0.5, —1.0}, where ;2 and o denote the
mean and standard deviation of all weights in G.

Table E| reveals a clear monotonic trade-off. As A\ decreases, the threshold ¢ = p — Ao increases,
leading to a higher edge density and fewer connected components. At a large positive value of ),
graphs are sparse but fragmented into multiple components, particularly for Gaussian point clouds,
which exhibit a stronger central concentration. As A becomes smaller, the graphs quickly become
connected (c(e) = 1), and sparsity rises above 0.5. At A = 0.5, the graphs achieve near connectivity
across all IV, while retaining only about 30% of the edges. TOMCLIP adopts this setting, as it offers
an effective balance between sparsity and connectivity.

Table 4: Average connected components c(e) and sparsity by A value on random point clouds (n = 512, 10
trials).

Connected components ¢(¢) Sparsity
N Uniform (\) Gaussian (\) Uniform (\) Gaussian (\)
1.0 05 0.0 —-05 -1.0 1.0 05 00 —-05 —-1.0 1.0 05 00 -05 -10 1.0 05 00 -05 -10

64 16 1.1 1.0 1.0 1.0 41 14 1.1 10 1.0 0.158 0.306 0.496 0.690 0.840 0.157 0.309 0.504 0.693 0.840
128 1.7 1.0 1.0 1.0 1.0 31 12 1.0 1.0 1.0 0.160 0.310 0.499 0.692 0.841 0.160 0.311 0.502 0.694 0.841
256 1.1 1.0 1.0 1.0 1.0 32 12 1.1 10 1.0 0.159 0308 0.499 0.692 0.841 0.159 0.310 0.503 0.693 0.842
512 10 1.0 1.0 1.0 1.0 22 10 1.0 1.0 1.0 0.158 0.308 0.499 0.690 0.841 0.159 0.310 0.502 0.692 0.841

F.2 Evaluation on CIFAR-100

Table 5: Average Top-k accuracy (%) of the zero-shot classification on CIFAR-100 across 13 languages.

Low Full
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
CLIP 2029 3247  39.04 2029 3247  39.04
MCLIP 30.21  56.67 6790 50.72 7649  84.93

ToMCLIP(Lgn) 31.12 5647  67.60 50.53 7584  84.87
ToMCLIP(L,) 3045 57.14 6826 50.73 77.12 85.73
ToMCLIP 3191 5815 6926 5132 7746 85.81

Table 6: Top-1 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).

Languages (13)

Avg

Setting  Model En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi
CLIP 60.67 40.11 3749 36.06 2693 1.06 1071 954 17.87 1240 521 221 349 2029
MCLIP 58.86 49.14 51.13 5123 51.13 4983 5140 5124 55.13 33.01 5470 51.16 5135 50.72

Full ToMCLIP(Lgn) 5779 46.19 5039 56.13 5039 4862 50.29 5099 56.62 33.85 5235 5228 51.03 50.53
ToMCLIP(L,)  58.10 48.67 4854 5242 5144 5267 50.74 5057 57.09 3286 5190 5137 5315 50.73

ToMCLIP 5893 50.76 52.67 5427 52.68 50.63 50.04 5121 57.50 3133 5297 5241 5172 5132
CLIP 60.67 40.11 3749 36.06 2693 1.06 1071 954 17.87 1240 521 221 349 2029
MCLIP 3570 3240 29.64 31.20 28.19 3221 2725 2505 33.88 2441 33.63 3038 28.77 30.21

Low ToMCLIP(L4n) 37.84 33.12 3032 31.13 29.82 3270 28.87 2516 3524 2591 3432 3127 2882 31.12
ToMCLIP(L,,) 37.79 31.01 29.75 3125 2882 3207 28.18 2443 3449 2387 3279 30.75 30.67 3045
ToMCLIP 37.64 3408 31.12 31.09 31.28 34.08 30.20 25.75 36.11 26.65 35.18 31.79 2990 3191

Table 7: Top-5 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).

