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Abstract

Contrastive Vision-Language Models (VLMs) have demonstrated strong zero-shot
capabilities. However, their cross-modal alignment remains biased toward English
due to limited multilingual multimodal data. Recent multilingual extensions have
alleviated this gap but enforce instance-level alignment while neglecting the global
geometry of the shared embedding space. We address this problem by introducing
ToMCLIP (Topological Alignment for Multilingual CLIP), a topology-aware
framework aligning embedding spaces with topology-preserving constraints. The
proposed method applies persistent homology to define a topological alignment
loss and approximates persistence diagram with theoretical error bounds using
graph sparsification strategy. This work validates the proposed approach, showing
enhanced structural coherence of multilingual representations, higher zero-shot
accuracy on the CIFAR-100, and stronger multilingual retrieval performance on
the xFlickr&CO. Beyond VLMs, the proposed approach provides a general method
for incorporating topological alignment into representation learning.

1 INTRODUCTION

Contrastive Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) have demonstrated strong zero-shot transfer capabilities by learning a shared embedding
space for images and texts (Bordes et al., 2024). These models align paired samples through
contrastive learning, enabling diverse downstream tasks without task-specific supervision. Although
autoregressive multimodal large language models such as LLaVA (Liu et al., 2024c), Qwen-VL (Bai
et al., 2023), and Gemini (Team et al., 2023) have recently achieved vision-language understanding
via generative training, contrastive VLMs remain effective for retrieval tasks and computational
efficiency.

Despite recent multilingual extensions (Carlsson et al., 2022; Chen et al., 2023; Yang et al., 2024),
representation spaces remain structurally misaligned. Most approaches enforce instance-level align-
ment via distillation or continual learning, but they fail to preserve the global geometry in the
shared embedding space. This structural misalignment causes unstable cross-lingual retrieval and
inconsistent semantic clustering.

As illustrated in Figure 1, the English and Korean text embeddings produced by the CLIP encoder are
not aligned. Even the multilingual CLIP (MCLIP; Carlsson et al., 2022) fails to achieve cross-lingual
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Figure 1: Visualization of text embeddings (English and Korean) in the latent space using t-SNE (Maaten and
Hinton, 2008), from CLIP and multilingual CLIP (MCLIP; Carlsson et al., 2022) text encoders. The Fashion
Product Images dataset (Aggarwal, 2019) was used, where the productDisplayName field serves as the input
caption to the text encoders. Colors indicate the corresponding masterCategory of each product.

alignment, with multiple semantic categories remaining intermixed in the center of the embedding
space. To address this limitation, we propose ToMCLIP: Topological Alignment for Multilingual
CLIP, a topology-aware training framework that enforces structural consistency across languages
using topological data analysis. This approach is motivated by the hypothesis that performance gaps
between English and other languages stem from differences in the topological structure of their latent
representations.

The contributions of this work are as follows:

• We introduce a topology-aware training framework for multilingual contrastive VLMs. It
formalizes the structural misalignment across languages and addresses it with a topological
alignment loss that enforces structural alignment in the shared embedding space.

• We develop a scalable approximation for persistence diagrams. The approach constructs
sparse graphs using MST-based sparsification and provides theoretical error bounds of
approximation.

• We validate the proposed method using case studies on multilingual vision-language tasks.
The experiments reveal improved cross-lingual structural coherence, higher zero-shot accu-
racy on the CIFAR-100, and stronger multilingual retrieval performance on the xFlickr&CO.

Appendix A reviews related work on contrastive VLMs, autoregressive multimodal large language
models and topological analysis of the embedding space.

2 TOPOLOGICAL ALIGNMENT

Figure 2 presents an overview of our proposed alignment framework. Appendix B presents the
preliminaries of the persistent homology, including persistence diagrams and the (sliced) Wasserstein
distance.

We integrated topological alignment loss with MCLIP. The MCLIP proposes a teacher-student
framework that applies machine-translated captions for training. A set of English captions X is
translated into a target language to form X∗. The CLIP text encoder ET (teacher) encodes the original
captions X , and the MCLIP text encoder ES (student) encodes the translated captions X∗. Then ES

is trained to align with the teacher by minimizing the mean squared error (MSE) between the output
embeddings:

Lpw = MSE(ET (X), ES(X
∗)). (1)

This approach focuses on point-wise alignment, overlooking the structural consistency of the embed-
ding space across languages.
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Figure 2: Overview of the proposed alignment framework between CLIP (ET ) and multilingual CLIP (MCLIP;
ES) text encoders. ES is trained to align with the frozen ET using a combination of loss functions; Lpw enforces
point-wise alignment; Lta and Ldm promote geometric alignment by preserving topological structures. The
evaluation is conducted by pairing ES with the pretrained CLIP image encoder, enabling cross-lingual retrieval
in the shared embedding space.

2.1 Topological Alignment Loss

We introduce a novel topological alignment loss Lta that enforces the global structural alignment. For
a batch of data comprising N image-text pairs {(Ii, Ti)}Ni=1, the text representations {ET (Ti)}Ni=1
form a geometric structure in the embedding space (Figure 1). The MCLIP loss Lpw considers each
representation ET (Ti) independently, ignoring the geometric relationships between the samples.

To address this problem, we compute the persistence diagram DT from the point cloud {ET (Ti)}Ni=1,
which summarizes the topological features of the embedding distribution (e.g., connected components
and cycles). Similarly, we compute DS from the point cloud {ES(T

∗
i )}Ni=1, where T ∗

i denotes the
translated caption of Ti, capturing the structure of the MCLIP. To align these spaces, we define the
topology alignment loss:

Lta = SW(K)
p (DT , DS), (2)

where SWp denotes the sliced p-Wasserstein distance (SWD, Bonneel et al., 2015) and K represents
the number of projection directions. The SWD provides a fast, differentiable, and GPU-friendly
approximation of the Wasserstein distance, making it suitable as a training loss. Minimizing the
discrepancy between DT and DS enforces both embedding spaces to preserve comparable global
topological structures, complementing pointwise matching with structural alignment.

Furthermore, we define a distance matrix loss Ldm to promote local geometric alignment between
the latent spaces. Given a point cloud X = {xi}Ni=1, the pairwise distance matrix is computed as
follows: (MX)i,j = ∥xi − xj∥ for 1 ≤ i, j ≤ N where ∥·∥ denotes the Euclidean (L2) norm. The
distance matrix loss is defined as follows:

Ldm = MSE(MT ,MS) (3)

where MT and MS denote the distance matrices computed from the point clouds T = {ET (Ti)}Ni=1

and S = {ES(T
∗
i )}Ni=1, respectively. The total training objective is defined as the weighted sum of

three loss components: Ltotal = αLpw + βLta + γLdm, where α, β, and γ are hyperparameters that
control the relative contributions of each loss term.

Stability-Based Justification of the Loss Design. Let X,Y ⊂ Rn be finite point clouds. The
k-dimensional persistence diagrams are denoted by D

(k)
X and D

(k)
Y , respectively. By the stability

theorem, for any p ≥ 1, Ck ≥ 1 exists such that

Wp

(
D

(k)
X , D

(k)
Y

)
≤ Ck W

c
p (X,Y ), (4)

where Wp is the p-Wasserstein distance between diagrams and W c
p is the p-Wasserstein distance

between point clouds (Skraba and Turner, 2020). Thus, if Wp

(
D

(k)
X , D

(k)
Y

)
≥ τ , then W c

p (X,Y ) ≥
τ/Ck. Therefore, minimizing the distance between persistence diagrams (Lta) reduces the certified
lower bound on the point cloud discrepancy. Moreover, because D(0) summarizes the connectivity
in the embedding space, minimizing Lta between D(0)s reduces the cross-lingual semantic cluster
misalignment, encouraging semantically equivalent texts to belong to the same cluster.

However, Lta and Ldm are invariant to Euclidean isometries. If Y = RX + t with R ∈ O(n) (i.e.,
R⊤R = I and detR ∈ {±1}) and t ∈ Rn, then Lta = Ldm = 0 and W c

p (X,Y ) can be arbitrarily
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large. Hence, these terms alone do not reduce W c
p or prevent rigid-motion drift. Therefore, Lpw

is needed to fix the coordinate frame, while Lta aligns the global topology and Ldm matches the
pairwise geometry.

2.2 Approximating Persistence Diagrams

This work employs two strategies to approximate the persistence diagram of the Vietoris-Rips (Rips)
complex with reduced computational overhead:

• We restrict the computation to 0-dimensional (H0) features and the birth times of 1-
dimensional (H1) features, which can be extracted from the minimal spanning tree
(MST) (Kruskal, 1956) with a union-find (Tarjan, 1979). This eliminates the need to
construct the full Rips complex. Prior work has confirmed that H0 features are sufficient
to capture the topological structure of latent representations (Moor et al., 2020; Kim et al.,
2024).

• To reduce the computational cost of MST further, we build a sparse graph from pairwise
distances between embeddings, limiting the number of candidate edges.

This approximation reduces memory and time, enabling persistence diagrams in large-scale training.
For a point cloud with N points, computing the Rips complex has an exponential complexity of up to
O(Nk+1) for k-dimensional simplices. Persistent homology via boundary-matrix reduction has a
worst case time of O(m3) and a memory of O(m2) (Otter et al., 2017), where m denotes the total
number of simplices in the filtration. Consequently, computing H0 has a cost of m = O(N2) up to
O(N6), whereas computing H1 costs m = O(N3) up to O(N9). However, H0 and the birth time of
H1 features can be computed via the MST, which has a computational complexity of O(E log V ),
where V denotes the number of vertices and E represents the number of edges (Cormen et al., 2022).
Notably, for H0, only N − 1 edges are necessary to determine the death time, corresponding to the
edges of the MST, out of a total

(
N
2

)
edges in the fully connected graph. Therefore, constructing the

MST over a complete graph is computationally inefficient. To mitigate this problem, we construct a
sparse graph Gϵ = (V,Eϵ) from a point cloud X = {x1, · · · , xN} ⊂ (Rn, d), where V = {xi}Ni=1
and Eϵ = {(xi, xj) | d(xi, xj) ≤ ϵ}, with d denoting a metric (e.g., Euclidean distance). This
sparsification reduces the number of edges while retaining a sufficient topological structure to
approximate the persistence diagram.

