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Abstract

Chain-of-Thought (CoT) has widely enhanced mathematical reasoning in Large
Language Models (LLMs), but it still remains challenging for extending it to
multimodal domains. Existing works either adopt a similar textual reasoning for
image input, or seek to interleave visual signals into mathematical CoT. However,
they face three key limitations for math problem-solving: reliance on coarse-
grained box-shaped image regions, limited perception of vision encoders on math
content, and dependence on external capabilities for visual modification. In this
paper, we propose MINT-CoT, introducing Mathematical INterleaved Tokens
for Chain-of-Thought visual reasoning. MINT-CoT adaptively interleaves rel-
evant visual tokens into textual reasoning steps via an Interleave Token, which
dynamically selects visual regions of any shapes within math figures. To empower
this capability, we construct the MINT-CoT dataset, containing 54K mathemati-
cal problems aligning each reasoning step with visual regions at the token level,
accompanied by a rigorous data generation pipeline. We further present a three-
stage MINT-CoT training strategy, progressively combining text-only CoT SFT,
interleaved CoT SFT, and interleaved CoT RL, which derives our MINT-CoT-7B
model. Extensive experiments demonstrate the effectiveness of our method for
effective visual interleaved reasoning in mathematical domains, where MINT-
CoT-7B outperforms the baseline model by +34.08% on MathVista, +28.78% on
GeoQA, and +23.2% on MMStar, respectively. Our code and data are available at
https://github.com/xinyan-cxy/MINT-CoT.

1 Introduction

Chain-of-Thought (CoT) [66, 32] has emerged as an effective strategy for enhancing the reasoning
capabilities of Large Language Models (LLMs) [49, 51, 62, 72, 81, 39] by generating sequential
rationales in their responses. In Multimodal Large Language Models (MLLMs) [50, 33, 88, 18, 20],
CoT also plays a significant role [84] across various tasks involving image [41, 86, 40, 22, 17, 25],
video [38, 4, 71, 14], and 3D [70, 24, 58, 21]. It enables MLLMs to reason over both textual and
visual inputs, serving as a bridge that connects visual perception with abstract reasoning tasks.

However, despite these advances, applying CoT in mathematical reasoning with visual contexts
remains challenging. Existing MLLMSs mainly generate text-only reasoning steps for multimodal math
problems [84, 85, 60, 79], simply adopting similar textual reasoning for image input. Nevertheless,
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Question:
In the given diagram, circle O has line segment AB as its diameter and CD as a chord. A 4 ‘.\ E

tangent passing through point C intersects the extension of AB at point E, and angle E B
measures 42°. What is the measure of angle CDB? Choices: A:22° B:24° C:28° D: 48° 5
Text-only CoT Reasoning: Lack of visual information leads to
Step 1: Since angle E = 42°, therefore angle A = 42°. X PR e

Step 2: Since AB is the diameter of circle O, angle ACB = 90°. Therefore, angle B = 180° - 42° - 90° = 48"
Step 3: Since AB is the diameter of circle O, angle CDB = angle B = 48°. %
Answer: D X

Box-shapfd Visual CoT Reasoning: Box-level cues are too coarse for
Step 1: m Since angle E = 42°, angle CEB = 42° math concepts.
F— ¢
Step 21 _. @ Since AB is the diameter of circle O, angle ACB = 90°. ¢/
Step 3: %z Therefore, angle CDB = angle CEB = 42°. X
£ Answer: D X

Visual Interleaved CoT Reasoning (Ours): Token-level interleaved CoT is

Step 1:-17 7 Connect OC, OCLCE. v fine-grained and effective.
Step2: . | AngleCOE = 180" - 90° - 42° = 48". /
Step 3:=+ 4 Since OC = OD, angleCDB = angleODC = 1/2 angleBOC = 24/

Answer: B v

Figure 1: Comparison of three CoT reasoning methods: text-only CoT reasoning, box-shaped visual
CoT reasoning and our visual interleaved CoT reasoning methods. (1) Text-only CoT lacks visual
information, causing perception errors in mathematical reasoning. (2) Box-level cues are too coarse to
capture complex visual structures in mathematical images. (3) Token-level interleaved CoT accurately
identifies fine-grained visual regions to support reasoning.

due to the limited capability in perceiving math images, this strategy often fails to accurately interpret
visual information within the CoT process, leading to reasoning errors.

Recent approaches have attempted to interleave visual content within reasoning steps through mecha-
nisms such as bounding box selection and image cropping [55, 26, 76]. While effective in general
visual scenarios, these methods still face three key limitations when extended to multimodal mathe-
matical reasoning:

1. Reliance on coarse-grained box-shaped image regions: Recent advances introduce visual
information into the CoT process by selecting image regions through bounding box-based
methods. Visual-CoT [55], Visual SKETCHPAD [26], and VPT [76] all operate on box-
shaped image regions, employing strategies such as bounding box generation, iterative
masking, cropping, or re-encoding. However, as shown in Figure 1, these approaches all rely
on bounding box-based cropping. While such box-level cues are effective in domains like
object detection, where objects are typically isolated, they are too coarse-grained to capture
the complex structures in mathematical images, where visual information is not discrete
but highly interconnected. As a result, box-shaped selection tends to interleave too many
irrelevant or misleading visual tokens, impairing the accuracy of mathematical reasoning.

2. Limited perception of vision encoders on math content: Some methods, like ICoT [16],
adopt attention-based token selection to identify relevant visual tokens during reasoning
without requiring additional training. These approaches rely heavily on visual features
extracted by the vanilla vision encoders without specific tuning. However, as noted in
MAVIS [83], mainstream vision encoders, which are primarily based on CLIP [54] or
SigLIP [78], are pre-trained on natural images with general scenes, making mathematical
images out-of-distribution. As a result, such methods often struggle to accurately locate
relevant visual regions in complex mathematical tasks.



3. Dependence on external capabilities for visual modification: Other approaches attempt
to enhance visual reasoning by dynamically generating new visual content or modifying
existing images. MVoT [36] is built upon a unified autoregressive MLLM [59] to generate
images as part of the CoT process, but it is only applicable to spatial planning tasks.
Meanwhile, Visual SKETCHPAD requires external tools to draw on the original image in
geometry-related tasks. These approaches depend on external capabilities, either requiring
large-scale data to train the understanding model for generation, or relying on external tools
with additional inference over the modified images, which leads to numerous extra costs.

Therefore, to address these challenges, we aim to propose a fine-grained, efficient visual interleaved
CoT method to enhance the mathematical reasoning capabilities of MLLMs. In this paper, we
introduce MINT-CoT, an approach of Mathematical INterleaved Token selection for Chain-of-
Thought reasoning, which facilitates multimodal reasoning by interleaving relevant visual regions
within reasoning steps. At the core of the MINT-CoT is the Interleave Token, a special token generated
through the next-token prediction process. During reasoning, MINT-CoT automatically identifies and
incorporates the most relevant visual tokens from the original image at each reasoning step. This is
achieved by computing similarity scores between the output hidden states of the Interleave Token
and all visual tokens, in order to identify the tokens most relevant to the mathematical concept at the
current step. These selected visual tokens are then dynamically integrated into the textual reasoning
steps, enabling the flexible selection of visual regions throughout the CoT process. In this way, the
interleaved regions of mathematical images are not restricted to box-shaped areas but can flexibly
include geometric shapes, line segments, coordinates, and other elements.

