
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ST-GCOND: SELF-SUPERVISED AND TRANSFERABLE
GRAPH DATASET CONDENSATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing scale of graph datasets significantly enhances deep learning mod-
els but also presents substantial training challenges. Graph dataset condensation
has emerged to condense large datasets into smaller yet informative ones that
maintain similar test performance. However, these methods strictly require down-
stream usage to match the original dataset and task, leading to failures in cross-
task and cross-dataset scenarios. To address such cross-task and cross-dataset
challenges, we propose a novel Self-supervised and Transferable Graph dataset
Condensation method named ST-GCond, providing effective and transferable
condensed datasets. Specifically, for cross-task challenge, we propose a task-
disentangled meta optimization strategy to adaptively update the condensed graph
according to the task relevance, encouraging information preservation for various
tasks. For cross-dataset challenge, we propose a multi-teacher self-supervised opti-
mization strategy to incorporate auxiliary self-supervised tasks to inject universal
knowledge into the condensed graph. Additionally, we incorporate mutual infor-
mation guided joint condensation mitigating the potential conflicts and ensure the
condensing stability. Experiments on both node-level and graph-level datasets show
that ST-GCond outperforms existing methods by 2.5% ∼ 18.7% in all cross-task
and cross-dataset scenarios, and also achieves state-of-the-art performance on 5
out of 6 datasets in the single dataset and task scenario. Our code is available at
https://anonymous.4open.science/r/ST-GCond-FFB4.

1 INTRODUCTION

Dataset plays an essential role in contemporary machine learning research (Liu et al., 2024; Ghorbani
et al., 2022). It is also widely believed that there is a scaling law between dataset size and the power
of deep learning models (Kaplan et al., 2020). Graph datasets, in particular, contain vast amounts
of relations and entities that represent complex interactions, such as those found in social networks,
molecules, and recommender systems. These datasets serve as the foundation for many powerful
models designed to support various analytical applications (Schroff et al., 2015; Wu et al., 2019;
Battaglia et al., 2018). However, large-scale graph datasets also present significant challenges in
terms of storage, processing, and computational resources. On one hand, specific applications like
neural architecture search (Zhang et al., 2022; Guan et al., 2022) and continual learning (Choi et al.,
2024) require repetitive training on datasets, resulting in significant computational costs. On the
other hand, for users with limited computational resources, training on large-scale graph datasets can
be exceedingly time-consuming or even impractical. Recently, several graph dataset condensation
methods (Xu et al., 2024; Sun et al., 2024) have been proposed to address this and show remarkable
success in preserving essential information with extremely small datasets.

However, as shown in Fig. 1a, all existing graph condensation methods are designed to condense a
specific dataset tailored for single dataset and task. This limitation is incompatible with real-world
requirements, where users may encounter new or user-defined data and tasks that significantly differ
from those condensed graph datasets derived by open-access datasets. Unlike applying applications
to a few public graph datasets, such scenarios are much more common and challenging. Though
there exist other lines of studies (e.g., graph transfer learning (Zhuang et al., 2020), graph meta
learning (Mandal et al., 2022), and graph foundation models(Liu et al., 2023a)) that could also address
this issue, they require fixed model architecture design or complex training strategies, and relatively

1

https://anonymous.4open.science/r/ST-GCond-FFB4

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝒢 = {𝚾, 𝐀, 𝐘}

Node
classification

𝒢! = {𝚾!, 𝐘!"}

Node classification

Ogbn-arxiv

Condensed
Graph

Original
Graph

Supervised task Only use for same dataset&task

Ogbn-
arxiv

(a) Condense dataset only for the single dataset&task

𝒢! = {𝚾!, 𝐘!" , 𝐘!!}

GraphCL

PAIRSIM

PAIRDIS

Node
classification Node classification

Cora

Node clustering
Link prediction
…

Node classification

Pubmed

Node clustering
Link prediction
…

Node classification
Ogbn-arxiv

Node clustering
Link prediction

…

Ogbn-
arxiv

Original
Graph

Supervised task&
Self-Supervised tasks

Condensed
Graph Use for various datasets&tasks

…

𝒢 = {𝚾, 𝐀, 𝐘}

(b) Condense dataset for various datasets&tasks

50 75 100 125 150 175 200
Test Epochs

40

50

60

70

Pe
rf

or
m

an
ce

 (A
C

C
/%

) Cross-task Performance on Ogbn-arxiv

GCN
GEOM
SFGC

SGDD
GCond
ST-GCond

(c) “Cross-task” challenge

Cora Citeseer Flickr Reddit
Test Datasets

Random

GCond

SGDD

SFGC

GEOM

ST-GCond

M
et

ho
ds

0.54 0.82 0.61 0.73
0.87 0.91 0.64 0.88
0.84 0.96 0.7 0.9
0.8 0.86 0.76 0.91
0.82 0.96 0.75 0.93
1.02 1.03 1.03 0.98

Cross-dataset Performance Comparison

0.6

0.8

1.0

(d) “Cross-dataset” challenge

Figure 1: We illustrate the pipeline of existing graph condensation methods (Fig. 1a), which are
designed for a single dataset and task. We enhance these methods to make the condensed graph
transferable to various downstream needs (Fig. 1b). We achieve faster and more effective performance
in both cross-task (Fig. 1c) and cross-dataset (Fig. 1d) scenarios.

huge computational resources. Therefore, it is natural to ask a question: Can the condensed graph
dataset be used to train models for various tasks and upon various datasets?

To simplify the discussion, we extend the concept of model transferability to data-level transferabil-
ity, which evaluates how well the condensed dataset, when used to train a model, enables the model
to transfer effectively to new datasets or new tasks. Ideally, enhanced transferability would allow
users to train models more efficiently, achieving faster convergence and better results when applied
to their own data or task (Fig. 1b). However, we empirically find there are two main challenges for
addressing the problem of transferability on the current graph dataset condensation methods.

Challenge ❶: Efficient and Fast Cross-task Adaptation. In this context, a “task” refers to either
changes in task types or changes in label sets. We provide a detailed explanation of these distinctions
and present experiments for both scenarios in Sec. 4.2. Here, we focus on an example of label
set changes, as illustrated in Fig. 1c. Using the Ogbn-arxiv dataset, we apply condensation
based on only half of the supervised data (i.e., 20 classes). A 2-layer GCN model, trained on this
condensed graph, is then tested on the remaining 20 classes by fine-tuning the final linear layer. We
show the performance of various methods over fine-tuning epochs (test epochs), with the gray lines
representing the results of a naive 2-layer GCN model. Existing methods underperform by 4.2%
compared to the ground truth averagely, highlighting the difficulty of cross-task transferability.

Challenge ❷: Cross-dataset Universal Information Preservation. We further investigate cross-
dataset scenarios in the Fig. 1d, where a 2-layer GCN model trained on condensed Ogbn-arxiv
data is generalized to four different datasets by replacing the final layer with a new linear layer. To
illustrate the differences more clearly, we normalize each result to the performance of the naive
2-layer GCN model. In this context, Random refers to a model that was not trained on the condensed
dataset but instead fine-tunes only the final layer. While current methods outperform the Random
baseline, they still fail to surpass the performance of a simple GCN model, remaining below 1.0 ratio.

To address the above challenges, we propose a Self-supervised and Transferable Graph dataset
Condensation framework named ST-GCond. Unlike existing methods focused on condensing a
specific dataset for a single task, ST-GCond is designed to encourage the condensed graph to preserve
the most general and informative patterns, leading to better transferability across tasks and datasets.
Specifically, to achieve better cross-task transferability, the ST-GCond utilizes a task-disentangled
meta optimization strategy to adaptively update the condensed graph according to the task relevance.
To achieve better cross-dataset transferability, the ST-GCond adopts a multi-teacher self-supervised
optimization strategy: we pre-train several self-supervised models as teachers and adaptively combine
them to extract fundamental information from the original dataset. To align above two strategies
for joint condensing, we introduce a mutual information guided joint condensation strategy, which
mitigates potential conflicts between supervised and self-supervised tasks. We empirically evaluate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

our ST-GCond on 5 node-level and 5 graph-level real-world graph datasets. For the cross-dataset
and cross-task scenario, ST-GCond outperforms the existing graph condensation methods 2.5%
to 18.7%. In the traditional single dataset and task scenario, ST-GCond also gets state-of-art
performance on 5 out of 6 datasets, demonstrating its versatility. The contributions are as follows:

• We propose ST-GCond, a self-supervised and transferable graph dataset condensation framework.
To the best of our knowledge, ST-GCond is the first graph condensation method that is designed
for cross-dataset and cross-task scenarios.