Languages (13) Avg
Setting  Model En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi
CLIP 8526 5875 56.94 5517 4202 649 1671 17.56 2747 2533 1426 6.74 944 3247
MCLIP 85.38 77.07 7825 77.13 7941 79.06 7651 78.06 7998 46.85 8139 77.86 7745 7649

Full ToMCLIP(Lgy,) 84.23 7335 7330 82.06 77.03 7631 7419 78.61 79.84 49.05 79.75 7940 7885 75.84
ToMCLIP(L,,) 84.22 7525 7400 79.58 79.96 80.76 76.09 79.58 80.80 50.10 81.12 79.28 81.83 77.12

ToMCLIP 8478 78.87 79.11 80.97 80.09 7839 7466 78.89 81.27 49.58 8038 79.79 80.16 77.46
CLIP 8526 58.75 5694 55.17 42,02 649 1671 17.56 2747 2533 1426 674 944 3247
MCLIP 67.99 5726 5252 60.26 50.52 57.82 5205 4835 61.92 4945 67.07 5448 57.00 56.67

Low ToMCLIP(Lgn) 67.70 58.15 53.18 5920 51.96 56.97 51.52 4631 6234 4856 6588 5648 5585 5647
ToMCLIP(L;) 6839 57.19 5297 59.18 51.44 5832 53.15 4851 61.70 50.08 6550 56.15 60.28 57.14
ToMCLIP 68.75 5842 5409 60.12 5373 59.50 54.07 49.92 63.29 5129 67.36 56.62 58.74 58.15
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In this section, we report Top-1 and Top-5 performance on CIFAR-100 under both the full-resource
and low-resource settings, where the results for the low-resource setting are averaged over three inde-
pendent runs. As shown in Tables[6]and[7] TOMCLIP outperforms MCLIP in zero-shot classification
on CIFAR-100 across 13 languages. These results confirm that topology-aware alignment enhances
cross-lingual consistency and robustness.

F.3 Topological Alignment Analysis

The topological alignment objective incorporated two loss components, L, and Lg,,. To assess their
effects on the image-text latent space, we compare CLIP, MCLIP and ToMCLIP (trained with Lgpy,
and Ly,). We use the same prompts for English (En) and Korean (Ko) derived from CIFAR-100 class
labels as in the zero-shot evaluation (Appendix [E).
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Figure 3: Sorted pairwise distance curves of English (En) vs. Korean (Ko) embeddings.

Visualization of Shared Latent Space. We visualize the sorted pairwise distance curves for En
and Ko embeddings. Figure|3|displays distances sorted in ascending order and the dashed green line
represents the absolute pairwise distance difference |En — Ko|. In CLIP, a substantial discrepancy
exists between the En and Ko distance distributions, reflected by a high |[En — Ko| curve because the
CLIP model is trained using En caption datasets. The MCLIP, which is trained using multilingual
data, exhibits improved alignment, significantly reducing the |En — Ko| differences. Furthermore,
ToMCLIP enhances the alignment, producing closer En and Ko curves. These results visually confirm
that TOMCLIP achieves the highest degree of cross-lingual geometric consistency in terms of the
pairwise distance, suggesting that the topological alignment loss bridges language-induced gaps.

In addition to the distance curve analysis, we provide a visualization of the shared embedding space
for En and Ko CIFAR-100 class label embeddings (Figure ). Each point represents the embedding of
a prompted class label, and distances between points reflect semantic relationships in the embedding
space. For each model (i.e., CLIP, MCLIP, and ToMCLIP), we project the embeddings in two
dimensions using t-SNE (Maaten and Hinton, 2008) and highlight the class-level clusters. The
bounding boxes were manually defined based on the En CLIP embeddings to capture coherent
semantic groups, and the same grouping scheme was consistently applied to MCLIP and ToMCLIP
for comparability. In CLIP, although the En embeddings form clear clusters, the Ko embeddings
remain scattered, reflecting poor cross-lingual alignment. Moreover, MCLIP substantially improves
alignment, with Ko embeddings aligning more closely to the manually defined clusters. Nevertheless,
MCLIP still presents structural misalignment, as some clusters are mixed in the center. Furthermore,
the red box overlaps with neighboring groups, and the blue box is split into two subregions, which
are clearly distinguished in the En embeddings. The ToMCLIP refines this structure, producing
highly consistent cross-lingual clusters that preserve the semantic grouping. The red and blue clusters
become well separated from other groups in En and Ko embeddings, highlighting the robustness of
the topological alignment. Conbined with the distance curve, this visualization demonstrates that
ToMCLIP minimizes pairwise distance discrepancies and preserves higher-level semantic structures
across languages, providing complementary evidence for the effectiveness of the proposed topological
alignment loss.

Quantitative Analysis of Shared Latent Space. The L, term minimizes the MSE between two
pairwise distance matrices. Table [§|reports the mean and RMSE of the absolute sorted pairwise
distance differences (|JEn — Ko|) between En and Ko embeddings. The proposed TOMCLIP achieves
substantially lower values than MCLIP, indicating improved alignment.
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Figure 4: Two-dimensional t-SNE projections of English and Korean text embeddings

Table 8: Mean and RMSE of |En — Ko].

