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ABSTRACT

The increasing scale of graph datasets significantly enhances deep learning mod-
els but also presents substantial training challenges. Graph dataset condensation
has emerged to condense large datasets into smaller yet informative ones that
maintain similar test performance. However, these methods strictly require down-
stream usage to match the original dataset and task, leading to failures in cross-
task and cross-dataset scenarios. To address such cross-task and cross-dataset
challenges, we propose a novel Self-supervised and Transferable Graph dataset
Condensation method named ST-GCond, providing effective and transferable
condensed datasets. Specifically, for cross-task challenge, we propose a task-
disentangled meta optimization strategy to adaptively update the condensed graph
according to the task relevance, encouraging information preservation for various
tasks. For cross-dataset challenge, we propose a multi-teacher self-supervised opti-
mization strategy to incorporate auxiliary self-supervised tasks to inject universal
knowledge into the condensed graph. Additionally, we incorporate mutual infor-
mation guided joint condensation mitigating the potential conflicts and ensure the
condensing stability. Experiments on both node-level and graph-level datasets show
that ST-GCond outperforms existing methods by 2.5% ∼ 18.7% in all cross-task
and cross-dataset scenarios, and also achieves state-of-the-art performance on 5
out of 6 datasets in the single dataset and task scenario. Our code is available at
https://anonymous.4open.science/r/ST-GCond-FFB4.

1 INTRODUCTION

Dataset plays an essential role in contemporary machine learning research (Liu et al., 2024; Ghorbani
et al., 2022). It is also widely believed that there is a scaling law between dataset size and the power
of deep learning models (Kaplan et al., 2020). Graph datasets, in particular, contain vast amounts
of relations and entities that represent complex interactions, such as those found in social networks,
molecules, and recommender systems. These datasets serve as the foundation for many powerful
models designed to support various analytical applications (Schroff et al., 2015; Wu et al., 2019;
Battaglia et al., 2018). However, large-scale graph datasets also present significant challenges in
terms of storage, processing, and computational resources. On one hand, specific applications like
neural architecture search (Zhang et al., 2022; Guan et al., 2022) and continual learning (Choi et al.,
2024) require repetitive training on datasets, resulting in significant computational costs. On the
other hand, for users with limited computational resources, training on large-scale graph datasets can
be exceedingly time-consuming or even impractical. Recently, several graph dataset condensation
methods (Xu et al., 2024; Sun et al., 2024) have been proposed to address this and show remarkable
success in preserving essential information with extremely small datasets.

However, as shown in Fig. 1a, all existing graph condensation methods are designed to condense a
specific dataset tailored for single dataset and task. This limitation is incompatible with real-world
requirements, where users may encounter new or user-defined data and tasks that significantly differ
from those condensed graph datasets derived by open-access datasets. Unlike applying applications
to a few public graph datasets, such scenarios are much more common and challenging. Though
there exist other lines of studies (e.g., graph transfer learning (Zhuang et al., 2020), graph meta
learning (Mandal et al., 2022), and graph foundation models(Liu et al., 2023a)) that could also address
this issue, they require fixed model architecture design or complex training strategies, and relatively
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Figure 1: We illustrate the pipeline of existing graph condensation methods (Fig. 1a), which are
designed for a single dataset and task. We enhance these methods to make the condensed graph
transferable to various downstream needs (Fig. 1b). We achieve faster and more effective performance
in both cross-task (Fig. 1c) and cross-dataset (Fig. 1d) scenarios.

huge computational resources. Therefore, it is natural to ask a question: Can the condensed graph
dataset be used to train models for various tasks and upon various datasets?

To simplify the discussion, we extend the concept of model transferability to data-level transferabil-
ity, which evaluates how well the condensed dataset, when used to train a model, enables the model
to transfer effectively to new datasets or new tasks. Ideally, enhanced transferability would allow
users to train models more efficiently, achieving faster convergence and better results when applied
to their own data or task (Fig. 1b). However, we empirically find there are two main challenges for
addressing the problem of transferability on the current graph dataset condensation methods.

Challenge ❶: Efficient and Fast Cross-task Adaptation. In this context, a “task” refers to either
changes in task types or changes in label sets. We provide a detailed explanation of these distinctions
and present experiments for both scenarios in Sec. 4.2. Here, we focus on an example of label
set changes, as illustrated in Fig. 1c. Using the Ogbn-arxiv dataset, we apply condensation
based on only half of the supervised data (i.e., 20 classes). A 2-layer GCN model, trained on this
condensed graph, is then tested on the remaining 20 classes by fine-tuning the final linear layer. We
show the performance of various methods over fine-tuning epochs (test epochs), with the gray lines
representing the results of a naive 2-layer GCN model. Existing methods underperform by 4.2%
compared to the ground truth averagely, highlighting the difficulty of cross-task transferability.

Challenge ❷: Cross-dataset Universal Information Preservation. We further investigate cross-
dataset scenarios in the Fig. 1d, where a 2-layer GCN model trained on condensed Ogbn-arxiv
data is generalized to four different datasets by replacing the final layer with a new linear layer. To
illustrate the differences more clearly, we normalize each result to the performance of the naive
2-layer GCN model. In this context, Random refers to a model that was not trained on the condensed
dataset but instead fine-tunes only the final layer. While current methods outperform the Random
baseline, they still fail to surpass the performance of a simple GCN model, remaining below 1.0 ratio.

To address the above challenges, we propose a Self-supervised and Transferable Graph dataset
Condensation framework named ST-GCond. Unlike existing methods focused on condensing a
specific dataset for a single task, ST-GCond is designed to encourage the condensed graph to preserve
the most general and informative patterns, leading to better transferability across tasks and datasets.
Specifically, to achieve better cross-task transferability, the ST-GCond utilizes a task-disentangled
meta optimization strategy to adaptively update the condensed graph according to the task relevance.
To achieve better cross-dataset transferability, the ST-GCond adopts a multi-teacher self-supervised
optimization strategy: we pre-train several self-supervised models as teachers and adaptively combine
them to extract fundamental information from the original dataset. To align above two strategies
for joint condensing, we introduce a mutual information guided joint condensation strategy, which
mitigates potential conflicts between supervised and self-supervised tasks. We empirically evaluate
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our ST-GCond on 5 node-level and 5 graph-level real-world graph datasets. For the cross-dataset
and cross-task scenario, ST-GCond outperforms the existing graph condensation methods 2.5%
to 18.7%. In the traditional single dataset and task scenario, ST-GCond also gets state-of-art
performance on 5 out of 6 datasets, demonstrating its versatility. The contributions are as follows:

• We propose ST-GCond, a self-supervised and transferable graph dataset condensation framework.
To the best of our knowledge, ST-GCond is the first graph condensation method that is designed
for cross-dataset and cross-task scenarios.