• ST-GCond incorporates the task-disentangled and self-supervised optimization to inject the
universal knowledge into the condensed graph, enhancing both cross-task and cross-dataset
transferability.

• Extensive experiments on 10 real-world datasets demonstrate that ST-GCond enjoys the state-
of-art performance on both single task and cross-dataset/cross-task scenarios.

2 RELATED WORKS

2.1 DATASET DISTILLATION

Dataset distillation (Wang et al., 2018; Bohdal et al., 2020; Cui et al., 2022; Wu et al., 2024) is
proposed to significantly reduce the scale of the dataset but ensuring the test performance of the
distilled dataset. It is suitable for various applications like continual learning, neural architecture
search, and for users who have limited computational resources. However, there is still much more
gap between the condensed dataset and the original one. For example, the dataset provides more
intrinsic knowledge beyond the human-made labels (Kaplan et al., 2020) and can be transferred to
benefit the new dataset’s tasks (Noroozi et al., 2018; Zamir et al., 2018). Although KRR-ST (Lee
et al., 2024) is proposed to distill a transferable dataset fitting this goal, the cost is that the distilled
dataset cannot be effectively leveraged by traditional continual learning and neural architecture search
applications. Therefore, there is a need to comprehensively fill the dataset gap.

2.2 GRAPH DATASET CONDENSATION

Graph data have its unique feature that the samples (nodes) are not independent. Therefore, distilling
(condensing) a graph is more difficult for jointly considering the node and structure. Recently, several
graph dataset condensation methods (Xu et al., 2024; Gao et al., 2024) have been proposed to achieve
better performance on a single dataset and tasks. For instance, GCond (Jin et al., 2022c) first introduce
the gradient matching method in condensing graph, SGDD (Yang et al., 2023) and SFGC (Zheng
et al., 2023) enhance GCond through different ways: further considering the structure and removing
the structure. And the most recent GEOM (Zhang et al., 2024) following SFGC achieves lossless
results (even better than solely training a GCN model on the original graph). DosCond (Jin et al.,
2022b) and KiDD (Xu et al., 2023) provide a way to condense the graph classification datasets, while
KiDD propose to use the Kernel ridge regression to efficiently reduce the condensing time. However,
existing methods are still designed for specific datasets and tasks. How to achieve transferable
condensation remains under-explored and requires further research.

3 SELF-SUPERVISED AND TRANSFERABLE GRAPH DATASET CONDENSATION

3.1 OVERALL FRAMEWORK OF ST-GCOND

In this paper, we aim to propose a transferable graph dataset condensation method for cross-task
and cross dataset scenarios. Given a graph dataset G = (X,A,Y), where X ∈ RN×d represents
the feature matrix, A ∈ RN×N represents the adjacency matrix, N is the number of nodes, and
d denotes the node feature dimension. Our goal is to generate a smaller synthetic graph dataset
Gs = (Xs,As,Y

h
s) with m nodes (m ≪ N), aiming to make any model trained on Gs achieve

similar test performance to a model trained on G on the same task (defined by the label Y) without
lost the generalization ability when transferring such model to the new datasets or tasks. Unlike
traditional condensation methods where the condensed graph is restricted to a specific dataset and
task, transferable graph dataset condensation aims to expand the usage scope of the condensed graph.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

① Task-disentangled Meta Optimization

②Multi-teacher Self-Supervised Optimization

𝑌!!

𝑌!"

𝒢

③Mutual Information
Guided Joint Condensing

Sample tasks

𝒢!! 𝒢!"

𝒢!#𝒢!$

ℒ!"#
$! = ℒ!"#(, 𝑦$! , 𝒢#)

𝒢!
"! ← 𝒢! − ∇𝒢"ℒ$%!

"!

ℒ!"#
$" = ℒ!"#(, 𝑦$" , 𝒢#)

𝒢!
"# ← 𝒢! − ∇𝒢"ℒ$%!

"#
ℒ!"#
$# = ℒ!"#(, 𝑦$# , 𝒢#)

𝒢!
"$ ← 𝒢! − ∇𝒢"ℒ$%!

"$

ℒ!"#
$# = ℒ!"#(, 𝑦$# , 𝒢#)

𝒢!
&"$ ← 𝒢! − ∇𝒢"ℒ$%!

"$

Pre-trained task model
kPre-trained task model

3Pre-trained task model
2Pre-trained task model

Mask labels

…

𝑋!
𝐴!

X
𝐴
𝑌 𝒢!

ℒ#$

Weighting Soft condensed label

Hard condensed label

ℒ%&!'()*

ℒ!"#$
𝑓!𝒯

10k ~ 10M nodes ~100 nodes

Figure 2: Overall framework of ST-GCond. The original large graph dataset G, consisting of X,A,
and Y, is condensed using ① task-disentangled meta-optimization to synthetic hard label Yh

s and ②
multi-teacher self-supervised optimization to generate soft label Ys

s , along with their shared Xs,As.
③ To avoid conflicts in optimization directions, mutual information-guided joint condensation is
employed to serve as the mutual information regulations loss term.

To this end, we propose the Self-supervised and Transferable Graph dataset Condensation framework,
termed ST-GCond. As illustrated in Fig. 2, our goal is to condense the original graph dataset G into
a smaller yet informative graph dataset, Gs = (As,Xs,Y

h
s ,Y

s
s). It is worth noting that we include a

soft label, Ys
s , to handle more complex scenarios.

(1) Task-disentangled Meta Optimization. (Challenge ❶) We first disentangle the given task
(i.e., classes) into t parts, with each part containing h classes (h > 1) as sub-task {Ti}ti=1. In
every epoch, the condensed graph Gs will first be fast updated through the guide of each sub-task
to be the {G′Ti

s }ti=1, then optimize the Gs through the joint evaluation loss on all sub-tasks. The
motivation behind this is to let the condensed graph not only be aware of the difference of the tasks
but can quickly adapt to the optimal state of each sub-task. Such process is associated with the hard
condensed label Yh

s ∈ Rm×1.

(2) Multi-teacher Self-Supervised Optimization. (Challenge ❷) We leverage self-supervised tasks
to extract the universal knowledge of G. Specifically, we load k pre-trained models, each trained on a
distinct self-supervised task, denoted as {fT

1 (·), fT
2 (·), · · · , fT

k (·)}. We further propose a synthetic
soft label Ys

s ∈ Rm×d to unify the labels across these tasks. Consequently, the condensed graph
is guided by multiple self-supervised tasks, enabling it to acquire more transferable cross-dataset
knowledge.

(3) Mutual Information Guided Joint Condensation. (Resolving the potential conflicts) Through
the discussion of previous literature (Jin et al., 2022a; Fan et al., 2024) and our empirical findings in
Tab. 6, we observe that directly combining different self-supervised tasks with the supervised task can
lead to unexpected performance drops. Therefore, we propose to constrain the mutual information
I(Ys

s;Y
h
s), which adaptively adjusts the weights for each self-supervised task and ensures that

the final distribution closely approximates the ideal distribution of Yh
s , thereby resolving potential

conflicts in the joint condensing process.

3.2 CROSS-TASK TRANSFERABILITY: TASK-DISENTANGLED META OPTIMIZATION

Existing methods for graph dataset condensation primarily focus on task performance related to the
single task and dataset, making the condensed graph only reserve knowledge specific to such a single
task, which significantly hampers its transferability to other tasks (see Fig. 1c, Table 4, and Table 5).

Since the actual downstream task information is unknown, preparing an optimal condensed graph
tailored for a specific task is impossible. Inspired by MAML (Finn et al., 2017; Zhou et al., 2019),
we modify the optimization strategy to search for a “global minimum” across all tasks, enabling the
condensed graph to rapidly and effectively adapt to new tasks. Given a distribution over tasks p(Y),
we randomly sample label sets {yi}ti=1 ∼ p(Y) and induce the sub-task graph GT . This process is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

similar to class-level sampling in GCond, but our focus on the task level makes it more suitable for
addressing challenge.