To enable effective training of MINT-CoT, we construct the MINT-CoT dataset, a 54K visual
interleaved reasoning dataset. Each data point contains reasoning steps paired with the indices
of selected tokens corresponding to the mathematical concepts involved in each step. We source
mathematical problems from the Mulberry-260K dataset [74] to construct text-only CoT reasoning
format, then annotate the reasoning steps with corresponding image regions through a four-step
pipeline: (1) dividing images into grid-indexed regions, (2) mapping recognized text elements to
grid indices via OCR-based text localization, (3) extracting key words, and (4) assigning visual
regions to these key words using an advanced MLLM. This process creates a visual interleaved CoT
reasoning dataset providing token-level supervision for training models to interleave visual content
into reasoning steps.

Building on the MINT-CoT framework and MINT-CoT dataset, we design a progressive training
strategy, the MINT-CoT training strategy, that incrementally improves MLLMs’ ability with three
training stages: (1) Text-only CoT Training, (2) Interleaved CoT SFT, and (3) Interleaved CoT RL.
Through this training strategy, we train a MINT-CoT-7B model with the capability of mathematical
visual interleaved CoT reasoning. Extensive experiments demonstrate the superiority of our proposed
approach. Specifically, our method achieves absolute improvement of +32.59% on MathVista [43],
+26.92% on GeoQA [5], and +23.2% on MMStar [7] benchmark compared to the baseline model.

Our main contributions are as follows:

* We propose MINT-CoT, which uses the Interleave Token to interleave fine-grained visual
tokens within reasoning steps, enhancing multimodal mathematical reasoning.

* We construct the MINT-CoT dataset, a 54K dataset for multimodal mathematical reasoning,
offering fine-grained alignment between textual rationales and visual inputs. We develop an
automated pipeline to generate visual interleaved CoT data annotated with token indices.

* We develop a progressive three-stage MINT-CoT training strategy, to improve interleaved
mathematical reasoning. Extensive experiments validate the efficiency of our method.

2 Related work

MLLMs for Mathematics. Recent advancements in MLLMs [50, 41, 2, 31] have shown impressive
capabilities in various vision-language tasks. However, even powerful models like GPT-4V [50]
and Qwen2-VL [63] fail to demonstrate satisfying performance on existing visual mathematical
benchmarks [5, 44, 43], as highlighted by MathVerse [82]. Various specialized approaches [15, 83,
28,9, 45, 57, 53] have emerged to enhance visual mathematical reasoning. Current approaches
mostly focus on enriching the multimodal math data. G-LLaVA [15] extends the LLaVA architecture
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Figure 2: Overview of the MINT-CoT framework. During CoT reasoning, MINT-CoT generates an
Interleave Token before each reasoning step and computes the similarity scores between embeddings
projected by the decoder-side visual projector and the interleave projector. Based on these similarity
scores, relevant visual tokens are selected, and the model inferences with these selected visual tokens.

with geometric reasoning capabilities by augmenting the current dataset. Math-LLaVA [57] enlarges
the data scope with the introduced MathV360K dataset. MAVIS [83] first identifies the critical issue
of the vision encoder and empowers it with the mathematical capability. Then it further develops an
automated system for generating mathematical visual datasets at scale. Reverse Chain-of-Thought
(R-CoT) [9] introduces the Geometry Generation Chain for creating geometric images with more
accurate descriptions.

Visual Chain of Thought. With advancements of various visual reasoning tasks [43, 77, 30, 75, 69],
visual chain of thought has been emerging as an effective method for both image generation [23, 29,
61, 87] and understanding [52, 74, 60] tasks. Our work focuses on leveraging it for reasoning on
images, where two distinct methods have emerged. One line of the method relies on textual CoT to
conduct multimodal analysis [11, 46, 6, 79, 10, 73]. For example, R1-V [6] extends the paradigm of
DeepSeek R1 [19] to generate a comprehensive text CoT to analyze the visual information before
providing the final answer. Another line of method explicitly incorporates multimodal elements
in the rational [55, 47, 67, 26, 35]. Visual CoT [55] and Chain-of-Spot [42] propose to crop the
region of high interest on the image and integrate it into the CoT process. Chain-of-Image [47] and
Visual SKETCHPAD [26] introduce auxiliary tools to generate helpful diagrams for mathematical or
geometric problem-solving. Although these methods demonstrate competitive performance, they are
limited to rigid image cropping or dependence on external tools. Recently, ICoT [16] leverages the
attention map of the MLLM to select the relevant visual tokens to compose the multimodal rational.
However, this approach relies solely on attention scores on the image feature maps, which have been
shown to be insufficiently informative for mathematical scenarios [83].

3 Method

To address the challenges of multimodal CoT in mathematical reasoning, we propose MINT-CoT. In
this section, we first introduce the framework of MINT-CoT in Section 3.1. Then we introduce the
MINT-CoT dataset and provide a detailed discussion of the dataset generation method in Section 3.2.
Finally, we present the progressive MINT-CoT training strategy in Section 3.3.

3.1 MINT-CoT

Previous CoT approaches in MLLMs mainly generate text-based reasoning steps, which are not
explicitly grounded in visual features and therefore struggle with mathematical reasoning that involves



visual details. We formulate this CoT reasoning process as:
{sW @ s®Y answer = LLM(V, TextEncoder(T)), e

where V' = VisionEncoder(I) = {v, }_; denotes the visual feature extracted from the input image
I, and each v, represents the 7-th visual token generated by the vision encoder. 7" denotes the input
mathematical question and instructions, {s(*)} is the sequence of textual reasoning steps generated by
the model, and answer is the final answer. Recent advancements attempt to incorporate multimodal
reasoning steps in the CoT process. However, current coarse-grained methods only focus on selecting
box-shaped visual regions; how to adaptively select the visual content in alignment with each textual
reasoning step remains an open question. We thus propose the MINT-CoT framework and introduce
an Interleave Token to help MLLM:s select visual tokens from the visual feature V. The overview of
the MINT-CoT framework is illustrated in Figure 2.

Interleave Token. An Interleave Token is a special token generated prior to each reasoning step. It
is used to select visual tokens that are relevant to the mathematical concepts involved in that step (e.g.,
“line segment AB”, “angle DOC”), thereby facilitating the reasoning process. When an Interleave

Token is output in step ¢, its output hidden state hé?stiimlv is projected via a post interleave projector
Pyost_inttv, While all the output hidden states of the visual tokens Apos;_vis are projected via a post visual
projector Fyos_vis- The cosine similarity between the two projected embeddings is first computed and

then scaled by a learnable parameter ~:

a(i) =7y - Cos (Ppost_intlv(hl()?sliim]v)» Ppost_vis(hpost_vis)) . (2)
Each tokens’ similarity score a(Ti) is then compared against a predefined threshold €, and visual
tokens with scores above this threshold are selected:

{v} = (ol | ol > 6}, 3)

The selected tokens {v(} are interleaved into the reasoning process at step i. In this way, the
important visual regions are interleaved into the model, prior to each textual step, enhancing visual
perception and improving reasoning accuracy.