Model

Mean

RMSE

CLIP
MCLIP

4.5238
0.3920

4.5509
0.4081

ToMCLIP 0.3050 0.3133

The L, promotes topological consistency by minimizing the distance between the persistence
diagrams of the two embedding sets. By the stability inequality (Eq.[d), decreasing Ly, tightens a
certified lower bound on the p-Wasserstein distance between the corresponding point clouds. To
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verify that minimizing Ly, yields lower W°, Table E]reports three metrics: W3 (2-Wasserstein between

the raw embeddings), Ws (2-Wasserstein between the persistence diagrams), and SWS’O) (sliced

2-Wasserstein between the persistence diagrams using 50 projections). Overall, TOMCLIP yields the
lowest cross-lingual distances across all metrics, confirming that topology-aware training with Ly,
enhances the topological alignment.

Table 9: Comparison of topological distances between English and Korean embeddings.

(50)
Comparison Wy UE SW>
0-dim 1-dim  0-dim 1-dim
CLIP (En) vs. CLIP (Ko) 7.7870 34.5016 1.0468 2.8261 4.1593
MCLIP (En) vs. MCLIP (Ko) 2.5988  5.1995 09250 0.3670 0.5964

ToMCLIP (En) vs. TOMCLIP (Ko)  2.4929  4.2072 0.7444 0.3056 0.3393

F.4 Ablation Study on Batch Size
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Figure 5: Ablation study on batch size in the low-resource setting.

We also investigate the effect of batch size in the low-resource setting. In our framework, the batch size
corresponds to the number of sampled points considered when constructing persistence diagrams in
the shared embedding space. Hence, a larger batch size allows for capturing more refined topological
features and yields better approximations of the underlying geometry. However, increasing the batch
size raises computational complexity, making it crucial to balance accuracy and efficiency. As shown
in Figure |5} performance improves with larger batches, and we therefore adopt a batch size of 256 as
the default in the experiments. We note that with batch sizes smaller than 128, the number of sampled
points is insufficient to approximate the underlying data manifold, leading to limited improvements.
By contrast, a batch size of 256 provides enough samples to extract topological information more
effectively. Further exploration with 512 or larger batch sizes may reveal whether additional gains are
possible, which we leave for future work. In addition, future work will also explore approximation
techniques to further reduce computational cost while maintaining the benefits of large batch sizes.

F.5 Ablation Study on Loss Coefficients

In Table[I0] we present the ablation study on the loss coefficients under the low-resource setting. We
observe that extremely large coefficients (e.g., 5 = 0.1 or v = 0.1) severely degrade performance
across all metrics, while small to moderate values (e.g., 5 = 0.01,0.001 or v = 0.01, 0.001) provide
stable performance over the baseline. Among the tested configurations, 5 = 0.01 and v = 0.01
achieve the highest scores for both Top-1 (32.49%) and Top-5 (58.73%), as well as the best Top-10

accuracy (69.89%). Therefore, we adopt 5 = 0.01 and v = 0.01 as the default setting for the all
experiments.
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Table 10: Ablation results on loss coefficients. The experiments are conducted on Low resource setting.
Top-1 (%) Top-5 (%) Top-10 (%)

8 7 00 0001 001 0.1 0.0 0.001 001 0.1 0.0 0.001 0.01 0.1

0.0 3048 29.89 3120 1.00 56.65 5586 5643 507 6770 67.54 67.65 997
0.001  30.38 29.40 30.74 1.10 5626 55.57 5623 4.80 67.54 66.80 6742 9.69
0.01 30.16 29.67 3249 1.01 5687 5599 58.73 528 6853 6744 69.89 10.23
0.1 .14 119 131 100 521 5001 660 511 1049 10.15 13.03 10.10

F.6 Ablation on 1-Dimensional Homology

Our model uses only 0-dimensional homology (Hj) to extract topological features, since the birth
times of 1-dimensional homology (H;) features largely overlap with the pairwise distance MSE
(Lam)- To verify this, we empirically tested whether incorporating H; improves training. Specifically,
we defined

1 0) (0 1 1 1
Lia = 5 SWI(DY), DY) + 5 SWI(D5Y, D), (20)
and set (o, 8,7v) = (1, 0.01, 0.01). We conducted experiments on Low setting. Adding H; lowers

the overall average (69.89 — 69.03), suggesting that H; provides limited additional benefit in our
setting.