Initialization of the Condensed Graph Gs. We initialize {Xs,Y
h
s } by randomly selecting a

subset of the original data. Following GCond, we use an MLP gϕ as the structure generator, where
As = (gϕ(Xs)− δ), Here, δ serves as the sparsity parameter to filter out edges with lower weights.
Note that Yh

s is analogous to the labels Y ∈ RN×1 of G, encompassing C classes.

Fast Adaptation and Meta Optimization Strategy. REVISED: {The key step is simulating the
cross-task scenario in the condensing stage with Gs}. Following MAML(Finn et al., 2017), we use
the meta optimizing strategy, specifically, given the i-th sub-task GTi , we update a copy of Gs as
follows: G′Ti

s ← Gs −∇GsL
Ti

cls(GTi ,Gs). The final optimization for Gs is then calculated using the
following:

Lmeta
cls =

1

t

t∑
i=1

Lcls(GTi ,G
′Ti
s). (1)

The difference is that the meta-loss term is calculated using the fast-adapted condensed graph,
simulating the scenario where users update their models on new data and test on the updated versions.

Kernel Ridge Regression-Based Condensing Objective. The term Lcls in Eq. (1) serves as the
surrogate condensing objective. For instance, gradient matching (Jin et al., 2022c; Yang et al., 2023)
mimics the real gradients occurring in the original dataset, while trajectory matching (Zheng et al.,
2023; Zhang et al., 2024) simulates the learning trajectories. In contrast, we adopt the Kernel Ridge
Regression (KRR) method (Xu et al., 2023; Wang et al., 2024) to simplify the condensing process,
aligning it with the requirements of task-disentangled meta optimization. Formally, Lcls is:

Ly
cls ≜ min

Gs

1

2
∥y −KGGs

(KGsGs
+ ϵI)Yhi

s ∥2F , (2)

where KGGs : G×Gs → RN×m denotes the kernel function, it is a simple algorithm that involving the
structure to the kernel calculation. We adopt SNTK (Wang et al., 2024) for calculating the node-level
and LightGNTK (Xu et al., 2023) for graph-level calculating. Yhi

s denotes the corresponding label
sets in the hard condensed labels Yh

s . Then Gs could be adapted to Gi′s by Eq. (1), which represents
that the condensed graph Gs update through task GTi . The ∥ · ∥2F indicates the Mean Square Error
(MSE) loss function.

3.3 CROSS-DATASET TRANSFERABILITY: MULTI-TEACHER SELF-SUPERVISED
OPTIMIZATION

Regarding the “cross-dataset” transferability challenge, the natural approach is to extract and distill
fundamental knowledge into the condensed graph. Beyond human-made labels (supervised task), we
propose leveraging self-supervised tasks to automatically extract latent knowledge. Furthermore, as
each task preserves only one aspect of the dataset (Jin et al., 2022a), we propose to use multi-teacher
self-supervised optimization to better consider the diverse aspects of the dataset.

Unifying Self-Supervised Task Labels. Directly incorporating self-supervised tasks is not trivial, as
existing graph condensation methods require explicit labels. For classification tasks with C classes,
synthetic labels Ys ∈ Rm×C must be assigned to Gs. Assigning numerous synthetic labels for
multiple self-supervised tasks is impractical. In addition, simultaneously training such tasks from
scratch in condensing, as in previous graph condensation methods, is complex and time-consuming.

Inspired by the knowledge distillation works (Fan et al., 2024), we opt to load the pre-trained models
as teachers, and then we can unify all the tasks to the target

(∑k
i=1 λif

T
i (X,A)

)
∈ RN×d, where

{λi}ki=1 are the weights of teachers and we discuss it in Sec. 3.4. Thus all the target pseudo labels
turn to be same d-dimension tensors. We only need to craft a soft condensed label Ys

s ∈ Rm×d in
condensing:

min
Ys

s

Lself (PT (X,A),Ys
s), (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where PT (X,A) =
(∑k

i=1 λif
T
i (X,A)

)
denotes the adjusted distribution of the pre-trained

teacher models’ output. It is also worth noting that loading the pre-trained tasks instead of training a
model from scratch, as existing methods do, can save considerable optimization time and resource.

Kernel Ridge Regression-Based Optimizing Objective. Here we also use kernel ridge regression
(KRR) (Lee et al., 2024) for optimizing the Gs and the soft condensed label Ys

s . The motivation is
that the naive gradient matching and trajectory matching methods are hard to support continuous
labels and are heavily coupled with supervised tasks. Formally, the KRR-based self-supervised loss
Lself is:

Lself ≜ min
Gs

1

2
∥PT (X,A)−KGGs

(KGsGs
+ ϵI)Ys

s∥2F , (4)

where K(·) is similar to that in Eq. (1), I is the identity matrix improving the robustness, and
PT (X,A) represents the weighted combination of the teacher models’ output.

3.4 MUTUAL INFORMATION GUIDED JOINT CONDENSATION

Following the existing KRR-based graph condensation methods (Xu et al., 2023; Wang et al.,
2024), the overall condensing objective is the weight sum of Lmeta

cls and Lself as: minGs L =
Lmeta
cls + αLself . However, we empirically find there may exist a potential conflict in calibrating

multiple self-supervised and supervised tasks (see Table 6). Such findings drive us to find an optimal
guiding solution in adjusting.

As similar issues discussed in the previous knowledge distilling literature (Fan et al., 2024; Wu
et al., 2022), the key to condensing the beneficial information from teachers is to let the probability
distribution of teachers approximate the true (Baysian) distribution of the downstream tasks (Menon
et al., 2021). However, due to the invisibility of downstream labels, we intuitively use the label Y
from G to serve as the target ideal distribution. The mutual information to calculate the dependency
between the PT (X,A) and labels:

I(PT (X,A);Y) = H(Y)−H(Y|PT (X,A)), (5)

where PT (X,A) represents a weighted combination of the multi-teacher output. However, directly
solving Eq. (5) is computationally intensive and may not yield optimal results due to the sampling
process involved in Sec. 3.2. To address this issue, we propose optimizing the mutual information
LMI = I(Ys

s;Y
h
s) as a substitution. We further demonstrate that the mutual information of the

condensed graph labels, I(Ys
s;Y

h
s) is related to the upper bound of I(PT (X,A);Y):

Theorem 1. Given that Ys
s and Yh

s are approximations through kernel ridge regression, the mu-
tual information of the condensed graph I(Ys

s;Y
h
s) is related to the upper bound of the mutual

information I(PT (X,A);Y) as follows:

I(Ys
s;Y

h
s) ≤ I(PT (X,A);Y). (6)

The detailed proof is provided in Appendix C. In our experiments, we implement the neural estimation
method (Belghazi et al., 2018) for the gradient backward pass. The final objective function is ex-
pressed as: minGs

L = Lmeta
cls +αLself +βLMI . The overall algorithm is presented in Appendix G.1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate our method on 6 node-level datasets (Cora (Kipf & Welling, 2017),
Citeseer (Kipf & Welling, 2017), Ogbn-arxiv (Hu et al., 2020a), Reddit (Hamilton et al.,
2017) and Flickr (Zeng et al., 2020)) and 5 graph-level datasets (GEOM (Axelrod & Gomez-
Bombarelli, 2020), BACE (Wu et al., 2018), ClinTox (Gayvert et al., 2016), and SIDER (Kuhn
et al., 2016)). For the supervised node classification task, we follow the settings from GCond (Jin
et al., 2022c). For the other types of task, we follow the public split of the dataset. We report the
details of the datasets in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Baselines. We compare ST-GCond with 10 baselines: (1) graph coreset methods (Random,
Herding (Welling, 2009), and K-Center (Wolf, 2011)), (2) node-level graph condensation
methods (GCond (Jin et al., 2022c), SGDD (Yang et al., 2023), SFGC (Zheng et al., 2023), and
GEOM (Zhang et al., 2024)), (3) graph-level graph condensation methods (DosCond (Jin et al.,
2022b), KiDD (Xu et al., 2023)), and (4) one self-supervised condensation method, KRR-ST (Lee
et al., 2024). For the Random method, we randomly select nodes from the original graph to induce a
subgraph. We implement Herding to filter nodes that are close to the centroids and K-Center to
select nodes that play a critical role in minimizing the distance between samples and their nearest
centers following (Jin et al., 2022c).

