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Abstract

Recent studies have shown that sequence-to-
sequence (seq2seq) models struggle with com-
positional generalization (CG), i.e., the ability
to systematically generalize to unseen compo-
sitions of seen components. There is mount-
ing evidence that one of the reasons hindering
CG is the representation of the encoder upper-
most layer is entangled, i.e., the syntactic and
semantic representations of sequences are en-
tangled. However, we consider that the pre-
viously identified representation entanglement
problem is not comprehensive enough. Addi-
tionally, we hypothesize that the source keys
and values representations passing into differ-
ent decoder layers are also entangled. Start-
ing from this intuition, we propose COMPOSI-
TION (Compose Syntactic and Semantic Rep-
resentations), an extension to seq2seq mod-
els which learns to compose representations
of different encoder layers dynamically for dif-
ferent tasks, since recent studies reveal that
the bottom layers of the Transformer encoder
contain more syntactic information and the
top ones contain more semantic information.
Specifically, we introduce a composed layer
between the encoder and decoder to com-
pose different encoder layers’ representations
to generate specific keys and values passing
into different decoder layers. COMPOSITION
achieves competitive results on two compre-
hensive and realistic benchmarks, which empir-
ically demonstrates the effectiveness of our pro-
posal. Codes are available at https://github.
com/thinkaboutzero/COMPOSITION.

1 Introduction

A crucial property of human language learning is its
compositional generalization (CG) — the algebraic
ability to understand and produce a potentially in-
finite number of novel combinations from known
components (Fodor and Pylyshyn, 1988; Lake et al.,
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Figure 1: Examples from CoGnition (Li et al., 2021)
show the workflow of how humans exhibit CG. Suppose
interpreters know the translation: [丢失了狗] for “lost
the dog” and [他喜欢] for “he liked” (semantic infor-
mation). When they first encounter “lost the dog he
liked”, they can correctly translate [丢失了他喜欢的
狗] instead of [丢失了狗他喜欢] depending on Pattern
2.3 (syntactic information).

2017). For example, if a person knows “the doctor
watches a movie” [医生看电影]1 and “the lawyer”
[律师], then it is natural for the person to know
the translation of “the lawyer watches a movie” is
[律师看电影] even though they have never seen it
before. Such nature is beneficial for generalizing to
new compositions of previously observed elements,
which is often required in real-world scenarios.

Despite astonishing successes across a broad
range of natural language understanding and gen-
eration tasks (Sutskever et al., 2014; Dong and La-
pata, 2016; Vaswani et al., 2017), neural network
models, in particular the very popular sequence-to-
sequence (seq2seq) architecture, are argued diffi-
cult to capture the compositional structure of hu-
man language (Lake and Baroni, 2018; Keysers
et al., 2020; Li et al., 2021). A key reason for
failure on CG is different semantic factors (e.g.,
lexical meaning and syntactic patterns) required
by CG are entangled, which was proved explicitly
or implicitly to exist in the representation of the
encoder uppermost layer (encoder entanglement

1The sentence in “[]” denotes the Chinese translation.
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problem) by previous studies (Li et al., 2019; Rau-
nak et al., 2019; Russin et al., 2019; Liu et al.,
2020b, 2021; Jiang and Bansal, 2021; Zheng and
Lapata, 2022a; Yin et al., 2022; Ruis and Lake,
2022; Li et al., 2022; Cazzaro et al., 2023). In other
words, the syntactic and semantic representations
of sequences are entangled.

In order to alleviate the encoder entanglement
problem, one line of research on CG mainly con-
centrate on improving the encoder representation
or separating the learning of syntax and semantics
which adopt similar approaches to humans’ strate-
gies for CG (see Figure 1). Specifically, several
works either produce two separate syntactic and se-
mantic representations, and then compose them (Li
et al., 2019; Russin et al., 2019; Jiang and Bansal,
2021) or design external modules, and then employ
a multi-stage generation process (Liu et al., 2020b,
2021; Ruis and Lake, 2022; Li et al., 2022; Caz-
zaro et al., 2023). Moreover, some studies explore
bag-of-words pre-training (Raunak et al., 2019),
newly decoded target context (Zheng and Lapata,
2022a,b) or prototypes of token representations
over the training set (Yin et al., 2022) to improve
the encoder representation. Furthermore, we hy-
pothesize that the source keys and values represen-
tations passing into different decoder layers are also
entangled (keys, values entanglement problem), not
just the representation of the encoder uppermost
layer. We will further illustrate it in Section 5.1.

Therefore, one natural question can be raised:
how to alleviate keys, values entanglement prob-
lem. As a remedy, we examine CG from a new
perspective to solve it, i.e., utilizing different en-
coder layers’ information. We conduct preliminary
analysis provided in Appendix A, and conclude that
the bottom layers of the Transformer encoder con-
tain more syntactic information and the top ones
contain more semantic information. Inspired by
this, we collect representations outputted by each
encoder layer instead of separating the learning of
syntax and semantics. So one intuitive solution
to solve keys, values entanglement problem is to
learn different and specific combinations of syntac-
tic and semantic information (i.e., representations
outputted by each encoder layer) for keys and val-
ues of different decoder layers. We argue that an
effective composition is to provide different combi-
nations for different tasks and a specific combina-
tion for a particular task. For example, the model
can learn preference of layers in different levels

of the encoder for different tasks (i.e., For A task,
the information at encoder layer 0 may be more
important, however, for B task, the information at
encoder layer 5 may be more important). Addition-
ally, the model can select which encoder layer of
information is most suitable for itself (that is, which
encoder layer of information is the most important)
for a particular task. Inspired by that, we propose
the composed layer (learnable scalars or vectors) to
generate different specific source keys and values
passing into different decoder layers for different
particular tasks, since we argue that the learned
scalars or vectors (i.e., different dynamic compo-
sition modes) by the model itself during training
process can be dynamically adjusted for different
particular tasks, and provide a way to learn pref-
erence of layers in different levels of the encoder
for a particular task. Putting everything together,
we propose COMPOSITION (Compose Syntactic
and Semantic Representations), an extension to
seq2seq models that learns to compose the syn-
tactic and semantic representations of sequences
dynamically for different tasks. COMPOSITION is
simple yet effective, and mostly applicable to any
seq2seq models without any dataset or task-specific
modification.