We calculate the upper bound on the approximation error of the proposed method. We construct
a weighted complete graph G = (V,E, ω) from a point cloud X , where V = X , E = {(xi, xj) |
xi, xj ∈ X, i ̸= j}, and the weight function ω : E → R≥0 is defined as

ω((xi, xj)) =
d(xi, xj)

M
, (5)

where M = max
(xi,xj)∈E

d(xi, xj). By construction, 0 ≤ ω(e) ≤ 1 for all e ∈ E.

Theorem 1. Let 0 ≤ ϵ ≤ 1 and Gϵ = (V,E, ωϵ),

ωϵ(e) =

{
ω(e), if ω(e) ≤ ϵ,

1, if ω(e) > ϵ.
(6)

Let m(ϵ) := #
{
(0, d) ∈ DRips

0 (G) | ϵ < d < ∞
}

, i.e., the number of finite 0-dimensional
persistence points of G whose death times exceed ϵ. Then,

Wp

(
DRips

0 (G), DRips
0 (Gϵ)

)
≤ m(ϵ)1/p (1− ϵ) (7)

and 0 ≤ m(ϵ) ≤ N − 1 where Wp denotes the p-Wasserstein distance.

Appendix C presents the proof of this theorem. Let c(ϵ) denote the number of connected components
in VRϵ(G) which is equal to m(ϵ) + 1. Therefore,

Wp

(
DRips

0 (G), DRips
0 (Gϵ)

)
≤ (c(ϵ)− 1)1/p (1− ϵ). (8)

As ϵ increases, more edges are retained, sparsity decreases, and the number of connected components
c(ϵ) monotonically decreases. In particular, a critical value ϵ∗ exists such that c(ϵ) = 1 for all
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Table 1: Top-10 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).

Setting Model
Languages (13)

AvgEn Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi

Full

CLIP 91.06 66.18 63.69 64.05 49.33 11.95 22.03 24.73 32.42 32.80 21.56 12.38 15.32 39.04
MCLIP 91.97 85.66 87.10 85.74 88.23 87.98 85.38 87.65 87.83 53.60 89.50 87.20 86.26 84.93
ToMCLIP(Ldm) 91.99 84.77 84.63 89.63 86.17 87.78 84.86 87.35 86.88 56.27 88.11 87.94 86.98 84.87
ToMCLIP(Lta) 91.48 85.41 84.23 87.85 88.49 89.43 84.35 88.76 87.98 58.57 89.75 88.76 89.41 85.73
ToMCLIP 91.40 87.59 87.37 89.30 89.11 87.66 83.59 88.59 87.79 57.95 88.68 88.36 88.17 85.81

Low

CLIP 91.06 66.18 63.69 64.05 49.33 11.95 22.03 24.73 32.42 32.80 21.56 12.38 15.32 39.04
MCLIP 79.72 67.60 62.20 71.41 59.68 69.80 64.55 58.71 73.31 60.68 78.27 65.43 71.38 67.90
ToMCLIP(Ldm) 79.46 67.99 62.51 70.81 60.75 69.30 64.02 57.21 72.64 59.20 77.43 67.42 70.07 67.60
ToMCLIP(Lta) 80.00 67.37 62.66 70.09 60.88 70.31 65.22 59.50 72.68 60.94 77.36 67.01 73.37 68.26
ToMCLIP 80.75 68.56 63.85 71.49 62.91 71.23 65.50 60.80 73.75 62.39 78.82 67.96 72.44 69.26

ϵ ≥ ϵ∗, (i.e., VRϵ(G) becomes connected). From an algorithmic perspective, the critical trade-off
lies in selecting ϵ so that VRϵ(G) remains sparse while maintaining a small number of connected
components. The experiments confirm that moderate values of ϵ already achieve near connectivity
with a low edge density, making the sparsification highly effective in practice (Section F.1).

3 RESULTS

We evaluate ToMCLIP under two training conditions: (1) using the full available dataset and (2) using
only 1% of the data for the low-resource setting. This setup is designed to mimic realistic situations
where only a few of multilingual annotated data are available for training. Appendix D provides details
on dataset preparation, training and evaluation. The ToMCLIP(Ldm), ToMCLIP(Lta), and ToMCLIP
denote models trained with the proposed total loss Ltotal using the coefficients (α, β, γ) = (1, 0.01, 0),
(1, 0, 0.01), and (1, 0.01, 0.01), respectively.

3.1 Evaluation on CIFAR-100

We evaluate the zero-shot classification on CIFAR-100 to assess the alignment between the image
and multilingual text embeddings. At inference, we use class-name prompts translated into 13
languages (e.g., “a photo of a {class}”). Appendix E presents the complete prompt list. Table 1
reports the Top-10 accuracy (%) per language (the Top-1 and Top-5 are provided in Tables 6 and 7
in Appendix F.2). In the Full setting, ToMCLIP surpasses MCLIP in all but one language (Polish,
“Pl”), yielding a higher average Top-10 accuracy overall (+0.88). In the Low setting, ToMCLIP
outperforms MCLIP across all 13 languages (+1.36 on average). Note that En in the Low does
not indicate catastrophic forgetting: CLIP’s text encoder is not used when evaluating (To)MCLIP.
Although MCLIP provides multilingual support, its cross-modal alignment remains suboptimal,
whereas preserving the topological structure enables ToMCLIP to deliver more robust and consistent
multilingual representations. Table 5 (Appendix F.2) summarizes the average Top-k (k ∈ {1, 5, 10})
accuracy. The ToMCLIP performs the best for all k and both regimes. Among the ablations,
ToMCLIP(Ldm) matches MCLIP, whereas ToMCLIP(Lta) consistently improves upon MCLIP. Using
both losses together, ToMCLIP yields the strongest results. Adding Ldm on the baseline Lpw alone does
not yield additional cross-modal alignment, whereas Lta alone induces extra alignment and improves
accuracy. Nevertheless, Ldm is beneficial in conjunction with Lta, suggesting a complementary role
that reinforces the alignment signal provided by Lta. Appendices F.4 - F.8 presents the ablation studies
on batch size, loss coefficients, homology dimension, graph sparsification threshold, and the number
of SWD projections K, respectively.

4 CONCLUSION

This work introduces ToMCLIP, a topology-aware alignment framework for multilingual contrastive
VLMs, augmenting instance-level matching with topology-preserving objectives. The ToMCLIP
improves the zero-shot CIFAR-100 performance, and stronger multilingual retrieval performance on
the xFlickr&CO. Furthermore, ToMCLIP enhances the structural coherence of the shared embedding
space. Beyond multilingual alignment, the topological alignment loss provides a general objective
for aligning embedding spaces, encompassing cross-modal alignment, knowledge distillation, and
dimensionality reduction.
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A RELATED WORKS

A.1 Contrastive Vision-Language Models

Contrastive vision-language models (VLMs) learn joint representations of images and text by max-
imizing the similarity between matched pairs while minimizing it for unmatched pairs. CLIP
(Contrastive Language-Image Pre-training) (Radford et al., 2021) pioneered this approach by training
dual encoders on 400 million image-text pairs collected from the internet. The model employs a
symmetric cross-entropy loss over the similarity matrix of image and text embeddings within each
batch, enabling zero-shot transfer to downstream tasks without task-specific fine-tuning.

ALIGN (Jia et al., 2021) scaled this approach further by leveraging a noisy dataset of over one billion
image-text pairs, demonstrating that the noise in web-scraped data can be overcome with sufficient
scale. Unlike CLIP, which uses curated data, ALIGN shows that raw alt-text data can be effective
when combined with a simple dual-encoder architecture and contrastive learning objective.

Several subsequent works have improved upon these foundations. FLIP (Li et al., 2023b) introduced
a masking strategy during training to reduce computational costs while maintaining performance.
DeCLIP (Li et al., 2022) enhanced data efficiency through self-supervised learning and nearest-
neighbor supervision. FILIP (Yao et al., 2022) improved fine-grained alignment by introducing
token-wise maximum similarity between image patches and text tokens.

The key advantages of contrastive models include: (1) computational efficiency during inference, as
image and text encoders can be cached and indexed separately; (2) flexibility in swapping encoders
for different modalities or languages; and (3) strong performance on retrieval tasks. These properties
make contrastive models particularly suitable for multilingual extensions, as the text encoder can be
replaced or fine-tuned for different languages while keeping the image encoder fixed.

Despite their success, contrastive models face challenges in maintaining consistency across languages
when extended to multilingual settings, particularly in preserving the geometric structure of the
shared embedding space. We address this limitation through topological alignment.

A.2 Multilingual Extensions of Contrastive VLMs.

Various multilingual extensions of contrastive VLMs have been developed, using knowledge dis-
tillation, continual learning, or multilingual pretraining to align images and texts across languages.
For example, MCLIP (Carlsson et al., 2022) trains a single multilingual text encoder using text-only,
machine-translation-based distillation to match the original CLIP English text space. In contrast,
mCLIP (Chen et al., 2023) retains the dual-encoder design of CLIP but aligns a multilingual text
encoder to CLIP via Triangle Cross-modal Knowledge Distillation (TriKD). The multilingual text
encoder is initialized using contrastive pretraining. Continual language learning approaches (Yang
et al., 2024) add languages incrementally to mitigate catastrophic forgetting.