Inference with Interleaved Visual Tokens. With the selected visual tokens {v(*)} obtained at each
reasoning step, MINT-CoT interleaves both visual content and text-based reasoning steps throughout
the inference process, ultimately producing the final answer. Formally, this process extends the
standard CoT formulation in Eq. I as:

{v(l), s @ @ k) s(k)}, answer = LLM(V, TextEncoder(T)). )

This interleaved token selection mechanism enables the model to explicitly ground visual evidence
throughout the reasoning chain, thereby facilitating visual interleaved CoT reasoning for solving
multimodal mathematical problems.

3.2 Dataset Curation

To empower MINT-CoT capabilities for MLLMs, we develop a data generation pipeline that au-
tomatically generates mathematical visual interleaved data annotated with selected token indices,
and obtain 54K samples for model training. To construct the text-only cot format of our dataset,
we begin by selecting mathematical problems from the Mulberry-260K dataset [74], which was
created using Collective Monte Carlo Tree Search and demonstrates strong performance on reasoning
tasks. Specifically, we extract the “### Rationale” and “### Steps” sections from the dataset as the
reference reasoning steps for our task. Using these sections alongside the corresponding images, we
follow a four-step data construction process, as shown in Figure 3:

1. Grid Images. To obtain the indices of visual tokens for subsequent token index annotation
in textual reasoning steps, we divide the original images into grid cells. Following the
patch-splitting strategy used in vision encoders such as Vision Transformer [12], each image
is partitioned into a grid, and a unique index is assigned to each cell. These grid cells and
their indices are subsequently overlaid onto the original images to produce grid-indexed
images.
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Step 2: Apply OCR

Question: ...

Solution:

### Rationales: ...

#### Step 1:\nSince ...

### Step 2:\nThe ratio of similar
triangles ADE to ABC is the same as the
ratio of AD to AB. Given AD:AB = 1.0:3.0,
the ratio of sides is 1/3.

#### Step 3:\nGiven DE = 4.0, which
corresponds to 1/3 of BC in the similar

GPT-40
)

"Step 2": ["ratio of AD

triangles, set up the proportion using DE to to AB"],
#B?it# Step 4:\nLet x be the length of BC Step 3": ['BE", "BG"),
ep 4:\nLet x be the length of BC. " n. e
Then, (1/3)x = 4.0. Step 4: ['ES']
Key Words

#### The final answer is: .
Text-only CoT Reasoning

Step 3: Extract Key Words

GPT-40

)

Step 4: Align and

"ratio of AD to AB":
3,4,8,9,14,19,24,25
"DE": 8,9,10,11,14,15,16
"BC": 24,25,26,27,28,29

“OCR Text-index Pairs

Annotate Key Words

MINT-CoT Dataset Example:
Question:

What is the length of BC in triangle ABC, oL \
if DE is parallel fo BC, and the ratio of

AD to AB is 1.0:3.0, with DE equal to 4.0?
Choices:\nA: 16\nB: 15\nC: 12\nD: 8

Outputs:

### Rationales: The problem involves a circle with a chord AB
where a radius OC is perpendicular to the chord. This situation
creates a right-angled triangle ODB, which can be analyzed
using the Pythagorean theorem. The goal is to find the length
of OB (denoted as u). Given data includes the length of the
chord AB and the segment OD.

##t# Let's think step by step.

#### Step 1:Since DE is parallel to BC, triangles ADE and ABC
are similar by the Basic Proportionality Theorem (or Thales’
theorem).

#H## Step 2:<interleave>3,4,8,9,14,19,24,25</interleave >
The ratio of similar triangles ADE to ABC is the same as the
ratio of AD to AB. Given AD:AB = 1.0:3.0, the ratio of sides is
1/3

#iH Step 3:<interleave>8,9,10,11,14,15,16,24,25,26,27,
28,29</interleave>Given DE = 4.0, which corresponds to 1/3
of BC in the similar triangles, set up the proportion using DE to

### Step 4i<interleave>24,25,26,27,28,29< /interleave>

™ Lef x be the length of BC. Then, (1/3)x = 4.0.

### Step 5:Solve for x by multiplying both sides by 3, giving
x=40%3=12.
#i#t# The final answer is: C

L Visual Interleaved CoT Reasoning

Figure 3: Data generation pipline. Step 1: Grid Images. We divide each image into grid cells
and assign index values to each cell. Step 2: Apply OCR. We use PaddleOCR to recognize textual
elements and associate them with corresponding grid indices. Step 3: Extract Key Words. We employ
GPT-4o to extract key words from each reasoning step. Step 4: Align and Annotate Key Words. We
use GPT-4o to annotate each key word with the grid indices, and get the final visual interleaved CoT
reasoning steps.

2. Apply OCR. Then, to more accurately map token indices onto textual reasoning steps,
we apply PaddleOCR [37] to recognize textual elements in the original images. And we
align the bounding boxes of the detected text with their corresponding grid indices, thereby
constructing “OCR text—index” pairs.

3. Extract Key Words. Certain mathematical concepts often play a significant role in each
reasoning step. Selecting visual tokens closely related to these concepts can improve
reasoning accuracy. Therefore, we employ GPT-40 [12] to extract key words from each
reasoning step. Since the extracted key words are used in the subsequent annotation with
visual indices, they are extracted only when a reasoning step contains links to visual tokens.

4. Align and Annotate Key Words. Finally, given the grid-indexed images, the “### Rationale”
and “### Steps” sections, the “OCR text—-index” pairs, and the extracted key words, we
prompt GPT-40 to annotate each key word with the corresponding grid indices. These
annotated indices are subsequently inserted into the reasoning steps associated with their
corresponding key words, resulting in a visual-interleaved CoT reasoning dataset.

Through this process, we construct a dataset of 54K samples, where the reasoning steps are annotated
with corresponding grid indices. As shown in the right column of Figure 3, each data point consists
of a mathematical problem and an image as input, with the corresponding visual interleaved CoT
response as output. This dataset serves as the foundation for training the MINT-CoT models. Further
details are provided in Appendix A.2.

3.3 Training strategy

Building on the previously introduced MINT-CoT framework and dataset, we now describe the
corresponding MINT-CoT training strategy, which consists of three stages: (1) Text-only CoT
Training, (2) Interleaved CoT SFT, and (3) Interleaved CoT RL.

Stage 1: Text-only CoT SFT. To enable the MLLM to adopt a general reasoning format, we first
train the base model using the text-only CoT reasoning data in MINT-CoT dataset, without visual
interleaving. This stage serves as a foundation for subsequent interleaved training.