• ST-GCond incorporates the task-disentangled and self-supervised optimization to inject the
universal knowledge into the condensed graph, enhancing both cross-task and cross-dataset
transferability.

• Extensive experiments on 10 real-world datasets demonstrate that ST-GCond enjoys the state-
of-art performance on both single task and cross-dataset/cross-task scenarios.

2 RELATED WORKS

2.1 DATASET DISTILLATION

Dataset distillation (Wang et al., 2018; Bohdal et al., 2020; Cui et al., 2022; Wu et al., 2024) is
proposed to significantly reduce the scale of the dataset but ensuring the test performance of the
distilled dataset. It is suitable for various applications like continual learning, neural architecture
search, and for users who have limited computational resources. However, there is still much more
gap between the condensed dataset and the original one. For example, the dataset provides more
intrinsic knowledge beyond the human-made labels (Kaplan et al., 2020) and can be transferred to
benefit the new dataset’s tasks (Noroozi et al., 2018; Zamir et al., 2018). Although KRR-ST (Lee
et al., 2024) is proposed to distill a transferable dataset fitting this goal, the cost is that the distilled
dataset cannot be effectively leveraged by traditional continual learning and neural architecture search
applications. Therefore, there is a need to comprehensively fill the dataset gap.

2.2 GRAPH DATASET CONDENSATION

Graph data have its unique feature that the samples (nodes) are not independent. Therefore, distilling
(condensing) a graph is more difficult for jointly considering the node and structure. Recently, several
graph dataset condensation methods (Xu et al., 2024; Gao et al., 2024) have been proposed to achieve
better performance on a single dataset and tasks. For instance, GCond (Jin et al., 2022c) first introduce
the gradient matching method in condensing graph, SGDD (Yang et al., 2023) and SFGC (Zheng
et al., 2023) enhance GCond through different ways: further considering the structure and removing
the structure. And the most recent GEOM (Zhang et al., 2024) following SFGC achieves lossless
results (even better than solely training a GCN model on the original graph). DosCond (Jin et al.,
2022b) and KiDD (Xu et al., 2023) provide a way to condense the graph classification datasets, while
KiDD propose to use the Kernel ridge regression to efficiently reduce the condensing time. However,
existing methods are still designed for specific datasets and tasks. How to achieve transferable
condensation remains under-explored and requires further research.

3 SELF-SUPERVISED AND TRANSFERABLE GRAPH DATASET CONDENSATION

3.1 OVERALL FRAMEWORK OF ST-GCOND

In this paper, we aim to propose a transferable graph dataset condensation method for cross-task
and cross dataset scenarios. Given a graph dataset G = (X,A,Y), where X ∈ RN×d represents
the feature matrix, A ∈ RN×N represents the adjacency matrix, N is the number of nodes, and
d denotes the node feature dimension. Our goal is to generate a smaller synthetic graph dataset
Gs = (Xs,As,Y

h
s ) with m nodes (m ≪ N ), aiming to make any model trained on Gs achieve

similar test performance to a model trained on G on the same task (defined by the label Y) without
lost the generalization ability when transferring such model to the new datasets or tasks. Unlike
traditional condensation methods where the condensed graph is restricted to a specific dataset and
task, transferable graph dataset condensation aims to expand the usage scope of the condensed graph.
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Figure 2: Overall framework of ST-GCond. The original large graph dataset G, consisting of X,A,
and Y, is condensed using ① task-disentangled meta-optimization to synthetic hard label Yh

s and ②
multi-teacher self-supervised optimization to generate soft label Ys

s , along with their shared Xs,As.
③ To avoid conflicts in optimization directions, mutual information-guided joint condensation is
employed to serve as the mutual information regulations loss term.

To this end, we propose the Self-supervised and Transferable Graph dataset Condensation framework,
termed ST-GCond. As illustrated in Fig. 2, our goal is to condense the original graph dataset G into
a smaller yet informative graph dataset, Gs = (As,Xs,Y

h
s ,Y

s
s). It is worth noting that we include a

soft label, Ys
s , to handle more complex scenarios.

(1) Task-disentangled Meta Optimization. (Challenge ❶) We first disentangle the given task
(i.e., classes) into t parts, with each part containing h classes (h > 1) as sub-task {Ti}ti=1. In
every epoch, the condensed graph Gs will first be fast updated through the guide of each sub-task
to be the {G′Ti

s }ti=1, then optimize the Gs through the joint evaluation loss on all sub-tasks. The
motivation behind this is to let the condensed graph not only be aware of the difference of the tasks
but can quickly adapt to the optimal state of each sub-task. Such process is associated with the hard
condensed label Yh

s ∈ Rm×1.

(2) Multi-teacher Self-Supervised Optimization. (Challenge ❷) We leverage self-supervised tasks
to extract the universal knowledge of G. Specifically, we load k pre-trained models, each trained on a
distinct self-supervised task, denoted as {fT

1 (·), fT
2 (·), · · · , fT

k (·)}. We further propose a synthetic
soft label Ys

s ∈ Rm×d to unify the labels across these tasks. Consequently, the condensed graph
is guided by multiple self-supervised tasks, enabling it to acquire more transferable cross-dataset
knowledge.

(3) Mutual Information Guided Joint Condensation. (Resolving the potential conflicts) Through
the discussion of previous literature (Jin et al., 2022a; Fan et al., 2024) and our empirical findings in
Tab. 6, we observe that directly combining different self-supervised tasks with the supervised task can
lead to unexpected performance drops. Therefore, we propose to constrain the mutual information
I(Ys

s;Y
h
s ), which adaptively adjusts the weights for each self-supervised task and ensures that

the final distribution closely approximates the ideal distribution of Yh
s , thereby resolving potential

conflicts in the joint condensing process.

3.2 CROSS-TASK TRANSFERABILITY: TASK-DISENTANGLED META OPTIMIZATION

Existing methods for graph dataset condensation primarily focus on task performance related to the
single task and dataset, making the condensed graph only reserve knowledge specific to such a single
task, which significantly hampers its transferability to other tasks (see Fig. 1c, Table 4, and Table 5).

Since the actual downstream task information is unknown, preparing an optimal condensed graph
tailored for a specific task is impossible. Inspired by MAML (Finn et al., 2017; Zhou et al., 2019),
we modify the optimization strategy to search for a “global minimum” across all tasks, enabling the
condensed graph to rapidly and effectively adapt to new tasks. Given a distribution over tasks p(Y),
we randomly sample label sets {yi}ti=1 ∼ p(Y) and induce the sub-task graph GT . This process is
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similar to class-level sampling in GCond, but our focus on the task level makes it more suitable for
addressing challenge.

Initialization of the Condensed Graph Gs. We initialize {Xs,Y
h
s } by randomly selecting a

subset of the original data. Following GCond, we use an MLP gϕ as the structure generator, where
As = (gϕ(Xs)− δ), Here, δ serves as the sparsity parameter to filter out edges with lower weights.
Note that Yh

s is analogous to the labels Y ∈ RN×1 of G, encompassing C classes.