Implementation Details. In the condensing stage, for the supervised task, we randomly split the
classes of the task into 3 parts, with each part containing h classes (h > 1) as a sub-task. For the
auxiliary self-supervised tasks, we select 5 classic tasks for node-level condensation (DGI (Velickovic
et al., 2019), CLU (You et al., 2020b), PAR (You et al., 2020b), PAIRSIM (Jin et al., 2020), and
PAIRDIS (Peng et al., 2020)) and 7 tasks for graph-level condensation (AttrMask (Hu et al., 2020b),
ContextPred (Hu et al., 2020b), EdgePred (Hamilton et al., 2017), GPT-GNN (Hu et al., 2020c),
GraphLoG (Xu et al., 2021), GraphCL (You et al., 2020a), and InfoGraph(Sun et al., 2019)). We
briefly introduce them in Appendix B. For each dataset, the condensation ratio r is defined by the
number of nodes in the condensed graph r = N

m , where 0 < r < 1. For each dataset, we condense 5
graphs with different random seeds and report average performance. We provide our

In the testing stage, we choose the appropriate testing paradigm according to the specific scenario.
(1) Single dataset and task scenario. When the downstream dataset and task match the condensing
one, similar to the previous graph dataset condensation methods, we use {Xs,As,Y

h
s ,Y

s
s} or

{Xs,As,Y
h
s } to train a model and test it on the original graph dataset G. (2) cross-dataset and

cross-task scenario. When the downstream dataset and task differ, we use {Xs,As,Y
s
s} to train a

model and then use the downstream data to train a linear classifier. For other graph condensation
methods, we replace the last layer of the trained model with a linear classifier in a similar manner.
For the specific hyperparameter search range, we provide in the Appendix F.

4.2 EXPERIMENTAL RESULTS

To evaluate the performance of ST-GCond, we conduct experiments on three scenarios: (1) single
task and dataset scenario; (2) cross-dataset scenario; (3) cross-task scenario.

(1) Performance comparison on single dataset and task. In this scenario, ST-GCond utilizes
Ys

s to train a GNN feature extractor and further uses Yh
s to train a linear classifier. We also report

a variant ST-GCond-Yh
s of ST-GCond, which exclusively uses Yh

s during the training stage. As
shown in Table 1, ST-GCond achieves state-of-the-art results in 14 out of 15 ratios across 5 datasets,
particularly excelling at the lowest ratio. The maximum improvement is 2.71%. Furthermore,
ST-GCond outperforms ST-GCond-Yh

s variant by an average margin of 0.5% to 1.9%.

From the experiment, we observe that while our method is specifically designed for cross-dataset and
cross-task scenarios, it also demonstrates non-trivial improvements in single-dataset and single-task
settings. Notably, in three out of five datasets, the results are even lossless compared to whole dataset
accuracy according to the definition from GEOM (Zhang et al., 2024). We attribute this improvement
to the integration of both supervised and self-supervised information. This approach effectively
mimics the property in the original dataset, as highlighted in various studies (Wang et al., 2019;
Hou et al., 2022; Liu et al., 2023b), which emphasize the importance of self-supervised learning in
enhancing performance. Furthermore, the ST-GCond-Yh

s also achieves the comparable performance
comparing to the baselines, demonstrating the versatility of using the hard labels Ys

h independently
with the condensed graph.

(2) Performance comparison on cross-dataset scenario. We compare ST-GCond with baselines
under cross-dataset transfer learning settings. For node-level datasets, we use Ogbn-arxiv as the
source dataset and test the condensed graph on four other target datasets. For graph-level datasets,
we use GEOM as the source dataset and test the condensed graph on four other target datasets. We
compare ST-GCond with GCond, SGDD, SFGC, and GEOM for node-level condensation, and with
DosCond and KiDD for graph-level condensation. MLP (w/o pre) shows the naive results that
solely use the linear model in the target datasets, a common strategy for low-resource computation.
The results are shown in Table 2 and Table 3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Node classification performance (Accuracy%± std) comparison under the single task and
dataset scenario. Best results are in bold and the runner-up is underlined. We use red text to indicate
the lossless results (better than solely using GCN on the original graph).

Datasets Ratio(r) Random
(As,Xs,Ys)

Herding
(As,Xs,Ys)

K-Center
(As,Xs,Ys)

GCond
(As,Xs,Ys)

SGDD
(As,Xs,Ys)

SFGC
(Xs,Ys)

GEOM
(Xs,Ys)

ST-GCond-Y h
s

(A,X,Yh
s)

ST-GCond
(A,X,Ys

s ,Y
h
s)

Whole
Dataset

0.90% 54.4±4.4 57.1±1.5 52.4±2.8 70.5±1.2 69.5±0.4 70.4±0.1 69.8±0.5 71.5±0.8 71.5±0.5

1.80% 64.2±1.7 66.7±1.0 64.3±1.0 70.6±0.9 70.2±0.8 70.1±0.3 70.8±0.7 69.8±1.1 71.6±0.7Citeseer
3.60% 69.1±0.1 69.0±0.1 69.1±0.1 69.8±1.4 70.3±1.7 71.4±0.8 70.2±0.3 69.6±0.9 72.1±0.3

71.7±0.1

1.30% 63.6±3.7 67.0±1.3 64.0±2.3 79.8±1.3 80.1±0.7 80.1±0.4 82.5±0.4 81.8±0.9 83.4±0.8

2.60% 72.8±1.1 73.4±1.0 73.2±1.2 80.1±0.6 80.6±0.8 81.7±0.5 83.6±0.3 81.4±1.0 83.3±0.5Cora
5.20% 76.8±0.1 76.8±0.1 76.6±0.1 79.3±0.3 80.4±1.6 81.6±0.8 82.8±0.7 81.8±0.8 83.6±0.9

81.2±0.2

0.05% 47.1±3.9 52.4±1.8 47.2±3.0 59.2±1.1 60.8±1.3 65.5±0.7 65.5±0.4 65.1±1.1 66.8±0.8

0.25% 57.3±1.1 58.6±1.2 56.8±0.8 63.2±0.3 65.8±1.2 66.1±0.4 65.6±0.2 65.6±1.2 66.8±0.9Ogbn-arxiv
0.50% 60.0±0.9 60.4±0.8 60.3±0.4 64.0±0.4 66.3±0.7 66.8±0.4 67.6±0.3 68.5±0.8 68.1±0.3

71.4±0.1

0.10% 41.8±2.0 42.5±1.8 42.0±0.7 46.5±0.3 46.9±0.3 46.6±0.2 47.1±0.1 46.8±0.1 47.2±0.1

0.50% 44.0±0.4 43.9±0.9 43.2±0.1 47.1±0.1 47.1±0.3 47.0±0.1 47.0±0.2 47.0±0.2 47.5±0.3Flickr
1.00% 44.6±0.2 44.4±0.6 44.1±0.4 47.1±0.1 47.1±0.1 47.1±0.1 47.3±0.3 47.1±0.3 47.5±0.4

47.2±0.1

0.05% 46.1±4.4 53.1±2.5 46.6±2.3 88.0±1.8 90.5±2.1 89.7±0.2 91.1±0.4 91.4±0.4 91.8±0.4

0.10% 58.0±2.2 62.7±1.0 53.0±3.3 89.6±0.7 91.8±1.9 90.0±0.3 91.4±0.2 91.5±0.2 91.7±0.2Reddit
0.20% 66.3±1.9 71.0±1.6 58.5±2.1 90.1±0.5 91.6±1.8 89.9±0.4 91.5±0.4 91.9±0.4 92.4±0.4

93.9±0.0

Table 2: Node classification performance (Accuracy% ± std) comparison under the cross-dataset
scenario. Best results are in bold and the runner-up is underlined. We use the red text to indicate the
lossless results (better than solely using GCN on the target datasets).