Stage 2: Interleaved CoT SFT. In the second stage, we aim to train the model to select visual
tokens using the Interleave Token and adapt to reasoning with interleaved visual content. The model



is fine-tuned with a loss that jointly optimizes both textual reasoning and visual alignment. As
introduced in Eq. 4, the output sequence of MINT-CoT alternates between sets of selected visual
tokens v(%) and textual reasoning steps s(*), followed by the final answer:

{v(l), s @ @ k) s(k)}, answer ~ Py(- | I,T), 5)

We first apply a cross-entropy loss to textual tokens at positions T C {1,2,...,T'} covering all
segments {s(Y} and the answer, while conditioning on the full preceding sequence. Let Y =
{y1, 92, ..., yr} denotes the full sequence of output tokens. Specifically, the loss for predicting the
next textual token is defined as:

Leg=—Y logPo(yr | y<e, I,T) (6)
teT

We do not supervise the cross-entropy loss for predicting the Interleave token. Instead, we manually
concatenate it at each step, and during inference, we concatenate the Interleave Token whenever
the “### Step” marker is generated. To supervise the interleaved visual tokens, we apply a binary
cross-entropy loss on the scaled cosine similarity scores « introduced in Eq. 2 with ground-truth
labels X € {0,1}:

N L
‘CBCE = — Z Z (Xij log O'(Oéij) + (1 — Xij) log(l — a(aij))), (7)

i=1 j=1

where [V is the number of Interleaved Tokens in a batch, L is the length of input visual tokens, and
o(+) denotes the sigmoid function. The final training objective is defined as the sum of both losses:

L = Lcg + LBCE. ®)
This combined loss guides the model to jointly align visual tokens and perform interleaved reasoning.

Stage 3: Interleaved CoT RL. To move beyond supervised annotations, we aim to enable the
model to autonomously explore more flexible and effective selection of visual tokens guided by
reasoning objectives, and enhance its ability to perform interleaving CoT reasoning. Reinforcement
learning provides a natural framework for this goal. To this end, we extend the Group Relative Policy
Optimization (GRPO) [56] framework to our MINT-CoT training strategy. For a group of reasoning
chains with group size G, we compute answer correctness as the reward r € {0, 1} and define the

%E:;(r), where r; indicates if the j-th chain of

steps in a group yields the correct answer. The policy loss for the generated tokens is then formulated
as:

advantage via group-wise comparison as A; =

G
1 By (Y) 7 )

L =—-Ey — 22 A; — BDkL[Ps || Pre , 9

e rrs G Jz:; <P901d(}/}) i=P KL[ 2 f] ©)

where P is a reference policy that serves as a regularization target. This stage further strengthens
the model’s reasoning ability with visual interleaved content, ultimately resulting in MINT-CoT-7B.
Additional theoretical details of this training stage are provided in Appendix A.3.

4 Experiments

In this section, we first introduce the experimental settings in Section 4.1. Then, we discuss the
quantitative results and ablation study in Section 4.2 and Section 4.3 respectively. Finally, we present
the qualitative results in Section 4.4.

4.1 Experimental Settings

Implementation Details. We build on Qwen2-VL-7B [64] and train our model in three stages with
a combination of SFT and RL on the MINT-CoT dataset. All model parameters except the vision
encoder are updated. Full implementation details are provided in Appendix A.4.

Test Benchmark. We evaluate MINT-CoT on three mathematical benchmarks: GeoQA [5], Math-
Vista [43] and MMStar [7]. GeoQA is a benchmark of geometric problems with annotated solution
programs. To evaluate on GeoQA, we follow R1-V [6] and Hint-GRPO [27] using the Geol70K
test set [15], the English version of the GeoQA benchmark. MathVista is a benchmark designed to



Table 1: Combined quantitative results on MathVista. We evaluate MINT-CoT-7B, the baseline
model, and state-of-the-art general and reasoning MLLMs on the mathematical subset of MathVista.
MINT-CoT significantly outperforms the baseline model and achieves superior performance compared
to open-source reasoning models. Bold and underlined results indicate the best and second-best
among open-source models, respectively.

Model ‘ #Params \ MathVista-Math
\ | Al GEO ALG GPS TQA

Closed-Source Model

GPT-4o [48] - 66.67 63.68 67.04 63.46 7742
Claude-3.5 Sonnet [1] - 67.41 65.09 67.79 65.38  74.19
Open-Source General Model

LLaVA-OneVision-Qwen2-7b-ov [34] 7B 67.04 69.34 67.04 69.71  58.06
InternVL2-8B [8] 8B 62.59 62.26 62.92 62.50  62.90
InternVL2-8B-MPO [65] 8B 68.52 68.87 68.91 69.71  64.52
DeepSeek-VL2 [68] 4.5B 65.56 63.68 65.54 63.94  70.97
Qwen2.5-VL-7B-Instruct [3] 7B 66.66 65.56 66.29 65.87  69.35
Open-Source Reasoning Model

Open-R1-Multimodal [13] 7B 54.81 52.36 54.68 53.37  59.68
R1-VL-7B [80] 7B 69.63 68.87 69.66 69.71  69.35
Mulberry [74] 7B 68.52 67.92 68.54 68.75  67.74
MM-Eureka [46] 7B 72.59 71.22 72.66 72.60  72.58
Qwen2-VL-7B-Instruct [64] (Baseline) 7B 41.11 35.85 41.57 36.54 5645
MINT-CoT-7B 7B 73.70 74.53 73.78 75.00  69.35
A over the Baseline Model +32.59 +38.63 +32.21 +3846 +12.9

Table 2: Combined quantitative results of on Table 3: Combined results on the mathematical
GeoQA. We evaluate MINT-CoT-7B, the baseline subset of MMStar. We evaluate MINT-CoT-7B,

model and the state-of-the-arts. the baseline model and the state-of-the-arts.
Model | GeoQA  Model | MMStar-Math
Qwen2.5-VL-7B-Instruct [3] 43.50 Qwen2.5-VL-7B-Instruct [3] 66.8
RI1-V [6] 59.00 IntemVLZ-SB [8] 66.8
Open-R1-Multimodal [13] 48.67 Ry 68.4
Hint-GRPO [27] 55.31 ulberry [74] 66.8
- : Open-R1-Multimodal [13] 59.2
Qwen2-VL-7B-Instruct [64] (Baseline) | 37.80 Qwen2-VL-7B-Instruct [64] (Baseline) 46.4
MINT-CoT-7B 64.72 MINT-CoT-7B 69.6
A over the Baseline Model +26.92 A over the Baseline Model +23.2

integrate challenges from diverse mathematical and visual tasks. As our paper targets specifically
mathematical problems, we extract the mathematical subsets (FunctionQA, Geometry3K, GeoQA+,
GEOS, and UniGeo), i.e., ‘MathVista-Math’ in Table 1, and report accuracy scores across four
primary tasks: geometry reasoning (GEO), algebraic reasoning (ALG), geometry problem solving
(GPS), and textbook question answering (TQA). MMStar is a multi-modal benchmark covering dif-
ferent core capabilities and detailed axes. For evaluation, we also extract the mathematical capability
dimension, referred to as “MMStar-Math”.

