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Abstract

Pre-trained language models represented by the Transformer have been proven to
possess strong base capabilities, and the representative self-attention mechanism
in the Transformer has become a classic in sequence modeling architectures. Dif-
ferent from the work of proposing sequence modeling architecture to improve the
efficiency of attention mechanism, this work focuses on the impact of sequence
modeling architectures on base capabilities. Specifically, our concern is: How
exactly do sequence modeling architectures affect the base capabilities of pre-
trained language models? In this work, we first point out that the mixed domain
pre-training setting commonly adopted in existing architecture design works fails
to adequately reveal the differences in base capabilities among various architec-
tures. To address this, we propose a limited domain pre-training setting with
out-of-distribution testing, which successfully uncovers significant differences in
base capabilities among architectures at an early stage. Next, we analyze the base
capabilities of stateful sequence modeling architectures, and find that they exhibit
significant degradation in base capabilities compared to the Transformer. Then,
through a series of architecture component analysis, we summarize a key architec-
ture design principle: A sequence modeling architecture need possess full-sequence
arbitrary selection capability to avoid degradation in base capabilities. Finally,
we empirically validate this principle using an extremely simple Top-1 element
selection architecture and further generalize it to a more practical Top-1 chunk
selection architecture. Experimental results demonstrate our proposed sequence
modeling architecture design principle and suggest that our work can serve as a
valuable reference for future architecture improvements and novel designs. |

1 Introduction

Recent research has discovered that pre-trained language models [35} [12} |6, [30]], represented by
Transformer [47]], possess strong base capabilities and can achieve excellent performance in language
modeling, few-shot learning, etc. Delving into the specific architecture design of Transformer, its
self-attention mechanism is widely regarded as one of the key components behind its success and has
since become a classic in sequence modeling architectures.
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Figure 1: Language modeling test results of various sequence modeling architectures under two
pre-training settings. (Model parameters~110M, pre-trained tokens=100B and sequence length=2k)

However, due to its quadratic time complexity, the self-attention mechanism has long been plagued by
high computational costs in long-sequence scenarios. To improve the efficiency of sequence modeling
architectures, numerous novel stateful sequence modeling architectures have recently emerged, such
as Mamba [16} [11], RWKV [31} 132} 133]], Gated DeltaNet [S1]. These architectures primarily inherit
stateful modeling mechanisms of linear attention [23]] and linear RNNs [28]], offering advantages
in time and space efficiency over self-attention. Additionally, they introduce new mechanisms like
data-dependent decay and delta rule to enhance the expressive power of linearized modeling.

Although experimental results demonstrate that these stateful sequence modeling architectures
can match or even surpass Transformer in performance while maintaining significant efficiency
advantages, some studies have noted their deficiencies in specialized capabilities such as retrieval [49],
copy [21]], associative recall [1], and dynamic programming [50], supported by empirical validation
on synthetic datasets and tasks. While these studies focus on specific issues, they are highly insightful
and directly raise our new questions about sequence modeling architectures:

Are the limitations of stateful sequence modeling architectures not only confined to
specialized capabilities but also present in base capabilities?

What architecture factors truly influence base capabilities?

What design principles can prevent the degradation of base capabilities?

To address these questions, we first point out that existing research on sequence modeling architectures
typically adopts the same mixed domain pre-training settings used in large model development. While
beneficial for practical applications, these settings are detrimental to architecture analysis, as they
turn base capability tests (e.g., language modeling) into in-distribution evaluations, failing to reveal
differences in base capabilities during early pre-training stages. To address this, we propose a limited
domain pre-training approach, employing out-of-distribution language modeling performance
to measure base capabilities, successfully uncovering significant differences in base capabilities
among architectures at an early stage.

Next, under this setting, we analyze the base capabilities of stateful sequence modeling architectures
like Mamba, RWKYV, Gated DeltaNet. Our findings reveal that these architectures exhibit notable
degradation in base capabilities compared to Transformer, confirming that stateful sequence modeling
architectures suffer from deficiencies not only in specialized capabilities but also in base capabilities.

We then investigate the architecture factors that truly impact base capabilities. Through ablation
studies on the Mamba family of architectures and analyses of common sequence modeling factors,
we identify that mechanisms like data-dependent decay, convolution and position encoding only
affect convergence speed rather than base capabilities. Conversely, we determine that full-sequence
visibility, real relation calculation and non-uniform distribution are critical architecture factors
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Figure 2: The Illustration include: (a) and (b) Language modeling test results of various sequence
modeling architectures under two pre-training settings. (c) Few-shot learning performance results of
these architectures. (Model parameters~1.3B, pre-trained tokens=100B and sequence length=2k)

influencing base capabilities. Based on this, we summarize the principle that ''a sequence modeling
architecture need to possess full-sequence arbitrary selection capability' as the key design rule
to avoid degradation in base capabilities.

Finally, we validate this principle using an extremely simple Top-1 Element Selection architecture,
experimentally confirming its ability to achieve base capabilities nearly on par with the Transformer.
Furthermore, we extend this validation to the more practical Top-1 Chunk Selection architecture — a
direct generalization of the Top-1 Element Selection architecture, and implement GPU Kernels to
ensure its time efficiency. Experiments show that the Top-1 Chunk Selection architecture, which
adheres to our design principle, outperforms stateful architectures in base capabilities for both short
(2k) and long (100k) sequences while maintaining competitive time efficiency.

The main contributions of our work are as follows:

* We propose a more indicative limited domain pre-training and out-of-distribution testing
framework, successfully revealing the base capability degradation in stateful sequence
modeling architectures during early pre-training stages. (Section[2))

* We investigate the impact of various common sequence modeling architecture factors on base
capabilities and summarize the principle that "full-sequence arbitrary selection capability"
is critical to avoiding degradation in base capabilities. (Section [3)

* We validate the principle using extremely simple Top-1 Element Selection architecture and
demonstrate its generalization to the more practical Top-1 Chunk Selection architecture,
accompanied by open-source GPU Kernelg'|to ensure time efficiency. (Section E] and

» Through our analysis and experiments, we prove the effectiveness of the proposed architec-
ture design principle, providing valuable insights for future architecture designs.