Node-level: Ogbn-arxiv→ Target datasets

Cora Citeseer Flickr RedditMethods
0.05% 0.25% 0.50% 0.05% 0.25% 0.50% 0.05% 0.25% 0.50% 0.05% 0.25% 0.50%

MLP (w/o pre) 54.8±0.8 60.1±1.7 28.75±1.1 68.5±0.8

Random 42.9±2.8 41.9±1.2 43.7±1.8 58.0±2.8 59.1±1.7 58.1±1.9 26.0±2.0 27.3±2.4 28.1±1.7 68.2±2.1 68.3±1.4 69.0±0.8

Herding 48.7±1.9 47.3±2.5 50.2±3.0 62.5±3.3 64.1±2.8 66.8±3.5 28.0±2.0 29.1±2.5 29.7±2.8 73.8±2.2 74.7±2.4 75.3±2.6

GCond 65.3±1.6 63.7±2.2 69.7±2.3 67.3±1.8 61.9±1.8 64.6±5.4 33.2±1.3 29.9±1.6 29.7±0.5 86.2±1.3 84.9±0.4 82.8±2.1

SGDD 65.1±2.0 63.6±2.0 67.0±2.2 70.1±2.0 66.4±5.0 67.8±5.0 35.2±1.3 33.5±2.7 32.4±2.3 85.8±1.1 85.2±1.2 84.1±1.8

SFGC 65.0±2.3 63.5±0.5 64.3±2.4 62.9±2.1 60.9±9.5 61.0±5.8 37.3±0.9 37.2±0.4 35.2±1.6 85.4±0.9 85.5±0.8 85.4±2.4

GEOM 61.5±0.9 66.0±1.1 65.9±2.1 64.0±2.6 68.9±0.8 67.7±2.4 36.2±0.6 34.2±1.7 34.7±0.7 84.5±1.2 87.1±1.0 87.5±0.8

ST-GCond 74.1±0.8 81.5±1.1 81.8±1.8 69.8±1.7 71.4±0.7 72.8±0.6 43.6±0.6 47.2±0.1 47.8±0.4 88.7±0.4 90.8±0.9 92.1±0.8

We observe that ST-GCond exceeds all runner-up methods by an average of 2.5% to 15.5% on node-
level classification and 4.1% to 18.79% on graph classification. These improvements demonstrate the
effectiveness of incorporating self-supervised tasks to extract ”universal knowledge,” enabling the
condensed graph to benefit various downstream datasets. While corset methods perform similarly
to MLP results, existing graph condensation methods show improvements over MLP, indicating the
versatility of the condensed graph. Additionally, ST-GCond achieves better results on target datasets
than using the GCN model alone. Thus, downstream users can achieve similar test performance
to expensive GCN models with significantly lower computational costs by training models on the
condensed graph and using a simple linear classifier.

(3) Performance comparison on cross-task scenario. In the cross-task scenario, our definition
of “task” encompasses two distinct meanings. First, it refers to different task types, such as node
classification, node clustering, and link prediction, which we term the “type-changing cross-task
setting.” Second, it refers to the variation in class labels within the same type of supervised task,
which we define as the “label-set changing cross-task setting.” Such two settings are widely We
conduct experiments in both of these settings to validate our approach.

In the task type changing cross-task setting, we use node classification for condensation and link
prediction or node clustering as downstream tasks. The results are shown in Table 4 and Table 5.
We use VGAE (Kipf & Welling, 2016) and ARGA (Pan et al., 2018) as baselines. As shown in
Table 4, while existing methods produce comparable results, they are sub-optimal compared to the
baselines. In contrast, ST-GCond achieves better AUC and AP metrics on Cora, and the AP metric
on Citeseer, indicating that our condensed graph retains beneficial knowledge for cross-task
scenarios. Table 5 shows more pronounced improvements among existing methods, which can be
attributed to the inherent relationship between clustering and labels (Jin et al., 2020).

In the label-set changing cross-task setting, the dataset’s label set is divided into two parts: one
for condensation and the other for downstream tasks. Figure 3 shows the performance over test

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Graph classification performance (ROC-AUC(%) ± std) comparison under the cross-dataset
scenario. Best results are in bold and the runner-up is underlined. We use the red text to indicate the
lossless results (better than solely using GCN on the original graph)

Graph-level: GEOM-data→ Target datasets

BACE BBBP ClinTox SIDERMethods
0.001% 0.005% 0.01% 0.001% 0.005% 0.01% 0.001% 0.005% 0.01% 0.001% 0.005% 0.01%

MLP (w/o pre) 48.7±0.3 49.3±0.8 43.7±0.3 47.1±1.6

Random 43.6±0.4 45.8±0.7 46.2±0.7 38.5±0.3 33.1±0.3 36.2±0.8 42.8±0.8 43.5±1.2 45.8±0.3 43.7±1.2 48.5±2.8 44.2±1.2

Herding 47.0±0.5 49.0±0.7 50.0±0.6 40.0±0.4 38.0±0.5 39.5±0.6 45.0±0.6 46.5±0.8 47.0±0.5 46.0±1.0 47.5±1.5 48.0±1.3

DosCond 54.6±0.8 55.7±0.1 51.7±0.3 47.0±0.7 48.5±0.9 49.0±0.8 50.5±0.9 51.0±1.0 52.0±0.7 50.5±1.2 52.0±1.5 53.0±1.3

KiDD 53.8±0.7 53.5±0.8 54.8±1.7 52.8±0.9 54.0±0.8 55.0±0.7 55.0±0.8 56.0±0.9 57.0±0.6 51.5±0.8 51.1±1.0 51.0±0.7

ST-GCond 68.6±1.0 71.4±0.8 73.6±1.1 58.6±1.1 61.4±0.8 62.8±0.7 64.1±0.7 64.8±0.6 71.5±0.4 55.6±0.3 56.8±0.8 55.7±0.3

Table 4: Link prediction results under
the cross-task scenarios, where each
graph condensation method observes
only the classification task information.

Cora Citeseer

Method AUC(%) AP(%) AUC(%) AP(%)

VGAE 91.4 92.6 90.8 92.0
ARGA 92.4 93.2 91.9 92.1

GCond 81.6↓ 83.7↓ 73.5↓ 74.8↓
SGDD 85.4↓ 88.3↓ 74.3↓ 76.9↓
SFGC 83.3↓ 85.1↓ 73.6↓ 73.9↓
GEOM 84.7↓ 85.0↓ 73.2↓ 74.8↓

ST-GCond 93.3↑ 94.8↑ 90.6↓ 92.3↑

Table 5: Node clustering results under the cross-task
scenarios. We use the bold denotes the best results,
the underline indicates the runner-ups. ↑/↓ indicate the
increase/decrease compared to baseline VGAE/ARGA.

Cora Citeseer

Method NMI(%) F1(%) ARI(%) NMI(%) F1(%) ARI(%)

VGAE 51.4 57.5 38.7 34.8 55.6 28.5
ARGA 50.8 65.6 34.7 40.0 54.6 34.1

GCond 48.6↓ 54.4↓ 36.8↓ 31.6↓ 52.8↓ 27.4↓
SGDD 51.8↑ 69.4↑ 38.7↑ 35.1↓ 58.8↑ 26.5↓
SFGC 50.7↓ 68.2↑ 36.9↓ 34.8↓ 58.1↑ 25.6↓
GEOM 48.2↓ 55.7↓ 32.9↓ 33.1↓ 49.3↓ 21.3↓

ST-GCond 53.8↑ 71.4↑ 40.7↑ 40.8↑ 62.7↑ 41.7↑

epochs. Since the model trained on the condensed graph cannot be directly applied to the downstream
task, the final layer is replaced with a linear layer and fine-tuned with the target training data.
Our task-disentangled meta-optimization strategy allows the condensed graph to acquire cross-
task knowledge, evidenced by ST-GCond achieving faster and superior results compared to other
methods, particularly the naive GCN (gray line), demonstrating the versatility of our approach.

4.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

Table 6: Mean accuracy(%) and standard deviation of
node classification.