4.2 Quantitative Results

Comparison with the Baseline. As shown in Table | for the results of mathematical subsets of
MathVista, our MINT-CoT-7B achieves an improvement of up to +32.59% over the baseline, and
improves a lot on all four primary tasks. This strongly demonstrates the effectiveness of our MINT-
CoT framework and training strategy. Table 2 presents the results on the GeoQA benchmark, where
our MINT-CoT-7B outperforms the baseline model by +26.92%. Similarly, in Table 3, MINT-CoT-7B
outperforms the baseline model by +23.2% on MMStar-Math, validating the efficiency of MINT-CoT
on geometry problems.



Table 4: Ablation study on different training stages. We evaluate the three progressive training
stages on different benchmarks.

Model | MMStar-Math | GeoQA | MathVista-Math

| | | Al GEO ALG GPS TQA
Baseline [64] 46.4 37.80 | 41.11 3585 4157 3654 5645
+ Text-only CoT SFT 67.6 59.02 | 64.07 64.15 64.04 6442 62.90
+ Interleaved CoT SFT 68.0 62.07 | 6778 6651 6779 6731 69.35
+ Interleaved CoT RL 69.6 6472 | 7370 7453 7378 75.00 69.35

Figure 4: F1 score plot of
Table 5: Ablation study of different interleaving methods on GeoQA visgual token selectign dur-

and MathVista-Math. Our Interleaved CoT SFT achieves the highest ing Interleaved CoT SFT.
improvement on both benchmarks, demonstrating the effectiveness of F1 Score Trend

our interleaved token selection method.
0.5

Model \ GeoQA \ MathVista-Math o

\ | AL GEO ALG GPS TQA  §
Original 37.80 41.11 35.85 41.57 36.54 56.45 © o2
Text-only CoT SFT 59.02 64.07 64.15 64.04 6442 62.90
Original Image CoT SFT 61.41 40.37 38.68 40.82 39.42 43.54 oL
Bounding Box CoT SFT 61.80 | 6556 6321 6554 63.94 7097 .
Interleaved CoT SFT (Ours) 62.07 67.78 66.51 67.79 67.31 69.35 Global Step

Comparison with State-of-the-arts. We also compare our model with state-of-the-art MLLMs,
including closed-source model, open-source models, and open-source reasoning models. Specifically,
for open-source reasoning models, we choose recent works like R1-VL-7B [79], MM-Eureka [46]
and Open-R1-Multimodal [13]. As shown in Table I, our model achieves the highest overall accuracy
on the MathVista mathematical subsets, outperforming both open-source reasoning models and
general models, and surpassing the best-performing open-source MLLM by +1.11% as well as
closed-source models, demonstrating strong capabilities in mathematical reasoning. On geometry
reasoning, geometry problem solving and algebraic reasoning, MINT-CoT-7B outperforms state-
of-the-art models by +3.31%, +1.12%, and +2.4%, respectively. However, for textbook question
answering, our performance is slightly below MM-Eureka. On the GeoQA benchmark, as shown in
Table 2, our model outperforms the state-of-the-art models by +5.72%. In Table 3, MINT-CoT-7B
also outperforms the state-of-the-art by +1.2% on MMStar-Math, further demonstrating its capability
in geometry reasoning.

4.3 Ablation Study

Training Stage Ablation. We conduct an ablation study on the different training stages of MINT-
CoT, as described in Section 3.3. The results on different benchmarks are presented in Table 4. The
Text-only CoT SFT stage improves performance by +21.2% on MMStar-Math, +21.22% on GeoQA,
and +22.96% on MathVista-Math, as it helps the model learn the general reasoning format illustrated
in the left column of Figure 3. The Interleaved CoT SFT stage further boosts performance by +0.4%
on MMStar-Math, +3.05% on GeoQA, and +3.71% on MathVista-Math across all primary tasks by
enabling the model to interleave visual tokens into textual reasoning steps. Finally, the Interleaved
CoT RL stage enhances performance by an additional +1.6% on MMStar-Math, +2.65% on GeoQA,
and +5.92% on MathVista-Math through reinforcement learning, which enables the model to reason
more effectively with interleaved tokens.

Interleaving Method Ablation. We conduct an ablation study on the interleaving method used in
the Interleaved CoT SFT stage, with the results presented in Table 5. Starting with the model trained in
the Text-only CoT SFT stage, we simply interleave the original image into each reasoning step without
the use of projectors or the Interleave token structure, which we refer to as “Original Image CoT
SFT”. We find that, on MathVista-Math, the performance of Original Image CoT SFT significantly
decreases compared to Text-only CoT SFT. On the GeoQA benchmark, it also underperforms our
Interleaved CoT SFT. This decline is likely due to the interleaving of excessive unrelated visual
tokens during reasoning. Furthermore, we train a model that uses the Interleave token to select a



Question:

Given triangle ABC where AB = AC and angle BAC measures 100.0 degrees, and the 5 &
perpendicular bisector of AB intersects AB and BC at points D and E, what is the measure of angle

BAE? Represent the measure of angle BAE as 0. Choices: A: 80° B: 60° C: 50° D: 40° B i

Qwen2vl-7B-Instruct

To solve this problem, we first need to visualize the friangle and the given information:\n\nl. Triangle ABC is isosceles
with AB = AC and angle BAC = 100.0 degrees.\n2. The perpendicular bisector of AB intersects AB at point D and intersects
BC at point E.\n\nSince AB = AC, triangle ABC is isosceles as well. The perpendicular bisector of AB implies that AE is the
median fo the hypotenuse of triangle ABC (because D is the midpoint of AB). \n\nAlso, in an isosceles triangle, if a median
is drawn to the hypotenuse, it creates two right-angled triangles. Let's denote the measure of angle BAE as 6. Due to the
properties of the isosceles friangle and the perpendicular bisector, angle BAE (6) should be half of the apex angle
BAC.\n\nSince ZBAC = 100.0 degrees, 6 = 100.0 / 2 = 50.0 degrees.\n\nTherefore, the correct answer is C.

MINT-CoT-7B

#+## Rationales: The problem involves a geometry question about angles in an isosceles triangle with certain line
intersections. To find angle BAE, consider properties of isosceles triangles and angle bisectors.
### Let's think step by step.

### Step 1t Since friangle ABC is isosceles with AB = AC, angles ABC and ACB are equal.

#1H# Step 2: Calculate angle ABC and ACB. The sum of angles in triangle ABC is 180 degrees. Therefore,
=== angle ABC = angle ACB = (180 - angle BAC) / 2 = (180 - 100) / 2 = 40 degrees.

### Step 3: The perpendicular bisector of AB implies that point E is equidistant from A and B, making BE =

AE. The bisector makes angle BAE an angle in triangle BAE.

##H# Step 4: Apply angular considerations: Consider that both AE and BE are equal, and with angle BAC = 100
P& degrees and angle ABC = 40 degrees, angle BAE will share properties of an isosceles triangle and

angle relationships.
### The final answer is: D /

Figure 5: Qualitative results of Qwen2-VL-7B-Instruct and MINT-CoT-7B. MINT-CoT-7B demon-
strates improved CoT reasoning capability by interleaving fine-grained visual tokens. There is also a
visualization of the similarity scores for the Interleaved Token generated during Step 4.