A.3 Autoregressive Multimodal Large Language Models

While our work focuses on contrastive VLMs, we briefly review recent autoregressive multimodal
Large Language Models (LLMs) to contextualize our approach within the broader landscape of
vision-language understanding. Unlike contrastive models that learn aligned embedding spaces,
autoregressive multimodal LLMs generate text conditioned on visual inputs through next-token
prediction.

Flamingo (Alayrac et al., 2022) pioneered the frozen LLM approach by introducing cross-attention
layers between a pretrained vision encoder and language model, enabling few-shot learning on vision-
language tasks. BLIP-2 (Li et al., 2023a) proposed Q-Former, a lightweight module that bridges
frozen image encoders and LLMs through a set of learnable query tokens, significantly reducing
training costs while achieving strong performance.

LLaVA (Liu et al., 2024c) demonstrated that visual instruction tuning (training on instruction-
following data in the visual domain) can produce capable multimodal assistants. The model uses
a simple projection layer to connect CLIP visual features with an LLM, showing that architectural
simplicity combined with high-quality instruction data can be highly effective. Subsequent versions
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like LLaVA-1.5 (Liu et al., 2024a) and LLaVA-NeXT (Liu et al., 2024b) have improved resolution
handling and reasoning capabilities.

Commercial models have pushed the boundaries further. GPT-4V (OpenAI, 2023) demonstrates
unprecedented visual understanding and reasoning, though architectural details remain proprietary.
Gemini (Team et al., 2023) achieves state-of-the-art performance across numerous multimodal bench-
marks through native multimodal pretraining rather than connecting separate vision and language
models.

The Qwen series has emerged as a particularly strong line of multimodal models. Qwen-VL (Bai et al.,
2023) introduced a versatile VLM supporting multiple languages and resolutions. Qwen2-VL (Wang
et al., 2024a) significantly improved upon this with enhanced visual reasoning, video understanding,
and multilingual OCR capabilities across 29 languages. The latest Qwen2.5-VL (Team, 2024) further
advances the architecture with dynamic resolution support and improved instruction following,
achieving state-of-the-art performance on various benchmarks while maintaining efficient inference.

Similarly, Google’s Gemma family has expanded into multimodal territory. PaliGemma (Beyer et al.,
2024) combines a SigLIP vision encoder with Gemma language models for versatile vision-language
understanding. Gemma-2 (Team et al., 2024) improved the base architecture, leading to enhanced
multimodal capabilities when combined with vision encoders. These models demonstrate strong
performance while being more accessible than larger commercial offerings.

Other notable open-source alternatives include InternVL (Chen et al., 2024), which scales vision
foundation models for generic visual-linguistic tasks, and the Yi-VL series (Young et al., 2024),
which offers competitive performance with bilingual (Chinese-English) specialization.

These autoregressive models excel at complex reasoning, visual question answering, and generating
detailed descriptions. However, they require significant computational resources during inference due
to sequential token generation and cannot easily cache embeddings for retrieval tasks. Furthermore,
their multilingual capabilities typically depend on the underlying LLM’s language coverage, making
it challenging to add new languages without extensive retraining.

The fundamental architectural differences between contrastive and autoregressive approaches lead
to complementary strengths: contrastive models like CLIP excel at retrieval and classification
with efficient inference, while autoregressive models provide superior reasoning and generation
capabilities at higher computational cost. Our topology-aware alignment method specifically targets
the unique challenges of multilingual contrastive models, where maintaining geometric consistency
across languages is crucial for retrieval performance.

A.4 Topological Analysis of the Embedding Space.

Recent studies have emphasized the importance of preserving the topological structure in represen-
tation learning (Moor et al., 2020; Trofimov et al., 2023; Zilberstein et al., 2024). Complementary
efforts have employed topological representations enriching representation learning (Carrière et al.,
2020; Papillon et al., 2023; Wen et al., 2024). Building on these advances, topology-aware techniques
have been applied in the context of VLMs to improve embedding robustness and generalization (Zhang
et al., 2024; Rahim et al., 2024; Huang, 2025). Furthermore, topological representations have proven
effective for knowledge distillation and continual learning, where the latent space geometry acts as
transferable knowledge (Kim et al., 2024; Wang et al., 2024b; Hai et al., 2025).

Despite these advances, topological consistency across multilingual embeddings remains underex-
plored. This work proposes a topological alignment framework that enforces structural coherence
between the latent spaces of CLIP and MCLIP using persistent homology.

B PERSISTENT HOMOLOGY

Topological data analysis (TDA) characterizes the shape of data by extracting topological features
that are stable to small perturbations. We assume the observed points are sampled from an unknown
manifold embedded in a metric space. Given a finite point cloud X = {xi}Ni=1 with metric d, we
construct a nested family of simplicial complexes (e.g., a Vietoris-Rips filtration) indexed by a scale
parameter α. Persistent homology computes homology across scales and records when features, such

11



as connected components and loops, are born and die. The resulting multiset of birth-death pairs is
the persistence diagram. These summaries provide geometric signals.

Point Clouds and the Vietoris-Rips Filtration. Let X = {xi}Ni=1 ⊂ (X , d). For α ≥ 0, the
Vietoris-Rips (Rips) complex VRα(X) is the abstract simplicial complex whose k-simplices are
all (k+1)-tuples {xi0 , . . . , xik} with pairwise distances max

p,q
d(xip , xiq ) ≤ α. As α increases, the

complexes are nested
VRα1

(X) ⊆ VRα2
(X) for α1 ≤ α2, (9)

yielding the Rips filtration {VRα(X)}α≥0.

Weighted Graphs and the Rips Filtration. For a weighted graph G = (V,E,w) with weight func-
tion ω : E → R≥0, we define the Rips complex VRα(G) as the abstract simplicial complex whose
1-skeleton consists of the vertex set V and all edges (u, v) ∈ E with w(u, v) ≤ α. Higher-order
simplices are then included whenever all their edges are present. As α increases, the complexes form
a nested sequence VRα1

(G) ⊆ VRα2
(G) for α1 ≤ α2, yielding the Rips filtration {VRα(G)}α≥0

induced by the graph weights.

Persistent Homology and Persistence Diagrams. Fix a homological dimension k ∈ {0, 1, 2, . . .}
and a coefficient field (we use Z2). The inclusion maps in the filtration induce homomorphism
between homology groups Hk(VRα1

) → Hk(VRα2
) for α1 ≤ α2. Each topological feature η (a

k-dimensional class) appears (is born) at scale b (Hk(VRb)) and disappears (dies) at scale d ≥ b
(Hk(VRd)). The multiset of pairs (b, d) is the k-dimensional persistence diagram Dk. For k=0, all
components are born at b=0, and deaths record the merger times of components.

Distances Between Persistence Diagrams. Let D1 and D2 be persistence diagrams, and let
∆ = {(t, t) : t ∈ R} be the diagonal line in R2. We compare diagrams by allowing matches to
points on ∆. For p ∈ [1,∞), the p-Wasserstein distance is

Wp(D1, D2) =
[
inf
γ

∑
u∈D1∪∆

(∥u− γ(u)∥p) p
]1/p

, (10)

where γ ranges over all bijections between D1 ∪∆ and D2 ∪∆, and ∥·∥p denotes Lp-norm. The
special case p=∞ yields the bottleneck distance

W∞(D1, D2) = inf
γ

sup
u∈D1∪∆

∥u− γ(u)∥∞. (11)

These metrics enjoy well-known stability properties: small perturbations of the input metric (or
filtration function) produce small changes in the diagrams (Skraba and Turner, 2020).

Sliced Wasserstein distance (SWD). SWD approximates the d-dimensional Wasserstein distance
by projecting the data onto many 1-dimensional lines and averaging the resulting one-dimensional
Wasserstein costs. This yields a fast O(KN logN), differentiable, and GPU-friendly objective that
is well suited as a training loss. We now give the formal definition.

Given two finite point sets X = {xi}Ni=1 ⊂ Rn and Y = {yj}Nj=1 ⊂ Rn (uniform weights), the
sliced p-Wasserstein distance compares them by averaging one-dimensional p-Wasserstein costs of
their projections. For a unit direction θ ∈ Sn−1, project si = ⟨xi, θ⟩ and tj = ⟨yj , θ⟩, and let
s(1) ≤ · · · ≤ s(N) and t(1) ≤ · · · ≤ t(N) be the sorted values. The 1D cost along θ is

W 1D
p (θ) =

( 1

N

N∑
i=1

∣∣ s(i) − t(i)
∣∣p)1/p.

Averaging over directions yields

SWp(X,Y ) =

(∫
Sd−1

(
W 1D

p (θ)
)p

dσ(θ)

)1/p
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where σ is the uniform measure on Sd−1. In practice, we approximate the integral with K directions
{θk}Kk=1 sampled uniformly:

SW(K)
p (X,Y ) =

(
1
K

K∑
k=1

(
W 1D

p (θk)
)p)1/p

(12)

which can be computed in O(KN logN) time via sorting per direction.

C PROOF OF THEOREM

Theorem 1. Let 0 ≤ ϵ ≤ 1. Define Gϵ = (V,E, ωϵ) by

ωϵ(e) =

{
ω(e), if ω(e) ≤ ϵ,

1, if ω(e) > ϵ.
(13)

Let m(ϵ) := #
{
(0, d) ∈ DRips

0 (G) | ϵ < d < ∞
}

, i.e., the number of finite 0-dimensional
persistence points of G whose death times exceed ϵ. Then

Wp

(
DRips

0 (G), DRips
0 (Gϵ)

)
≤ m(ϵ)1/p (1− ϵ) (14)

and 0 ≤ m(ϵ) ≤ N − 1 where Wp denotes p-Wasserstein distance.