Fast Adaptation and Meta Optimization Strategy. REVISED: {The key step is simulating the
cross-task scenario in the condensing stage with Gs}. Following MAML(Finn et al., 2017), we use
the meta optimizing strategy, specifically, given the i-th sub-task GTi , we update a copy of Gs as
follows: G′Ti

s ← Gs −∇GsL
Ti

cls(GTi ,Gs). The final optimization for Gs is then calculated using the
following:

Lmeta
cls =

1

t

t∑
i=1

Lcls(GTi ,G
′Ti
s ). (1)

The difference is that the meta-loss term is calculated using the fast-adapted condensed graph,
simulating the scenario where users update their models on new data and test on the updated versions.

Kernel Ridge Regression-Based Condensing Objective. The term Lcls in Eq. (1) serves as the
surrogate condensing objective. For instance, gradient matching (Jin et al., 2022c; Yang et al., 2023)
mimics the real gradients occurring in the original dataset, while trajectory matching (Zheng et al.,
2023; Zhang et al., 2024) simulates the learning trajectories. In contrast, we adopt the Kernel Ridge
Regression (KRR) method (Xu et al., 2023; Wang et al., 2024) to simplify the condensing process,
aligning it with the requirements of task-disentangled meta optimization. Formally, Lcls is:

Ly
cls ≜ min

Gs

1

2
∥y −KGGs

(KGsGs
+ ϵI)Yhi

s ∥2F , (2)

where KGGs : G×Gs → RN×m denotes the kernel function, it is a simple algorithm that involving the
structure to the kernel calculation. We adopt SNTK (Wang et al., 2024) for calculating the node-level
and LightGNTK (Xu et al., 2023) for graph-level calculating. Yhi

s denotes the corresponding label
sets in the hard condensed labels Yh

s . Then Gs could be adapted to Gi′s by Eq. (1), which represents
that the condensed graph Gs update through task GTi . The ∥ · ∥2F indicates the Mean Square Error
(MSE) loss function.

3.3 CROSS-DATASET TRANSFERABILITY: MULTI-TEACHER SELF-SUPERVISED
OPTIMIZATION

Regarding the “cross-dataset” transferability challenge, the natural approach is to extract and distill
fundamental knowledge into the condensed graph. Beyond human-made labels (supervised task), we
propose leveraging self-supervised tasks to automatically extract latent knowledge. Furthermore, as
each task preserves only one aspect of the dataset (Jin et al., 2022a), we propose to use multi-teacher
self-supervised optimization to better consider the diverse aspects of the dataset.

Unifying Self-Supervised Task Labels. Directly incorporating self-supervised tasks is not trivial, as
existing graph condensation methods require explicit labels. For classification tasks with C classes,
synthetic labels Ys ∈ Rm×C must be assigned to Gs. Assigning numerous synthetic labels for
multiple self-supervised tasks is impractical. In addition, simultaneously training such tasks from
scratch in condensing, as in previous graph condensation methods, is complex and time-consuming.

Inspired by the knowledge distillation works (Fan et al., 2024), we opt to load the pre-trained models
as teachers, and then we can unify all the tasks to the target

(∑k
i=1 λif

T
i (X,A)

)
∈ RN×d, where

{λi}ki=1 are the weights of teachers and we discuss it in Sec. 3.4. Thus all the target pseudo labels
turn to be same d-dimension tensors. We only need to craft a soft condensed label Ys

s ∈ Rm×d in
condensing:

min
Ys

s

Lself (PT (X,A),Ys
s), (3)
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where PT (X,A) =
(∑k

i=1 λif
T
i (X,A)

)
denotes the adjusted distribution of the pre-trained

teacher models’ output. It is also worth noting that loading the pre-trained tasks instead of training a
model from scratch, as existing methods do, can save considerable optimization time and resource.

Kernel Ridge Regression-Based Optimizing Objective. Here we also use kernel ridge regression
(KRR) (Lee et al., 2024) for optimizing the Gs and the soft condensed label Ys

s . The motivation is
that the naive gradient matching and trajectory matching methods are hard to support continuous
labels and are heavily coupled with supervised tasks. Formally, the KRR-based self-supervised loss
Lself is:

Lself ≜ min
Gs

1

2
∥PT (X,A)−KGGs

(KGsGs
+ ϵI)Ys

s∥2F , (4)

where K(·) is similar to that in Eq. (1), I is the identity matrix improving the robustness, and
PT (X,A) represents the weighted combination of the teacher models’ output.

3.4 MUTUAL INFORMATION GUIDED JOINT CONDENSATION

Following the existing KRR-based graph condensation methods (Xu et al., 2023; Wang et al.,
2024), the overall condensing objective is the weight sum of Lmeta

cls and Lself as: minGs L =
Lmeta
cls + αLself . However, we empirically find there may exist a potential conflict in calibrating

multiple self-supervised and supervised tasks (see Table 6). Such findings drive us to find an optimal
guiding solution in adjusting.

As similar issues discussed in the previous knowledge distilling literature (Fan et al., 2024; Wu
et al., 2022), the key to condensing the beneficial information from teachers is to let the probability
distribution of teachers approximate the true (Baysian) distribution of the downstream tasks (Menon
et al., 2021). However, due to the invisibility of downstream labels, we intuitively use the label Y
from G to serve as the target ideal distribution. The mutual information to calculate the dependency
between the PT (X,A) and labels:

I(PT (X,A);Y) = H(Y)−H(Y|PT (X,A)), (5)

where PT (X,A) represents a weighted combination of the multi-teacher output. However, directly
solving Eq. (5) is computationally intensive and may not yield optimal results due to the sampling
process involved in Sec. 3.2. To address this issue, we propose optimizing the mutual information
LMI = I(Ys

s;Y
h
s ) as a substitution. We further demonstrate that the mutual information of the

condensed graph labels, I(Ys
s;Y

h
s ) is related to the upper bound of I(PT (X,A);Y):

Theorem 1. Given that Ys
s and Yh

s are approximations through kernel ridge regression, the mu-
tual information of the condensed graph I(Ys

s;Y
h
s ) is related to the upper bound of the mutual

information I(PT (X,A);Y) as follows:

I(Ys
s;Y

h
s ) ≤ I(PT (X,A);Y). (6)

The detailed proof is provided in Appendix C. In our experiments, we implement the neural estimation
method (Belghazi et al., 2018) for the gradient backward pass. The final objective function is ex-
pressed as: minGs