2 Base Capabilities Evaluation

This work focuses on how sequence modeling architectures influence the base capabilities of pre-
trained language models, thus necessitating the design of an evaluation framework and the implemen-
tation of assessments for different sequence modeling architectures.

2.1 Evaluation Scheme for Architecture Analysis

Existing sequence modeling architecture design works typically adopt the same Mixed Domain
Pre-Training setting as large language model development, where corpora from as many domains
as possible are collected and mixed as pre-training data. While this setting benefits practical large
language model applications, it is detrimental to architecture analysis. It turns base capability tests

"https://github.com/luxinxyz/TSA



like language modeling into in-distribution evaluations, failing to reveal differences in architecture
base capabilities during early pre-training stages. Moreover, it poorly predicts the true usability of
different architectures when applied to unknown out-of-distribution domain tasks.

We tested this setting. Specifically, we pretrained models by mixing all domains (cc, c4, arxiv, book,
github, stack and wiki) from the SlimPajama dataset [42] and retained a mixed-domain test set for
evaluation. For models with ~ 110M parameters, we pretrained Transformer [6]], Transformer++
(with Rotary Embedding [43]], GeGLU [41]] and RMSNorm [56]), Transformer++ (Window=256),
Based [2], Mamba-1 [16], Mamba-2 [11], RWKV-5 [32], RWKV-6 [32], RWKV-7 [33], DeltaNet [40]
and Gated DeltaNet [51]], with a sequence length of 2K and 100B tokens of pre-training. The scatter
plots of pre-training loss versus mixed-domain test loss are shown in Figure[T(a). For models with ~
1.3B parameters, we pretrained Transformer++, Transformer++ (Window=256), Mamba-1 [16]] and
Mamba-2 [11]] under similar settings, with results plotted in Figure [2(a).

From Figure[I[a) and Figure Xa), it is evident that under the Mixed Domain Pre-Training setting,
different sequence modeling architectures achieve similar test performance in language modeling
when reaching comparable pre-training performance levels. Thus, this setting fails to reveal base
capabilities difference among architectures during early pre-training and is unsuitable for architecture
design and analysis.

To address this issue, we propose a Limited Domain Pre-Training with out-of-distribution (OOD)
testing framework, where models are pretrained on a restricted set of domains and evaluated on
unseen domains.

Since the SlimPajama dataset has already undergone deduplication across domain subsets, we easily
tested this setting. Specifically, we pretrained models on the cc and c4 domains of SlimPajama and
evaluated them on the arxiv, github and stack domains. Other pre-training settings remained similar,
and the scatter plots of pre-training loss versus OOD test loss are shown in Figures[T[b) and [2b).

From Figure[T[b) and Figure [2(b), significant differences emerge among sequence modeling architec-
tures. At the same pre-training performance level, their OOD test performance varies substantially,
confirming that base capabilities difference exist across architectures.

Additionally, we evaluated models with ~ 1.3B parameter using the commonly adopted few-shot
learning evaluation in prior work, which results in Figure Jc). Similarly, no significant performance
gaps were observed, suggesting that this evaluation method is also suboptimal for architecture design
and analysis.

Based on these findings, we establish Limited Domain Pre-Training with OOD testing as our
evaluation framework for base capabilities assessment. All subsequent tests in this work follow it.

2.2 Architecture-Induced Degradation of Base Capabilities

We further analyzed Figure[T(b) and Figure 2[b). The results show that only the standard attention-
based Transformer and Transformer++ achieve optimal base capabilities—their OOD test performance
is consistently the best at the same pre-training level, with no significant difference between them. In
contrast, stateful sequence modeling architectures (e.g., Mamba, RWKYV) exhibit varying degrees of
base capabilities degradation, performing significantly worse than standard attention-based models
under identical pre-training conditions.

These findings suggest that sequence modeling architectures directly induce base capabilities degrada-
tion, independent of data or other factors. The standard self-attention mechanism likely contains key
architecture factors critical to base capabilities, some of which may be missing in stateful sequence
modeling architectures.

3 Sequence Modeling Architecture Analysis

Based on the previous results, we know that the sequence modeling architecture can directly determine
the model’s base capabilities, and certain key architecture design factors are likely to play a significant
role in these base capabilities. Therefore, identifying which architecture design factors are truly
critical could be of great importance for subsequent architecture improvements or the design of new
architectures.
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Figure 3: Analysis of the influence of various sequence modeling architecture components on base
capabilities. (Model parameters~110M, pre-trained tokens=100B or 25B and sequence length=2k)

3.1 Non-Determinative Factors of Base Capabilities
3.1.1 Mamba Ablation

Since the classical stateful sequence modeling architecture, Mamba, has been observed to exhibit
degradation in base capabilities, we conducted ablation studies on some of its key components to
assess their actual impact on base capabilities.

First, we focused on the Data-Dependent Decay in Mamba. By replacing the multi-dimensional
independent data-dependent decay (Full) in Mamba-1 and Mamba-2 with either a shared data-
dependent decay (Decay One) or no explicit decay (Decay None), we evaluated the effect of data-
dependent decay on base capabilities, as shown in Figures [3[(a) and[3[b). The results indicate that
data-dependent decay only accelerates pre-training convergence but does not positively impact base
capabilities. Specifically, at the same pre-training level, the out-of-distribution test performance of
the ablated models did not decrease and even improved slightly.

Next, we examined the Convolution in Mamba. We further removed the convolution from the Decay
None architecture (Decay None w/o Conv) to assess its effect on base capabilities, as shown in
Figures [3(a) and[3[b). The results show that while convolution significantly speeds up pre-training
convergence, it still does not contribute positively to base capabilities.

Finally, we investigated the GroupNorm in Mamba-2. By removing GroupNorm from the full
architecture (Full — w/o GN), we evaluated its impact on base capabilities, as shown in Figure [3[b).
The results confirm that GroupNorm also does not enhance base capabilities.