Proof. Let FG = {VRα(G)}α≥0 and FGϵ
= {VRα(Gϵ)}α≥0 denote the (graph-level) 1-skeleton

filtrations where

VRα(G) = V ∪ { e ∈ E | ω(e) ≤ α }, VRα(Gϵ) = V ∪ { e ∈ E | ωϵ(e) ≤ α }.
Since 0-dimensional homology is depends only on 0 and 1-simplices, it suffices to consider the filtered
1-skeleton. For α ≤ ϵ, we have ωϵ(e) = ω(e) whenever ω(e) ≤ ϵ, hence VRα(G) = VRα(Gϵ).
Moreover, since ωϵ(e) ∈ {ω(e), 1}, for every α with ϵ < α < 1 we have VRα(Gϵ) = VRϵ(Gϵ), i.e.,
the filtration of Gϵ is constant on [ϵ, 1). Consequently, in DRips

0 (Gϵ) every class that is still alive at
time ϵ dies precisely at α = 1 when all remaining edges of weight 1 are added.

In 0-dimensional persistence points, all births occur at 0, and there are N points including a single
essential class. Thus, points of DRips

0 (G) with death times d ≤ ϵ also appear with the same deaths in
DRips

0 (Gϵ), while each point with death d ∈ (ϵ, 1) in DRips
0 (G) corresponds to a point with death 1

in DRips
0 (Gϵ).

Define a bijection γ′ : DRips
0 (G) ∪∆ → DRips

0 (Gϵ) ∪∆ by

γ′(0, d) =

{
(0, d), d ≤ ϵ,

(0, 1), ϵ < d ≤ 1,
(15)

and map the essential class to the essential class. (No diagonal points are used here, but allowing ∆
keeps the statement standard.) With the usual ℓp ground metric on R2, we have

∥(0, d)− γ′(0, d)∥p =

{
0, d ≤ ϵ,

|1− d|, ϵ < d ≤ 1.
(16)

The number m(ϵ) of pairs with ϵ < d ≤ 1 is at most N − 1 (all but the essential component).
Therefore, ∑

u∈DRips
0 (G)∪∆

(∥u− γ′(u)∥p) p < m(ϵ) (1− ϵ)p, (17)

and 0 ≤ m(ϵ) ≤ N − 1 since |1 − d| < 1 − ϵ for every d ∈ (ϵ, 1]. Taking the infimum over all
bijections and the p-th root yields

Wp

(
DRips

0 (G), DRips
0 (Gϵ)

)
<
(
m(ϵ) (1− ϵ)p

)1/p
(18)

= m(ϵ)1/p (1− ϵ), (19)

which proves the claim.

13



D DATASETS AND EXPERIMENTAL DETAILS

Datasets. We use the multilingual caption dataset introduced by (Carlsson
et al., 2022), publicly available at https://huggingface.co/datasets/M-CLIP/
ImageCaptions-7M-Translations. While the corpus provides translations for multiple
languages, Korean is not included. To incorporate Korean, we augment the corpus by replacing a
portion of captions with Korean translations; the replacement ratio and exact sampling procedure are
specified below.

Table 2: Per-language sample counts before/after adding Korean. Before: all languages except Vietnamese had
150,000; Vietnamese had 100,000; Korean was absent. Totals are preserved.

Language Before After ∆ Language Before After ∆

afrikaans 150000 147000 −3000 italian 150000 147000 −3000
albanian 150000 147000 −3000 japanese 150000 147000 −3000
amharic 150000 147000 −3000 korean 0 138000 +138000
arabic 150000 147000 −3000 macedonian 150000 147000 −3000
azerbaijani 150000 147000 −3000 malayalam 150000 147000 −3000
bengali 150000 147000 −3000 marathi 150000 147000 −3000
bosnian 150000 147000 −3000 polish 150000 147000 −3000
bulgarian 150000 147000 −3000 portuguese 150000 147000 −3000
catalan 150000 147000 −3000 romanian 150000 147000 −3000
chinese_simplified 150000 147000 −3000 russian 150000 147000 −3000
chinese_traditional 150000 147000 −3000 serbian 150000 147000 −3000
czech 150000 147000 −3000 slovenian 150000 147000 −3000
danish 150000 147000 −3000 spanish 150000 147000 −3000
dutch 150000 147000 −3000 swahili 150000 147000 −3000
english 150000 147000 −3000 swedish 150000 147000 −3000
estonian 150000 147000 −3000 tagalog 150000 147000 −3000
french 150000 147000 −3000 telugu 150000 147000 −3000
german 150000 147000 −3000 turkish 150000 147000 −3000
greek 150000 147000 −3000 turkmen 150000 147000 −3000
hindi 150000 147000 −3000 ukrainian 150000 147000 −3000
hungarian 150000 147000 −3000 uzbek 150000 147000 −3000
icelandic 150000 147000 −3000 uyghur 150000 147000 −3000
indonesian 150000 147000 −3000 vietnamese 100000 100000 0

Total Before: 7000000 After: 7000000 ∆: 0

Korean Augmentation. In the original corpus, Korean was absent; 46 languages had 150,000
captions each and Vietnamese had 100,000, totaling 7M samples. We added Korean while preserving
the per-language ratios and the total size by uniformly reallocating 3,000 captions from each non-
Vietnamese language to Korean. Specifically, for every language except Vietnamese (fixed at
100,000), we randomly selected 3,000 captions and replaced them with Korean translations. This
results in 147,000 samples per non-Vietnamese language (down from 150,000) and 138,000 Korean
samples in total (46× 3,000). Table 2 summarizes the per-language counts.

Korean translations were generated using the OpenAI API with a temperature setting of 0.0 to
ensure deterministic and consistent translations. To handle the large-scale translation task efficiently,
we implemented a batch processing pipeline with checkpoint mechanisms. The translation system
processed captions in batches of 1,000 items, with automatic checkpointing every 5,000 translations
to enable recovery from potential interruptions. Each translation request included explicit instructions
to return only the translated text without additional formatting or explanations. Failed translation
attempts were handled with exponential backoff retry logic (up to 3 attempts) to ensure robustness
against transient API failures.

Embedding Subset. Although the full dataset contains approximately 7M samples, we rely on
the 2M precomputed text embeddings released at ImageCaptions-7M-Embeddings. We use this
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subset to train both MCLIP and ToMCLIP and verify that it is sufficient to reproduce the MCLIP
performance reported in (Carlsson et al., 2022). To evaluate the model under a low-resource condition,
we further subsampled 1% of the 2M samples and trained MCLIP and ToMCLIP using this reduced
training set. This setup simulates scenarios where access to multilingual annotated data is severely
limited.

Models. For multilingual text encoding, we adopt XLM-RoBERTa (Conneau et al., 2019). We
use the CLIP (ViT-B/32) image encoder (Radford et al., 2021). When comparing MCLIP and ToM-
CLIP, the backbone architecture, optimizer, and learning-rate schedule are identical unless otherwise
noted. We set the batch size to 256, following MCLIP (Carlsson et al., 2022). ToMCLIP(Ldm),
ToMCLIP(Lta), and ToMCLIP denote models trained with the proposed total loss Ltotal using coef-
ficients (α, β, γ) = (1, 0.01, 0), (1, 0, 0.01), and (1, 0.01, 0.01), respectively. To construct a sparse
graph, let DM denote the pairwise distance matrix; we set ϵ = mean(DM) − 0.5 ∗ std(DM),
computed separately for each point cloud. For the sliced Wasserstein distance, we use p = 2 and
average over 50 random projection directions.

Training and Evaluation. We train under two data regimes: full-data (all available subset entries)
and a 1% low-resource setting. We report zero-shot CIFAR-100 classification across 13 languages
using top-1/5/10. All preprocessing, tokenization settings, batch sizes, learning rates, and early
stopping are the same as MCLIP (Carlsson et al., 2022), except for the loss function, which includes
our topology-alignment objective. The results are from a single training run, consistent with standard
research practices (Radford et al., 2021; Carlsson et al., 2022; Chen et al., 2023; Yang et al., 2024).
For the 1% low-resource setting, this work reports the mean over three independent runs.

E PROMPTS OF MULTILINGUAL LANGUAGE FOR THE EVALUATION
OF ZERO-SHOT CLASSIFICATION ON THE CIFAR-100

To perform zero-shot classification on the CIFAR-100 dataset, we construct language-specific text
prompts to match the expected format of each language. These prompts are used to generate class-
specific textual descriptions, which are then embedded using the multilingual text encoder. The
general template follows the format of “a photo of a {}” in English, where the placeholder is replaced
by the class name. Table 3 summarizes the prompt templates used for each language in our evaluation.

Table 3: Prompt templates used for each language in the zero-shot classification task. The placeholder {} is
replaced with the class name.

Language (ISO) Prompt Template
English (En) a photo of a {}
French (Fr) une photo dún(e) {}
Spanish (Es) una foto de un(a) {}
German (De) ein Foto von einem/einer {}
Italian (It) una foto di un(a) {}
Russian (Ru) фото {}
Polish (Pl) zdjęcie {}
Turkish (Tr) {} fotoğrafı
Danish (Da) et billede af en {}
Japanese (Ja) {}の写真
Chinese (Zh) 一张{}的照片
Korean (Ko) {}가있는사진
Vietnamese (Vi) một bức ảnh về {}

F ADDITIONAL RESULTS

F.1 Connectivity and Sparsity Analysis of Approximation Method

We evaluated the effect of the threshold parameter ϵ on the sparsity and connectivity of the
sparsified graph Gϵ = (V,Eϵ). Across uniform and Gaussian random point clouds in Rn with
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N ∈ {64, 128, 256, 512}, we measured the number of connected components c(ϵ) and the average
sparsity (|Eϵ|/

(
N
2

)
) when ϵ = µ− λσ for λ ∈ {1.0, 0.5, 0,−0.5,−1.0}, where µ and σ denote the

mean and standard deviation of all weights in G.