L = Lmeta
cls +αLself +βLMI . The overall algorithm is presented in Appendix G.1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate our method on 6 node-level datasets (Cora (Kipf & Welling, 2017),
Citeseer (Kipf & Welling, 2017), Ogbn-arxiv (Hu et al., 2020a), Reddit (Hamilton et al.,
2017) and Flickr (Zeng et al., 2020)) and 5 graph-level datasets (GEOM (Axelrod & Gomez-
Bombarelli, 2020), BACE (Wu et al., 2018), ClinTox (Gayvert et al., 2016), and SIDER (Kuhn
et al., 2016)). For the supervised node classification task, we follow the settings from GCond (Jin
et al., 2022c). For the other types of task, we follow the public split of the dataset. We report the
details of the datasets in Appendix A.
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Baselines. We compare ST-GCond with 10 baselines: (1) graph coreset methods (Random,
Herding (Welling, 2009), and K-Center (Wolf, 2011)), (2) node-level graph condensation
methods (GCond (Jin et al., 2022c), SGDD (Yang et al., 2023), SFGC (Zheng et al., 2023), and
GEOM (Zhang et al., 2024)), (3) graph-level graph condensation methods (DosCond (Jin et al.,
2022b), KiDD (Xu et al., 2023)), and (4) one self-supervised condensation method, KRR-ST (Lee
et al., 2024). For the Random method, we randomly select nodes from the original graph to induce a
subgraph. We implement Herding to filter nodes that are close to the centroids and K-Center to
select nodes that play a critical role in minimizing the distance between samples and their nearest
centers following (Jin et al., 2022c).

Implementation Details. In the condensing stage, for the supervised task, we randomly split the
classes of the task into 3 parts, with each part containing h classes (h > 1) as a sub-task. For the
auxiliary self-supervised tasks, we select 5 classic tasks for node-level condensation (DGI (Velickovic
et al., 2019), CLU (You et al., 2020b), PAR (You et al., 2020b), PAIRSIM (Jin et al., 2020), and
PAIRDIS (Peng et al., 2020)) and 7 tasks for graph-level condensation ( AttrMask (Hu et al., 2020b),
ContextPred (Hu et al., 2020b), EdgePred (Hamilton et al., 2017), GPT-GNN (Hu et al., 2020c),
GraphLoG (Xu et al., 2021), GraphCL (You et al., 2020a), and InfoGraph(Sun et al., 2019)). We
briefly introduce them in Appendix B. For each dataset, the condensation ratio r is defined by the
number of nodes in the condensed graph r = N

m , where 0 < r < 1. For each dataset, we condense 5
graphs with different random seeds and report average performance. We provide our

In the testing stage, we choose the appropriate testing paradigm according to the specific scenario.
(1) Single dataset and task scenario. When the downstream dataset and task match the condensing
one, similar to the previous graph dataset condensation methods, we use {Xs,As,Y

h
s ,Y

s
s} or

{Xs,As,Y
h
s } to train a model and test it on the original graph dataset G. (2) cross-dataset and

cross-task scenario. When the downstream dataset and task differ, we use {Xs,As,Y
s
s} to train a

model and then use the downstream data to train a linear classifier. For other graph condensation
methods, we replace the last layer of the trained model with a linear classifier in a similar manner.
For the specific hyperparameter search range, we provide in the Appendix F.

4.2 EXPERIMENTAL RESULTS

To evaluate the performance of ST-GCond, we conduct experiments on three scenarios: (1) single
task and dataset scenario; (2) cross-dataset scenario; (3) cross-task scenario.

(1) Performance comparison on single dataset and task. In this scenario, ST-GCond utilizes
Ys

s to train a GNN feature extractor and further uses Yh
s to train a linear classifier. We also report

a variant ST-GCond-Yh
s of ST-GCond, which exclusively uses Yh

s during the training stage. As
shown in Table 1, ST-GCond achieves state-of-the-art results in 14 out of 15 ratios across 5 datasets,
particularly excelling at the lowest ratio. The maximum improvement is 2.71%. Furthermore,
ST-GCond outperforms ST-GCond-Yh

s variant by an average margin of 0.5% to 1.9%.

From the experiment, we observe that while our method is specifically designed for cross-dataset and
cross-task scenarios, it also demonstrates non-trivial improvements in single-dataset and single-task
settings. Notably, in three out of five datasets, the results are even lossless compared to whole dataset
accuracy according to the definition from GEOM (Zhang et al., 2024). We attribute this improvement
to the integration of both supervised and self-supervised information. This approach effectively
mimics the property in the original dataset, as highlighted in various studies (Wang et al., 2019;
Hou et al., 2022; Liu et al., 2023b), which emphasize the importance of self-supervised learning in
enhancing performance. Furthermore, the ST-GCond-Yh

s also achieves the comparable performance
comparing to the baselines, demonstrating the versatility of using the hard labels Ys

h independently
with the condensed graph.

(2) Performance comparison on cross-dataset scenario. We compare ST-GCond with baselines
under cross-dataset transfer learning settings. For node-level datasets, we use Ogbn-arxiv as the
source dataset and test the condensed graph on four other target datasets. For graph-level datasets,
we use GEOM as the source dataset and test the condensed graph on four other target datasets. We
compare ST-GCond with GCond, SGDD, SFGC, and GEOM for node-level condensation, and with
DosCond and KiDD for graph-level condensation. MLP (w/o pre) shows the naive results that
solely use the linear model in the target datasets, a common strategy for low-resource computation.
The results are shown in Table 2 and Table 3.
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Table 1: Node classification performance (Accuracy%± std) comparison under the single task and
dataset scenario. Best results are in bold and the runner-up is underlined. We use red text to indicate
the lossless results (better than solely using GCN on the original graph).

Datasets Ratio(r) Random
(As,Xs,Ys)

Herding
(As,Xs,Ys)

K-Center
(As,Xs,Ys)

GCond
(As,Xs,Ys)

SGDD
(As,Xs,Ys)

SFGC
(Xs,Ys)

GEOM
(Xs,Ys)

ST-GCond-Y h
s

(A,X,Yh
s )

ST-GCond
(A,X,Ys

s ,Y
h
s )

Whole
Dataset

0.90% 54.4±4.4 57.1±1.5 52.4±2.8 70.5±1.2 69.5±0.4 70.4±0.1 69.8±0.5 71.5±0.8 71.5±0.5

1.80% 64.2±1.7 66.7±1.0 64.3±1.0 70.6±0.9 70.2±0.8 70.1±0.3 70.8±0.7 69.8±1.1 71.6±0.7Citeseer
3.60% 69.1±0.1 69.0±0.1 69.1±0.1 69.8±1.4 70.3±1.7 71.4±0.8 70.2±0.3 69.6±0.9 72.1±0.3

71.7±0.1

1.30% 63.6±3.7 67.0±1.3 64.0±2.3 79.8±1.3 80.1±0.7 80.1±0.4 82.5±0.4 81.8±0.9 83.4±0.8