Table 11: Ablation on 1-dimensional homology. TOMCLIP(dim1) denotes the model trained with L, computed
on both Hp and Hj.

Languages (13)

Avg
Model En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi
MCLIP 7925 67.60 6221 70.44 6032 6941 6464 57.87 7295 62.09 7732 6472 7124 67.70
ToMCLIP 81.06 70.66 64.25 7270 63.54 71.88 67.04 60.87 7477 6421 7833 6723 7199 69.89

ToMCLIP(diml) 82.27 69.73 64.02 73.72 61.16 71.87 6453 60.11 7358 60.08 78.07 66.44 71.81 69.03

F.7 Effect of the Approximation Threshold for the Persistence Diagram

We control graph sparsity with a distance threshold € = 1 — Ao, where p and o denote the mean
and standard deviation of pairwise distances, respectively; we keep edges with distance < e. We
conducted an ablation study on A € {1.5,1,0.5,0} in the low-resource setting. As A increases, €
decreases and the graph becomes sparser, which reduces memory/time but may remove informative
structure. Table summarizes the results. Increasing A makes the graph sparser and speeds
up persistence diagram computation (0.075s — 0.011 s from A=0 to 1.5), but excessive sparsity
hurts accuracy. As the graph becomes denser (smaller \), the persistence diagram approximation
approaches the exact persistence diagram and accuracy does not decrease. In practice, A = 0.5
already makes the approximation error negligible. Choosing A < 0.5 increases computation without
yielding further gains, whereas A > 0.5 introduces additional sparsity, incurs approximation error, and
lowers accuracy. Consistent with the analysis in Section the persistence diagram approximation
error near A = 0.5 is negligible, which supports adopting A = 0.5 as the default balance between
performance and computational cost.

A ‘ Time(s) En Fr Es De It Ru P1 Tr Da Ja Zh Ko Vi Avg

1.5 | 001119 7873 6695 62.78 69.67 60.10 68.71 62.82 57.38 70.80 57.57 7508 6576 71.67 66.77
1 0.02434 80.50 68.89 6322 71.75 6196 69.80 63.59 6082 73.06 5997 7787 68.12 71.82 68.57
0.5 | 0.04608 81.06 70.66 64.25 7270 63.54 71.88 67.04 60.87 74.77 6421 7833 6723 7199 69.89
0 0.07519 8042 70.13 6332 7021 6191 71.67 6551 59.19 7378 6191 7821 68.20 71.84 68.95

Table 12: Top-10 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages.

F.8 Effect of the Number of Projections for SWD
We approximate the SWD in Eq. [T2] via Monte Carlo sampling with & random projection directions.

The computational complexity is O(K N log N); since runtime grows approximately linearly with
K, we ablate K to select a balanced value. Table[I3|reports the ablation in the low-resource setting.
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Empirically, increasing K improves accuracy up to a point: the average Top-10 accuracy rises
from 66.99 (K=5) and 66.81 (K=10) to 68.16 (KX=30), peaking at 69.89 (K =50). For K=50
and K=100, performance is similar while the computational cost roughly doubles; hence we adopt
K =50 as the default.

K | En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi Avg

5 78.04 66.92 6042 69.17 5995 71.64 6343 5538 7269 58.69 7732 6525 7193 66.99
10 | 78.03 66.08 61.88 70.07 60.06 69.05 6345 5791 71.41 58.00 7650 64.61 7151 66.81
30 | 79.47 67.18 63.51 7057 6048 69.53 6641 58.76 72.10 59.19 77.84 6792 73.13 68.16
50 | 81.06 70.66 6425 7270 63.54 71.88 67.04 60.87 7477 64.21 7833 6723 7199 69.89
100 | 79.58 71.81 66.18 7197 64.61 7092 6430 5744 73.07 5833 7817 66.63 7330 68.95

Table 13: Top-10 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages.

F.8.1 Multilingual Image-Text Retrieval on xFlickr&CO

This work evaluates multilingual image-text retrieval on xFlickr&CO (Bugliarello et al., 2022) across
eight languages (En, Es, De, Id, Ru, Tr, Ja, Zh). The benchmark comprises 2K images (1K from
Flickr30K and 1K from MSCOCO), each paired with a single parallel caption in all eight languages,
enabling evaluation of both retrieval directions. This work presents the results for image retrieval (IR;
text—image) and text retrieval (TR; image—text). Following standard practice, we compute recall
at K (R@K, K € {1,5,10}) and average the scores across languages. For each language, R@K is
evaluated over 2,000 queries.