Table 4 reveals a clear monotonic trade-off. As λ decreases, the threshold ϵ = µ − λσ increases,
leading to a higher edge density and fewer connected components. At a large positive value of λ,
graphs are sparse but fragmented into multiple components, particularly for Gaussian point clouds,
which exhibit a stronger central concentration. As λ becomes smaller, the graphs quickly become
connected (c(ϵ) = 1), and sparsity rises above 0.5. At λ = 0.5, the graphs achieve near connectivity
across all N , while retaining only about 30% of the edges. ToMCLIP adopts this setting, as it offers
an effective balance between sparsity and connectivity.

Table 4: Average connected components c(ϵ) and sparsity by λ value on random point clouds (n = 512, 10
trials).

N

Connected components c(ϵ) Sparsity

Uniform (λ) Gaussian (λ) Uniform (λ) Gaussian (λ)

1.0 0.5 0.0 −0.5 −1.0 1.0 0.5 0.0 −0.5 −1.0 1.0 0.5 0.0 −0.5 −1.0 1.0 0.5 0.0 −0.5 −1.0

64 1.6 1.1 1.0 1.0 1.0 4.1 1.4 1.1 1.0 1.0 0.158 0.306 0.496 0.690 0.840 0.157 0.309 0.504 0.693 0.840
128 1.7 1.0 1.0 1.0 1.0 3.1 1.2 1.0 1.0 1.0 0.160 0.310 0.499 0.692 0.841 0.160 0.311 0.502 0.694 0.841
256 1.1 1.0 1.0 1.0 1.0 3.2 1.2 1.1 1.0 1.0 0.159 0.308 0.499 0.692 0.841 0.159 0.310 0.503 0.693 0.842
512 1.0 1.0 1.0 1.0 1.0 2.2 1.0 1.0 1.0 1.0 0.158 0.308 0.499 0.690 0.841 0.159 0.310 0.502 0.692 0.841

F.2 Evaluation on CIFAR-100

Table 5: Average Top-k accuracy (%) of the zero-shot classification on CIFAR-100 across 13 languages.
Low Full

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

CLIP 20.29 32.47 39.04 20.29 32.47 39.04
MCLIP 30.21 56.67 67.90 50.72 76.49 84.93
ToMCLIP(Ldm) 31.12 56.47 67.60 50.53 75.84 84.87
ToMCLIP(Lta) 30.45 57.14 68.26 50.73 77.12 85.73
ToMCLIP 31.91 58.15 69.26 51.32 77.46 85.81

Table 6: Top-1 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).

Languages (13) Avg
Setting Model En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi

Full

CLIP 60.67 40.11 37.49 36.06 26.93 1.06 10.71 9.54 17.87 12.40 5.21 2.21 3.49 20.29
MCLIP 58.86 49.14 51.13 51.23 51.13 49.83 51.40 51.24 55.13 33.01 54.70 51.16 51.35 50.72
ToMCLIP(Ldm) 57.79 46.19 50.39 56.13 50.39 48.62 50.29 50.99 56.62 33.85 52.35 52.28 51.03 50.53
ToMCLIP(Lta) 58.10 48.67 48.54 52.42 51.44 52.67 50.74 50.57 57.09 32.86 51.90 51.37 53.15 50.73
ToMCLIP 58.93 50.76 52.67 54.27 52.68 50.63 50.04 51.21 57.50 31.33 52.97 52.41 51.72 51.32

Low

CLIP 60.67 40.11 37.49 36.06 26.93 1.06 10.71 9.54 17.87 12.40 5.21 2.21 3.49 20.29
MCLIP 35.70 32.40 29.64 31.20 28.19 32.21 27.25 25.05 33.88 24.41 33.63 30.38 28.77 30.21
ToMCLIP(Ldm) 37.84 33.12 30.32 31.13 29.82 32.70 28.87 25.16 35.24 25.91 34.32 31.27 28.82 31.12
ToMCLIP(Lta) 37.79 31.01 29.75 31.25 28.82 32.07 28.18 24.43 34.49 23.87 32.79 30.75 30.67 30.45
ToMCLIP 37.64 34.08 31.12 31.09 31.28 34.08 30.20 25.75 36.11 26.65 35.18 31.79 29.90 31.91

Table 7: Top-5 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).

Languages (13) Avg
Setting Model En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi

Full

CLIP 85.26 58.75 56.94 55.17 42.02 6.49 16.71 17.56 27.47 25.33 14.26 6.74 9.44 32.47
MCLIP 85.38 77.07 78.25 77.13 79.41 79.06 76.51 78.06 79.98 46.85 81.39 77.86 77.45 76.49
ToMCLIP(Ldm) 84.23 73.35 73.30 82.06 77.03 76.31 74.19 78.61 79.84 49.05 79.75 79.40 78.85 75.84
ToMCLIP(Lta) 84.22 75.25 74.00 79.58 79.96 80.76 76.09 79.58 80.80 50.10 81.12 79.28 81.83 77.12
ToMCLIP 84.78 78.87 79.11 80.97 80.09 78.39 74.66 78.89 81.27 49.58 80.38 79.79 80.16 77.46

Low

CLIP 85.26 58.75 56.94 55.17 42.02 6.49 16.71 17.56 27.47 25.33 14.26 6.74 9.44 32.47
MCLIP 67.99 57.26 52.52 60.26 50.52 57.82 52.05 48.35 61.92 49.45 67.07 54.48 57.00 56.67
ToMCLIP(Ldm) 67.70 58.15 53.18 59.20 51.96 56.97 51.52 46.31 62.34 48.56 65.88 56.48 55.85 56.47
ToMCLIP(Lta) 68.39 57.19 52.97 59.18 51.44 58.32 53.15 48.51 61.70 50.08 65.50 56.15 60.28 57.14
ToMCLIP 68.75 58.42 54.09 60.12 53.73 59.50 54.07 49.92 63.29 51.29 67.36 56.62 58.74 58.15
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In this section, we report Top-1 and Top-5 performance on CIFAR-100 under both the full-resource
and low-resource settings, where the results for the low-resource setting are averaged over three inde-
pendent runs. As shown in Tables 6 and 7, ToMCLIP outperforms MCLIP in zero-shot classification
on CIFAR-100 across 13 languages. These results confirm that topology-aware alignment enhances
cross-lingual consistency and robustness.

F.3 Topological Alignment Analysis

The topological alignment objective incorporated two loss components, Lta and Ldm. To assess their
effects on the image-text latent space, we compare CLIP, MCLIP and ToMCLIP (trained with Ldm
and Lta). We use the same prompts for English (En) and Korean (Ko) derived from CIFAR-100 class
labels as in the zero-shot evaluation (Appendix E).
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Figure 3: Sorted pairwise distance curves of English (En) vs. Korean (Ko) embeddings.

Visualization of Shared Latent Space. We visualize the sorted pairwise distance curves for En
and Ko embeddings. Figure 3 displays distances sorted in ascending order and the dashed green line
represents the absolute pairwise distance difference |En−Ko|. In CLIP, a substantial discrepancy
exists between the En and Ko distance distributions, reflected by a high |En−Ko| curve because the
CLIP model is trained using En caption datasets. The MCLIP, which is trained using multilingual
data, exhibits improved alignment, significantly reducing the |En−Ko| differences. Furthermore,
ToMCLIP enhances the alignment, producing closer En and Ko curves. These results visually confirm
that ToMCLIP achieves the highest degree of cross-lingual geometric consistency in terms of the
pairwise distance, suggesting that the topological alignment loss bridges language-induced gaps.

In addition to the distance curve analysis, we provide a visualization of the shared embedding space
for En and Ko CIFAR-100 class label embeddings (Figure 4). Each point represents the embedding of
a prompted class label, and distances between points reflect semantic relationships in the embedding
space. For each model (i.e., CLIP, MCLIP, and ToMCLIP), we project the embeddings in two
dimensions using t-SNE (Maaten and Hinton, 2008) and highlight the class-level clusters. The
bounding boxes were manually defined based on the En CLIP embeddings to capture coherent
semantic groups, and the same grouping scheme was consistently applied to MCLIP and ToMCLIP
for comparability. In CLIP, although the En embeddings form clear clusters, the Ko embeddings
remain scattered, reflecting poor cross-lingual alignment. Moreover, MCLIP substantially improves
alignment, with Ko embeddings aligning more closely to the manually defined clusters. Nevertheless,
MCLIP still presents structural misalignment, as some clusters are mixed in the center. Furthermore,
the red box overlaps with neighboring groups, and the blue box is split into two subregions, which
are clearly distinguished in the En embeddings. The ToMCLIP refines this structure, producing
highly consistent cross-lingual clusters that preserve the semantic grouping. The red and blue clusters
become well separated from other groups in En and Ko embeddings, highlighting the robustness of
the topological alignment. Conbined with the distance curve, this visualization demonstrates that
ToMCLIP minimizes pairwise distance discrepancies and preserves higher-level semantic structures
across languages, providing complementary evidence for the effectiveness of the proposed topological
alignment loss.

Quantitative Analysis of Shared Latent Space. The Ldm term minimizes the MSE between two
pairwise distance matrices. Table 8 reports the mean and RMSE of the absolute sorted pairwise
distance differences (|En−Ko|) between En and Ko embeddings. The proposed ToMCLIP achieves
substantially lower values than MCLIP, indicating improved alignment.
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Figure 4: Two-dimensional t-SNE projections of English and Korean text embeddings

Table 8: Mean and RMSE of |En−Ko|.
Model Mean RMSE

CLIP 4.5238 4.5509
MCLIP 0.3920 0.4081
ToMCLIP 0.3050 0.3133

The Lta promotes topological consistency by minimizing the distance between the persistence
diagrams of the two embedding sets. By the stability inequality (Eq. 4), decreasing Lta tightens a
certified lower bound on the p-Wasserstein distance between the corresponding point clouds. To
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verify that minimizing Lta yields lower W c
p , Table 9 reports three metrics: W c

2 (2-Wasserstein between

the raw embeddings), W2 (2-Wasserstein between the persistence diagrams), and SW
(50)
2 (sliced

2-Wasserstein between the persistence diagrams using 50 projections). Overall, ToMCLIP yields the
lowest cross-lingual distances across all metrics, confirming that topology-aware training with Lta
enhances the topological alignment.