Experimental results on CFQ (Keysers et al.,
2020) (semantic parsing) and CoGnition (Li et al.,
2021) (machine translation, MT) empirically show
that our method can improve generalization per-
formance, outperforming competitive baselines
and other techniques. Notably, COMPOSITION

achieves 19.2% and 50.2% (about 32%, 20%
relative improvements) for instance-level and
aggregate-level error reduction rates on CoGnition.
Extensive analyses demonstrate that composing
the syntactic and semantic representations of se-
quences dynamically for different tasks leads to
better generalization results.

2 Related Work

Compositional Generalization. After realizing
existing neural models still struggle in scenarios
requiring CG (Lake and Baroni, 2018; Keysers
et al., 2020; Li et al., 2021), there have been various
studies attempt to improve the model’s ability of
CG, including data augmentation (Andreas, 2020;
Akyürek et al., 2021; Yang et al., 2022; Li et al.,
2023), modifications on model architecture (Li
et al., 2019; Russin et al., 2019; Nye et al., 2020;
Liu et al., 2020c, 2021; Zheng and Lapata, 2021;



Herzig and Berant, 2021; Chaabouni et al., 2021;
Mittal et al., 2022; Zheng et al., 2023), interme-
diate representations (Furrer et al., 2020; Herzig
et al., 2021), meta-learning (Lake, 2019; Conklin
et al., 2021), explorations on pre-trained language
models (Furrer et al., 2020; Zhou et al., 2023), aux-
iliary objectives (Jiang and Bansal, 2021; Yin et al.,
2023), two representations (Li et al., 2019; Russin
et al., 2019; Jiang and Bansal, 2021) and enriching
the encoder representation (Raunak et al., 2019;
Zheng and Lapata, 2022a,b; Yin et al., 2022; Yao
and Koller, 2022). One line of research exploring
how to alleviate the encoder entanglement problem
has attracted much attention. Our work is in line
with it, but we examine CG from a new perspective,
i.e., utilizing different encoder layers’ information.

Neural Machine Translation. Recently, CG and
robustness of Neural Machine Translation (NMT)
have gained much attention from the research
community (Cheng et al., 2020; Xu et al., 2021;
Lake and Baroni, 2018; Li et al., 2021), includ-
ing pre-training (Raunak et al., 2019), data aug-
mentation (Guo et al., 2020a), datasets (Li et al.,
2021), and enriching semantic information at token-
level (Thrush, 2020; Akyurek and Andreas, 2021;
Zheng and Lapata, 2022a,b; Yin et al., 2022). Note-
worthily, Dankers et al. (2022) argue that MT is
a suitable and relevant testing ground to test CG
in natural language. Different from them, we in-
troduce a composed layer to compose different en-
coder layers’ information dynamically, which is
inspired by previous studies about analyzing Trans-
former (Raganato et al., 2018; Voita et al., 2019).

Encoder Layer Fusion. Encoder layer fusion (En-
coderFusion) is a technique to fuse all the encoder
layers (instead of the uppermost layer) for seq2seq
models, which has been proven beneficial, such
as layer attention (Bapna et al., 2018; Shen et al.,
2018; Wang et al., 2019), layer aggregation (Dou
et al., 2018; Wang et al., 2018; Dou et al., 2019),
and layer-wise coordination (He et al., 2018; Liu
et al., 2020a). However, other studies show that
exploiting low-layer encoder representations fails
to improve model performance (Domhan, 2018).
The essence of different EncoderFusion works is
to explore different ways to combine information
from different encoder layers. Our approach is es-
sentially the same as EncoderFusion work, which
explores different ways to combine information
from different encoder layers, however, we pro-
pose a new way to combine them. Meanwhile, we

consider that there are also three distinct differ-
ences. Firstly, our method exploits information
from all encoder sub-layers and generates specific
keys, values passing into different decoder layers
while they do not. Secondly, our method shows
the effectiveness of utilizing low-layer encoder rep-
resentations while they have the opposite view (see
Appendix D). Thirdly, we do not share the same
motivation or task. Their work focuses on how to
transform information across layers in deep neural
network scenarios for seq2seq tasks. Our moti-
vation is to compose the syntactic and semantic
representations of sequences dynamically for CG.

3 Methodology

We adopt the Transformer architecture (Vaswani
et al., 2017) to clarify our method, however, our
proposed method is mostly applicable to any
seq2seq models. In the following, we first intro-
duce the Transformer baseline (Section 3.1), and
then our proposed COMPOSITION (Section 3.2).

3.1 Transformer
The Transformer (Vaswani et al., 2017) is designed
for sequence to sequence tasks which adopts an
encoder-decoder architecture. The multi-layer en-
coder summarizes a source sequence into a con-
textualized representation and another multi-layer
decoder produces the target sequence conditioned
on the encoded representation.