Methods
Ogbn-arxiv→ Cora

(Ratio r)
Ogbn-arxiv→ Reddit

(Ratio r)

0.25% 0.50% 0.25% 0.50%

Random 59.1±1.7 58.1±1.9 68.3±1.4 69.0±0.8

Herding 47.3±2.5 50.2±3.0 74.7±2.4 75.3±2.6

SGDD 63.6±2.0 67.0±2.2 85.2±1.2 84.1±1.8

GEOM 66.0±1.1 65.9±2.1 87.1±1.0 87.5±0.8

ST-GCond w/o self 78.4±0.9 77.4±1.0 88.6±0.9 89.0±1.2

ST-GCond w/o meta 76.4±0.2 73.4±0.7 88.9±0.8 89.7±0.4

ST-GCond w/o MI 68.5±0.7 74.4±1.1 87.4±1.1 87.4±0.8

ST-GCond 81.5±1.1 81.8±1.8 90.8±0.9 92.1±0.8

Ablation study. To investigate the impact
of task-disentangled meta optimization,
multi-teacher self-supervised optimization,
and MI-guided joint condensation, we con-
duct an ablation study presented in Ta-
ble 6. We select cross-dataset experiments
to evaluate the transferability of these com-
ponents. We take Ogbn-arxiv as the
source dataset and evaluate on Cora and
Reddit. The ablations include: w/o self
(excluding self-supervised tasks), w/o meta
(excluding task disentanglement), and w/o
MI (excluding mutual information con-
straints). r denotes the condensation ratio
for Ogbn-arxiv.

REVISED: {As observed, ST-GCond w/o self and ST-GCond w/o meta demonstrate strong
performance relative to the baselines, likely due to the shortcomings of naive methods, which tend to
overemphasize task-specific information. However, both variants still fall short when compared to the
results obtained using the full dataset (e.g., accuracies of 81.2% on Cora and 93.9% on Reddit),
emphasizing the necessity of combining these components for optimal performance. Nevertheless,
the naive combination of such two parts (ST-GCond w/o MI) underperforms both individual variants,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

50 75 100 125 150 175 200
Test Epochs

60

70

80

90

100

Pe
rf

or
m

an
ce

 (A
C

C
/%

)

Cross-task Performance on Reddit

GCN
GEOM
SFGC

SGDD
GCond
ST-GCond

50 75 100 125 150 175 200
Test Epochs

20

30

40

50

Pe
rf

or
m

an
ce

 (A
C

C
/%

)

Cross-task Performance on Flickr

GCN
GEOM
SFGC

SGDD
GCond
ST-GCond

Figure 3: Displaying performance v.s. test epochs under the cross-task scenarios. Except for the
GCN curve (the gray line), all other methods only observe the other half of the supervised information.

0 25 50 75 100 125 150
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

W
ei

gh
t V

al
ue

PAR
CLU

DGI
PAIRDIS

PAIRSIM

(a) Cora Weights

0 25 50 75 100 125 150
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

W
ei

gh
t V

al
ue

PAR
CLU

DGI
PAIRDIS

PAIRSIM

(b) Citeseer Weights

1 2 3 4 5
k

70

75

80

85

90

A
cc

ur
ac

y
(%

)
Cora Citeseer Reddit

(c) Sensitivity of k

0.1 0.3 0.5 0.7 0.9
70

75

80

85

90

A
cc

ur
ac

y
(%

)

Cora Citeseer Reddit

(d) Sensitivity of α

Figure 4: Ablation Study and Sensitivity Analysis. Fig. (a) and Fig. (b) illustrate the convergence of
adaptive task weights by the end of training. Fig. (c) shows an increasing performance trend with
respect to the number of teachers (k), while Fig. (d) does not show a significant trend.

. Similar observations have been discussed in prior works Jin et al. (2022a); Fan et al. (2024), further
highlighting the critical role of LMI in resolving such conflicts and improving overall functionality.}
Evolution process of teachers’ weights {λi}ki=1. As discussed in Sec. 3.4, the combination of
the teachers’ outputs should approximate the true (Bayesian) distribution of the downstream tasks.
However, since we cannot access the true distribution of the downstream tasks, we use Yh

s as a
surrogate target. Fig. 4a and 4b illustrate the evolution of weight values during the condensing
process. It is observed that the same method may have different weights across various datasets, and
the weights of the five tasks eventually stabilize and converge to steady values. According to Table 6,
incorporating the weights of self-supervised tasks results in improvements ranging from 3.4% to
13%, highlighting the necessity of addressing conflicts among tasks.

Sensitivity analysis of hyperparameters k, α, and β. We present a sensitivity analysis for two
hyperparameters: the number of self-supervised tasks (k) and the loss weight (α, β). Fig. 4c and 4d
show that a larger k generally results in better performance, indicating the effectiveness of the mutual
information constraint strategy. For the hyperparameter α and β (Appendix. H.1), the performance
varies with different α and β values, suggesting that they should be selected through a grid search.

5 CONCLUSION

We propose ST-GCond, a novel framework for self-supervised and transferable graph dataset
condensation. Unlike existing works focus on condensation for a single task and dataset, our
approach creates condensed dataset with higher data-level transferability, enhancing downstream
models ability when it applied to various new datasets and tasks. We introduce task-disentangled
meta-updating for cross-task knowledge preservation and incorporate multiple supervised tasks to
extract “universal knowledge”. Finally, to avoid the potential conflict of jointly using self-supervised
and supervised information as the optimization directions, we leverage the mutual information loss
term to guide the condensation process. Experiments demonstrate ST-GCond’s effectiveness in both
single-task/single-dataset and cross-task/cross-dataset scenarios. Limitations and Future Work:
While the condense ratio is adjustable, dynamic user demands require re-condensation each time,
bringing potential computation costs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Simon Axelrod and Rafael Gomez-Bombarelli. Geom: Energy-annotated molecular conformations
for property prediction and molecular generation. arXiv preprint arXiv:2006.05531, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. ArXiv preprint, 2018.

Normand J. Beaudry and Renato Renner. An intuitive proof of the data processing inequality.
Quantum Inf. Comput., 12(5-6):432–441, 2012.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, R. Devon
Hjelm, and Aaron C. Courville. Mutual information neural estimation. In ICML, volume 80, pp.
530–539. PMLR, 2018.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. ArXiv preprint, 2020.

Seungyoon Choi, Wonjoong Kim, Sungwon Kim, Yeonjun In, Sein Kim, and Chanyoung Park.
DSLR: diversity enhancement and structure learning for rehearsal-based graph continual learning.
In WWW, pp. 733–744. ACM, 2024.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark.
Advances in Neural Information Processing Systems, 35:810–822, 2022.

Tianyu Fan, Lirong Wu, Yufei Huang, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z. Li.
Decoupling weighing and selecting for integrating multiple graph pre-training tasks. In ICLR,
2024.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135.
PMLR, 2017.

Xinyi Gao, Junliang Yu, Wei Jiang, Tong Chen, Wentao Zhang, and Hongzhi Yin. Graph condensation:
A survey. arXiv preprint arXiv:2401.11720, 2024.

Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to predicting
successes and failures of clinical trials. Cell chemical biology, 23(10):1294–1301, 2016.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. In ICLR, 2022.

Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph neural
architecture search. In ICML, volume 162, pp. 7968–7981. PMLR, 2022.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In KDD, pp. 594–604. ACM, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In ICLR, 2020b.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-GNN: generative
pre-training of graph neural networks. In SIGKDD, 2020c.

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang. Self-
supervised learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141,
2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, and Jiliang Tang. Automated self-supervised
learning for graphs. In ICLR, 2022a.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In SIGKDD, pp. 720–730. ACM, 2022b.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph Condensa-
tion for Graph Neural Networks. In ICLR, 2022c.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. Nucleic acids research, 44(D1):D1075–D1079, 2016.

Dong Bok Lee, , Seanie Lee, Joonho Ko, Kenji Kawaguch, Juho Lee, and Sung Ju Hwang. Self-
supervised dataset distillation for transfer learning. In ICLR, 2024.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S. Yu, and Chuan Shi. Towards graph foundation models: A survey and beyond.
CoRR, abs/2310.11829, 2023a.

Jingzhe Liu, Haitao Mao, Zhikai Chen, Tong Zhao, Neil Shah, and Jiliang Tang. Neural scaling laws
on graphs. CoRR, abs/2402.02054, 2024.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S. Yu. Graph
self-supervised learning: A survey. IEEE Trans. Knowl. Data Eng., 35(6):5879–5900, 2023b.