Table 9: Comparison of topological distances between English and Korean embeddings.

Comparison W c
2

W2 SW
(50)
2

0-dim 1-dim 0-dim 1-dim

CLIP (En) vs. CLIP (Ko) 7.7870 34.5016 1.0468 2.8261 4.1593
MCLIP (En) vs. MCLIP (Ko) 2.5988 5.1995 0.9250 0.3670 0.5964
ToMCLIP (En) vs. ToMCLIP (Ko) 2.4929 4.2072 0.7444 0.3056 0.3393

F.4 Ablation Study on Batch Size
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Figure 5: Ablation study on batch size in the low-resource setting.

We also investigate the effect of batch size in the low-resource setting. In our framework, the batch size
corresponds to the number of sampled points considered when constructing persistence diagrams in
the shared embedding space. Hence, a larger batch size allows for capturing more refined topological
features and yields better approximations of the underlying geometry. However, increasing the batch
size raises computational complexity, making it crucial to balance accuracy and efficiency. As shown
in Figure 5, performance improves with larger batches, and we therefore adopt a batch size of 256 as
the default in the experiments. We note that with batch sizes smaller than 128, the number of sampled
points is insufficient to approximate the underlying data manifold, leading to limited improvements.
By contrast, a batch size of 256 provides enough samples to extract topological information more
effectively. Further exploration with 512 or larger batch sizes may reveal whether additional gains are
possible, which we leave for future work. In addition, future work will also explore approximation
techniques to further reduce computational cost while maintaining the benefits of large batch sizes.

F.5 Ablation Study on Loss Coefficients

In Table 10, we present the ablation study on the loss coefficients under the low-resource setting. We
observe that extremely large coefficients (e.g., β = 0.1 or γ = 0.1) severely degrade performance
across all metrics, while small to moderate values (e.g., β = 0.01, 0.001 or γ = 0.01, 0.001) provide
stable performance over the baseline. Among the tested configurations, β = 0.01 and γ = 0.01
achieve the highest scores for both Top-1 (32.49%) and Top-5 (58.73%), as well as the best Top-10
accuracy (69.89%). Therefore, we adopt β = 0.01 and γ = 0.01 as the default setting for the all
experiments.
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Table 10: Ablation results on loss coefficients. The experiments are conducted on Low resource setting.
Top-1 (%) Top-5 (%) Top-10 (%)

β
γ 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1

0.0 30.48 29.89 31.20 1.00 56.65 55.86 56.43 5.07 67.70 67.54 67.65 9.97
0.001 30.38 29.40 30.74 1.10 56.26 55.57 56.23 4.80 67.54 66.80 67.42 9.69
0.01 30.16 29.67 32.49 1.01 56.87 55.99 58.73 5.28 68.53 67.44 69.89 10.23
0.1 1.14 1.19 1.31 1.00 5.21 5.01 6.60 5.11 10.49 10.15 13.03 10.10

F.6 Ablation on 1-Dimensional Homology

Our model uses only 0-dimensional homology (H0) to extract topological features, since the birth
times of 1-dimensional homology (H1) features largely overlap with the pairwise distance MSE
(Ldm). To verify this, we empirically tested whether incorporating H1 improves training. Specifically,
we defined

Lta =
1

2
SW(K)

p

(
D

(0)
T , D

(0)
S

)
+

1

2
SW(K)

p

(
D

(1)
T , D

(1)
S

)
, (20)

and set (α, β, γ) = (1, 0.01, 0.01). We conducted experiments on Low setting. Adding H1 lowers
the overall average (69.89 → 69.03), suggesting that H1 provides limited additional benefit in our
setting.

Table 11: Ablation on 1-dimensional homology. ToMCLIP(dim1) denotes the model trained with Lta computed
on both H0 and H1.

Languages (13) Avg
Model En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi

MCLIP 79.25 67.60 62.21 70.44 60.32 69.41 64.64 57.87 72.95 62.09 77.32 64.72 71.24 67.70
ToMCLIP 81.06 70.66 64.25 72.70 63.54 71.88 67.04 60.87 74.77 64.21 78.33 67.23 71.99 69.89
ToMCLIP(dim1) 82.27 69.73 64.02 73.72 61.16 71.87 64.53 60.11 73.58 60.08 78.07 66.44 71.81 69.03

F.7 Effect of the Approximation Threshold for the Persistence Diagram

We control graph sparsity with a distance threshold ϵ = µ − λσ, where µ and σ denote the mean
and standard deviation of pairwise distances, respectively; we keep edges with distance ≤ ϵ. We
conducted an ablation study on λ ∈ {1.5, 1, 0.5, 0} in the low-resource setting. As λ increases, ϵ
decreases and the graph becomes sparser, which reduces memory/time but may remove informative
structure. Table 12 summarizes the results. Increasing λ makes the graph sparser and speeds
up persistence diagram computation (0.075 s → 0.011 s from λ=0 to 1.5), but excessive sparsity
hurts accuracy. As the graph becomes denser (smaller λ), the persistence diagram approximation
approaches the exact persistence diagram and accuracy does not decrease. In practice, λ = 0.5
already makes the approximation error negligible. Choosing λ < 0.5 increases computation without
yielding further gains, whereas λ > 0.5 introduces additional sparsity, incurs approximation error, and
lowers accuracy. Consistent with the analysis in Section F.1, the persistence diagram approximation
error near λ = 0.5 is negligible, which supports adopting λ = 0.5 as the default balance between
performance and computational cost.

λ Time(s) En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi Avg

1.5 0.01119 78.73 66.95 62.78 69.67 60.10 68.71 62.82 57.38 70.80 57.57 75.08 65.76 71.67 66.77
1 0.02434 80.50 68.89 63.22 71.75 61.96 69.80 63.59 60.82 73.06 59.97 77.87 68.12 71.82 68.57
0.5 0.04608 81.06 70.66 64.25 72.70 63.54 71.88 67.04 60.87 74.77 64.21 78.33 67.23 71.99 69.89
0 0.07519 80.42 70.13 63.32 70.21 61.91 71.67 65.51 59.19 73.78 61.91 78.21 68.20 71.84 68.95

Table 12: Top-10 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages.

F.8 Effect of the Number of Projections for SWD

We approximate the SWD in Eq. 12 via Monte Carlo sampling with K random projection directions.
The computational complexity is O(KN logN); since runtime grows approximately linearly with
K, we ablate K to select a balanced value. Table 13 reports the ablation in the low-resource setting.
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Empirically, increasing K improves accuracy up to a point: the average Top-10 accuracy rises
from 66.99 (K=5) and 66.81 (K=10) to 68.16 (K=30), peaking at 69.89 (K=50). For K=50
and K=100, performance is similar while the computational cost roughly doubles; hence we adopt
K=50 as the default.

K En Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi Avg

5 78.04 66.92 60.42 69.17 59.95 71.64 63.43 55.38 72.69 58.69 77.32 65.25 71.93 66.99
10 78.03 66.08 61.88 70.07 60.06 69.05 63.45 57.91 71.41 58.00 76.50 64.61 71.51 66.81
30 79.47 67.18 63.51 70.57 60.48 69.53 66.41 58.76 72.10 59.19 77.84 67.92 73.13 68.16
50 81.06 70.66 64.25 72.70 63.54 71.88 67.04 60.87 74.77 64.21 78.33 67.23 71.99 69.89
100 79.58 71.81 66.18 71.97 64.61 70.92 64.30 57.44 73.07 58.33 78.17 66.63 73.30 68.95

Table 13: Top-10 accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages.

F.8.1 Multilingual Image-Text Retrieval on xFlickr&CO

This work evaluates multilingual image-text retrieval on xFlickr&CO (Bugliarello et al., 2022) across
eight languages (En, Es, De, Id, Ru, Tr, Ja, Zh). The benchmark comprises 2K images (1K from
Flickr30K and 1K from MSCOCO), each paired with a single parallel caption in all eight languages,
enabling evaluation of both retrieval directions. This work presents the results for image retrieval (IR;
text→image) and text retrieval (TR; image→text). Following standard practice, we compute recall
at K (R@K, K ∈ {1, 5, 10}) and average the scores across languages. For each language, R@K is
evaluated over 2,000 queries.

Table 14 summarizes the language-averaged results and Table 15 breaks down R@1 by language. In
both tables, red ▲ ( blue ▼) marks improvement (degradation) over MCLIP under the same settings
and direction. In the Full regime, ToMCLIP(Ldm), ToMCLIP(Lta), and ToMCLIP yield consistent
average gains over MCLIP for IR and TR across all metrics (R@1,5, and 10). In the more challenging
Low regime, they also achieve consistent average gains over MCLIP. These results indicate that the
proposed losses improve cross-lingual alignment in the shared embedding space.

F.9 Training Time and Evaluation Time

To assess computational efficiency, we compared the average training time per epoch between the
two models, MCLIP and ToMCLIP. We trained with one NVIDIA A100 (80 GB) on a single-node
server (2× AMD EPYC 7513). The baseline MCLIP required approximately 285 minutes per epoch,
whereas the proposed ToMCLIP, which incorporates the additional topology loss and distance matrix
alignment, required 357 minutes per epoch. Although ToMCLIP increases the training cost relative
to MCLIP, the additional overhead remains manageable considering the substantial improvement in
cross-lingual alignment performance. This is made possible by our persistence diagram approximation
strategy, which employs MST-based computation and graph sparsification to avoid the exponential
complexity of constructing full Rips complexes.