3.1.2 Position Encoding

Previous results have shown that Transformer and Transformer++ exhibit nearly identical base
capabilities, with their primary difference in sequence modeling lying in their position encoding
schemes. Therefore, we analyzed the impact of position encoding on base capabilities.

Specifically, we tested four common position encoding schemes: no position encoding, absolute
position embedding, AliBi[34] and rotary position embedding [43], as illustrated in Figure [3[c). The
results indicate that no position encoding, absolute position embedding and rotary position embedding
yield very similar base capabilities, differing only in convergence speed. In contrast, AliBi exhibits
some degradation in base capabilities. Based on these findings, we conclude that position encoding
does not positively influence base capabilities.



3.2 Determinative Factors of Base Capabilities

3.2.1 Full-Sequence Visibility

The first factor we identified as critical to base capabilities is sliding window size. This observa-
tion was prompted by the significant difference in base capabilities between Transformer++ and
Transformer++ (Window=256), suggesting that sliding window size may be a key factor.

To investigate, we tested various sliding window sizes, as shown in Figure [3(d). The results demon-
strate that as the sliding window size increases, both pre-training convergence speed and base capa-
bilities improve significantly. Conversely, reducing the sequence context leads to gradual degradation
in base capabilities. Thus, we conclude that Full-Sequence Visibility is an essential requirement for
sequence modeling architectures.

3.2.2 Real Relation Calculation

In previous results, we observed that under mixed domain pre-training settings, different models
exhibited nearly identical test performance, creating the illusion that base capabilities is architecture-
independent. This reminded us of the Synthesizer [45] series of models, where one variant replaced
the true query-key computed scores with trainable random constant scores yet did not exhibit
significant degradation in language modeling tasks. We hypothesized that this might also be due to
mixed domain pre-training and that real relation computation between queries and keys could be a
determinant of base capabilities.

To test this, we conducted experiments where we replaced keys with trainable random constants
or replaced both queries and keys with trainable random constants, as shown in Figure [3[e). The
results reveal that models without real relation computation suffer substantial degradation in base
capabilities. Therefore, we conclude that Real Relation Computation is a necessary feature for
sequence modeling architectures.

3.2.3 Non-Uniform Distribution

. . . . . Attention Distribution Uniformity Control
Another key factor we examined is the uniformity of attention

distribution in self-attention mechanisms. We reasoned that if
attention distribution were entirely uniform, the model would
degenerate into a naive averaging structure over values, which £ s
exhibits poor base capabilities. However, if we start from this *,
structure and gradually introduce non-uniformity, the model would
evolve toward normal attention distribution, which has strong base
capabilities. This led us to suspect that distribution uniformity Temperature
directly impacts base capabilities.

Figure 4: The relationship be-
tween attention distribution en-
tropy and temperature.

To control attention distribution uniformity, we employed two tech-
niques: 1) Adjusting distribution uniformity via the temperature
of the Softmax function. 2) Applying normalization to queries and
keys to ensure consistent temperature interpretation, unaffected by the optimization of query and
key transformation parameters. We tested a series of models with varying temperatures and plotted
the relationship between temperature and attention distribution entropy in Figure @ The results
show that as temperature decreases, attention distribution entropy also decreases, confirming that the
distribution becomes more non-uniform.

Subsequently, we evaluated the out-of-distribution performance of these models, as shown in Fig-
ure Ekf). The results indicate that as temperature decreases (i.e., distribution becomes more non-
uniform), base capabilities improves. Thus, we conclude that Non-Uniform Distribution is a
necessary feature for sequence modeling architectures.

3.3 Key Architecture Design Principle: Full-Sequence Arbitrary Selection

Integrating the three key elements derived from the preceding analysis: Full-Sequence Visibility, Real
Relation Calculation and Non-Uniform Distribution, we summarize them into a unified expression:
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Supporting full-sequence arbitrary selection in sequence modeling architecture is the key
architecture design principle for preventing the degradation of base capabilities.

This principle directly impacts the model’s base capabilities, and violating it will lead to degradation.

Note that this is an architecture design principle rather than a capability principle. The latter is
often expressed as the model’s retrieval capability. However, retrieval capability itself is not inherently
tied to architecture design principles. For instance, stateful sequence modeling architectures like
Mamba exhibit certain retrieval capabilities, yet they lack the architecture design of full-sequence
arbitrary selection. It is this aspect of architecture design that our work truly focuses on.

4 Top-1 Element Selection Architecture

In previous section, we proposed a key architecture design principle for avoiding degradation in
base capabilities. However, this conclusion was derived inductively and has not yet been experi-
mentally validated. To address this, we designed an extremely minimalist Top-1 Element Selection
architecture, which directly adheres to this design principle while maintaining strong base capabilities.

4.1 Architecture Design

We posit that "sequence modeling architectures with full-sequence arbitrary selection" is a key archi-
tecture design principle for preventing degradation in base capabilities. The simplest implementation
of this principle is to directly select the element with the highest probability in the attention distribu-
tion as the output, as illustrated in Figure[5(a). We refer to this architecture as the Top-1 Element
Selection architecture. In practice, it involves two additional operations: 1) applying normalization
to queries and keys to enhance stability. 2) during training, attention scores are still computed, but
the straight-through trick is introduced to reconcile top-1 selection with gradient updates.

As shown in Figure[5]a), the Top-1 Element Selection architecture is remarkably simple yet satisfies
the design principle. It also incorporates three key elements: full-sequence visibility, real relation
calculation and non-uniform distribution, making it an excellent candidate for validating our analysis.

4.2 Out-of-Distribution Generalization Evaluation

We pre-trained models with ~ 110M and 1.3B parameters, maintaining the same pre-training settings
as in previous experiments, and evaluated their OOD performance. The results, shown in Figures [6[a)
and [6(b), demonstrate that the Top-1 Element Selection architecture achieves OOD performance
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nearly on par with Transformer++ at both scales. This confirms that the architecture does not suffer
from base capability degradation and validates the correctness of our proposed design principle.