Cosine Similarity
Scores

rectangular region of visual tokens at each reasoning step, referred to as “Bounding Box CoT SFT”.
As shown in the table, this approach underperforms our Interleaved CoT SFT on both benchmarks,
except for the TQA task, and even underperforms the Text-only CoT SFT on GEO and GPS tasks
in MathVista-Math. These results demonstrate the effectiveness of our token selection method for
mathematical reasoning tasks.

4.4 Qualitative Results

We present the qualitative results of the baseline model Qwen2-VL-7B-Instruct and our proposed
model MINT-CoT-7B, as shown in Figure 5. Compared to the baseline, MINT-CoT-7B demonstrates
a more coherent reasoning format and is capable of selecting and interleaving relevant visual tokens
during inference. More qualitative results of our model are shown in Appendix A.6. Moreover, we
provide a plot of the average F1 score between the selected visual tokens and ground truth visual
tokens in each reasoning step during the Interleaved CoT SFT stage, as shown in Figure 4. For the
Interleaved CoT RL stage, we do not report an F1 score plot due to the absence of ground truth visual
token indices for online inference. As shown in the plot, the F1 score exhibits a fluctuating upward
trend during training, demonstrating that the accuracy of visual token selection is increasing during
the Interleaved CoT SFT training strategy.

5 Conclusion

In this paper, we first propose MINT-CoT, a method for enhancing multimodal mathematical reasoning
by interleaving fine-grained visual tokens into CoT. We use the novel Interleave Token to automatically
select visual tokens for each reasoning step. Then, we introduce the MINT-CoT dataset and a four-step
dataset generation pipeline. Finally, we present the MINT-CoT training strategy, which includes
Text-only CoT Training, Interleaved CoT SFT and Interleaved CoT RL, enhancing the MLLMs’
ability to reason over interleaved visual tokens. Our experiments with the obtained MINT-CoT-7B
model demonstrate significant improvements across various benchmarks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The three main conclusions and the scope of our paper are detailed in the final
section of the introduction and summarized in the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the asuumptions and theorems are clearly stated.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The architecture details are provided in the Methodology and Experiment
Section for reproducing the main experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code and data are currently available.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are provided in the Experiment Section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We conduct experiments only once and report the accuracy of the best model,
and it would be too computationally expensive to conduct the pre-training multiple times.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers or websites that produced the code package or
dataset.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We details the data and model in the experiment section, appendix, and GitHub.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A1 Overview
We organize our supplementary material as follows.

¢ Dataset Details
— Dataset Example
— Dataset Statistic
¢ Theoretical Details of Interleaved CoT RL
Additional Implementation Details
Additional Ablation Study
— Text-only Method Ablation
— Results on Other Benchmark
— Projector Ablation

Additional Qualitative Results

¢ Limitations

A.2 Dataset Details
Dataset Example We present examples from our MINT-CoT Dataset in Figures 6 to 8, where the

yellow highlights indicate the interleaved grid indices, and the blue highlights denote the key words
in each reasoning step.

Dataset Statistic We provide the key statistics of MINT-CoT Dataset in Table 6. This dataset
comprises 54,031 data points derived from the mathematical portion of the Mulberry-260k dataset.

Table 6: Key statistics of the MINT-CoT dataset.

Statistic | Value
Total data points 54,031
Data points containing Interleave Tokens (interleaved data points) 52,142
Average number of Interleave Tokens per interleaved data point 2.80
Maximum number of Interleave Tokens in a single interleaved data point 12
Average number of selected indices per interleaved data point 19.91
Average number of selected indices per Interleave Token 7.10
Minimum number of selected indices in a single Interleave Token 1
Maximum number of selected indices in a single Interleave Token 140

A.3 Theoretical Details of Interleaved CoT RL

Following the standard GRPO framework [56], we integrate GRPO into our approach. Specifically,
similar to Lcg in Stage 2, we apply a policy loss Lgrpo_text to textual tokens:

, (10)

— 1 G 1 Po(yj,elyj<e,1,T) A
Larpoexn = ~Epviye wpy  (i1m) |:G i1 [Ty Lter, {Peam(yj_l,lyj,o,LT) +Aje = BDxu Py || Pre]

where Aj,t is the advantage detailed in Section 2.3, Py is a reference policy that serves as a
regularization target, and Dky.[Py || Prs] penalizes deviation from this reference distribution to
encourage stable updates. The min and clip operations are omitted for brevity.

To enable more flexible and effective selection of visual tokens, we further apply a Lgrpo_vis to

the scaled similarity scores a;i, which are derived from the interactions between Interleave tokens

and input visual tokens in the the Jj-th chain of reasoning steps. Let /N; denote the the number of
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Table 7: Ablation study on the post interleave projector and the post visual projector. We
compare three configurations: without projectors, with single-layer linear projections, and with
two-layer MLPs.

Configuration | Layer Number | All  GEO ALG GPS TQA

w.0. projectors | - | 6444 63.68 6442 6394 66.13
. Drotectors 1 67.78 6651 6779 67.31 69.35
- ProJ 2 65.18 6321 6554 63.94 69.35

reasoning steps in j-th chain, and M () denote the number of visual tokens interleaved in the i-th

reasoning step in the j-th chain. Formally, the loss is defined as:

_ 1eG 1N 1 MY Py 1T 2
Larrovis = —Biyvye wp, (1) |G 2o=1 W7 2ois o >l {m A = BDkL[Py || Petl p| - (11)
The final policy loss is defined as the sum of both losses, with the Lgrpo_vis rescaled by a weighting
factor A:

Lcrro = LGRPO_text + A - LGRPO_vis- (12)

By computing this combined loss, we enhance both token selection and inference capabilities using
Interleave tokens.

A.4 Additional Implementation Details

We use Qwen2-VL-7B [64] as the base MLLM model in our experiments. Each of the two projectors,
Pterieave and Py, is implemented as a single linear layer. We uniformly set the threshold § = 0.7 to
filter the similarity scores. The hyper-parameter +y to scale the similarity is set to 1/0.07 following
CLIP [54]. The training procedure consists of three stages: (1) Text-only CoT Training, where we train
for 2 epochs on the MINT-CoT dataset without applying the interleaving strategy, using a learning
rate of 5.0e-6 and a batch size of 64, following the configuration of Mulberry [74]; (2) Interleaved
CoT SFT, where we train for 3 epochs on the MINT-CoT dataset with a learning rate of 1e-6 and a
batch size of 64; and (3) Interleaved CoT RL, where we train for 700 steps on the MINT-CoT dataset,
using a group size G = 4, a weighting factor A = 0.02, a learning rate of le-6 and a batch size of
16. During training, all model parameters, including the Interleave Token and projector layers, are
unfrozen, except for the vision encoder, which remains fixed. Finally, the resulting model is named
MINT-CoT-7B.