2.60% 72.8±1.1 73.4±1.0 73.2±1.2 80.1±0.6 80.6±0.8 81.7±0.5 83.6±0.3 81.4±1.0 83.3±0.5Cora
5.20% 76.8±0.1 76.8±0.1 76.6±0.1 79.3±0.3 80.4±1.6 81.6±0.8 82.8±0.7 81.8±0.8 83.6±0.9

81.2±0.2

0.05% 47.1±3.9 52.4±1.8 47.2±3.0 59.2±1.1 60.8±1.3 65.5±0.7 65.5±0.4 65.1±1.1 66.8±0.8

0.25% 57.3±1.1 58.6±1.2 56.8±0.8 63.2±0.3 65.8±1.2 66.1±0.4 65.6±0.2 65.6±1.2 66.8±0.9Ogbn-arxiv
0.50% 60.0±0.9 60.4±0.8 60.3±0.4 64.0±0.4 66.3±0.7 66.8±0.4 67.6±0.3 68.5±0.8 68.1±0.3

71.4±0.1

0.10% 41.8±2.0 42.5±1.8 42.0±0.7 46.5±0.3 46.9±0.3 46.6±0.2 47.1±0.1 46.8±0.1 47.2±0.1

0.50% 44.0±0.4 43.9±0.9 43.2±0.1 47.1±0.1 47.1±0.3 47.0±0.1 47.0±0.2 47.0±0.2 47.5±0.3Flickr
1.00% 44.6±0.2 44.4±0.6 44.1±0.4 47.1±0.1 47.1±0.1 47.1±0.1 47.3±0.3 47.1±0.3 47.5±0.4

47.2±0.1

0.05% 46.1±4.4 53.1±2.5 46.6±2.3 88.0±1.8 90.5±2.1 89.7±0.2 91.1±0.4 91.4±0.4 91.8±0.4

0.10% 58.0±2.2 62.7±1.0 53.0±3.3 89.6±0.7 91.8±1.9 90.0±0.3 91.4±0.2 91.5±0.2 91.7±0.2Reddit
0.20% 66.3±1.9 71.0±1.6 58.5±2.1 90.1±0.5 91.6±1.8 89.9±0.4 91.5±0.4 91.9±0.4 92.4±0.4

93.9±0.0

Table 2: Node classification performance (Accuracy% ± std) comparison under the cross-dataset
scenario. Best results are in bold and the runner-up is underlined. We use the red text to indicate the
lossless results (better than solely using GCN on the target datasets).

Node-level: Ogbn-arxiv→ Target datasets

Cora Citeseer Flickr RedditMethods
0.05% 0.25% 0.50% 0.05% 0.25% 0.50% 0.05% 0.25% 0.50% 0.05% 0.25% 0.50%

MLP (w/o pre) 54.8±0.8 60.1±1.7 28.75±1.1 68.5±0.8

Random 42.9±2.8 41.9±1.2 43.7±1.8 58.0±2.8 59.1±1.7 58.1±1.9 26.0±2.0 27.3±2.4 28.1±1.7 68.2±2.1 68.3±1.4 69.0±0.8

Herding 48.7±1.9 47.3±2.5 50.2±3.0 62.5±3.3 64.1±2.8 66.8±3.5 28.0±2.0 29.1±2.5 29.7±2.8 73.8±2.2 74.7±2.4 75.3±2.6

GCond 65.3±1.6 63.7±2.2 69.7±2.3 67.3±1.8 61.9±1.8 64.6±5.4 33.2±1.3 29.9±1.6 29.7±0.5 86.2±1.3 84.9±0.4 82.8±2.1

SGDD 65.1±2.0 63.6±2.0 67.0±2.2 70.1±2.0 66.4±5.0 67.8±5.0 35.2±1.3 33.5±2.7 32.4±2.3 85.8±1.1 85.2±1.2 84.1±1.8

SFGC 65.0±2.3 63.5±0.5 64.3±2.4 62.9±2.1 60.9±9.5 61.0±5.8 37.3±0.9 37.2±0.4 35.2±1.6 85.4±0.9 85.5±0.8 85.4±2.4

GEOM 61.5±0.9 66.0±1.1 65.9±2.1 64.0±2.6 68.9±0.8 67.7±2.4 36.2±0.6 34.2±1.7 34.7±0.7 84.5±1.2 87.1±1.0 87.5±0.8

ST-GCond 74.1±0.8 81.5±1.1 81.8±1.8 69.8±1.7 71.4±0.7 72.8±0.6 43.6±0.6 47.2±0.1 47.8±0.4 88.7±0.4 90.8±0.9 92.1±0.8

We observe that ST-GCond exceeds all runner-up methods by an average of 2.5% to 15.5% on node-
level classification and 4.1% to 18.79% on graph classification. These improvements demonstrate the
effectiveness of incorporating self-supervised tasks to extract ”universal knowledge,” enabling the
condensed graph to benefit various downstream datasets. While corset methods perform similarly
to MLP results, existing graph condensation methods show improvements over MLP, indicating the
versatility of the condensed graph. Additionally, ST-GCond achieves better results on target datasets
than using the GCN model alone. Thus, downstream users can achieve similar test performance
to expensive GCN models with significantly lower computational costs by training models on the
condensed graph and using a simple linear classifier.

(3) Performance comparison on cross-task scenario. In the cross-task scenario, our definition
of “task” encompasses two distinct meanings. First, it refers to different task types, such as node
classification, node clustering, and link prediction, which we term the “type-changing cross-task
setting.” Second, it refers to the variation in class labels within the same type of supervised task,
which we define as the “label-set changing cross-task setting.” Such two settings are widely We
conduct experiments in both of these settings to validate our approach.

In the task type changing cross-task setting, we use node classification for condensation and link
prediction or node clustering as downstream tasks. The results are shown in Table 4 and Table 5.
We use VGAE (Kipf & Welling, 2016) and ARGA (Pan et al., 2018) as baselines. As shown in
Table 4, while existing methods produce comparable results, they are sub-optimal compared to the
baselines. In contrast, ST-GCond achieves better AUC and AP metrics on Cora, and the AP metric
on Citeseer, indicating that our condensed graph retains beneficial knowledge for cross-task
scenarios. Table 5 shows more pronounced improvements among existing methods, which can be
attributed to the inherent relationship between clustering and labels (Jin et al., 2020).