Formally, given a sequence of source sentence
X = {x1, . . . , xS} and a sequence of target
sentence Y = {y1, . . . , yT }, where S, T denote
the number of source and target tokens, respec-
tively. D = {(X,Y ), . . .} denotes a training cor-
pus, V denotes the vocabulary of D, and θ de-
notes parameters of the Transformer model. The
model aims to estimate the conditional probability
p(y1, . . . , yT |x1, . . . , xS):

p(Y |X; θ) =

T+1∏
t=1

p(yt|y<t, X; θ), (1)

where t is the index of each time step, y<t denotes
a prefix of Y and each factor p(yt|X, y1, . . . , yt−1;
θ) is defined as a softmax distribution of V .

During training, the model are generally opti-
mized with the cross-entropy (CE) loss, which is
calculated as follows:

LCE(θ) = −
T+1∑
t=1

log p(yt|y<t, X; θ). (2)



Input 
Embedding

Output
Embedding

Inputs Outputs 
(shifted right)

Self-Attention
Sub-Layer

...

Masked 
Multi-Head 
Attention

Add & Norm

Multi-Head 
Attention

Add & Norm

Feed 
Forward

Add & Norm

Linear

Softmax

Output 
Probabilities

Positional 
Encoding

Positional 
Encoding

Feed-Forward
Sub-Layer

Composed 
Layer

Figure 2: Architecture of COMPOSITION based on the
Transformer. The bright yellow block in the middle
denotes the composed layer introduced in Section 3.2.
The red line denotes that we collect representations of

the same positions for the rest encoder layers.

During inference, the model predicts the proba-
bilities of target tokens in an auto-regressive mode
and generates target sentences using a heuristic
search algorithm, such as beam search (Freitag and
Al-Onaizan, 2017).

3.2 COMPOSITION

Our proposed COMPOSITION extends the Trans-
former by introducing a composed layer between
the encoder and decoder. Figure 2 shows the over-
all architecture of our approach.

3.2.1 Composed Layer
The composed layer is a list consisting of 2N learn-
able vectors due to 2N source keys, values passing
into N decoder layers, where each vector involves
2M learnable scalars or vectors. M,N denote the
number of encoder and decoder layers respectively.

3.2.2 Dynamic Combination
Here, we describe how to use the composed layer
to compose collected representations dynamically
for generating specific keys and values represen-
tations passing into different decoder layers. Let
fSelf−Attention and fFeed−Forward denote a Trans-
former self-attention sub-layer and feed-forward
sub-layer respectively. The embedding layer of

the Transformer encoder first maps X to embed-
dings H0, and then H0 are fed into a Transformer
self-attention sub-layer and feed-forward sub-layer
to generate HSA

1 ∈ Rd×S , HFF
1 ∈ Rd×S respec-

tively, where d denotes the hidden size. Next, each
subsequent encoder layer takes the previous layer’s
output as input. The overall process is as follows:

HSA
1 = fSelf−Attention(H0), (3)

HFF
1 = fFeed−Forward(H

SA
1 ), (4)

HSA
i = fSelf−Attention(H

FF
i−1), (5)

HFF
i = fFeed−Forward(H

SA
i−1), (6)

where 2 ≤ i ≤ M denote i-th encoder layer.
Therefore, we can collect representations out-
putted by each encoder sub-layer Hcollect =
{HSA

1 , HFF
1 , . . . ,HSA

M , HFF
M }. The keys and val-

ues of multi-head attention module of decoder layer
l are defined to be:

H l
key =

2M∑
i=1

wi
kH

i
collect, (7)

H l
value =

2M∑
i=1

wi
vH

i
collect, (8)

where wi
k ∈ R, wi

v ∈ R are learnable scalars or
vectors and mutually different (e.g. wi

k ̸= wi
v,

wi
k ̸= wj

k and wi
v ̸= wj

v), which weight each col-
lected source representation in a dynamic linear
manner. Eq. 7 and 8 provide a way to learn prefer-
ence of sub-layers in different levels of the encoder.

4 Experiments

We mainly evaluate COMPOSITION on two com-
prehensive and realistic benchmarks for measuring
CG, including CFQ (Keysers et al., 2020) and CoG-
nition (Li et al., 2021).

4.1 Experimental Settings
Datasets. CoGnition is a recently released realistic
English → Chinese (En→Zh) translation dataset,
which is used to systematically evaluate CG in MT
scenarios. It consists of a training set of 196,246
sentence pairs, a validation set and a test set of
10,000 samples. In particular, it also has a dedi-
cated synthetic test set (i.e., CG-test set) consisting
of 10,800 sentences containing novel compounds,
so that the ratio of compounds that are correctly
translated can be computed to evaluate the model’s



Model #Params Compound Translation Error Rate (CTER) ↓ BLEU ↑
NP VP PP Total ∆

Transformer 35M 24.7%/55.2% 24.8%/59.5% 35.7%/73.9% 28.4%/62.9% -/- 59.5
Transformer-Rela 35M 30.1%/58.1% 27.6%/61.2% 38.5%/74.1% 32.1%/64.5% +3.7%/+1.6% 59.1

Transformer-Small 25M 25.1%/56.9% 25.6%/60.3% 39.1%/75.0% 29.9%/64.5% +1.5%/+1.6% 59.0
Transformer-Deep 40M 23.3%/51.6% 24.1%/58.0% 33.8%/72.6% 27.0%/60.7% -1.4%/-2.0% 60.1

Bow 35M 22.2%47.9% 24.8%/55.6% 35.0%/73.2% 27.3%/58.9% -1.1%/-3.0% -
SeqMix 35M 24.5%/49.7% 26.9%/58.9% 34.4%/73.1% 28.6%/60.6% +0.2%/-2.3% -
Dangle 35M -/- -/- -/- 24.4%/55.5% -5.0%/-7.4% 59.7

Proto-Transformer 42M 14.1%/36.5% 22.1%/50.9% 28.9%/68.2% 21.7%/51.8% -6.7%/-11.1% 60.1
Transformer+CReg 25M -/- -/- -/- 20.2%/48.3% -8.2%/-14.6% 61.3