Debmalya Mandal, Sourav Medya, Brian Uzzi, and Charu Aggarwal. Metalearning with graph neural
networks: Methods and applications. ACM SIGKDD Explorations Newsletter, 23(2):13–22, 2022.

Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of chemical information and modeling, 52
(6):1686–1697, 2012.

Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, Seungyeon Kim, and Sanjiv Kumar. A
statistical perspective on distillation. In International Conference on Machine Learning, pp.
7632–7642. PMLR, 2021.

Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed Pirsiavash. Boosting self-supervised
learning via knowledge transfer. In CVPR, 2018.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In IJCAI, pp. 2609–2615, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, and Qinghua Zheng. Self-supervised graph
representation learning via global context prediction. ArXiv preprint, 2020.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, pp. 815–823, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. arXiv preprint
arXiv:1908.01000, 2019.

Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou, Hao Peng, Jianxin
Li, and Philip S Yu. Gc-bench: An open and unified benchmark for graph condensation. 2024.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast Graph Condensation with Structure-
based Neural Tangent Kernel. In arxiv, 2024.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep graph
library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315, 2019.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. ArXiv
preprint, 2018.

Max Welling. Herding dynamical weights to learn. In ICML, 2009.

Gert W. Wolf. Facility location: concepts, models, algorithms and case studies. series: Contributions
to management science. Int. J. Geogr. Inf. Sci., 25(2):331–333, 2011.

Lirong Wu, Yufei Huang, Haitao Lin, Zicheng Liu, Tianyu Fan, and Stan Z. Li. Automated graph
self-supervised learning via multi-teacher knowledge distillation. arXiv preprint arXiv:2210.02099,
2022.

Yifan Wu, Jiawei Du, Ping Liu, Yuewei Lin, Wenqing Cheng, and Wei Xu. Dd-robustbench: An
adversarial robustness benchmark for dataset distillation. arXiv preprint arXiv:2403.13322, 2024.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. ArXiv preprint, 2019.

Hongjia Xu, Liangliang Zhang, Yao Ma, Sheng Zhou, Zhuonan Zheng, and Bu Jiajun. A survey on
graph condensation. arXiv preprint arXiv:2402.02000, 2024.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-level
representation learning with local and global structure. In ICML, pp. 11548–11558, 2021.

Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hanghang
Tong. Kernel ridge regression-based graph dataset distillation. In SIGKDD, pp. 2850–2861. ACM,
2023.

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart?, 2023.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, volume 33, pp. 5812–5823, 2020a.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision help
graph convolutional networks? In ICML, pp. 10871–10880, 2020b.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In CVPR, pp. 3712–3722, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In ICLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wentao Zhang, Zheyu Lin, Yu Shen, Yang Li, Zhi Yang, and Bin Cui. Deep and flexible graph neural
architecture search. In ICML, volume 162, pp. 26362–26374. PMLR, 2022.

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, and
Yang You. Navigating complexity: Toward lossless graph condensation via expanding window
matching. arXiv preprint arXiv:2402.05011, 2024.

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data. In
NeurIPS, 2023.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-GNN:
On few-shot node classification in graph meta-learning. In CIKM 2019, pp. 2357–2360. ACM,
2019. doi: 10.1145/3357384.3358106.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In NeurIPS, 2020.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76,
2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
A DATASET DETAILS

We use 5 node-level graph datasets (Cora, Citeseer (Kipf & Welling, 2017), Ogbn-arixv (Hu
et al., 2020a), Flickr (Zeng et al., 2020), and Reddit (Hamilton et al., 2017)) and 5 graph-level
graph datasets (GEOM (Axelrod & Gomez-Bombarelli, 2020), BACE (Wu et al., 2018), BBBP (Martins
et al., 2012), ClinTox (Gayvert et al., 2016), and SIDER (Kuhn et al., 2016)). We further provide
the statics of datasets in Table A1.

Table A1: Statistics of datasets.

Level Dataset # Classes / # Tasks #Nodes / #Graphs # Edges # Features

Node-level

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703

Ogbn-Arxiv 40 169,343 1,166,243 128
Flickr 7 89,250 899,756 500
Reddit 210 232,965 57,307,946 602

Graph-level

BACE 1 1,513 - -
BBBP 1 2,039 - -

ClinTox 2 1,478 - -
Sider 27 1,427 - -

B SELF-SUPERVISED TEACHER TASKS

In the paper, we utilize different self-supervised task guided models as the way we extract the
“universal knowledge” from the original dataset G. Here, we present each model we used.

For node-level classification tasks, we follow AutoSSL (Jin et al., 2022a) and adopt five classic tasks:

• DGI (Velickovic et al., 2019): Maximizes the different views’ representations (graph v.s. nodes).
• CLU (You et al., 2020b): Predicts pseudo-labels from K-means clustering on node features.
• PAR (You et al., 2020b): Predicts pseudo-labels from Metis graph partition (Karypis & Kumar,

1998).
• PAIRSIM (Jin et al., 2020): Predicts pairwise feature similarity between nodes.
• PAIRDIS (Peng et al., 2020): Predicts the shortest path length between nodes.

In the graph-level classification tasks, we follow WAS (Fan et al., 2024) to adopt 7 classic tasks:

• AttrMask (Hu et al., 2020b): Learns the regularities of node/edge attributes.
• ContextPred (Hu et al., 2020b): Explores graph structures by predicting the contexts.
• EdgePred (Hamilton et al., 2017): Predicts the connectivity of node pairs.
• GPT-GNN (Hu et al., 2020c): Introduces an attributed graph generation task to pre-train GNNs.
• GraphLoG (Xu et al., 2021): Introduces a hierarchical prototype to capture the global semantic

clusters.
• GraphCL (You et al., 2020a): Constructs specific contrastive views of graph data.
• InfoGraph (Sun et al., 2019): Maximizes the mutual information between the representations of

the graph and substructures.

C PROOF OF THEOREM 1

Proof. We aim to prove that:

I(Ys
s;Y

h
s) ≤ I(PT (X,A);Y). (A.1)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Since Ys
s and Yh

s are obtained from PT (X,A) and Y through kernel ridge regression—which is a
deterministic mapping, they can be expressed as:

Ys
s = f

(
PT (X,A)

)
, (A.2)

Yh
s = g(Y), (A.3)

where f and g are the regression functions.

According to the data processing inequality (Beaudry & Renner, 2012), applying deterministic
functions to random variables does not increase mutual information. Therefore, we have:

I
(
Ys

s;Y
h
s

)
≤ I

(
PT (X,A);Y

)
. (A.4)

D TIME COMPLEXITY ANALYSIS

ST-GCond primarily consists of two parts: sampling sub-tasks for meta updating and involving
self-supervised tasks to guide condensing. For the former, we can treat them as a composition of
bi-level optimization. Following GCond (Jin et al., 2022c), we start with an L-layer GCN, where
the large-scale graph has N nodes, the small yet informative condensed graph has m nodes, and the
hidden dimension is d. The computation cost for a single task involves a forward pass through the
GNN, which is O(Lm2d + Lmd), and through gϕ, which is O(m2d2). The inner optimization of
kernel ridge regression can be expressed as O(Nmr2 +Nm) (Wang et al., 2024). Therefore, the
single task complexity is O(Lm2d+ Lmd+m2d2 +Nmr2 +Nm). Denoting the split of tasks as
t, the complexity for the former part can be shown as tO(Lm2d+ Lmd+m2d2 +Nmr2 +Nm).

For the latter, the calculation process is similar to the former, although we introduce multiple self-
supervised models during the condensing stage. Thanks to the benefits of the offline strategy, we
only need the extra computation complexity of kO(LEd + LNd2), where k denotes the number
of self-supervised tasks. Therefore, the overall complexity can be expressed as (t+ 1)O(Lm2d+
Lmd+m2d2 +Nmr2 +Nm) + kO(LEd+ LNd2). Note that t and k are not set to be too large.

To intuitively demonstrate the efficiency comparison, we present the running time (in seconds) of the
proposed ST-GCond and GCond over 50 epochs on a single A100 GPU. Thanks to the efficiency
of kernel ridge regression, we avoid the time-consuming triple-level optimization. As a result, our
method is empirically 1.14 to 2.17 times faster than the previous GCond method.