Table [T4] summarizes the language-averaged results and Table[I35|breaks down R@1 by language. In
both tables, red A ( blue ¥) marks improvement (degradation) over MCLIP under the same settings
and direction. In the Full regime, TOMCLIP(Lg,), TOMCLIP(L,), and TOMCLIP yield consistent
average gains over MCLIP for IR and TR across all metrics (R@1,5, and 10). In the more challenging
Low regime, they also achieve consistent average gains over MCLIP. These results indicate that the
proposed losses improve cross-lingual alignment in the shared embedding space.

F.9 Training Time and Evaluation Time

To assess computational efficiency, we compared the average training time per epoch between the
two models, MCLIP and ToMCLIP. We trained with one NVIDIA A100 (80 GB) on a single-node
server (2x AMD EPYC 7513). The baseline MCLIP required approximately 285 minutes per epoch,
whereas the proposed ToMCLIP, which incorporates the additional topology loss and distance matrix
alignment, required 357 minutes per epoch. Although TOMCLIP increases the training cost relative
to MCLIP, the additional overhead remains manageable considering the substantial improvement in
cross-lingual alignment performance. This is made possible by our persistence diagram approximation
strategy, which employs MST-based computation and graph sparsification to avoid the exponential
complexity of constructing full Rips complexes.

Importantly, evaluation time remains unchanged between MCLIP and ToMCLIP. Since our method
only modifies the training objective and does not alter the model architecture, no additional computa-
tion is introduced during inference. Thus, both models share identical evaluation speed and memory
requirements, ensuring that the performance gains of TOMCLIP come at no cost during deployment.

G ADDITIONAL RESULTS WITH VIT-B/16 PLUS CLIP IMAGE
ENCODER

We replace the CLIP image encoder with ViT-B/16+ (Cherti et al., |2023)), which is trained on the
LAION-400M dataset (Schuhmann et al., |2021). The multilingual text encoder remains XLM-
RoBERTa (Conneau et al.,[2019), as in our main experiments. Except for the image backbone, the
entire training and evaluation setup is identical to the setup described earlier.

For data, we wuse the publicly released precomputed text embeddings from
ImageCaptions-7M-Embeddings, which contains 7M caption embeddings compatible with the
ViT-B/16+ (by contrast, the corresponding ViT-B/16 release provides about 2M embeddings). All
ViT-B/16+ runs use the full 7M set; under the low-resource condition, we uniformly subsample 1%
of these (~70K samples).
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Table 14: Multilingual retrieval on xFlickr&CO. Average R@k (%) across 8 languages (Low vs. Full). A
indicates an improvement over MCLIP (same setting and direction), V¥ indicates a decrease.

Low Full

Direction  Model R@I R@5 R@10 R@I R@5 R@10
CLIP 12.08 22.12 27.19 12.08 22.12 27.19
MCLIP 33.51 62.04 73.70 50.13 77.51 85.86

IR ToMCLIP(Lgn) 3449098 62934089 74.50(a080) 50.85(a072) 78.25(a074) 86.56 (a0.70)
ToMCLIP(L,)  34.50 (4099 62.96(a093) 74.45(074) 50.79a066) 78.01(a050) 86.19 (a033)
ToMCLIP 34.03a052) 62.59 056 74.00@a030) 50.76a063) 77.99 (a048) 86.48 (a0.62)
CLIP 16.01 28.75 35.40 16.01 28.75 35.40
MCLIP 39.39 68.02 78.65 53.38 79.48 87.34

TR ToMCLIP(Lgn) 39.71a032) 68.63a061) 79.38(a074) 54.01(a063) 80.38(a090) 88.08 (074
ToMCLIP(Ly,) 40.29 (4090) 69.18 (a1.16) 79.61(a097) 53.83(a045 79.91(a043) 87.80(a0.46)
ToMCLIP 3951 w0120 68.42a040) 78.96a032) 54.07 4069 79.98(a050) 87.67 (a033)

Table 15: Multilingual retrieval on xFlickr&CO. R@1 retrieval accuracy (%) across languages. A and ¥ mark
improvements/decreases over MCLIP for the same setting and direction; here only the icons are shown.