R-Danglesep 70M -/- -/- -/- 16.0%/42.1% -12.4%/-20.8% 63.4
DLCL 35M -/- -/- -/- 28.4%/67.9% +0.0%/+5.0% 59.2

COMPOSITION 35M 10.0%/32.6% 22.1%/54.8% 29.2%/68.5% 20.4%/52.0% -8.0%/-10.9% 61.5
COMPOSITION-Rela 35M 15.5%/39.2% 22.4%/54.0% 29.1%/67.3% 22.3%/53.5% -6.1%/-9.4% 61.6

COMPOSITION-Small 25M 14.3%/40.3% 24.4%/58.1% 34.5%/73.4% 24.4%/57.3% -4.0%/-5.6% 60.1
COMPOSITION-Deep 40M 11.4%/34.7% 19.5%/50.4% 26.7%/65.6% 19.2%/50.2% -9.2%/-12.7% 62.0

Table 1: CTERs (%) on CoGnition. We report instance-level and aggregate-level CTERs in the CG-test set, separated
by “/”. In addition, we also report the commonly used metric BLEU score in MT tasks. “-” denotes that the results
are not provided in the original paper. Results are averaged over 6 random runs.

CoGnitionCFQ
“Did M0 direct M1”x

y SELECT count ( * ) WHERE { M0 film.director.film M1 }
“the dog he liked practiced all weekend long .”
他 喜欢 的 狗 整个 周末 都 在 练习 。

x
y

Figure 3: Examples of CFQ and CoGnition.

ability of CG directly. CFQ is automatically gen-
erated from a set of rules in a way that precisely
tracks which rules (atoms) and rule combinations
(compounds) of each example. In this way, we can
generate three splits with maximum compound di-
vergence (MCD) while guaranteeing a small atom
divergence between train and test sets, where large
compound divergence denotes the test set involves
more examples with unseen syntactic structures.
We evaluate our method on all three splits. Each
split dataset consists of a training set of 95,743,
a validation set and a test set of 11,968 examples.
Figure 3 shows examples of them.
Data Preprocess. We follow the same settings
of Li et al. (2021) and Keysers et al. (2020) to pre-
process CoGnition and CFQ datasets separately.
For CoGnition, we use an open-source Chinese to-
kenizer2 to preprocess Chinese and apply Moses
tokenizer3 to preprocess English, which is the same
in Lin et al. (2023) and Liu et al. (2023). We em-
ploy byte-pair encoding (BPE) (Sennrich et al.,
2016) for Chinese with 3,000 merge operations,
generating a vocabulary of 5,500 subwords. We do
not apply BPE for English due to the small vocabu-
lary (i.e., 2000). For CFQ, we use the GPT2-BPE

2https://github.com/fxsjy/jieba
3https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/tokenizer/tokenizer.perl

tokenizer4 to preprocess source and target English
text.
Setup. For CoGnition and CFQ, we follow the
same experimental settings and configurations of Li
et al. (2021) and Zheng and Lapata (2022a) rep-
spectively. We implement all comparison models
and COMPOSITION with an open source Fairseq
toolkit (Ott et al., 2019). More details are provided
in Appendix B.
Evaluation Metrics. For CoGnition, we use com-
pound translation error rate (CTER (Li et al., 2021))
to measure the model’s ability of CG. Specifically,
instance-level CTER denotes the ratio of samples
where the novel compounds are translated incor-
rectly, and aggregate-level CTER denotes the ratio
of samples where the novel compounds suffer at
least one incorrect translation when aggregating
all 5 contexts. To calculate CTER, Li et al. (2021)
manually construct a dictionary for all the atoms
based on the training set, since each atom contains
different translations. We also report character-
level BLEU scores (Papineni et al., 2002) using
SacreBLEU (Post, 2018) as a supplement. For
CFQ, we use exact match accuracy to evaluate
model performance, where natural language utter-
ances are mapped to meaning representations.

4.2 Model Settings

Machine Translation. We compare our method
with previous competitive systems: (1) Trans-
former (Vaswani et al., 2017): first proposes a new

4https://github.com/facebookresearch/fairseq/
blob/main/examples/roberta/multiprocessing_bpe_
encoder.py

https://github.com/fxsjy/jieba
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/multiprocessing_bpe_encoder.py
https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/multiprocessing_bpe_encoder.py
https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/multiprocessing_bpe_encoder.py


Model MCD1 MCD2 MCD3 Mean

LSTM+attention 28.9 5.0 10.8 14.9
Transformer 34.9 8.2 10.6 17.9

Universal Transformer 37.4 8.1 11.3 18.9
Evolved Transformer 42.4 9.3 10.8 20.8

CGPS 13.2 1.6 6.6 7.1
NSEN 5.1 0.9 2.3 2.8

T5-11B 61.4 30.1 31.2 40.9
T5-11B-mod 61.6 31.3 33.3 42.1

RoBERTa 60.6 33.6 36.0 43.4
HPD 72.0 66.1 63.9 67.3

Dangle 78.3 59.5 60.4 66.1
RoBERTa+CReg 74.8 53.3 58.3 62.1

COMPOSITION 72.8 53.2 52.2 59.4

Table 2: Exact-match accuracy on different MCD splits
of CFQ. Results are averaged over 3 random runs.