4.3 Few-Shot Learning Evaluation

SWDE SQuAD FDA

Although we previously argued that few-shot learning Model
(acch)  (acel)  (aceh)

evaluation is not an ideal method for comparing base
capabilities across architectures, it remains necessary  Original Sequence Modeling Architecture

to verify that the new architecture does not exhibit sig- ~ Transformer++ 7507 4554 3022
nificant degradation in few-shot learning performance.  swreful Sequence Modeling Architecture
Thus, we evaluated the few-shot learning performance Mamba-1 3609 3103 644

of the 1.3B parameter model, as detailed in Table@ The
results show that the Top-1 Element Selection architec-
ture achieves few-shot learning performance comparable
to models like Transformer++, Mamba-1 and Mamba-2,  Architecture Based on the Analyzed Principles

indicating its strong performance in this setting. Top-1 Element 6823 4377 2695
Top-1 Chunk (Exact) 69.22 4440 2232

Top-1 Chunk (Approx.) 61.66 45.38 27.13

Mamba-2 37.98 3525  17.60
Transformer++ (W=256) 12.96 41.72 1.63

Beyond standard tasks, we also evaluated retrieval tasks,
a common benchmark in prior work. As shown in Ta-
ble[T] the Top-1 Element Selection architecture signif-
icantly outperforms stateful sequence modeling archi- Table 1: Results of retrieval tasks. (Model
tectures like Mamba-1 and Mamba-2 in retrieval tasks, parameters ~ 1.3B, pre-trained tokens=
further demonstrating its effectiveness. 100B, seq len=2k and chunk size=128)

5 Top-1 Chunk Selection Architecture

In the previous section, we designed the Top-1 Element Selection architecture, successfully validating
our proposed architecture design principles. However, this architecture serves as a proof-of-concept
and lacks practical utility. To address this, we extended it to the Top-1 Chunk Selection architecture
and implemented GPU kernels to optimize efficiency while maintaining strong base capabilities.

5.1 Architecture Design
5.1.1 Basic Design

The Top-1 Element Selection architecture has been verified to possess strong base capabilities
but performs poorly in terms of pre-training convergence and time efficiency. To resolve this, we
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(accT) (acc_nt) (acc_nT) (acc_nT) (acct) (accT) (accT) (acc_nf) (acc_n?) (acct) (acc_n?)  (acc?) (acc?) Score

Model

Original Sequence Modeling Architecture

Transformer++ 25.21 33.60 48.48 25.94 60.43 3388 3956  77.60 48.42 74.00 68.99 5391 6557 5043

Stateful Sequence Modeling Architecture
Mamba-1 2430  34.60 5282 2722 5465 3273 3910 7590  50.53 7400 7067 5391 57.51 49.84
Mamba-2 2474 3280 5004 2892 5627 3368 4028 7570 5145  78.00 7144  55.09 60.44 50.68

Transformer++ (W=256)  25.54 34.00 48.82 26.96 59.14 3388 40.02 73.70 48.19 72.00 70.89 5249 63.00 49.89

Architecture Based on the Analyzed Principles
Top-1 Element 25.94 32.60 47.85 26.45 60.15 3129 4094  73.40 45.05 72.00 69.15 5375 6227 49.30
Top-1 Chunk (Exact) 25.96 32.80 50.55 27.22 60.43  31.77  40.07 77.40 48.75 75.00 69.64 5351 66.30  50.72
Top-1 Chunk (Approx.) 25.24 33.00 49.33 26.02 58.87 3330 3982 7530 48.59 70.00 69.70 5501  64.47 49.90

Table 2: The few-shot learning experimental results, where MMLU is 5-shot and the remaining tasks
are 0-shot. (Model parameters1.3B, pre-trained tokens=100B, seq length=2k and chunk size=128)

generalized it to the Top-1 Chunk Selection architecture. The key difference from the Top-1 Element
Selection architecture is that the query selection target shifts from fine-grained kv elements to coarse-
grained kv chunks, and the attention mechanism operates only within the selected chunks. This
preserves the design principles while enabling efficiency optimizations.

More specifically, the kv sequence is divided into mul- Models with Sequence Length = 100K
tiple kv chunks. Each query attends to one selected o ek st e e v
full kv chunk (remote chunk) and the nearest partial kv ot [S TS o s
chunk (local chunk), performing attention operations on Mamboz | © Topd Chunk Exic) @ Top1 Crunk (Agprox)

them. Similar to the Top-1 Element Selection architec-
ture, both queries and keys undergo normalization to
enhance stability.

5.1.2 Exact and Approximate Variants

Loss on OOD Test Set
8

The selection of full kv chunks can be implemented in
two ways, corresponding to two variants:

Top-1 Chunk (Exact): The query computes the full
attention distribution with all keys, obtaining the prob-
ability for each kv chunk. The chunk is selected based Figure 7: The OOD language modeling re-
on these exact probabilities. sults of baselines and ours. (Model param-
eters ~ 135M, pre-trained tokens=100B,
seq length=100k and chunk size=128)

Pre-Training Loss

Top-1 Chunk (Approx.): The exponential function in
probability computation can be approximated by a first-
order linear function. Under this approximation, the selection process simplifies to computing the
mean vector of each key chunk and performing a dot product between the query and the mean vector
to select the chunk. This significantly reduces computational overhead.

5.1.3 GPU Kernels Design

To achieve better time efficiency, we designed and implemented GPU kernels for the Top-1 Chunk
Selection architecture. An overview is given in this section, with details in Appendix[D).

For exact chunk selection, approximate chunk selection and local chunk attention, we directly
implemented Triton kernels using simple, naive designs that already deliver good performance.

For remote chunk attention, we conducted specialized optimizations when implementing Triton
Kernels, shown in Figure [5(b). Specifically, parallel processing is performed along the kv dimension
in complete chunks, meaning different kv chunks are processed independently in parallel. This
partitioning is feasible because each query selects only one remote chunk, ensuring no overlap
between queries associated with different kv chunks. Within each kv chunk, we load index via offset,
then load the queries relevant to the current kv chunk by the index and compute attention in SRAM,
storing results by the index. Efficient offset and index handling is achieved by custom CUDA kernels.