In the label-set changing cross-task setting, the dataset’s label set is divided into two parts: one
for condensation and the other for downstream tasks. Figure 3 shows the performance over test
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Table 3: Graph classification performance (ROC-AUC(%) ± std) comparison under the cross-dataset
scenario. Best results are in bold and the runner-up is underlined. We use the red text to indicate the
lossless results (better than solely using GCN on the original graph)

Graph-level: GEOM-data→ Target datasets

BACE BBBP ClinTox SIDERMethods
0.001% 0.005% 0.01% 0.001% 0.005% 0.01% 0.001% 0.005% 0.01% 0.001% 0.005% 0.01%

MLP (w/o pre) 48.7±0.3 49.3±0.8 43.7±0.3 47.1±1.6

Random 43.6±0.4 45.8±0.7 46.2±0.7 38.5±0.3 33.1±0.3 36.2±0.8 42.8±0.8 43.5±1.2 45.8±0.3 43.7±1.2 48.5±2.8 44.2±1.2

Herding 47.0±0.5 49.0±0.7 50.0±0.6 40.0±0.4 38.0±0.5 39.5±0.6 45.0±0.6 46.5±0.8 47.0±0.5 46.0±1.0 47.5±1.5 48.0±1.3

DosCond 54.6±0.8 55.7±0.1 51.7±0.3 47.0±0.7 48.5±0.9 49.0±0.8 50.5±0.9 51.0±1.0 52.0±0.7 50.5±1.2 52.0±1.5 53.0±1.3

KiDD 53.8±0.7 53.5±0.8 54.8±1.7 52.8±0.9 54.0±0.8 55.0±0.7 55.0±0.8 56.0±0.9 57.0±0.6 51.5±0.8 51.1±1.0 51.0±0.7

ST-GCond 68.6±1.0 71.4±0.8 73.6±1.1 58.6±1.1 61.4±0.8 62.8±0.7 64.1±0.7 64.8±0.6 71.5±0.4 55.6±0.3 56.8±0.8 55.7±0.3

Table 4: Link prediction results under
the cross-task scenarios, where each
graph condensation method observes
only the classification task information.

Cora Citeseer

Method AUC(%) AP(%) AUC(%) AP(%)

VGAE 91.4 92.6 90.8 92.0
ARGA 92.4 93.2 91.9 92.1

GCond 81.6↓ 83.7↓ 73.5↓ 74.8↓
SGDD 85.4↓ 88.3↓ 74.3↓ 76.9↓
SFGC 83.3↓ 85.1↓ 73.6↓ 73.9↓
GEOM 84.7↓ 85.0↓ 73.2↓ 74.8↓

ST-GCond 93.3↑ 94.8↑ 90.6↓ 92.3↑

Table 5: Node clustering results under the cross-task
scenarios. We use the bold denotes the best results,
the underline indicates the runner-ups. ↑/↓ indicate the
increase/decrease compared to baseline VGAE/ARGA.

Cora Citeseer

Method NMI(%) F1(%) ARI(%) NMI(%) F1(%) ARI(%)

VGAE 51.4 57.5 38.7 34.8 55.6 28.5
ARGA 50.8 65.6 34.7 40.0 54.6 34.1

GCond 48.6↓ 54.4↓ 36.8↓ 31.6↓ 52.8↓ 27.4↓
SGDD 51.8↑ 69.4↑ 38.7↑ 35.1↓ 58.8↑ 26.5↓
SFGC 50.7↓ 68.2↑ 36.9↓ 34.8↓ 58.1↑ 25.6↓
GEOM 48.2↓ 55.7↓ 32.9↓ 33.1↓ 49.3↓ 21.3↓

ST-GCond 53.8↑ 71.4↑ 40.7↑ 40.8↑ 62.7↑ 41.7↑

epochs. Since the model trained on the condensed graph cannot be directly applied to the downstream
task, the final layer is replaced with a linear layer and fine-tuned with the target training data.
Our task-disentangled meta-optimization strategy allows the condensed graph to acquire cross-
task knowledge, evidenced by ST-GCond achieving faster and superior results compared to other
methods, particularly the naive GCN (gray line), demonstrating the versatility of our approach.

4.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

Table 6: Mean accuracy(%) and standard deviation of
node classification.

Methods
Ogbn-arxiv→ Cora

(Ratio r)
Ogbn-arxiv→ Reddit

(Ratio r)

0.25% 0.50% 0.25% 0.50%

Random 59.1±1.7 58.1±1.9 68.3±1.4 69.0±0.8

Herding 47.3±2.5 50.2±3.0 74.7±2.4 75.3±2.6

SGDD 63.6±2.0 67.0±2.2 85.2±1.2 84.1±1.8

GEOM 66.0±1.1 65.9±2.1 87.1±1.0 87.5±0.8

ST-GCond w/o self 78.4±0.9 77.4±1.0 88.6±0.9 89.0±1.2

ST-GCond w/o meta 76.4±0.2 73.4±0.7 88.9±0.8 89.7±0.4

ST-GCond w/o MI 68.5±0.7 74.4±1.1 87.4±1.1 87.4±0.8

ST-GCond 81.5±1.1 81.8±1.8 90.8±0.9 92.1±0.8

Ablation study. To investigate the impact
of task-disentangled meta optimization,
multi-teacher self-supervised optimization,
and MI-guided joint condensation, we con-
duct an ablation study presented in Ta-
ble 6. We select cross-dataset experiments
to evaluate the transferability of these com-
ponents. We take Ogbn-arxiv as the
source dataset and evaluate on Cora and
Reddit. The ablations include: w/o self
(excluding self-supervised tasks), w/o meta
(excluding task disentanglement), and w/o
MI (excluding mutual information con-
straints). r denotes the condensation ratio
for Ogbn-arxiv.

REVISED: {As observed, ST-GCond w/o self and ST-GCond w/o meta demonstrate strong
performance relative to the baselines, likely due to the shortcomings of naive methods, which tend to
overemphasize task-specific information. However, both variants still fall short when compared to the
results obtained using the full dataset (e.g., accuracies of 81.2% on Cora and 93.9% on Reddit),
emphasizing the necessity of combining these components for optimal performance. Nevertheless,
the naive combination of such two parts (ST-GCond w/o MI) underperforms both individual variants,
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Figure 3: Displaying performance v.s. test epochs under the cross-task scenarios. Except for the
GCN curve (the gray line), all other methods only observe the other half of the supervised information.
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Figure 4: Ablation Study and Sensitivity Analysis. Fig. (a) and Fig. (b) illustrate the convergence of
adaptive task weights by the end of training. Fig. (c) shows an increasing performance trend with
respect to the number of teachers (k), while Fig. (d) does not show a significant trend.

. Similar observations have been discussed in prior works Jin et al. (2022a); Fan et al. (2024), further
highlighting the critical role of LMI in resolving such conflicts and improving overall functionality.}
Evolution process of teachers’ weights {λi}ki=1. As discussed in Sec. 3.4, the combination of
the teachers’ outputs should approximate the true (Bayesian) distribution of the downstream tasks.
However, since we cannot access the true distribution of the downstream tasks, we use Yh

s as a
surrogate target. Fig. 4a and 4b illustrate the evolution of weight values during the condensing
process. It is observed that the same method may have different weights across various datasets, and
the weights of the five tasks eventually stabilize and converge to steady values. According to Table 6,
incorporating the weights of self-supervised tasks results in improvements ranging from 3.4% to
13%, highlighting the necessity of addressing conflicts among tasks.