encoder-decoder architecture based solely on atten-
tion mechanisms; (2) Transformer-Rela: only re-
places sinusoidal (absolute) positional embedding
with a relative one; (3) Transformer-Small: only de-
creases the number of encoder layers and decoder
layers to 4, 4 respectively; (4) Transformer-Deep:
only increases the number of encoder layers to 8;
(5) Bow (Raunak et al., 2019): uses bag-of-words
pre-training to improve the representation of the en-
coder upmost layer; (6) SeqMix (Guo et al., 2020a):
synthesizes examples to encourage compositional
behavior; (7) Dangle (Zheng and Lapata, 2022a):
adaptively re-encodes (at each time step) the source
input to disentangle the representation of the en-
coder upmost layer;5 (8) Proto-Transformer (Yin
et al., 2022): integrates prototypes of token rep-
resentations over the training set into the source
encoding to achieve the goal of categorization; (9)
Transformer+CReg (Yin et al., 2023): promotes
representation consistency across samples and pre-
diction consistency for a single sample; (10) R-
Danglesep (Zheng and Lapata, 2022b): disentan-
gles their representations and only re-encode keys
periodically, at some interval; (11) DLCL (Wang
et al., 2019): proposes an approach based on dy-
namic linear combination of layers (DLCL), and
is one of the very popular EnocderFusion work.
Our method is built on top of (1)-(4), i.e., COM-
POSITION, COMPOSITION-Rela, COMPOSITION-
Small and COMPOSITION-Deep. We also provide
reasons for experiments on CoGnition without lan-
guage models (see Appendix E).
Semantic Parsing. We compare our method with
previous competitive systems: (1) LSTM + atten-

5We use the same variant reported by Zheng and Lapata
(2022a) (i.e., Dangle-EncDec (abs)) with sinusoidal (absolute)
positional embedding.

Model Alleviate CTERInst ↓ CTERAggr ↓E K, V

Transformer ✗ ✗ 28.4% 62.9%

COMPOSITION ✓ ✗ 22.6% (-5.8%) 55.1% (-7.8%)
COMPOSITION ✓ ✓ 20.4% (-8.0%) 52.0% (-10.9%)

Table 3: CTERs (%) against alleviating E or K,V on the
CG-test set, where CTERInst and CTERAggr denote
instance-level and aggregate-level CTER respectively. E
and K, V denote encoder and keys, values entanglement
problem respectively.

tion: introduces attention mechanism (Bahdanau
et al., 2015) in LSTM (Hochreiter and Schmid-
huber, 1997); (2) Transformer (Vaswani et al.,
2017); (3) Universal Transformer (Dehghani et al.,
2019): combines the parallelizability and global
receptive field of feed-forward sequence models
like the Transformer with the recurrent inductive
bias of RNNs; (4) Evolved Transformer (So et al.,
2019): uses wide depth-wise separable convolu-
tions in the early layers of both the encoder and
decoder; (5) CGPS (Li et al., 2019): leverages
prior knowledge of compositionality with two rep-
resentations, and adds entropy regularization to the
encodings; (6) NSEN (Freivalds et al., 2019): is
derived from the Shuffle-Exchange network; (7)
T5-11B (Raffel et al., 2020): treats every natural
language processing task as a text-to-text problem,
and is therefore suitable for the semantic parsing
tasks. T5-11B is a T5 model with 11B parameters
finetuned on CFQ; (8) T5-11B-mod (Furrer et al.,
2020): shows that using masked language model
(MLM) pre-training together with an intermediate
representation leads to significant improvements
in performance; (9) RoBERTa (Liu et al., 2019):
makes use of the RoBERTa-base model as the en-
coder and the randomly initialized Transformer
decoder trained from scratch, where we use the
same experimental settings of (Zheng and Lapata,
2022a); (10) HPD (Guo et al., 2020b): proposes
a novel hierarchical partially ordered set (poset)
decoding paradigm, which consists of three compo-
nents: sketch prediction, primitive prediction, and
traversal path prediction; (11) Dangle (Zheng and
Lapata, 2022a); (12) RoBERTa+CReg (Yin et al.,
2023); (13) COMPOSITION: builds on (9) with our
method.

4.3 Results on CoGnition

The main results on CoGnition are shown in Ta-
ble 1. We observe that: (1) COMPOSITION gives
20.4% CTERInst and 52.0% CTERAggr, with a
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Figure 4: Learned composition weights (after normal-
ized) that each encoder layer (y-axis) attending to keys
or values of different decoder layers (x-axis).

significant improvement of 8.0% and 10.9% ac-
cordingly compared to the Transformer. More-
over, COMPOSITION significantly outperforms
most baseline models under the almost same param-
eter settings,6 indicating composing the syntactic
and semantic information of sequences dynami-
cally for a particular task is more beneficial to CG.
Although Transformer+CReg achieves slightly bet-
ter performance and contains fewer parameters, it
is more complex and costly compared with COM-
POSITION; (2) COMPOSITION, COMPOSITION-
Rela, COMPOSITION-Small and COMPOSITION-
Deep can deliver various performance improve-
ments, demonstrating the general effectiveness of
our method; (3) COMPOSITION-Deep performs
better than Bow, Dangle and Proto-Transformer,
indicating that focusing on alleviating the encoder
entanglement problem only can achieve part of
goals of CG as mentioned in Section 1. Compared
to SeqMix, the improvement of COMPOSITION

is more significant (2.3% vs 10.9% CTERAggr).
SeqMix utilizes linear interpolation in the input
embedding space to reduce representation sparsity,
and we suppose that the samples synthesized ran-
domly may be unreasonable and harmful to model
training; (4) It can be seen that Transformer is even
slightly better than DLCL, indicating DLCL and
COMPOSITION do not share the same motivation
or scenario.

4.4 Results on CFQ

The main results on CFQ are presented in Table 2.
We observe that: (1) RoBERTa is comparable to T5-
11B, T5-11B-mod and outperforms other baseline
systems without pre-training except HPD, indicat-
ing that pre-training indeed benefits CFQ; (2) COM-

6We implement our approach based on Transformer-Deep
for a fair comparison with Proto-Transformer.