During our research, we observed that DeepSeek and Kimi released two sparse attention works —
NSA [53] and MoBA [27] in February 2025. Their sequence modeling approaches closely resemble
our Top-1 Chunk (Approx.). Although we discovered this architecture independently, we no
longer claim Top-1 Chunk (Approx.) as our primary contribution. Instead, our key contributions
include Top-1 Element, Top-1 Chunk (Exact), analytical experiments and the released GPU kernels.

5.2 Out-of-Distribution Generalization and Few-Shot Learning Evaluation

We pre-trained models with ~ 110M and 1.3B parameters (chunk size = 128), as shown in Figures[6[a)
and [6b). Results show both Top-1 Chunk Selection variants achieve OOD performance close to
Transformer++ and outperform Mamba-1/2. We also evaluated few-shot learning tasks, as detailed in
Tables 2] and [I] Top-1 Chunk Selection exhibits results and conclusions similar to Top-1 Element
Selection: strong performance on general tasks without degradation and advantages in retrieval tasks.

5.3 Long Sequence and Architecture Combination

In this section, we evaluate two aspects: first, base capabilities, time efficiency and long-sequence
retrieval capability of Top-1 Chunk Selection architecture on long sequences (100k); second, per-
formance of Top-1 Chunk Selection architecture when transferred to other models. We designed an
integrated setting where we ported Transformer++, Transformer++ (W=256), Top-1 Chunk (Exact)
and Top-1 Chunk (Approx.) to the RWKV-7 architecture, replacing only the sequence modeling
while retaining the rest of RWKV-7. Pre-training data remained unchanged, and OOD test data were
filtered to retain samples from arxiv and github with original lengths exceeding 100k. Since stack
contained almost no data with original lengths over 100k, we supplemented the test set with samples
from AutoMathText [57]] met this criterion.

Pre-Train Inference S-NIAH (Passkey Retrieval)

Model

The base capabilities results are shown in Speed  Speed g g ek 9k 100k

Figure[/| Transformer++ demonstrated the ot archicnre wmmoditea

strongest base capabilities, followed closely =~ Mamba2 ST 0L 540 140 040 020 080

by TOp_l Chunk (Exact). Top_l Chunk RWKV-7 2.47x 0.73x 70.80 14.80 1.20 0.00 0.20
Apply all other block designs of RWKV-7 except seq

(Approx.) outperformed other stateful ar-

Transformer++ 1.00x 49.80 25.60 16.20 15.80

chitectures in base capabilities, but due to
its approximate nature, it exhibited signif-
icant pretraining convergence degradation
and base capabilities degradation compared
to Transformer++ (similar issues may also
affect DeepSeek NSA and Kimi MoBA,
which employ analogous approaches).

Transformer++ (W=256)  5.29x 1.60 0.40 0.20 0.20 0.40

Top-1 Chunk (Exact) 1.90x 49.80 22.00 15.00 11.80

Top-1 Chunk (Approx.) 4.50% 48.60 21.40 21.80 15.00

Table 3: Results of time efficiency and long se-
quence retrieval. (Model parameter~135M, pre-trained
tokens=100B, seq length=100k and chunk size=128)

Time efficiency and long-sequence retrieval results are presented in Table[3] Top-1 Chunk (Approx.)
achieved substantial speed improvements over Transformer++, reaching time efficiency levels compa-
rable to Mamba-2. Top-1 Chunk (Exact) also showed speed gains, achieving time efficiency similar to
RWKV-7. In long-sequence retrieval, results on S-NIAH [20] shown Top-1 Chunk Selection delivered
performance close to Transformer++, while other stateful models suffered severe degradation.

6 Limitations

This work primarily focuses on models pre-trained with language modeling objectives, without
exploring other pre-training objectives. As a result, our conclusions are limited to language models,
narrowing the current applicability of our findings. We plan to expand this research with additional
experiments in the future.

7 Conclusion

This work investigates how sequence modeling architectures influence base capabilities of pre-trained
language models. We first reveal the degradation of base capabilities in stateful sequence modeling
architectures by limited domain pre-training. Subsequently, via architecture analysis, we identify "full-
sequence arbitrary selection" as the key architecture design principle for preventing such degradation.
Finally, we validate our analysis by proposing Top-1 Element Selection and Top-1 Chunk Selection
architecture, which may provide valuable references and foundations for future research.
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A Model Specifications and Pre-training Procedures

This work implemented and pre-trained multiple models with different architectures under various
configurations to support experiments in different sections.

The first configuration involves models with approximately 110M (small scale) and 1.3B (large
scale, available only for certain architectures) parameters, with a sequence length of 2k. It includes
the following architectures: Transformer [6], Transformer++, Transformer++ (W=256), Based [2],
Mamba-1 [[16], Mamba-2 [[11], RWKV-5 [32], RWKV-6 [32], RWKV-7 [33], DeltaNet [40], Gated
DeltaNet [51]], Top-1 Element, Top-1 Chunk (Exact) and Top-1 Chunk (Approx.).

Transformer adopts the GPT [33]] architecture, is based on FlashAttention- [10], and has a hidden
dimension of 768, 12 layers and 12 attention heads for the small-scale version; while the large-
scale version has a hidden dimension of 2048, 24 layers and 16 attention heads. Transformer++
introduces Rotary Embedding [43]], GeGLU [41] and RMSNorm [56]] over the Transformer, also
built using FlashAttention-2, with identical model specifications as the Transformer. Transformer++
(W=256) incorporates a window size of 256, retains the same model specification, and is also based
on FlashAttention-2.