Sensitivity analysis of hyperparameters k, α, and β. We present a sensitivity analysis for two
hyperparameters: the number of self-supervised tasks (k) and the loss weight (α, β). Fig. 4c and 4d
show that a larger k generally results in better performance, indicating the effectiveness of the mutual
information constraint strategy. For the hyperparameter α and β (Appendix. H.1), the performance
varies with different α and β values, suggesting that they should be selected through a grid search.

5 CONCLUSION

We propose ST-GCond, a novel framework for self-supervised and transferable graph dataset
condensation. Unlike existing works focus on condensation for a single task and dataset, our
approach creates condensed dataset with higher data-level transferability, enhancing downstream
models ability when it applied to various new datasets and tasks. We introduce task-disentangled
meta-updating for cross-task knowledge preservation and incorporate multiple supervised tasks to
extract “universal knowledge”. Finally, to avoid the potential conflict of jointly using self-supervised
and supervised information as the optimization directions, we leverage the mutual information loss
term to guide the condensation process. Experiments demonstrate ST-GCond’s effectiveness in both
single-task/single-dataset and cross-task/cross-dataset scenarios. Limitations and Future Work:
While the condense ratio is adjustable, dynamic user demands require re-condensation each time,
bringing potential computation costs.
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Appendix
A DATASET DETAILS

We use 5 node-level graph datasets (Cora, Citeseer (Kipf & Welling, 2017), Ogbn-arixv (Hu
et al., 2020a), Flickr (Zeng et al., 2020), and Reddit (Hamilton et al., 2017)) and 5 graph-level
graph datasets (GEOM (Axelrod & Gomez-Bombarelli, 2020), BACE (Wu et al., 2018), BBBP (Martins
et al., 2012), ClinTox (Gayvert et al., 2016), and SIDER (Kuhn et al., 2016)). We further provide
the statics of datasets in Table A1.

Table A1: Statistics of datasets.

Level Dataset # Classes / # Tasks #Nodes / #Graphs # Edges # Features

Node-level

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703

Ogbn-Arxiv 40 169,343 1,166,243 128
Flickr 7 89,250 899,756 500
Reddit 210 232,965 57,307,946 602

Graph-level

BACE 1 1,513 - -
BBBP 1 2,039 - -

ClinTox 2 1,478 - -
Sider 27 1,427 - -

B SELF-SUPERVISED TEACHER TASKS

In the paper, we utilize different self-supervised task guided models as the way we extract the
“universal knowledge” from the original dataset G. Here, we present each model we used.

For node-level classification tasks, we follow AutoSSL (Jin et al., 2022a) and adopt five classic tasks:

• DGI (Velickovic et al., 2019): Maximizes the different views’ representations (graph v.s. nodes).
• CLU (You et al., 2020b): Predicts pseudo-labels from K-means clustering on node features.
• PAR (You et al., 2020b): Predicts pseudo-labels from Metis graph partition (Karypis & Kumar,

1998).
• PAIRSIM (Jin et al., 2020): Predicts pairwise feature similarity between nodes.
• PAIRDIS (Peng et al., 2020): Predicts the shortest path length between nodes.

In the graph-level classification tasks, we follow WAS (Fan et al., 2024) to adopt 7 classic tasks:

• AttrMask (Hu et al., 2020b): Learns the regularities of node/edge attributes.
• ContextPred (Hu et al., 2020b): Explores graph structures by predicting the contexts.
• EdgePred (Hamilton et al., 2017): Predicts the connectivity of node pairs.
• GPT-GNN (Hu et al., 2020c): Introduces an attributed graph generation task to pre-train GNNs.
• GraphLoG (Xu et al., 2021): Introduces a hierarchical prototype to capture the global semantic

clusters.
• GraphCL (You et al., 2020a): Constructs specific contrastive views of graph data.
• InfoGraph (Sun et al., 2019): Maximizes the mutual information between the representations of

the graph and substructures.

C PROOF OF THEOREM 1

Proof. We aim to prove that:

I(Ys
s;Y

h
s ) ≤ I(PT (X,A);Y). (A.1)
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Since Ys
s and Yh

s are obtained from PT (X,A) and Y through kernel ridge regression—which is a
deterministic mapping, they can be expressed as:

Ys
s = f

(
PT (X,A)

)
, (A.2)

Yh
s = g(Y), (A.3)

where f and g are the regression functions.

According to the data processing inequality (Beaudry & Renner, 2012), applying deterministic
functions to random variables does not increase mutual information. Therefore, we have:

I
(
Ys

s;Y
h
s

)
≤ I

(
PT (X,A);Y

)
. (A.4)

D TIME COMPLEXITY ANALYSIS

ST-GCond primarily consists of two parts: sampling sub-tasks for meta updating and involving
self-supervised tasks to guide condensing. For the former, we can treat them as a composition of
bi-level optimization. Following GCond (Jin et al., 2022c), we start with an L-layer GCN, where
the large-scale graph has N nodes, the small yet informative condensed graph has m nodes, and the
hidden dimension is d. The computation cost for a single task involves a forward pass through the
GNN, which is O(Lm2d + Lmd), and through gϕ, which is O(m2d2). The inner optimization of
kernel ridge regression can be expressed as O(Nmr2 +Nm) (Wang et al., 2024). Therefore, the
single task complexity is O(Lm2d+ Lmd+m2d2 +Nmr2 +Nm). Denoting the split of tasks as
t, the complexity for the former part can be shown as tO(Lm2d+ Lmd+m2d2 +Nmr2 +Nm).

For the latter, the calculation process is similar to the former, although we introduce multiple self-
supervised models during the condensing stage. Thanks to the benefits of the offline strategy, we
only need the extra computation complexity of kO(LEd + LNd2), where k denotes the number
of self-supervised tasks. Therefore, the overall complexity can be expressed as (t+ 1)O(Lm2d+
Lmd+m2d2 +Nmr2 +Nm) + kO(LEd+ LNd2). Note that t and k are not set to be too large.

To intuitively demonstrate the efficiency comparison, we present the running time (in seconds) of the
proposed ST-GCond and GCond over 50 epochs on a single A100 GPU. Thanks to the efficiency
of kernel ridge regression, we avoid the time-consuming triple-level optimization. As a result, our
method is empirically 1.14 to 2.17 times faster than the previous GCond method.

Table A2: Comparison of running time of GCond and ST-GCond(in seconds).

Ogbn-arxiv r=0.05% r=0.25% r=0.5%
GCond (Jin et al., 2022c) 217.18 386.71 765.12

ST-GCond 178.27 278.44 399.15

E COMPUTATION RESOURCE

We conduct all experiments with:

• Operating System: Ubuntu 20.04 LTS.
• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.
• GPU: NVIDIA Tesla A100 SMX4 with 80GB of Memory.
• Software: CUDA 10.1, Python 3.8.12, PyTorch (Paszke et al., 2019) 1.7.0.