Model CTERInst ↓ CTERAggr ↓

Transformer 28.4% 62.9%
COMPOSITION-SA 22.2% (-6.2%) 53.8% (-9.1%)
COMPOSITION-FF 22.6% (-5.8%) 55.6% (-7.3%)

COMPOSITION-SA & FF 20.4% (-8.0%) 52.0% (-10.9%)

Table 4: CTERs (%) against composing different source
information on the CG-test set.

POSITION substantially boosts the performance of
RoBERTa (43.4 → 59.4), about 37% relative im-
provements, and is in fact superior to T5-11B and
T5-11B-mod. It also outperforms other baseline
systems without pre-training except HPD. This re-
sult demonstrates that pre-training as a solution
to CG also has limitations, and also indicates that
COMPOSITION is complementary to pre-trained
models; (3) HPD performs better than Dangle,
RoBERTa+CReg and COMPOSITION, achieving
67.3 exact match accuracy, which is highly opti-
mized for the CFQ dataset. On the contrary, COM-
POSITION, RoBERTa+CReg and Dangle are gener-
ally applicable to any seq2seq models for solving
any seq2seq tasks including MT, as mentioned in
Section 4.3. However, compared with competi-
tive performance on CoGnition, the improvements
brought by COMPOSITION is relatively moderate,
and even worse than Dangle. The underlying rea-
son is related to a recent finding that compositional-
ity in natural language is much more complex than
the rigid, arithmetic-like operations (Li et al., 2021;
Zheng and Lapata, 2022a; Dankers et al., 2022).
MT is paradigmatically close to the tasks typically
considered for testing compositionality in natural
language, while our approach is more suitable for
dealing with such scenarios.

5 Analysis

In this section, we conduct in-depth analyses of
COMPOSITION to provide a comprehensive under-
standing of the individual contributions of each
component. For all experiments, we train a COM-
POSITION (6-6 encoder and decoder layers) instead
of other experimental settings on the CoGnition
dataset, unless otherwise specified.

5.1 Effects of Specific Keys and Values of
Different Decoder Layers

As mentioned in Section 1 and 3.2, we hypothe-
size that keys, values entanglement problem ex-
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Figure 5: CTERInst of COMPOSITION and Transformer
over the different compound and context lengths.

ists.7 It is clear that our hypothesized keys, values
entanglement problem is an extension to encoder
entanglement problem. We show curiosity about
whether this problem exists, and COMPOSITION

can alleviate it. In this experiment, we investi-
gate its influence on CoGnition. As shown in Ta-
ble 3, we observe certain improvements (-5.8% and
-8.0% CTERInst, -7.8% and -10.9% CTERAggr)
when separately alleviating the encoder or keys,
values entanglement problem.8 It suggests that
our method can alleviate both problems separately,
and learning to compose information of different
encoder layers dynamically can improve CG per-
formance. Furthermore, the improvement brought
from alleviating keys, values entanglement prob-
lem is more significant than that brought from alle-
viating encoder entanglement problem (52.0% vs
55.1% CTERAggr), demonstrating the reasonable-
ness of keys, values entanglement problem.

To further illustrate the reasonableness of keys,
values entanglement problem and understand how
COMPOSITION alleviates it, we visualize the
learned composition weights of COMPOSITION

after normalized.9 Specifically, we train COMPO-
SITION on CoGnition and then extract W i

k,W
i
v

(see Section 3.2.2) to visualize them. Ideally, each
key or value of different decoder layers should pay
different attention weights to different encoder lay-
ers’ information. As shown in Figure 4, the learned
composition weights (after normalized) are mutu-
ally distinct for keys and values of different decoder
layers, which implies COMPOSITION learns differ-
ent dynamic composition modes for keys and val-
ues of every decoder layer respectively. In addition,
it also indicates the reasonableness of keys, values
entanglement problem we proposed, since keys and

7It is noteworthy that the representation of the encoder
upmost layer serves as the same key and value passing into
every decoder layer in the Transformer.

8We use one or 2N learnable vectors to generate one or
2N representations passing into N decoder layers.

9We only use representations outputted by Eq. 6 for brevity.

wo/ MOD w/ MOD
5

10

15

20

25

30

35

40

In
st

a
n
c
e
-l

e
v
e
l 
C

T
E

R
(%

)

14.4

37

9.9

22.6

Transformer

COMPSITION

Figure 6: CTERInst on compounds w/o and w/ MOD.

values of different decoder layers utilize more than
just the information of the encoder topmost layer.
More importantly, it also emphasizes our method
provides an effective composition of syntactic and
semantic information, i.e., a specific combination
for a particular task. To further demonstrate it, we
also provide a toy experiment in Appendix C.

5.2 Effects of Composing Information of
Encoder Layers or Sub-layers

As mentioned in Section 3, the Transformer en-
coder layer consists of two sub-layers. We assume
that sub-layers may contain language information
in different aspects, which may produce better gen-
eralization results. Therefore, we are curious about
whether composing different encoder layers’ or
sub-layers’ information is more beneficial to CG.
In this experiment, we investigate its influence on
CoGnition. Specifically, we train COMPOSITION

to compose representations outputted by either
Eq. 5 or 6 or a combination of both dynamically.
Results are presented in Table 4. We observe cer-
tain improvements (-6.2% and -5.8% CTERInst)
when separately composing SA- and FF-level rep-
resentations, where SA and FF denote representa-
tions outputted by Eq. 5 and 6 respectively. Further-
more, the combination of both them brings further
improvement (-8.0% CTERInst), which illustrates
that the information in different encoder sub-layers
is complementary and has cumulative gains. It also
suggests that syntactic and semantic information
brought by SA or FF is similar, but slightly differ-
ent (Li et al., 2020), and can improve generalization
performance respectively. It can be seen that the
results of COMPOSITION-SA and COMPOSITION-
FF presented in Table 4 are basically the same, and
the improvements brought by the combination of
both them is relatively moderate.