Languages

o Divecti Avg
Setting  Direction  Model En Es De d Ru T Ta 7h
CLIP 54.90 22.05 11.00 4.15 0.35 1.90 1.95 0.35 12.08
MCLIP 55.00 54.65 48.45 48.95 56.65 5335 3545 48.50 50.12
IR ToMCLIP(Lgm) 5510A 55.10A 4865A 4950A 5695A 5435A 38204 4895A4 50.85A
ToMCLIP(L,) 5540A 54954 49154 49.15A4 57354 5350A 3820A 4865A 50794
Full ToMCLIP 55.60A 55.15A 4840v 50.00A 5670A 53.70A 38.00A 4855A 50.76A
CLIP 58.55 29.10 17.15 10.80 0.80 4.25 5.25 2.15 16.01
MCLIP 58.60 58.90 48.95 5145 61.15 55.05 39.55 5335 5338
TR ToMCLIP(Lgm) 59.20A 5935A 4925a 5180A 61.05v 56.50A 40.75A 54154 5401 A
ToMCLIP(L,) 5850V  60.15A 49.70A 51.70A 6090V 5520A 40.70A 53.80A 53834
ToMCLIP 59.55A 59254 49554 5370A 61.55A 5485V 40.70A 5340A 54074
CLIP 54.90 22.05 11.00 4.15 0.35 1.90 1.95 0.35 12.08
MCLIP 37.05 3572 30.08 36.00 38.30 30.17 27.87 32.88 3351
IR TOMCLIP(L4m) 37854 37.27a 30654 37.40A 39984 31.05A 28.17A 33.53A 34494
TOMCLIP(L:,) 38.00A 36.65A 31234 3655A 39.60A 31.27A 29174 3350A 3450A
Low ToMCLIP 37.10A 3723A 3055A 3637A 38.85A 30.15v 2848A 3352A 34034
CLIP 58.55 29.10 17.15 10.80 0.80 4.25 5.25 2.15 16.01
MCLIP 42.15 42.83 35.17 41.85 44.38 36.57 33.10 39.07 39.39
TR TOMCLIP(Lgm) 42.55A 4248V  3593A 4233A 4572A 3632V 3292V  3947A 3971 A
TOMCLIP(L:,) 43774 4337A4 3590A 43134 46034 3670A 3327a 40.17A 40294
ToMCLIP 4292A 4307A 3502V  4198A 4517A 3620V 3265V 3905V 3951aA

CIFAR-100 Zero-Shot Classification. Replacing the image backbone with ViT-B/16+ preserves
the main trend: topology-aware objectives improve multilingual zero-shot accuracy over MCLIP
in both regimes (Table [I6] and [T7). On the Full setting, TOMCLIP(L,,) attains the best averages
(Top-1/5/10 = 66.18/86.35/90.89) improving over MCLIP (64.54/85.30/89.99) by +1.64/+1.05/+0.90
points, respectively. On the Low setting, the combined ToOMCLIP model yields the highest averages
(53.31/74.88/82.01) surpassing MCLIP (50.24/73.50/81.17) by +3.07/+1.38/4+0.84. Notably, L,
alone also improves alignment quality under Low (51.42/74.47/81.97). These results are consistent
with the main paper: enforcing topological consistency via Ly, strengthens cross-lingual alignment in
the shared embedding space.

Table 16: Average Top-k accuracy (%) of the zero-shot classification on CIFAR-100 across 13 languages.

Low Full
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
CLIP 2439 3591 4247 2439 3591 4247
MCLIP 5024 7350  81.17 6454 8530  89.99

ToMCLIP(L4m) 5233 7468  81.84 6592 8588 90.44
ToMCLIP(Ly,) 5142 7447 8197 6618 8635 90.89
ToMCLIP 5331 7488 82.01 6553 85.82  90.33