Importantly, evaluation time remains unchanged between MCLIP and ToMCLIP. Since our method
only modifies the training objective and does not alter the model architecture, no additional computa-
tion is introduced during inference. Thus, both models share identical evaluation speed and memory
requirements, ensuring that the performance gains of ToMCLIP come at no cost during deployment.

G ADDITIONAL RESULTS WITH VIT-B/16 PLUS CLIP IMAGE
ENCODER

We replace the CLIP image encoder with ViT-B/16+ (Cherti et al., 2023), which is trained on the
LAION-400M dataset (Schuhmann et al., 2021). The multilingual text encoder remains XLM-
RoBERTa (Conneau et al., 2019), as in our main experiments. Except for the image backbone, the
entire training and evaluation setup is identical to the setup described earlier.

For data, we use the publicly released precomputed text embeddings from
ImageCaptions-7M-Embeddings, which contains 7M caption embeddings compatible with the
ViT-B/16+ (by contrast, the corresponding ViT-B/16 release provides about 2M embeddings). All
ViT-B/16+ runs use the full 7M set; under the low-resource condition, we uniformly subsample 1%
of these (∼70K samples).
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Table 14: Multilingual retrieval on xFlickr&CO. Average R@k (%) across 8 languages (Low vs. Full). ▲
indicates an improvement over MCLIP (same setting and direction), ▼ indicates a decrease.

Direction Model
Low Full

R@1 R@5 R@10 R@1 R@5 R@10

IR

CLIP 12.08 22.12 27.19 12.08 22.12 27.19
MCLIP 33.51 62.04 73.70 50.13 77.51 85.86
ToMCLIP(Ldm) 34.49 (▲ 0.98) 62.93 (▲ 0.89) 74.50 (▲ 0.80) 50.85 (▲ 0.72) 78.25 (▲ 0.74) 86.56 (▲ 0.70)

ToMCLIP(Lta) 34.50 (▲ 0.99) 62.96 (▲ 0.93) 74.45 (▲ 0.74) 50.79 (▲ 0.66) 78.01 (▲ 0.50) 86.19 (▲ 0.33)

ToMCLIP 34.03 (▲ 0.52) 62.59 (▲ 0.56) 74.00 (▲ 0.30) 50.76 (▲ 0.63) 77.99 (▲ 0.48) 86.48 (▲ 0.62)

TR

CLIP 16.01 28.75 35.40 16.01 28.75 35.40
MCLIP 39.39 68.02 78.65 53.38 79.48 87.34
ToMCLIP(Ldm) 39.71 (▲ 0.32) 68.63 (▲ 0.61) 79.38 (▲ 0.74) 54.01 (▲ 0.63) 80.38 (▲ 0.90) 88.08 (▲ 0.74)

ToMCLIP(Lta) 40.29 (▲ 0.90) 69.18 (▲ 1.16) 79.61 (▲ 0.97) 53.83 (▲ 0.45) 79.91 (▲ 0.43) 87.80 (▲ 0.46)

ToMCLIP 39.51 (▲ 0.12) 68.42 (▲ 0.40) 78.96 (▲ 0.32) 54.07 (▲ 0.69) 79.98 (▲ 0.50) 87.67 (▲ 0.33)

Table 15: Multilingual retrieval on xFlickr&CO. R@1 retrieval accuracy (%) across languages. ▲ and ▼ mark
improvements/decreases over MCLIP for the same setting and direction; here only the icons are shown.

Setting Direction Model
Languages Avg

En Es De Id Ru Tr Ja Zh

Full

IR

CLIP 54.90 22.05 11.00 4.15 0.35 1.90 1.95 0.35 12.08
MCLIP 55.00 54.65 48.45 48.95 56.65 53.35 35.45 48.50 50.12
ToMCLIP(Ldm) 55.10▲ 55.10▲ 48.65▲ 49.50▲ 56.95▲ 54.35▲ 38.20▲ 48.95▲ 50.85▲
ToMCLIP(Lta) 55.40▲ 54.95▲ 49.15▲ 49.15▲ 57.35▲ 53.50▲ 38.20▲ 48.65▲ 50.79▲
ToMCLIP 55.60▲ 55.15▲ 48.40▼ 50.00▲ 56.70▲ 53.70▲ 38.00▲ 48.55▲ 50.76▲

TR

CLIP 58.55 29.10 17.15 10.80 0.80 4.25 5.25 2.15 16.01
MCLIP 58.60 58.90 48.95 51.45 61.15 55.05 39.55 53.35 53.38
ToMCLIP(Ldm) 59.20▲ 59.35▲ 49.25▲ 51.80▲ 61.05▼ 56.50▲ 40.75▲ 54.15▲ 54.01▲
ToMCLIP(Lta) 58.50▼ 60.15▲ 49.70▲ 51.70▲ 60.90▼ 55.20▲ 40.70▲ 53.80▲ 53.83▲
ToMCLIP 59.55▲ 59.25▲ 49.55▲ 53.70▲ 61.55▲ 54.85▼ 40.70▲ 53.40▲ 54.07▲

Low

IR

CLIP 54.90 22.05 11.00 4.15 0.35 1.90 1.95 0.35 12.08
MCLIP 37.05 35.72 30.08 36.00 38.30 30.17 27.87 32.88 33.51
TOMCLIP(Ldm) 37.85▲ 37.27▲ 30.65▲ 37.40▲ 39.98▲ 31.05▲ 28.17▲ 33.53▲ 34.49▲
TOMCLIP(Lta) 38.00▲ 36.65▲ 31.23▲ 36.55▲ 39.60▲ 31.27▲ 29.17▲ 33.50▲ 34.50▲
TOMCLIP 37.10▲ 37.23▲ 30.55▲ 36.37▲ 38.85▲ 30.15▼ 28.48▲ 33.52▲ 34.03▲

TR

CLIP 58.55 29.10 17.15 10.80 0.80 4.25 5.25 2.15 16.01
MCLIP 42.15 42.83 35.17 41.85 44.38 36.57 33.10 39.07 39.39
TOMCLIP(Ldm) 42.55▲ 42.48▼ 35.93▲ 42.33▲ 45.72▲ 36.32▼ 32.92▼ 39.47▲ 39.71▲
TOMCLIP(Lta) 43.77▲ 43.37▲ 35.90▲ 43.13▲ 46.03▲ 36.70▲ 33.27▲ 40.17▲ 40.29▲
TOMCLIP 42.92▲ 43.07▲ 35.02▼ 41.98▲ 45.17▲ 36.20▼ 32.65▼ 39.05▼ 39.51▲

CIFAR-100 Zero-Shot Classification. Replacing the image backbone with ViT-B/16+ preserves
the main trend: topology-aware objectives improve multilingual zero-shot accuracy over MCLIP
in both regimes (Table 16 and 17). On the Full setting, ToMCLIP(Lta) attains the best averages
(Top-1/5/10 = 66.18/86.35/90.89) improving over MCLIP (64.54/85.30/89.99) by +1.64/+1.05/+0.90
points, respectively. On the Low setting, the combined ToMCLIP model yields the highest averages
(53.31/74.88/82.01) surpassing MCLIP (50.24/73.50/81.17) by +3.07/+1.38/+0.84. Notably, Lta
alone also improves alignment quality under Low (51.42/74.47/81.97). These results are consistent
with the main paper: enforcing topological consistency via Lta strengthens cross-lingual alignment in
the shared embedding space.

Table 16: Average Top-k accuracy (%) of the zero-shot classification on CIFAR-100 across 13 languages.

Low Full

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

CLIP 24.39 35.91 42.47 24.39 35.91 42.47
MCLIP 50.24 73.50 81.17 64.54 85.30 89.99
ToMCLIP(Ldm) 52.33 74.68 81.84 65.92 85.88 90.44
ToMCLIP(Lta) 51.42 74.47 81.97 66.18 86.35 90.89
ToMCLIP 53.31 74.88 82.01 65.53 85.82 90.33

Multilingual Image–Text Retrieval on xFlickr&CO. With the ViT-B/16+ image encoder,
topology-aware objectives improve multilingual retrieval over MCLIP in most settings (Table 18). On
Full, ToMCLIP(Lta) attains the best averages for both directions (IR: R@1/5/10 = 62.98/85.79/91.60
vs. MCLIP: 62.24/85.27/91.09 and TR: 63.79/86.21/91.98 vs. 62.82/85.47/91.32). On Low, the
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Table 17: Top-k accuracy (%) of zero-shot classification on CIFAR-100 across 13 languages (Full vs. Low).
ViT-B/16+ is used for CLIP image encoder.