Source Transformer COMPOSITION
The waiter he liked 他喜欢穿对方的衣服。 他喜欢的服务员穿着彼此的衣服。

wore each other’s clothes. (He liked to wear each other’s clothes.) (The waiter he liked wore each other’s clothes.)

The waiter he liked came 服务员来了，把那个恶霸赶走了。 他喜欢的服务员过来把那个恶霸赶走了。
by and chased the bully off. (The waiter came by and chased the bully off.) (The waiter he liked came by and chased the bully off.)

The waiter he liked 服务员喜欢拿起他的邮件。 他喜欢的服务员拿起了他的邮件。
picked up his mail. (The waiter liked to pick up his mail.) (The waiter he liked picked up his mail.)

Table 5: Example translations of Transformer vs COMPOSITION. The bold characters denote the novel compounds
and corresponding translations.

5.3 Effects on Compositional Generalization

Compound Length and Context Length. Longer
compounds have more complex semantic infor-
mation and longer contexts are harder to compre-
hend, making them more difficult to generalize (Li
et al., 2021). We classify the test samples by com-
pound length and context length, and calculate the
CTERInst. In Figure 5, we can observe that COM-
POSITION generalizes better as the compound and
context grows longer compared to Transformer. In
particular, COMPOSITION gives a lower CTER
by 11.0% over samples when the context length
is more longer than 13 tokens. It suggests that
our approach can better captures the compositional
structure of human language.
Complex Modifier. The postpositive modifier
atom (MOD) is used to enrich the information of its
preceding word (e.g., he liked in the phrase lost the
dog he liked), which is challenging to translate due
to word reordering from English to Chinese. We
divide the test samples into two groups according
to compounds with (w/) or without (wo/) MOD. In
Figure 6, we observe that the advantage of COMPO-
SITION grows larger in translating the compounds
with MOD, demonstrating its superiority in pro-
cessing complex semantic composition.
Case Study. We present 3 source examples con-
taining a novel compound the waiter he liked with
MOD and 4 atoms, and their translations in Ta-
ble 5. For all samples, correct translations denote
that the novel compounds are translated correctly.
COMPOSITION correctly translates the novel com-
pounds across different contexts for all samples,
while Transformer suffers from omitting different
atoms. For example, the translation of the waiter is
omitted in the first example, he liked is omitted in
the second example and he is omitted in the third
example. Our results not only contain the correct
compound translations but also achieve better trans-
lation quality, while Transformer makes errors on
unseen compositions, confirming the necessity of

composing the syntactic and semantic representa-
tions of sequences dynamically.

6 Conclusion

In this paper, we examine CG from a new perspec-
tive, i.e., utilizing different encoder layers’ infor-
mation. Specifically, we propose an extension to
seq2seq models which composes different encoder
layers’ representations dynamically to generate spe-
cific keys and values passing into different decoder
layers. Experiments on CoGnition and CFQ have
shown the effectiveness of our proposal on CG
without any dataset or task-specific modification.
To our knowledge, we are the first to point out a
new representation entanglement problem and in-
vestigate how to utilize information of different
encoder layers benefits CG, achieving promising
results on two realistic benchmarks. We hope the
work and perspective presented in this paper can
inspire future related work on CG.

Limitations

There are two limitations of our approach. Firstly,
compared with competitive performance on CoGni-
tion, the improvements brought by COMPOSITION

on CFQ is relatively moderate, and even worse than
some competitive methods. Hence, COMPOSITION

is more suitable for tasks typically considered for
testing compositionality in natural language. We
strongly recommend researchers pay more atten-
tion to tasks evaluating compositionality on natural
language. Meanwhile, we regard that designing
a more general method that can improve general-
ization performance in both synthetic and natural
scenarios is a promising direction to explore in
the future. Secondly, our method is mostly ap-
plicable to any seq2seq models which adopt an
encoder-decoder architecture instead of encoder-
only or decoder-only architecture. However, the
methodology of the proposed COMPOSITION is
still rather general to any seq2seq models which



adopt any architecture, since we can use the ran-
domly initialized encoder or decoder to constitute
the encoder-decoder architecture.
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representations as input on the test set of POS tagging
task.
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A Preliminary Analysis

In this section, we analyze the amount of syntac-
tic and semantic information captured by different
encoder layers in the Transformer under MT sce-
narios. We aim at analyzing the representations
learned by different encoder layers of different
models through probing the encoder as input repre-
sentation for various prediction tasks. We measure
the importance of input features for various tasks
by evaluating the ability of the decoder. Specif-
ically, we use a fixed encoder representation as
input and two different tasks, i.e., Part-of-Speech
(POS) tagging, and Semantic tagging, to evaluate
the syntactic and semantic information contained
in different encoder layers respectively. The reason
is that we assume if the input representation effec-
tively captures a property (syntactic or semantic
information), then the decoder can easily predict
that property.

To explore the precise effects of information
captured by different encoder layers, we train the
Transformer on the WMT18 English → Chinese
(EnZh, rich-resource), English → Estonian (EnEt,
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Figure 8: Precision (%) against different encoder layers’
representations as input on the test set of Semantic tag-
ging task.

low-resource)10 by following the same settings
of Raganato et al. (2018).11 After training the MT
models, we freeze the encoder parameters, and only
train one decoder layer12 for each task, since we ex-
pect the decoder should not have overly significant
impact on the model’s performance of different
tasks. We then analyze the amount of syntactic and
semantic information in different encoder layers
via evaluating the different encoder layers’ perfor-
mance of corresponding task. We use the Universal
Dependencies English Web Treebank v2.0 (Zeman
et al., 2017) for POS tagging (syntactic task) and
the annotated data from the Parallel Meaning Bank
(PMB) (Abzianidze et al., 2017) for Semantic tag-
ging (semantic task).13 We use precision to evalu-
ate model performance.