Multilingual Image-Text Retrieval on xFlickr&CO. With the ViT-B/16+ image encoder,
topology-aware objectives improve multilingual retrieval over MCLIP in most settings (Table[I8). On
Full, TOMCLIP(L,,) attains the best averages for both directions (IR: R@1/5/10 = 62.98/85.79/91.60
vs. MCLIP: 62.24/85.27/91.09 and TR: 63.79/86.21/91.98 vs. 62.82/85.47/91.32). On Low, the
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Table 17: Top-k accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).
ViT-B/16+ is used for CLIP image encoder.
Languages (13)
Setting . Model En F Es De It Ru P T Da Ja Zh Ko Vi 4%
Top-1 accuracy (%)
CLIP 72.81 5212 4549 46.15 4049 443 1157 1237 19.96 3.68 241 119 446 2439
MCLIP 7242 66.85 69.25 56.04 69.85 67.57 64.14 6587 69.86 38.09 69.11 6628 63.75 64.54
Full ToMCLIP(Ly,) 7324 67.76 68.90 64.60 69.30 68.16 66.39 69.54 70.28 3800 69.48 6698 6434 6592
ToMCLIP(L,) 7221 67.31 69.61 69.30 6850 6730 64.74 67.93 7039 4110 6875 67.51 65.69 66.18
ToMCLIP 7292 6776 69.31 67.04 7076 67.25 64.05 68.80 69.72 3791 6801 63.64 6477 6553
CLIP 7281 5212 4549 4615 4049 443 1157 1237 1996 3.68 241 119 446 2439
MCLIP 58.56 5247 5293 5394 47.82 53.18 4825 4504 50.76 39.18 53.17 49.73 4813 5024
Low  ToMCLIP(Lgn) 62.66 54.16 54.11 5445 4945 5588 4943 47.59 5262 41.04 5623 5241 5032 5233
ToMCLIP(L,,) 6246 5478 5341 5475 49.09 5094 4922 4568 52.68 3926 5601 51.16 4897 5142
ToMCLIP 63.58 5588 54.59 57.61 4996 56.66 50.31 49.26 54.08 4140 5641 5322 50.13 5331
Top-5 accuracy (%)
CLIP 92.84 7259 6272 6443 5685 1112 1936 21.52 2842 10.89 7.99 7.19 1085 3591
MCLIP 92.81 87.94 9049 82.12 89.68 88.43 8343 8871 87.86 50.84 90.96 88.57 87.04 8530
Full ToMCLIP(Lg,) 9320 8848 90.50 84.67 89.26 87.72 8538 89.81 88.01 52.14 9024 88.77 8826 85.88
ToMCLIP(L,,)  93.04 88.01 89.32 89.76 89.30 87.78 83.99 89.84 87.99 5597 9037 89.02 8821 86.35
ToMCLIP 93.65 88.44 9045 87.66 89.64 88.70 8347 89.95 87.96 4997 9096 86.73 88.12 85.82
CLIP 92.84 7259 6272 6443 5685 1112 1936 2152 2842 1089 7.99 7.9 1085 3591
MCLIP 8344 7341 7325 7828 66.15 77.10 70.11 67.66 72.80 60.21 8199 7526 7579 73.50
Low  ToMCLIP(Lg,) 8533 7440 7340 7795 6620 78.64 71.62 72.08 7447 59.85 8226 7726 7138 74.68
ToMCLIP(L,,) 84.97 74.63 7456 7933 6621 7699 7123 69.11 7500 6028 8280 7545 77.52 7447
ToMCLIP 85.11 7372 7471 8035 6646 77.66 7076 7217 7498 60.57 8340 76.62 7697 74.88
Top-10 accuracy (%)
CLIP 96.32  79.39 7142 7238 64.10 18.04 2592 2740 3499 18.04 1390 1353 1671 4247
MCLIP 96.41 92.03 9425 89.52 9335 9251 8874 9326 92.10 56.07 9535 9428 91.96 89.99
Full ToMCLIP(Lgy) 96.65 92.69 94.68 89.92 9335 9272 9017 93.96 9131 5817 94.65 9426 93.15 9044
ToMCLIP(L,)  96.53 92.01 93.76 93.61 93.58 9236 88.83 9444 9223 6228 9490 94.17 92.89 90.89
ToMCLIP 9672 9290 94.14 9245 9340 93.70 88.01 94.14 9154 5521 9515 9343 9347 90.33
CLIP 96.32  79.39 7142 7238 64.10 18.04 2592 2740 3499 18.04 1390 1353 1671 4247
MCLIP 91.16 79.26 81.08 8598 72.05 84.87 79.89 77.03 80.56 67.11 89.01 8235 84.89 81.17
Low  ToMCLIP(Lg,) 91.16 80.00 8047 86.07 72.30 8625 80.06 81.06 82.00 66.52 88.75 83.52 8575 81.84
ToMCLIP(L,,) 91.65 80.80 8327 86.57 73.19 8557 7875 77.75 8199 68.89 89.70 8231 85.13 81.97
ToMCLIP 91.54 79.59 81.88 87.54 7280 8515 79.71 80.38 8213 67.88 89.79 8341 8437 82.01

combined TOMCLIP variant yields the top averages for IR (R@1/5/10 = 58.53/83.37/90.51), while
ToMCLIP(Lygp,) is strongest for TR (R@1/5/10 = 57.99/83.84/90.63). These trends mirror our zero-
shot CIFAR-100 results: enforcing topological consistency via L, improves cross-lingual alignment.