Based [2] is implemented according to the official open-source cod with a hidden dimension of
768 and 15 layers for the small-scale version; among them, there are 3 layers of window attention
with 12 attention heads and a window size of 128, and 3 layers of TaylorExp linear attention with
12 attention heads. Mamba-1 [16] is implemented based on the official open-source codeﬂ with a
hidden dimension of 768, 24 layers and a state size of 16 for the small-scale version; the large-scale
version has a hidden dimension of 2048, 48 layers and the same state size of 16. Mamba-2 [[11]] is
implemented based on the official open-source code (URL is the same as Mamba-1), with a hidden
dimension of 768, 24 layers and a state size of 128 for the small-scale version; the large-scale version
has a hidden dimension of 2048, 48 layers and the same state size of 128. RWKV-5/6/7 [32,133]] are
implemented based on the official open-source codeE], with a hidden dimension of 768, 12 layers and
12 attention heads for the small-scale versions. DeltaNet [40] is based on Flash Linear Attentiorﬂ 521,
with a hidden dimension of 768, 12 layers and 8 attention heads for the small-scale version. Gated
DeltaNet [51] is also based on Flash Linear Attention, with a hidden dimension of 768, 12 layers, 6
attention heads and a head dimension of 96 for the small-scale version.

Top-1 Element is implemented using PyTorc}ﬂ and the transformers[ﬂ library, matching the model
specifications of the Transformer++. Top-1 Chunk (Exact/Approx.) shares the same model specifica-
tions as Transformer++, with a chunk size of 128. Its sequence modeling part is implemented using
Tritorﬂ [46], and its offset and index CUDA kernel is modified from the fastmoe[G] [18]).

In addition, all of the above models use the Mixtral [22]] vocabulary, which contains 32,000 tokens.
Large-scale models involved in the training process were trained using the DeepSpee(E] open-source
project. All models involving Rotary Embedding have a base of 10,000.

The second configuration involves models with approximately 135M parameters (small scale) and a
sequence length of 100k. This mainly consists of architectures obtained by replacing the sequence
modeling in RWKV-7. Specific models include: Transformer++, Transformer++ (W=256), Top-1
Chunk (Exact) and Top-1 Chunk (Approx.).

Transformer++ is based on FlashAttention-2, while Transformer++ (W=256) uses FlexAtten-
tiorPZ] [14]. The implementations of Top-1 Chunk (Exact) and Top-1 Chunk (Approx.) follow
those described in the previous configuration. All four models have a hidden dimension of 768, 12

Zhttps://github.com/Dao-AILab/flash-attention
3https://github.com/HazyResearch/based
*https://github.com/state-spaces/mamba
>https://github.com/BlinkDL/RWKV-LM
Shttps://github.com/fla-org/flash-linear-attention
"https://pytorch.org/
8https://github.com/huggingface/transformers
“https://github.com/triton-lang/triton
https://github.com/lackov/fastmoe
https://github.com/deepspeedai/DeepSpeed
"https://pytorch.org/blog/flexattention/
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layers and 12 attention heads, with a chunk size of 128 for the two Top-1 Chunk models. Additionally,
RWKV-7 was implemented using Flash Linear Attention when the sequence length was set to 100k
to improve time efficiency. Gradient checkpointing was applied to reduce GPU memory consumption
across all models. All models use the Mixtral vocabulary with a size of 32,000 tokens. Models
incorporating Rotary Embedding maintain a base of 1,000,000.

All models were pre-trained from scratch on the SlimPajama [42]] dataset using language modeling
objective across 100B tokens (mixed domain or limited domain). These settings apply to most of the
main experiments and analysis experiments in this work (with the exception being the "distribution
uniformity" analysis experiment, where some models were pre-trained on 25B tokens). More detailed
test data partitions and other related settings are introduced in Section [2.T)and Section[5.3] Pre-trained
models were trained using bfloat16 precision and the Adam optimizer. Small-scale models used
a learning rate of 2e-4, while large-scale models used a learning rate of 5e-5. The optimizer’s (31
and [, values were set to 0.9 and 0.95, respectively. Learning rates for small-scale models were
warmed up over the first 2,500 steps, while those for large-scale models were warmed up over the first
5,000 steps, followed by linear decay. The batch sizes for small-scale models were 256 (sequence
length=2k) and 8 (sequence length=100k), while that for large-scale models was 128 (sequence
length=2k). All models were trained in a distributed manner across 8 Nvidia Tesla A100 GPUs,
totaling approximately 1,221 days of single-GPU equivalent training time.

B Evaluation Procedures

For language modeling evaluation, since all models in this work were pre-trained from scratch using
the same vocabulary, we directly use the loss on the test set for evaluation.

For few-shot learning evaluation, general tasks include MMLU [19], OpenBookQA [29], ARC Easy &
Challenge [9]], BoolQ [8], RACE [24], SIQA [39], SCIQ [48]], HellaSwag [55], COPA [37], PIQA [5I,
WinoGrande [38]] and Winograd [25]]; retrieval tasks include SWDE [26], SQuAD [36] and FDA [3]].
Among these, MMLU uses a 5-shot setting, while all others are evaluated in a 0-shot setting. To ensure
the stability and reproducibility of the evaluation results, we use the lm—evaluation-harnesﬁ [LLS]
open-source evaluation framework for evaluation.

For time efficiency evaluation (Table [3)), we compare the pre-training speed of different models with
an input length of 100k tokens and a total batch size of 8. For inference speed comparison, we use an
input length of 50k tokens and generate 5k tokens, with a total batch size of 64.

For long-sequence retrieval evaluation (Table [3)), to ensure the stability and reproducibility of the
results, we use the RULER[]EI [20]] open-source evaluation framework for evaluation.

C Related Work

Our work is related to research on multiple topics, primarily including stateful sequence modeling
architectures, sparse attention architectures and the analysis of sequence modeling architectures.

Stateful sequence modeling architectures have gradually evolved to address the inefficiency of
standard self-attention [47] in handling long sequences. The core of these architectures lies in linear
RNNSs [28] and linear attention [23]], with key characteristics being their ability to support both
parallel and efficient training while also being expressible in the form of iterative state updates.
Additionally, they offer certain advantages in terms of time and space efficiency compared to standard
self-attention. Subsequent works have continuously introduced new structures or mechanisms to
enhance the expressive power of stateful sequence modeling architectures. Early works incorporated
data-independent decays, such as S4 [17], RetNet [44]], RWKV-5 [32], among others. Later works
added data-dependent decays, including Mamba-1 [16], Mamba-2 [[11], and RWKV-6 [32]]. The
most recent developments have introduced the delta rule, exemplified by Gated DeltaNet [51]] and
RWKV-7 [33]. Our work does not involve the development of new stateful sequence modeling
architectures; instead, it primarily reveals existing deficiencies in base capabilities within established
stateful sequence modeling architectures.