Setting Model
Languages (13)

AvgEn Fr Es De It Ru Pl Tr Da Ja Zh Ko Vi

Top-1 accuracy (%)

Full

CLIP 72.81 52.12 45.49 46.15 40.49 4.43 11.57 12.37 19.96 3.68 2.41 1.19 4.46 24.39
MCLIP 72.42 66.85 69.25 56.04 69.85 67.57 64.14 65.87 69.86 38.09 69.11 66.28 63.75 64.54
ToMCLIP(Ldm) 73.24 67.76 68.90 64.60 69.30 68.16 66.39 69.54 70.28 38.00 69.48 66.98 64.34 65.92
ToMCLIP(Lta) 72.21 67.31 69.61 69.30 68.50 67.30 64.74 67.93 70.39 41.10 68.75 67.51 65.69 66.18
ToMCLIP 72.92 67.76 69.31 67.04 70.76 67.25 64.05 68.80 69.72 37.91 68.01 63.64 64.77 65.53

Low

CLIP 72.81 52.12 45.49 46.15 40.49 4.43 11.57 12.37 19.96 3.68 2.41 1.19 4.46 24.39
MCLIP 58.56 52.47 52.93 53.94 47.82 53.18 48.25 45.04 50.76 39.18 53.17 49.73 48.13 50.24
ToMCLIP(Ldm) 62.66 54.16 54.11 54.45 49.45 55.88 49.43 47.59 52.62 41.04 56.23 52.41 50.32 52.33
ToMCLIP(Lta) 62.46 54.78 53.41 54.75 49.09 50.94 49.22 45.68 52.68 39.26 56.01 51.16 48.97 51.42
ToMCLIP 63.58 55.88 54.59 57.61 49.96 56.66 50.31 49.26 54.08 41.40 56.41 53.22 50.13 53.31

Top-5 accuracy (%)

Full

CLIP 92.84 72.59 62.72 64.43 56.85 11.12 19.36 21.52 28.42 10.89 7.99 7.19 10.85 35.91
MCLIP 92.81 87.94 90.49 82.12 89.68 88.43 83.43 88.71 87.86 50.84 90.96 88.57 87.04 85.30
ToMCLIP(Ldm) 93.20 88.48 90.50 84.67 89.26 87.72 85.38 89.81 88.01 52.14 90.24 88.77 88.26 85.88
ToMCLIP(Lta) 93.04 88.01 89.32 89.76 89.30 87.78 83.99 89.84 87.99 55.97 90.37 89.02 88.21 86.35
ToMCLIP 93.65 88.44 90.45 87.66 89.64 88.70 83.47 89.95 87.96 49.97 90.96 86.73 88.12 85.82

Low

CLIP 92.84 72.59 62.72 64.43 56.85 11.12 19.36 21.52 28.42 10.89 7.99 7.19 10.85 35.91
MCLIP 83.44 73.41 73.25 78.28 66.15 77.10 70.11 67.66 72.80 60.21 81.99 75.26 75.79 73.50
ToMCLIP(Ldm) 85.33 74.40 73.40 77.95 66.20 78.64 71.62 72.08 74.47 59.85 82.26 77.26 77.38 74.68
ToMCLIP(Lta) 84.97 74.63 74.56 79.33 66.21 76.99 71.23 69.11 75.00 60.28 82.80 75.45 77.52 74.47
ToMCLIP 85.11 73.72 74.71 80.35 66.46 77.66 70.76 72.17 74.98 60.57 83.40 76.62 76.97 74.88

Top-10 accuracy (%)

Full

CLIP 96.32 79.39 71.42 72.38 64.10 18.04 25.92 27.40 34.99 18.04 13.90 13.53 16.71 42.47
MCLIP 96.41 92.03 94.25 89.52 93.35 92.51 88.74 93.26 92.10 56.07 95.35 94.28 91.96 89.99
ToMCLIP(Ldm) 96.65 92.69 94.68 89.92 93.35 92.72 90.17 93.96 91.31 58.17 94.65 94.26 93.15 90.44
ToMCLIP(Lta) 96.53 92.01 93.76 93.61 93.58 92.36 88.83 94.44 92.23 62.28 94.90 94.17 92.89 90.89
ToMCLIP 96.72 92.90 94.14 92.45 93.40 93.70 88.01 94.14 91.54 55.21 95.15 93.43 93.47 90.33

Low

CLIP 96.32 79.39 71.42 72.38 64.10 18.04 25.92 27.40 34.99 18.04 13.90 13.53 16.71 42.47
MCLIP 91.16 79.26 81.08 85.98 72.05 84.87 79.89 77.03 80.56 67.11 89.01 82.35 84.89 81.17
ToMCLIP(Ldm) 91.16 80.00 80.47 86.07 72.30 86.25 80.06 81.06 82.00 66.52 88.75 83.52 85.75 81.84
ToMCLIP(Lta) 91.65 80.80 83.27 86.57 73.19 85.57 78.75 77.75 81.99 68.89 89.70 82.31 85.13 81.97
ToMCLIP 91.54 79.59 81.88 87.54 72.80 85.15 79.71 80.38 82.13 67.88 89.79 83.41 84.37 82.01

combined ToMCLIP variant yields the top averages for IR (R@1/5/10 = 58.53/83.37/90.51), while
ToMCLIP(Ldm) is strongest for TR (R@1/5/10 = 57.99/83.84/90.63). These trends mirror our zero-
shot CIFAR-100 results: enforcing topological consistency via Lta improves cross-lingual alignment.

Table 18: Multilingual retrieval on xFlickr&CO. Average R@k (%) across 8 languages (Low vs. Full). ▲
indicates an improvement over MCLIP (same setting and direction), ▼ indicates a decrease.

Direction Model Low Full
R@1 R@5 R@10 R@1 R@5 R@10

IR CLIP 16.38 27.00 32.06 16.38 27.00 32.06
MCLIP 56.44 82.28 89.60 62.24 85.27 91.09
TOMCLIP(Ldm) 57.91 (▲ 1.47) 83.15 (▲ 0.87) 90.37 (▲ 0.77) 62.24 (▲ 0.00) 85.39 (▲ 0.12) 91.22 (▲ 0.13)

TOMCLIP(Lta) 57.58 (▲ 1.14) 82.77 (▲ 0.49) 90.12 (▲ 0.53) 62.98 (▲ 0.74) 85.79 (▲ 0.52) 91.60 (▲ 0.51)

TOMCLIP 58.53 (▲ 2.08) 83.37 (▲ 1.09) 90.51 (▲ 0.91) 61.91 (▼ 0.33) 84.89 (▼ 0.38) 90.78 (▼ 0.31)

TR CLIP 18.91 31.46 36.59 18.91 31.46 36.59
MCLIP 56.73 83.33 90.34 62.82 85.47 91.32
TOMCLIP(Ldm) 57.99 (▲ 1.26) 83.84 (▲ 0.51) 90.63 (▲ 0.29) 62.95 (▲ 0.13) 85.67 (▲ 0.20) 91.14 (▼ 0.17)

TOMCLIP(Lta) 57.33 (▲ 0.60) 83.26 (▼ 0.06) 90.27 (▼ 0.07) 63.79 (▲ 0.97) 86.21 (▲ 0.74) 91.98 (▲ 0.66)

TOMCLIP 57.57 (▲ 0.84) 83.39 (▲ 0.06) 90.61 (▲ 0.28) 62.19 (▼ 0.63) 85.09 (▼ 0.38) 90.84 (▼ 0.47)
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Table 19: Multilingual retrieval on xFlickr&CO. R@1 retrieval accuracy (%) across languages. ▲ and ▼ mark
improvements/decreases over MCLIP for the same setting and direction; here only the icons are shown.

Setting Direction Model
Languages Avg

En Es De Id Ru Tr Ja Zh

Full

IR

CLIP 64.70 34.70 21.35 5.65 0.90 2.70 0.40 0.65 16.38
MCLIP 65.50 69.05 59.60 61.40 72.45 66.90 41.40 61.60 62.24
TOMCLIP(Ldm) 65.60▲ 68.70▼ 59.65▲ 61.70▲ 72.30▼ 65.70▼ 42.35▲ 61.90▲ 62.24▲
TOMCLIP(Lta) 65.20▼ 69.00▼ 60.00▲ 63.05▲ 72.35▼ 65.75▼ 46.25▲ 62.25▲ 62.98▲
TOMCLIP 65.75▲ 68.60▼ 59.20▼ 61.30▼ 72.20▼ 66.00▼ 39.90▼ 62.35▲ 61.91▼

TR

CLIP 66.70 40.45 26.05 10.05 1.15 5.10 0.85 0.90 18.91
MCLIP 68.30 68.90 59.20 62.00 73.55 66.75 42.50 61.35 62.82
TOMCLIP(Ldm) 68.30▲ 70.00▲ 57.70▼ 62.20▲ 73.75▲ 66.85▲ 43.50▲ 61.30▼ 62.95▲
TOMCLIP(Lta) 68.80▲ 69.85▲ 59.75▲ 62.40▲ 73.75▲ 66.60▼ 46.70▲ 62.45▲ 63.79▲
TOMCLIP 68.85▲ 69.30▲ 57.85▼ 61.30▼ 72.65▼ 67.30▲ 39.55▼ 60.75▼ 62.19▼

Low

IR

CLIP 64.70 34.70 21.35 5.65 0.90 2.70 0.40 0.65 16.38
MCLIP 59.05 60.30 52.45 55.85 63.45 55.15 49.30 56.00 56.44
TOMCLIP(Ldm) 59.50▲ 63.05▲ 55.30▲ 57.05▲ 64.80▲ 55.80▲ 49.75▲ 58.05▲ 57.91▲
TOMCLIP(Lta) 59.50▲ 61.95▲ 53.75▲ 56.80▲ 65.80▲ 55.80▲ 49.65▲ 57.40▲ 57.58▲
TOMCLIP 60.55▲ 62.80▲ 55.25▲ 57.00▲ 66.60▲ 57.40▲ 49.55▲ 59.05▲ 58.53▲

TR

CLIP 66.70 40.45 26.05 10.05 1.15 5.10 0.85 0.90 18.91
MCLIP 60.35 61.05 51.85 56.40 63.55 54.70 49.05 56.90 56.73
TOMCLIP(Ldm) 61.45▲ 61.70▲ 53.45▲ 57.20▲ 65.45▲ 55.85▲ 51.30▲ 57.55▲ 57.99▲
TOMCLIP(Lta) 61.45▲ 61.35▲ 53.10▲ 56.25▼ 64.40▲ 55.70▲ 50.00▲ 56.40▼ 57.33▲
TOMCLIP 61.15▲ 61.80▲ 52.80▲ 57.10▲ 65.30▲ 55.45▲ 49.70▲ 57.30▲ 57.57▲
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