Results on POS tagging and Semantic tagging
are presented in Figure 7 and 8 respectively. We
observe that:

• For EnEt and EnZh, the performance tends to
decrease as the number of layers increase.

• For EnEt and EnZh, the performance tends to
increase as the number of layers increase.

Therefore, we can conclude that the bottom lay-
ers of the Transformer encoder contain more

10We use two datasets with different sizes to analyze in-
formation captured by different encoder layers across models
with different translation quality and target language.

11The provided datasets are freely available at https://
www.statmt.org/wmt18/translation-task.html.

12We follow the same settings of Raganato et al. (2018) and
adopt one attention head and one feed-forward sub-layer to
consitute the decoder layer.

13We follow the same data preprocess process of Zeman
et al. (2017) and Abzianidze et al. (2017).
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Model CTERInst ↓ CTERAggr ↓

Transformer 28.4% 62.9%
Transformer-accu failed failed
COMPOSITION 20.4% (-8.0%) 52.0% (-10.9%)

Table 6: CTERs (%) against Transformer-accu vs COM-
POSITION on the CG-test set.

syntactic information and the top ones contain
more semantic information, and the information
encoded by each encoder layer transforms from
syntactic to semantic as the number of layers in-
crease.

B Experimental Settings

For CoGnition, we set hidden size to 512 and feed-
forward dimension to 1,024. The number of en-
coder and decoder layers are 6, 6 and the number
of attention heads are 4. The model parameters are
optimized by Adam (Kingma and Ba, 2015), with
β1 = 0.9, β2 = 0.98. The learning rate is set to
5e-4 and the number of warm-steps is 4000. We
set max tokens as 8,192 tokens for iteration. We
use one GeForce GTX 2080Ti for training with
100,000 steps and decoding. We report the average
performance over 6 random seeds provided in Li
et al. (2021). We train all COMPOSITION models
from scratch. For CFQ, we use the base RoBERTa
with 12 encoder layers, which is combined with a
Transformer decoder that has 2 decoder layers with
hidden size 256 and feed-forward dimension 512.
We use a separate target vocabulary. The number
of attention heads are 8. The model parameters are
optimized by Adam (Kingma and Ba, 2015), with
β1 = 0.9, β2 = 0.98. The learning rate is set to
1e-4 and the number of warm-steps is 4000. We set
max tokens as 4,096 tokens for iteration. We use
one GeForce GTX 2080Ti for training with 45,000
steps and decoding. We report the average perfor-
mance over 3 random seeds provided in Zheng and
Lapata (2022a). We train COMPOSITION built on
top of RoBERTa with full parameter fine-tuning.

C Effects of the Effective Composition

As mentioned in Section 3, we introduce the com-
posed layer between the encoder and decoder to
compose different encoder sub-layers’ information
dynamically to generate specific keys and values
passing into different decoder layers. We show
curiosity about whether the composed layer can
fuse all encoder sub-layers’ information effectively.

Model CTERInst ↓ CTERAggr ↓

Transformer 28.4% 62.9%
COMPOSITION-Half 27.0% (-1.4%) 61.3% (-1.6%)
COMPOSITION 20.4% (-8.0%) 52.0% (-10.9%)

Table 7: CTERs (%) against Transformer, COMPOSI-
TION and COMPOSITION-Half on the CG-test set.

Therefore, we conduct a toy experiment on CoG-
nition. Specifically, all encoder sub-layers’ infor-
mation is accumulated to serve as the same key
and value passing into every decoder layer (called
Transformer-accu),14 rather than composing them
dynamically like we do. Results are listed in Ta-
ble 6. Transformer-accu even fails to train. It
suggests that even if the syntactic and semantic
information of sequences is considered, the inap-
propriate combinations will instead bring noise to
significantly affect the model’s CG performance.

D Effects of Representations from
Low-layer Encoder

To verify the low-layer encoder representations are
also essential to our approach, we only evaluate
our approach on CoGnition with the collected en-
coder representations of the top three layers. Re-
sults are presented in Table 7. We can observe
that only composing the representations of the top
three encoder layers leads to a sharp drop in per-
formance (27.0% vs 20.4% CTERInst), but still
outperforms the Transformer baseline (27.0% vs
28.4% CTERInst). It further demonstrates the dis-
tinct difference between our method and the find-
ings introduced by previous studies on EncoderFu-
sion. It also reflects our starting point is correct, i.e.,
exploring how to compose syntactic and semantic
information. It can be seen that COMPOSITION’s
performance is dramatically reduced given only se-
mantic information (the last three encoder layers’
information).

E Reasons for Experiments on CoGnition
without Language Models

We do not conduct experiments on CoGnition with
language models for two reasons. First, CoG-
nition is constructed to test CG performance in
MT scenarios with simple sentence pairs (see Fig-
ure 3), however, language models are trained on

14{y0, ..., yl} are the output of the encoder layers 0 ∼ l.
The input of keys and values of decoder layer i is xi = y0 +
· · ·+ yi−1, where 0 < i < L.



vast amounts of multilingual sentences or bilingual
sentence pairs. It is contrary to the compositional
generalization task itself, since we can not guar-
antee that every sentence in the test set is a novel
combination from known components for language
models. Second, it is unfair to compare large lan-
guage models with systems without pre-training.
We strongly recommend researchers pay more at-
tention to conduct experiments on CoGniton with-
out language models.