Table A2: Comparison of running time of GCond and ST-GCond(in seconds).

Ogbn-arxiv r=0.05% r=0.25% r=0.5%
GCond (Jin et al., 2022c) 217.18 386.71 765.12

ST-GCond 178.27 278.44 399.15

E COMPUTATION RESOURCE

We conduct all experiments with:

• Operating System: Ubuntu 20.04 LTS.
• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.
• GPU: NVIDIA Tesla A100 SMX4 with 80GB of Memory.
• Software: CUDA 10.1, Python 3.8.12, PyTorch (Paszke et al., 2019) 1.7.0.

F PARAMETER SETTING

In our proposed ST-GCond, we fix common parameters, such as the GNN backbone, to GCN for
the node-level task and GIN for the graph-level task. Other key parameters, which are also fixed, are

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table A3: Fixed key parameters.

Parameters Value
GNN backbone GCN, GIN
Number of layers 2
Hidden Units 256
Activation LeakyReLU
Dropout Rate 0.5
k 5
Split of meta tasks 3
REVISED: {δ} 0.5

Table A4: Search space of the key parameters.

Parameters Search Space
lr 0.1, 0.01, 0.001
α (0.0, 1.0)
β (0.0, 1.0)

listed in Table A3. The hyperparameters that require tuning are lr, α, β, k, δ. We present the search
space for these parameters in Table A4. Note that the search space for α and β may change during
training. For simplicity, we use 10 discrete points. The actual time consumption will depend on the
Cartesian product of the individual runs. REVISED: {For the reproduction, we provide the detail
configuration of each experiments including the Table A3, Table A5, and Table A6.}

Table A5: Parameter configuration under the single task and dataset scenario

Dataset r lr α β

Citeseer
0.90% 0.001 0.7 0.5
1.80% 0.001 0.7 0.5
3.60% 0.001 0.7 0.7

Cora
1.30% 0.001 0.7 0.5
2.60% 0.001 0.7 0.5
5.20% 0.001 0.7 0.5

Ogbn-arxiv
0.05% 0.01 0.5 0.6
0.25% 0.01 0.7 0.6
0.50% 0.01 0.5 0.6

Flickr
0.10% 0.001 0.5 0.7
0.50% 0.001 0.5 0.6
1.00% 0.001 0.7 0.8

Reddit
0.05% 0.01 0.5 0.8
0.10% 0.01 0.4 0.8
0.20% 0.01 0.6 0.8

Table A6: Parameter configuration under cross-dataset and cross-task scenarios.

Scenario Dataset lr α β

Cross-dataset: Node Classification Ogbn-arxiv→ target datasets 0.01 0.8 0.6

Cross-dataset: Graph Classification GEOM→ target datasets 0.01 0.5 0.7

Cross-task: Link Prediction Cora 0.001 0.6 0.7
Citeseer 0.001 0.7 0.5

Cross-task: Node Clustering Cora 0.001 0.4 0.8
Citeseer 0.001 0.6 0.7

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.1 0.3 0.5 0.7 0.9
70

75

80

85

90

A
cc

ur
ac

y
(%

)

Cora Citeseer Reddit

Figure A1: Sensitive of β.

G ALGORITHMS

G.1 ALGORITHM 1

Algorithm 1 ST-GCond: Self-supervised and Transferable Graph Dataset Condensation

1: Input: Graph dataset G = (X,A,Y), pre-trained teachers {fT
1 (·), . . . , fT

K (·)}, steps T , condensation
ratio r, REVISED: {and graph sparsity parameter δ.}

2: Output: Condensed graph dataset Gs = (Xs,As,Y
h
s ,Y

s
s).

3: Initialize weights {λi =
1
K
}Ki=1, Xs by selecting r% features/class, Yh

s with labels.
4: Initialize As = gϕ(Xs), Ys

s = 1
K

∑
λif

T
i (Xs,As).

5: for t = 0, · · · , T − 1 do
6: Initialize θ ∼ Pθ .
7: while not converge do
8: D′ = 0.
9: Sample tasks Tc ∼ p(TY).

10: for Ti do
11: Sample GTi ∼ G, GTi

s ∼ Gs.
12: // Meta-training
13: Adapt parameters with Lself on GTi

s : θ
′
i ← θ − λ1∇θLTi

self (GNNθ,GTi
s).

14: // Meta-updating
15: Combine representation: ŶTi =

∑K
i=1 λif

T
i (GTi).

16: Compute Lcls,Lself , and LMI on GTi :

D′ ← D′ +
(
∇θ′i
LTi

cls(GNNθ′i
,GTi) + α∇θ′i

LTi
self (Ŷ

Ti ,GTi) + β∇θ′i
LTi
MI(Y

s
s;Y

h
s)
)

.
17: end for
18: Update {λi}Ki=1, Xs, Ys

s , ϕ, and θ.
19: end while
20: end for
21: Generate the condensed graph: As = ReLU(gϕ(Xs)− δ), Gs = (Xs,As,Y

h
s ,Y

s
s)

H MORE EXPERIMENTS

H.1 PARAMETER SENSITIVITY

We further investigate the sensitivity of the weight of LMI , which controls the influence of the
mutual information loss. From Figure A1, we observe that as β increases, the accuracy of each
dataset initially rises, then fluctuates. We perform a grid search to identify the optimal setting for β.
Empirically, we select 0.5, 0.6, 0.7 based on the specific dataset.

H.2 REVISED: {VISUALIZATION OF CONDENSED GRAPH}

We visualize the condensed graph in the Figure A2 and report statistics in the TableA7. From the
figure, we see that the learned graph is denser compared to the original, likely due to information
concentration. If the condensed graph maintained the same sparsity, it might lack sufficient edges to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Cora, r = 2.5% (b) Citeseer, r = 1.8%

(c) Ogbn-arxiv, r = 0.05% (d) Flickr, r = 0.1%

(e) Reddit, r = 0.1%

Figure A2: Visualizations of the condensed graph by ST-GCond. The edge weights are represented
by varying line thickness, and node classes are denoted by different colors.

enable effective message passing. Additionally, for the Citeseer and Cora datasets, homophily
is reduced compared to the original graphs, with nodes within each class less tightly clustered.
We believe it pose a more challenge to learned graph neural networks, which may have better
generalization ability.

Table A7: Statistics of the condensed graph, compared with the whole graph to highlight the
differences. Note that homophily is calculated using the algorithm introduced by (Zhu et al., 2020).

Citeseer, r=0.9% Cora, r=1.3% Ogbn-arxiv, r=0.25% Flickr, r=0.1% Reddit, r=0.1%

Whole ST-GCond Whole ST-GCond Whole ST-GCond Whole ST-GCond Whole ST-GCond

Accuracy 70.7 71.5 81.5 83.4 71.4 66.8 47.1 47.5 93.9 91.7
#Nodes 3,327 60 2,708 70 169,343 454 44,625 44 153,932 153
#Edges 4,732 1,434 5,429 2,131 1,166,243 8,681 218,140 331 10,753,238 3427
Sparsity 0.09% 77.3% 0.15% 84.10% 0.01% 8.42% 0.02% 34.20% 0.09% 29.18%
Homophily 0.74 0.60 0.81 0.68 0.65 0.10 0.33 0.31 0.78 0.06
Storage 47.1MB 1.1MB 14.9MB 0.8MB 100.4MB 1.3MB 86.8MB 0.3MB 435.5MB 0.7MB

19

	Introduction
	Related works
	Dataset Distillation
	Graph Dataset Condensation

	Self-supervised and Transferable Graph Dataset Condensation
	Overall Framework of ST-GCond
	Cross-Task Transferability: Task-disentangled Meta Optimization
	Cross-Dataset Transferability: Multi-teacher Self-Supervised Optimization
	Mutual Information Guided Joint Condensation

	Experiment
	Experimental Setups
	Experimental Results
	Ablation Study and Sensitivity Analysis

	Conclusion
	Dataset details
	Self-supervised teacher tasks
	Proof of Theorem 1
	Time complexity Analysis
	Computation resource
	Parameter setting
	Algorithms
	Algorithm 1

	More experiments
	Parameter Sensitivity
	REVISED: {Visualization of Condensed Graph}