Table 18: Multilingual retrieval on xFlickr&CO. Average R@k (%) across 8 languages (Low vs. Full). A

indicates an improvement over MCLIP (same setting and direction), V¥ indicates a decrease.

Direction Model Low Full
R@1 R@5 R@10 R@1 R@5 R@10
IR CLIP 16.38 27.00 32.06 16.38 27.00 32.06
MCLIP 56.44 82.28 89.60 62.24 85.27 91.09
TOMCLIP(Lg,,) 5791147y 83.15a087) 90.37a077) 622440000 85.39(a0.12) 91.22(a0.13)
TOMCLIP(Ly,)  57.58 a1.14)  82.77(a049) 90.12(a053) 62.98a074) 85.79(a052) 91.60 (a0.51)
TOMCLIP 58.53 (a208) 83.37a1.09 90.51a091) 61.91(v033) 84.89(vo3s) 90.78 (vo31)
TR CLIP 18.91 31.46 36.59 18.91 31.46 36.59
MCLIP 56.73 83.33 90.34 62.82 85.47 91.32
TOMCLIP(Lg,,) 57.99a126) 83.84a051) 90.63(a029) 62.95a0.13) 85.67 0200 91.14(vo.17)
TOMCLIP(L;,)  57.33(a060) 83.26(v0.06) 90.27(v0.07) 63.79 (4097 86.21(a0.74) 91.98 (4 0.66)
ToOMCLIP 57.57 w084 83.39(a006) 90.61(a028) 62.19(vo63) 85.09(vo03s) 90.84 (vo47)
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Table 19: Multilingual retrieval on xFlickr&CO. R@1 retrieval accuracy (%) across languages. A and ¥ mark
improvements/decreases over MCLIP for the same setting and direction; here only the icons are shown.

Languages

Setting  Direction Model En Es De d Ru Tr Ja 7h Avg
CLIP 64.70 34.70 21.35 5.65 0.90 2.70 0.40 0.65 16.38
MCLIP 65.50 69.05 59.60 61.40 7245 66.90 41.40 61.60 62.24
IR TOMCLIP(Lg,,) 65.60A 6870V 59.65A 61.70A 7230V 6570V 42354 61.90A 62244
TOMCLIP(L;;)  65.20¥  69.00v  60.00A 63.05A 7235V 6575V 46254 6225A 62984
Full ToMCLIP 65.75A 68.60v 5920v 6130v 7220V 6600V 3990V 6235A 6191V
CLIP 66.70 40.45 26.05 10.05 1.15 5.10 0.85 0.90 18.91
MCLIP 68.30 68.90 59.20 62.00 73.55 66.75 42,50 61.35 62.82
TR TOMCLIP(Lg,,) 68.30A 70.00A 57.70v 6220A 73.75A 66.85A 43504 6130V 62954
TOMCLIP(L;,) 68.80A 6985A 59.75A 6240A 73754 6660V 46.70A 62454 63.794
TOMCLIP 68854 6930A 5785V 6130V 7265V 67.30A 3955V 60.75v 62.19V
CLIP 64.70 3470 21.35 5.65 0.90 2.70 0.40 0.65 16.38
MCLIP 59.05 60.30 52.45 55.85 63.45 55.15 49.30 56.00 56.44
IR TOMCLIP(Lg,,)  59.50A 63.05A 5530A 57.05A 6480A 5580A 49754 58.05A 5791a
TOMCLIP(L;,) 59.50A 61954 5375A 5680A 6580A 5580A 49.654 5740A 57.58A
Low TOMCLIP 60.55A 6280A 5525A 57.00A 66.60A 57.40A 4955A 59054 58.53A
CLIP 66.70 4045 26.05 10.05 1.15 5.10 0.85 0.90 18.91
MCLIP 60.35 61.05 51.85 56.40 63.55 54.70 49.05 56.90 56.73
TR TOMCLIP(Lg,,) 61.45A 61.70A 5345A 5720A 6545A 5585A 51.30A 57.55A 57994
TOMCLIP(L;,) 6145A 6135A 53.10A 5625V 6440A 5570A 50.00A 5640V 57334
TOMCLIP 61.15A 61.80A 52.80A 57.10A 6530A 55454 49.70A 5730A 57.57A
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