Bhttps://github.com/Eleuther Al/lm-evaluation-harness
"*https://github.com/NVIDIA/RULER
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Sparse attention architectures represent another approach to addressing the efficiency issues of
standard self-attention. These works mainly achieve improved computational efficiency by reducing
the number of terms involved in attention calculations. Early efforts were dominated by manually
designed fixed sparsity patterns, including Sparse Transformer [7]], Longformer [4]], BigBird [54]],
LongNet [[13]], and others. Recent works, such as NSA [53]] and MoBA [27]], introduce dynamic block
selection-based sparsification schemes that effectively balance computational efficiency and practical
performance. The core of our work is to reveal how sequence modeling architectures influence base
capabilities. Although the improved architecture we ultimately propose also adopts a dynamic block
selection-based sparsification scheme, unlike previous works that focus on heuristic designs from an
efficiency perspective and only evaluate in-domain performance, we begin our analysis from base
capabilities, gradually building toward a well-founded proposal for dynamic block selection. We
further discover unique advantages of such architectures in out-of-distribution performance across
domains and find that architectures like NSA and MoBA, which employ approximate selection
strategies, may lead to limitations in out-of-distribution generalization capability. In addition, as
mentioned in Section[5] although we discovered this architecture independently, we no longer claim
Top-1 Chunk (Approx.) as our primary contribution. Instead, our key contributions include Top-1
Element, Top-1 Chunk (Exact), analytical experiments and the released GPU kernels.

Works focusing on the analysis of sequence modeling architectures mainly concentrate on revealing
specific capability deficits in stateful sequence modeling architectures, particularly in tasks such
as retrieval [49]], copy [21], associative recall [1], and dynamic programming [50]]. These studies
have successfully conducted experimental validations on synthetic datasets and synthetic tasks.
Additionally, some of these works analyze theoretical differences in representational capabilities
between RNNs and Transformers. While our work also focuses on potential defects in stateful
sequence modeling architectures, we primarily investigate deficiencies in base capabilities rather
than specific ones — for example, whether such deficiencies can already be manifested in language
modeling tasks. Moreover, our work does not delve into comparing strengths and weaknesses in
model representation or retrieval capabilities but instead pays more attention to the architecture design
itself, aiming to uncover truly effective components through changes in base capabilities and offering
insights into architecture design.

D Algorithm Details

To achieve better time efficiency, we designed and implemented GPU kernels for the Top-1 Chunk
Selection architecture.

Specifically, we designed Triton kernels for Top-1 Chunk Selection architecture, with its forward
pass detailed in Algorithm [I] and its backward pass outlined in Algorithm [2]. Beyond these two
core algorithms, the implementation involves several other components. In both algorithms, F and
I represent the offset and index, respectively. The offset F' sequentially records the number of
times each chunk is selected by querys, while the index I sequentially records the indices of all
queries associated with each chunk. These can be obtained through a naive PyTorch implementation;
we developed hardware-efficient CUDA kernels based on the logic of the naive implementation.
Additionally, the chunk indices for both exact selection and approximate selection can also be
acquired via a naive PyTorch implementation. Similarly, we developed hardware-efficient Triton
kernels following the logic of the naive implementation. Additionally, we designed Triton kernels for
the decoding stage, which can effectively accelerate the decoding process. The source code has been
released at: https://github.com/luxinxyz/TSA .
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Algorithm 1 Top-1 Chunk Selection Forward Pass

Require: Q. K,V ¢ RT*4 F ¢ R[B%] ,I € RT=Be¢ chunk size B., block size B,..
I: Divide K,V into T, — [Bl] blocks K1, ..., Ky, and V1, ..., Vi, of size B, x d each, divide

Finto T, = [BLL] scalars fi,..., fr..

2: Initialize O = (O)Txd S RTXd,M = (—OO)T € RT7L = (O)T S RT, R = (O)T e RT.
3: for1 < j <T.do
4:  Load K;, Vy, f; from HBM to on-chip SRAM.

5 if ; = 1 then

6: On chip, Initialize f;_; = 0.

7:  else

8: Load f;_1 from HBM to on-chip SRAM.
9: endif

10:  On chip, compute M = f; — f;_1.
11:  Divide T, , _;into M, = {g] blocks I1,. .., In of size B, each.
12z forl <i< M, do

13: Load I,; from HBM to on-chip SRAM.

14: Load Q; € RB~*4 by index I; € R®" from Q in HBM to on-chip SRAM.
15: On chip, compute S;; = QiKJT € RB-xBe,

16: On chip, compute 72;; = rowmax(S;;) € RP".

17: On chip, compute pij = exp(S;; —mi;) € RBrxBe

18: On chip, compute £;; = rowsum(P;;) € RP.

19: On chip, compute O; = lsijVj € RB-xd,

20: Write O; € RBP4 by index I; € RPr to O in HBM.

21: Write m,;; € RB- by index I; € RBr to M in HBM.

22: Write £;; € RP" by index I; € RP" to L in HBM.

23:  end for

24: end for

25: Divide Q, K, V, O into T, — [Bl] blocks Q1,...,Qr., Ki,....Kr, Vi,...,Vz. and

O4,...,0r7, of size B, x d each.
26: Divide M, L into T, = [Bl—‘ blocks mq,...,mr, and ¢y,. .., {1, of size B, each.

