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Abstract

We provide theoretical and empirical evidence that, due to the depth ambiguity inherent
to monocular 3D human pose estimation, traditional regression models suffer from pose-
topology consistency issues, which standard evaluation metrics (MPJPE, P-MPJPE and
PCK) fail to assess. We hence propose ManiPose, a manifold-constrained multi-hypothesis
model for human-pose 2D-to-3D lifting. ManiPose addresses depth ambiguity by proposing
multiple candidate 3D poses for each 2D input, each with its estimated plausibility. By
constraining the outputs to lie on the human pose manifold, ManiPose guarantees the con-
sistency of all hypothetical poses. We showcase the performance of ManiPose on simulated
and real-world datasets, where it outperforms state-of-the-art models in pose consistency
by a large margin while being very competitive on the MPJPE metric.

Keywords: human pose estimation, multiple choice learning, manifold estimation

1. Introduction

Monocular 3D human pose estimation (HPE) is a challenging learning problem that aims
to predict 3D human poses given an image or a video from a single camera. Often, the
problem is split into two successive steps: first 2D human pose estimation, then 2D-to-3D
lifting. Due to depth ambiguity and occlusions, 2D-to-3D lifting is intrinsically ill-posed:
multiple 3D poses correspond to the same projection observed in 2D. Despite that, the field
has experienced fast developments, with substantial improvements in terms of mean-per-
joint-prediction error (MPJPE) and derived metrics (e.g. , P-MPJPE, PCK) (Shan et al.,
2023; Zhang et al., 2022; Zheng et al., 2021; Shan et al., 2022).

However, recent studies (Wehrbein et al., 2021; Holmquist and Wandt, 2023; Rommel
et al., 2023) noted that poses predicted by state-of-the-art models fail to respect basic
invariances of human morphology, such as bilateral sagittal symmetry, or constant distance
between connected joints across time. In this work we address those issues and provide
theoretical elements clarifying their cause. We show in particular that pose consistency and
traditional performance metrics (such as MPJPE) cannot be optimized simultaneously by
a standard regression model, because MPJPE ignores the topology of the space of human
poses, and traditional regression models imply unimodality, thus overlooking the inherently
ambiguous nature of 3D-HPE. We thus proposeManiPose, a novel approach for human-pose
2D-to-3D lifting which leverages multiple hypotheses and manifold constraints to address
both depth ambiguity and pose consistency issues.

2. ManiPose

Following the previous state of the art, we split 3D-HPE into two steps, first estimating J hu-
man 2D keypoints in the pixel space from a sequence of T video frames [x1, . . . , xT ] ∈ R2×J×T ,
and then lifting them to 3D joint positions [p̂1, . . . , p̂T ] ∈ R3×J×T . We focus on the second
step (i.e. , lifting) in the rest of the paper, assuming the availability of 2D keypoints xi.
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Figure 1: Overview of ManiPose. The rotations module predicts K possible sequences of
segment rotations with their corresponding likelihoods (scores), while the segments module
estimates the shared segment lengths.

2.1. Constraining predictions to the pose manifold

Human morphology prevents the joints from arbitrarily occupying the whole space. Instead,
the poses within a movement are restricted to a manifold, reflecting the human skeleton’s
rigidity. If we knew the length of each segment connecting pairs of joints for a given
subject, we could guarantee that the predicted poses lie on the correct pose manifold by
only predicting the body part’s rotations with respect to a reference skeleton. Since we do
not have access to ground-truth segment lengths in real use cases, we propose to predict
them, thus disentangling the estimation of the segments lengths (invariant across time) from
the estimation of the joint rotations (variable across time).

We hence propose to use a neural network made of two parts (cf.Fig. 1):

1. the segments module predicts segment lengths s ∈ RJ−1, shared by the T frames
(time steps) of the input sequence;

2. the rotations module predicts the rotation r = [r1,0, . . . , rT,J−1] ∈ (Rd)J×T of each
joint relative to their parent joint at each time step. We represent rotations using 6D
continuous embeddings (i.e. , d = 6) following insights from Zhou et al. (2019).

At each time t, disentangled representations s and rt are decoded into poses p̂t ∈ (R3)J×T

by applying the forward kinematics algorithm on a skeleton scaled according to s.

2.2. Multiple choice learning

As explained in the introduction, the inherent depth ambiguity of pose lifting requires
multiple hypotheses to conciliate pose consistency and MPJPE performance. To address
this, we adopt the multiple choice learning (MCL) framework (Lee et al., 2016), more
precisely leveraging the resilient MCL approach proposed in Letzelter et al. (2024). Hence,
instead of a single rotation rt ∈ (Rd)J per time step, ManiPose’s rotations module is a multi-
head network predicting K rotation hypotheses rkt ∈ (Rd)J with corresponding likelihoods
γkt ∈ [0, 1], called scores. Each one of the K rotation hypothesis is converted into a pose
hypotheses using the same shared predicted segments length s (Fig. 1). As in Letzelter
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et al. (2024), ManiPose is trained with a composite loss L = Lwta + βLscore, made of a
Winner-takes-all term Lwta and a scoring loss Lscore (cf. appendix for details).