For Bounding Box CoT SFT, we use the MINT-COT dataset and extract the minimal enclosing
rectangle that covers the index positions of all labels as the ground truth bounding box to train the
model. We train 2 epochs with a learning rate of 1e-6 and a batch size of 64. And during inference, it
interleave the minimal enclosing rectangle that covers all the seleted tokens. For Original Image CoT
SFT, however, we enforce the concatenation of the entire image at the beginning of each step during
both training and inference. We train only 1 epoch with a learning rate of le-6 and a batch size of 64,

A.5 Additional Ablation Study

Text-only Method Ablation We conduct an ablation study using a text-only training pipeline. This
involves first applying a Text-only CoT SFT stage to the baseline model, followed by a Text-only CoT
RL stage using the GRPO framework. As shown in Table 8, MINT-CoT still outperforms this setting
by 2.96% on the MathVista mathematical subsets, showcasing the superiority of our Interleaved CoT
approach.

Results on Other Benchmark In addition to the quantitative results in Section 3.2, we provide
results of the different training stages of our method on the vision-only input setting of the Mathemat-
ics section of MMMU-Pro [77] benchmark. As shown in Table 9, MINT-CoT-7B outperforms the
baseline model by +5%. and the performance improves with the Interleaved CoT approach, validating
the efficiency of our method.
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Table 8: Ablation study of the text-only training Table 9: Ablation study of different training stages

method. on the Mathematics section of the MMMU-Pro
Model | MathVista-Math ~ benchmark.
Baseline 4111 Model | MMMU-Pro-V
+ Text-only CoT SFT 64.07 Baseline 25
+ Text-only CoT RL 70.74 + Text-only CoT SFT 25
+ Interleaved CoT SFT 67.78 + Interleaved CoT SFT 30
+ Interleaved CoT RL 73.70 + Interleaved CoT RL 30
T R InputImage:  Grid Image: |
The Municipal Planning Bureau is designing a cross-street bridge with a height of = 4 .
'z' units, where z = 6.0. If the slope of the overpass AC follows a 3:4 ratio, what is :\“—L‘_" [T ; :
the length of the slope AC?\nChoices:\nA: 10m\nB: 8m\nC: 6m\nD: 6\3m 3 SEEEE
Outputs:

i ### Rationales: The problem involves calculating the hypotenuse (slope AC) of a right triangle where one side (the
i height AB) is given, and the ratio of the two legs (AB:BC) is provided. Using these details, the Pythagorean theorem
' will help find the length of the hypotenuse. ;
| ### Let's think step by steb. :
i ### Step Li_<interleave>9,16,23,30<interleave>Identify the values and ratios given. The height of the bridge (AB)is 6 !
! units, with a slope ratio of 3:4. indicatina AB:BC. ;
L #HH Step 2:<interleave>2,9,16,23,26,30,33<interleave>Assign the given ratio to the friangle's sides: AB corresponds to !
i 3 parts, and BC corresponds to 4 parts.
| ### Step 3:<interleave>23,26,30,33<interleave>Calculate the length of BC. Since AB is 6 units (which corresponds to '
i 3 parts), then each part is 2 units. BC, having 4 parts, will be 4 * 2 = 8 units. !
| ### Step 4:Use the Pythagorean theorem, \\( AC = \\sqrt{AB"2 + BC"2} \\). ;
| ### Step 5:Substitute the values into the equation: \\( AC = \\sqrt{6"2 + 8”2} = \\sqrt{36 + 64} = \\sqr+{100} = 10
P '
| ### The final answer is: A i

Figure 6: An example from MINT-CoT dataset.

Projector Ablation We conduct an ablation study on the post interleave projector Fyost_ingv and
the post visual projector Pos_vis on the Interleaved CoT SFT stage. Both projectors were initially
implemented as single-layer linear layers. We first remove both projectors entirely, and then replace
them with two-layer MLPs using GELU activation. Both configurations are trained for three epochs.
The results on the mathematical subset of MathVista are shown in Table 7, in which we find that the
initial configuration as single-layer linear layers performs the best over all primary tasks.

A.6 Additional Qualitative Results

In addition to Section 3.4, we provide more qualitative results of the baseline model Qwen2-VL-7B-
Instruct and our proposed model MINT-CoT-7B in Figures 9 to 11.

A.7 Limitations

In our dataset curation pipeline, the use of GPT-4o for dataset annotation still has some computa-
tional cost. Moreover, alternative reinforcement learning strategies beyond our method now remain
underexplored.

27



Question: Input Image: Grid Image:

N

Find the measure of the altitude drawn to the hypotenuse. 7
Choices: A: 11 B:\\sqrt{297} C:27 D: 297

L o

Outputs:

### Rationales: The question asks for the measure of the altitude drawn to the hypotenuse of a right triangle. Given
the lengths of segments \\( MP \\) and \\( PO \\), we can use properties of right triangles involving altitudes.
### Let's think step by step.

### Step 1. <interleave>22,23,25,29,30,32<interleave >Identify the known segments: \\( MP = 11 \\), \\( PO = 27
\\).

### Step 2:<interleave>21,22,27,28,29,34<interleave > The hypotenuse \\( MO = MP + PO = 11 + 27 = 38 \\).
### Step 3:Use the geometric mean theorem (altitude-on-hypotenuse theorem), which states that the altitude
squared \\( NP"2 \\) is equal to the product of the segments it divides the hypotenuse into: \\( NP"2 = MP \\times
PO \\).

### Step 4:Calculate the product: \\( NP"2 = 11 \\times 27 = 297 \\).

### Step 5:Find \\( NP \\) by taking the square root: \\( NP = \\sqrt{297} \\).

### The final answer is: B

Figure 7: An example from MINT-CoT dataset.

Input Image: Grid Image:
A

Question: “
Determine the degree measure of angle A in the figure, where circle O is inscribed in right

triangle ABC. Angle ACB measures 90 degrees and angle CBO measures 30 degrees.
Choices: A:15° B:30° C:45° D: 60° @A

C B

Outputs:

### Rationales: To solve this problem, we need to determine angle A in the right triangle ABC with a known 90-degree
angle at € and a 30-degree angle at B.

### Let's think step by sten.

### Step li<interleave>0,1,30,31,34<interleave >Recognize that triangle ABC is a right triangle with angle ACB
measuring 90 degrees.

### Step 2:<interleave>31,34<interleave>Identify that angle CBO, as part of triangle OBC, measures 30 degrees.
### Step 3:Use the fact that the sum of angles in trianale ABC is 180 degrees.

### Step 4:<interleave>0,1,34<interleave>Calculate angle ABC. Since angle CBO is 30 degrees and angle ACB is 90
degrees, angle ABC = 90 - 30 =60 dearees.