27: for1 <1 <T_.do
28: Load Q;,K;,V;, O;, m;,{; from HBM to on-chip SRAM.
29:  On chip, compute S; = Q; K7 € RBe*Be,

T)

= max(m;, rowmax(S;)) € RBe,
(T)) € RBexBe

: (T) mi—m!T ' D B.
32:  On chip, compute ¢;” ' = ™~ "{; + rowsum(P;) € R7e.
33 On chip, compute O!") = diag(ﬁgT))‘l(diag(emi_mgm)oi +P;V;) € RBx4,
34:  On chip, compute TET) = mET) + log(él(»T)) € RB..
35: Write O'") € RBe*? {0 O in HBM.
36:  Write 7" € RE to R in HBM.
37: end for
38: Return O, R.

30:  On chip, compute mg
31:  On chip, compute P; = exp(S; —m
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Algorithm 2 Top-1 Chunk Selection Backward Pass
Require: Q, K, V,0,dO c R™*¢ R e RT F ¢ ng%l I € RT B¢ chunk size B., block size
B,.
I: Divide K, V into T, = [Bl] blocks K1,..., K. and V1, ..., V. of size B, x d each, divide

Finto T, = {BL—I scalars fi, ..., fr..
2: Initialize dQ = (O)Txd S RTXd, dK = (O)Txd € RTXd, dVv = (O)Txd € RT*4,
3: for1 <j <T.do
4:  Load K;, Vy, f; from HBM to on-chip SRAM.
5: Initialize dKj = (O)chd € Rchd,de = (O)chd € RBexd,
6.
7
8

if 7 = 1 then
On chip, Initialize f;_, = 0.
. else
9: Load f;_; from HBM to on-chip SRAM.
10:  end if

11:  On chip, compute M = f; — fj_1.
121 Divide Ty, , s into M, = [g] blocks I1,. .., Iy of size B, each.
13:  forl <i< M,do

14: Load I,; from HBM to on-chip SRAM.

15: Load Q; € RB*4 by index I; € R? from Q in HBM to on-chip SRAM.
16: Load O; € RB~*4 by index I; € RE" from O in HBM to on-chip SRAM.
17: Load dO; € RB~*? by index I; € RP from dO in HBM to on-chip SRAM.
18: Load 7; € RB" by index I; € RP" from R in HBM to on-chip SRAM.

19: On chip, compute S;; = Q,KJT € RB-xBe,

20: On chip, compute P;; = exp(S;; — r;) € RB->Be

21: On chip, compute dV; < dV; + P;;-dOi € RBexd,

22: On chip, compute dP;; = dO; V| € R¥ B,

23: On chip, compute D; = rowsum(dO; o O;) € R5r,

24: On chip, compute dS;; = P;; o (dP;; — D;) € RB-*Be,

25: On chip, compute dK; + dK; + dS,;Q; € RP-x4,

26: On chip, compute dQ, = dS;; K, € RE-*4,

27: Write dQ, € RB7*? by index I; € RP to dQ in HBM.

28:  end for

29:  Write dK; € RP*4 dV; € RB<*4 (0 dK, dV in HBM.

30: end for

31: Divide Q, K, V, O into T, — [Bl] blocks Q1. ...,Qr, K1,....Kr., Vi,...,Vy. and
O4,...,0r7, of size B, x d each.

32: Divide dQ,dK,dV,dO into T, = [Bl] blocks dQ,,...,dQy,. dKi,...,dKz,,
dVi,...,dVr, and dOq,...,dOx, of size B, x d each.

33: Divide R into T, = [B%-‘ blocks 71, ..., 77, of size B, each.

34: for1 <:<T,.do

35: Load Q;,K;,V;, O;, dQ“ dK,;,dV,,dO,, r; from HBM to on-chip SRAM.

36:  On chip, compute S; = Q; K7 € RB*Be,

37:  On chip, compute P; = exp(S; — r;) € RBxBe

38:  On chip, compute dV; + dV,; +PdO,; € RBxd,

39:  On chip, compute dP; = dO; V] € RB*Be,

40:  On chip, compute D; = rowsum(dO; o O;) € RB-,

41:  On chip, compute dS; = P; o (dP; — D;) € RBxBe,

42:  On chip, compute dQ; < dQ; + dS;K; € RBxd,

43:  On chip, compute dK; + dK; +dS; Q; € RB-x4,

44:  Write dQ,; € RB*4 dK; € RB*4 dV, € RB-*9t0dQ, dK, dV in HBM.

45: end for

46: Return dQ,dK,dV.

19



E More Results Under Mixed Domain Pre-Training Setting

Although our primary focus is on experiments under the limited domain pre-training setting, we also
conducted preliminary experiments on the Top-1 Element Selection Architecture under mixed domain
pre-training setting during the early stages of this work. The results, as shown in Figures[8and [9}
indicate that the performance of the Top-1 Element Selection Architecture aligns with the conclusions
drawn in the paper, with no degradation in base capabilities. This suggests that the usability of the
proposed architecture remains consistent across different pre-training settings.

Loss on Mixed Domain Test Set (ID)

Based
DeltaNet

® Mamba-1
® Gated DeltaNet

2.73 A

2.60 -

247 4

2.34 4

221 4

2.08 4

1.95

2.50

Mixed Domain Pre-Training

2.60 2.70 2.80 2.90 3.00 3.10 3.20

Pre-Training Loss

® Mamba-2 ® RWKV-5

Transformer++ (W=256)

® RWKV-6 ® RWKV-7

Transformer ® Top-1 Element

Transformer++

Figure 8: Language modeling results of various sequence modeling architectures under mixed domain
pre-training settings. (Model parameters~110M, pre-trained tokens=100B and sequence length=2k)
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Transformer++ (W=256)

2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90

Pre-Training Loss

Mamba-1 Mamba-2 Top-1 Element

Figure 9: Language modeling results of various sequence modeling architectures under mixed domain
pre-training settings. (Model parameters=1.3B, pre-trained tokens=100B and sequence length=2k)
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In Abstract and Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Not involving proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix A and B.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have provided the most critical GPU kernel implementation code in the
supplemental material, and will also make the source code publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Appendix A and B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use default settings of open-source LLM evaluation frameworks to ensure
the stability and reproducibility of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work is a foundational research.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The corresponding references are provided for the existing assets used in this
paper.
Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
 The authors should state which version of the asset is used and, if possible, include a
URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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