3. Formal analysis
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Figure 2: (A) 1D-to-2D articulated pose lifting prob-
lem. (B) True MSE minimizers under a multimodal
distribution. One-to-one mappings cannot both reach
optimal performance and stay on the pose manifold
(dashed circle). (C) Multi-hypothesis approaches can
deliver an acceptable solution to the problem.

ManiPose, as outlined in Section 2,
is crafted to address the flaws in-
herent in unconstrained, single-
hypothesis 3D-HPE. Hereafter, we
formally highlight such limitations
justifying our approach.

Let p = [p1, . . . ,pJ ] ∈ R3×J

be a human pose, defined by the
Cartesian 3D coordinates of each
of the J joints of a predefined
skeleton. Assuming bone length
is fixed during a movement m =
[p0, . . . ,pT ] ∈ R3×J×T of length T ,
then the poses pt of m must all lie
on the same manifold M of dimension 2(J − 1) (homeomorphic to a product of spheres).
This is proved and stated more precisely in the appendix. It implies that all poses predicted
for a video sequence should ideally lie on the true manifoldM. We can show that minimizing
joint position error using a single-hypothesis model necessarily violates this requirement:

Proposition 1 (Inconsistency of MSE minimizer) With a rigid skeleton and mild as-
sumptions on the training distribution, predicted 3D poses minimizing the traditional mean
squared error (MSE) loss lie outside the pose manifoldM.

Proof sketch. (See Appendix C.2). The conditional expectation f∗(x) = E[p | x] is the
minimizer of the MSE: Ex,p

[
∥p− f(x)∥22

]
. Hence, as the functions (ℓj)

J−1
j=1 computing the

lengths of the segments in a pose are stricly convex, Jensen’s inequality leads to ℓ2j (f
∗(x)) <

s2j , where sj is the true length of the segment associated with joint j. ■
Table 1: 1D-to-2D perfor-
mance.

MPJPE ↓ Distance to circle ↓

0.748 0.411
0.759 0.000
0.733 0.000

Proposition 1 has the following implications:
1. Traditional unconstrained single-hypothesis ap-

proaches are bound to predict inconsistent move-
ments, where bone lengths may vary.

2. With a single hypothesis, models constrained to the
manifold will always lose to unconstrained models
in terms of MPJPE performance (cf.Corollary 8).

We show next that multiple hypotheses allows to conciliate these antagonistic objectives.

4. Experiments

4.1. Insights to the formal argument on a simplified setting

We illustrate the argument of Section 3 in a simplified 1D-to-2D lifting setup with 2 joints,
as depicted on Fig. 2-A. We train three different models with comparable architectures on

3



Extended Abstract Track
two datasets {(xi, (xi, yi))}Ni=1 sampled from the angular distributions represented in blue
on Fig. 2-B,C. The models correspond to: ( ) a 2-layer MLP trained to minimize the MSE
between true and predicted joint positions (x, y) ; ( ) an MLP of the same size constrained
to the manifold, i.e. , the circle ; and ( ) our constrained multi-hypothesis model using the
same MLP backbone, capable of predicting K = 2 poses.

+ manifold constraints+ multi-hypothesis

Figure 3: Optimizing both 3D position and
pose consistency requires combining con-
straints and multiple hypotheses.

Fig. 2 shows that the tradi-
tional unconstrained single-hypothesis
approach ( ) fails when facing a bi-
modal distribution (C), leading to pre-
dictions outside the circle, as depth
ambiguity makes the lifting problem
ill-posed. The single-hypothesis con-
strained model ( ) delivers predictions
on the circle, at the cost of worse
MPJPE performance than the uncon-
strained MLP (Table 1). Such perfor-
mance decrease is due to the Euclidean
topology of the MPJPE metric hav-
ing its minimum ( ) outside the mani-
fold (Fig. 2-B). Predicting multiple hy-
potheses constrained to the circle (⋆ in
Fig. 2-B) allows escaping this dilemma,
which is exactly what ManiPose does (
in Fig. 2-D). Those advantages trans-
late into perfect pose consistency, and improved MPJPE performance (Table 1).