F PARAMETER SETTING

In our proposed ST-GCond, we fix common parameters, such as the GNN backbone, to GCN for
the node-level task and GIN for the graph-level task. Other key parameters, which are also fixed, are
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Table A3: Fixed key parameters.

Parameters Value
GNN backbone GCN, GIN
Number of layers 2
Hidden Units 256
Activation LeakyReLU
Dropout Rate 0.5
k 5
Split of meta tasks 3
REVISED: {δ} 0.5

Table A4: Search space of the key parameters.

Parameters Search Space
lr 0.1, 0.01, 0.001
α (0.0, 1.0)
β (0.0, 1.0)

listed in Table A3. The hyperparameters that require tuning are lr, α, β, k, δ. We present the search
space for these parameters in Table A4. Note that the search space for α and β may change during
training. For simplicity, we use 10 discrete points. The actual time consumption will depend on the
Cartesian product of the individual runs. REVISED: {For the reproduction, we provide the detail
configuration of each experiments including the Table A3, Table A5, and Table A6.}

Table A5: Parameter configuration under the single task and dataset scenario

Dataset r lr α β

Citeseer
0.90% 0.001 0.7 0.5
1.80% 0.001 0.7 0.5
3.60% 0.001 0.7 0.7

Cora
1.30% 0.001 0.7 0.5
2.60% 0.001 0.7 0.5
5.20% 0.001 0.7 0.5

Ogbn-arxiv
0.05% 0.01 0.5 0.6
0.25% 0.01 0.7 0.6
0.50% 0.01 0.5 0.6

Flickr
0.10% 0.001 0.5 0.7
0.50% 0.001 0.5 0.6
1.00% 0.001 0.7 0.8

Reddit
0.05% 0.01 0.5 0.8
0.10% 0.01 0.4 0.8
0.20% 0.01 0.6 0.8

Table A6: Parameter configuration under cross-dataset and cross-task scenarios.

Scenario Dataset lr α β

Cross-dataset: Node Classification Ogbn-arxiv→ target datasets 0.01 0.8 0.6

Cross-dataset: Graph Classification GEOM→ target datasets 0.01 0.5 0.7

Cross-task: Link Prediction Cora 0.001 0.6 0.7
Citeseer 0.001 0.7 0.5

Cross-task: Node Clustering Cora 0.001 0.4 0.8
Citeseer 0.001 0.6 0.7
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Figure A1: Sensitive of β.

G ALGORITHMS

G.1 ALGORITHM 1

Algorithm 1 ST-GCond: Self-supervised and Transferable Graph Dataset Condensation

1: Input: Graph dataset G = (X,A,Y), pre-trained teachers {fT
1 (·), . . . , fT

K (·)}, steps T , condensation
ratio r, REVISED: {and graph sparsity parameter δ.}

2: Output: Condensed graph dataset Gs = (Xs,As,Y
h
s ,Y

s
s).

3: Initialize weights {λi =
1
K
}Ki=1, Xs by selecting r% features/class, Yh

s with labels.
4: Initialize As = gϕ(Xs), Ys

s = 1
K

∑
λif

T
i (Xs,As).

5: for t = 0, · · · , T − 1 do
6: Initialize θ ∼ Pθ .
7: while not converge do
8: D′ = 0.
9: Sample tasks Tc ∼ p(TY ).

10: for Ti do
11: Sample GTi ∼ G, GTi

s ∼ Gs.
12: // Meta-training
13: Adapt parameters with Lself on GTi

s : θ
′
i ← θ − λ1∇θLTi

self (GNNθ,GTi
s ).

14: // Meta-updating
15: Combine representation: ŶTi =

∑K
i=1 λif

T
i (GTi).

16: Compute Lcls,Lself , and LMI on GTi :

D′ ← D′ +
(
∇θ′i
LTi

cls(GNNθ′i
,GTi) + α∇θ′i

LTi
self (Ŷ

Ti ,GTi) + β∇θ′i
LTi
MI(Y

s
s;Y

h
s )
)

.
17: end for
18: Update {λi}Ki=1, Xs, Ys

s , ϕ, and θ.
19: end while
20: end for
21: Generate the condensed graph: As = ReLU(gϕ(Xs)− δ), Gs = (Xs,As,Y

h
s ,Y

s
s)

H MORE EXPERIMENTS

H.1 PARAMETER SENSITIVITY

We further investigate the sensitivity of the weight of LMI , which controls the influence of the
mutual information loss. From Figure A1, we observe that as β increases, the accuracy of each
dataset initially rises, then fluctuates. We perform a grid search to identify the optimal setting for β.
Empirically, we select 0.5, 0.6, 0.7 based on the specific dataset.

H.2 REVISED: {VISUALIZATION OF CONDENSED GRAPH}

We visualize the condensed graph in the Figure A2 and report statistics in the TableA7. From the
figure, we see that the learned graph is denser compared to the original, likely due to information
concentration. If the condensed graph maintained the same sparsity, it might lack sufficient edges to
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(a) Cora, r = 2.5% (b) Citeseer, r = 1.8%

(c) Ogbn-arxiv, r = 0.05% (d) Flickr, r = 0.1%

(e) Reddit, r = 0.1%

Figure A2: Visualizations of the condensed graph by ST-GCond. The edge weights are represented
by varying line thickness, and node classes are denoted by different colors.

enable effective message passing. Additionally, for the Citeseer and Cora datasets, homophily
is reduced compared to the original graphs, with nodes within each class less tightly clustered.
We believe it pose a more challenge to learned graph neural networks, which may have better
generalization ability.

Table A7: Statistics of the condensed graph, compared with the whole graph to highlight the
differences. Note that homophily is calculated using the algorithm introduced by (Zhu et al., 2020).

Citeseer, r=0.9% Cora, r=1.3% Ogbn-arxiv, r=0.25% Flickr, r=0.1% Reddit, r=0.1%

Whole ST-GCond Whole ST-GCond Whole ST-GCond Whole ST-GCond Whole ST-GCond

Accuracy 70.7 71.5 81.5 83.4 71.4 66.8 47.1 47.5 93.9 91.7
#Nodes 3,327 60 2,708 70 169,343 454 44,625 44 153,932 153
#Edges 4,732 1,434 5,429 2,131 1,166,243 8,681 218,140 331 10,753,238 3427
Sparsity 0.09% 77.3% 0.15% 84.10% 0.01% 8.42% 0.02% 34.20% 0.09% 29.18%
Homophily 0.74 0.60 0.81 0.68 0.65 0.10 0.33 0.31 0.78 0.06
Storage 47.1MB 1.1MB 14.9MB 0.8MB 100.4MB 1.3MB 86.8MB 0.3MB 435.5MB 0.7MB
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