### Step b:<interleave>0,1,30,31,34<interleave>Find angle A using the angle sum property of a triangle:\nAngle A +
Angle ABC + Angle ACB = 180 degrees\nAngle A + 60 + 90 = 180\nAngle A = 180 - 150 = 30 degrees

### The final answer is: B

Figure 8: An example from MINT-CoT dataset.
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Question: -

As shown in the figure, in diamond ABCD, the diagonals AC and BD intersect at O. It is known “
that BD = 6 and AC = 8. The perimeter of diamond ABCD is (). AC

Choices: A: 40 B:20 C: 10 D: 5

Qwen2vl-7B-Instruct

The quadrilateral ABCD is a rhombus since its diagonals are perpendicular. \n\n[asy]\npair A,B,C,D,O0:\n\nA = (0,4):\nB =
(6,0):\nC = (-3*sqrt(3), 3):\nD = (0, 4):\nO = (0, 0);\ndraw(A--B--C--D--cycle, black+linewidth(1));\ndraw(A--C,
black+linewidth(1)); \ndraw(B--D, black+linewidth(1));\ndraw(O--A, black+linewidth(1));\ndraw(O--B,

black+linewidth(1)); \ndraw(O--C, black+linewidth(1));\ndraw(O--D, black+linewidth(1));\nlabel("$A$", A, N).\nlabel("$B$",
B, E):\nlabel("$C$", C, dir(315));\nlabel("$D$", D, N):\nlabel("$0$", O, S):\n[/asy]\n\nLet\'s label the intersection point
of the diagonals O. \n\nSince OA = OC = 4 and OB = OD = 3, we have OB = 3 and BD = 6.\n\nSo, the perimeter of the
rhombus ABCD is 40A + 40B=4* 4 + 4 * 3 =16 + 12 = 28.\n\nTherefore, the answer is 28. \n\nSince the question asks
for the perimeter of the diamond ABCD, the answer is 20. \n\nTherefore, the answer is B. X

MINT-CoT-7B

### Rationales:

To find the perimeter of the rhombus, the length of all sides needs to be determined. Since the diagonals bisect each
other at right angles in a rhombus, the sides can be found using the Pythagorean theorem.\n\n### Let's think step by
step. |

### Step 1t | Identify the properties of the rhombus. In a rhombus, the diagonals bisect
Cosine Similarity | each other at right angles. Therefore, AO = OC = AC/2 = 8/2 = 4 and BO = OD
Scores =BD/2=6/2=3.
#it# Step 2: -1, Use the Pythagorean theorem to calculate the side length (AD) of the rhombus.
A = The hypotenuse is AD, with AO = 4 and BO = 3.\n\n\\[\nAD = \\sqrt{AO"2 + BO"2}
Cosine Similarity g = \\sqrt{4"2 + 32} = \\sqrt{16 + 9} = \\sqrt{25} = 5\n\\]

### Step 3: Calculate the perimeter of the rhombus. Since all sides are equal in a rhombus, the perimeter is 4 times the
side length.\n\nPerimeter \\( = 4 \\times 5 = 20 \\)
### The final answer is: B /

Figure 9: Comparison between Qwen2-VL-7B-Instruct and MINT-CoT-7B.

B

Question: \

As shown in the figure, the radius of circle O is 4.0, BC is the diameter, AC is the tangent of circle

0, and AC = 6.0, then AB = () .
Choices: A:4 B:6 C: 10 D: 12 e S

Qwen2vl-7B-Instruct

Because AC is tangent to circle O, it is perpendicular to OC. By defining the length of AC as x, we can solve for segment
AB using the Pythagorean theorem in a right triangle:\n\nl. Start by understanding the Pythagorean theorem.\n2. Apply
the Pythagorean theorem to a right triangle with segments AC and AB as the legs and segment BC as the
hypotenuse.\n\nGiven that AO is the radius (4.0), we use the Pythagorean theorem in triangle OAB:\n\nAB = /(OA?® +
OB?)=/(4.0% +4.0%) \n\nAB = /(16 + 16) \nAB = /32 \nAB % 6.4\n\nSo the answer is approximate 6.4. It seems there is
no exact option with this value, but the closest one would be C) 6. However, given the calculation, the length AB should be
a bit more than the radius of circle O.\n\nTherefore, the answer is C:6. ¥

MINT-CoT-7B

### Rationales: To determine AB, understand the properties of the circle and the right-angled triangle formed by the
tangent AC and the diameter BC. Use the Pythagorean theorem in triangle ABC.
### Let's think step by step.

### Step 1t
Cosine Similarity 9 Identify _*rhe known lengths: radius of the circle (OC) is 4, and AC, the

Scores tangent, is 6.
##H# Step 2: . Recognize that BC is a diameter of the circle. Since the radius is 4, BC
Cosinse Similarity = (being the diameter) is twice the radius: BC = 8.

cores

### Step 3: Since AC is a tangent and BC is a diameter, consider triangle ABC. Triangle
Cosine Similarity ABC is a right triangle with AC perpendicular to BC.

Scores

### Step 4: Apply the Pythagorean theorem in triangle ABC: \\( AB"2 = AC"2 + BC"2 \\).

### Step 5: Substitute the known values into the Pythagorean theorem: \n\\( AB"2 = 62 + 872 \\).
### Step 6: Calculate the squares: \n\\(6"2 = 36 \\) and \\( 872 = 64 \\).

### Step 7: Sum the squares: \n\\( AB"2 = 36 + 64 = 100 \\).

### Step 8: Take the square root to find AB: \n\\( AB = \\sqrt{100} = 10 \\).

### The final answer is: C

Figure 10: Comparison between Qwen2-VL-7B-Instruct and MINT-CoT-7B.
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Question: A E D

In ABCD, given that AB < BC, the perpendicular bisector of diagonal AC intersects AD at point E.
Connect CE. If the perimeter of ABCD is 200cm, what is the perimeter of triangle CDE?
Choices: A:200.0 B:400.0 C:150.0 D: 100.0 B I

Qwen2vl-7B-Instruct

The correct answer is D.
By symmetry, BC = 50 cm, AD = 50 cm, so AE = 25 cm. From the right triangle AEC, AC"2 - AE"2 = CE"2,s0 AC"2 - AE"2
= CE"2 = AD"2 - AE"2. Therefore, CE = 25 cm. Therefore, the perimeter of triangle CDE =75 cm. X

MINT-CoT-7B

### Rationales: The problem involves understanding the geometric placement of point E and the relations between various
sides and diagonals in the quadrilateral. It requires determining the perimeter of the triangle CDE given the perimeter of
ABCD.

### Let's think step by step.

### Step 1: Given the perimeter of ABCD is 200 cm, we need to explore the relationships among the sides of the
quadrilateral and the triangle formed by extending certain segments.

HH# Step 2: £ # | The perpendicular bisector of AC indicates a symmetrical property:
Cosinse Similarity > g EA = EC. The intersection at E means that E is equidistant from A
cores

and C.

### Step 3: Since AB < BC, consider potential equalities or relationships with the line segment created by the
intersection of AD and the perpendicular bisector at E.

### Step 4: Express the perimeter of friangle CDE: CD + DE + EC. Given EC = EA due to E being on the perpendicular
bisector of AC, explore possible equalities or simplifications.

### Step 5: Using the perimeter constraint and the properties outlined, determine the lengths of the sides of triangle
CDE and thus its total perimeter.

### The final answer is: D ¢/

Figure 11: Comparison between Qwen2-VL-7B-Instruct and MINT-CoT-7B.
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