4.2. Comparison with state-of-the-art

To confirm our insights from the toy problem, we compare ManiPose to state-of-the-art
3D-HPE models on the well-known Human 3.6M dataset (Ionescu et al., 2014), using the
MixSTE model as our backbone and 5 hypothesis heads (see further details in appendix).
Fig. 3 shows that ManiPose outperforms previous methods in terms of MPJPE, while reach-
ing nearly perfect consistency. Moreover, note that MPJPE and consistency metrics are
not positively correlated for single-hypothesis methods. As predicted in Section 3, we see
that MPJPE improvements achieved by previous unconstrained single and multi-hypothesis
methods usually come at the cost of poorer consistency. Training and architecture details,
metrics expressions and additional result tables and ablations can be found in the appendix.

5. Conclusion

We presented a new manifold-constrained multi-hypothesis human pose lifting method
(ManiPose) and demonstrated its empirical superiority to the existing state-of-the-art in
terms of manifold consistency and traditional metrics. Further, we provided theoretical ev-
idence supporting the tenets of our method, by proving the inherent limitation of existing
3D-HPE approaches and exposing them in a simplified setting.
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Appendix A. Further details about the method

A.1. Constraining predictions to the pose manifold

Rationale. Human morphology prevents the joints from arbitrarily occupying the whole
space. Instead, the poses within a movement are restricted to a manifold, reflecting the
human skeleton’s rigidity. If we knew the length of each segment connecting pairs of joints
for a given subject, we could guarantee that the predicted poses lie on the correct pose
manifold by only predicting the body part’s rotations with respect to a reference skeleton.
Since we do not have access to ground-truth segment lengths in real use cases, we propose
to predict them, thus disentangling the estimation of the reference lengths (fixed across
time) from the estimation of the joint rotations (variable across time).

Disentangled representations. We constrain model predictions to lie on an estimated
manifold by predicting parametrized disentangled transformations of a reference pose u ∈
(R3)J , for which all segments have unit length. Namely, we propose to split the network
into two parts (cf.Fig. 1):

1. Segments module, which predicts segment lengths s ∈ RJ−1, shared by the T frames
(time steps) of the input sequence;

2. Rotations module, which predicts the rotation r = [r1,0, . . . , rT,J−1] ∈ (Rd)J×T of
each joint relative to their parent joint at each time step.

Rotations representation. We represent rotations using 6D continuous embeddings (i.e. ,
d = 6). Compared to quaternions or axis-angles, those representations are continuous and,
hence, better learned by neural networks, as demonstrated by their proposers (Zhou et al.,
2019).

Pose decoding. To deliver pose predictions in (R3)J×T , the intermediate representations
(s, r) must be decoded. We achieve that in three steps (cf.Fig. 4):

1. We scale the unit segments of the reference pose u ∈ (R3)J using s, forming a scaled
reference pose u′: u′j = u′τ(j) + sj(uj − uτ(j)) for 0 < j ≤ J − 1, where τ maps the
index of a joint to its parent’s, if any.

2. For each time step 1 ≤ t ≤ T and joint 0 ≤ j < J , we convert the predicted rotation
representations rt,j into rotation matrices Rt,j ∈ SO(3) (Algorithm 1).

3. We apply those rotation matrices Rt,j at each time step t to the scaled reference pose
u′ using forward kinematics (Algorithm 2).

A.2. Multiple choice learning

ManiPose architecture. As explained in the introduction, the inherent depth ambigu-
ity of pose lifting requires multiple hypotheses to conciliate pose consistency and MPJPE
performance. To address this, we adopt the multiple choice learning (MCL) (Lee et al.,
2016) framework, more precisely leveraging the resilient MCL approach as proposed by
Letzelter et al. (2024). This methodology allows the estimation of conditional distributions
for regression tasks, enabling our model to predict multiple plausible 3D poses for each
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2D input. Specifically, instead of a single rotation rt ∈ (Rd)J per time step, ManiPose’s
rotations module predicts an intermediate representation et ∈ (Rd′)J that feeds K linear
heads (with weights W k

r and W k
γ ), each predicting its own rotation hypothesis rkt ∈ (Rd)J

with a corresponding likelihood γkt ∈ [0, 1]. That is, for all 1 ≤ t ≤ T , rkt = W k
r et and

γkt = σ[γ̃t]k, where the softmax function σ is applied to the vector γ̃t = [γ̃1t , . . . , γ̃
K
t ] ∈ RK

of intermediate values γ̃kt = W k
γ et.

All rotation hypotheses are decoded together with the shared segment-length predictions
s, resulting in K hypothetical pose sequences p̂k = (p̂kt )

T
t=1, with corresponding likelihood

sequences γk = (γkt )
T
t=1, called scores hereafter (Fig. 1).

Loss function. As in Letzelter et al. (2024), ManiPose is trained with a composite loss

L = Lwta + βLscore . (1)

The first term, Lwta, is the winner-takes-all loss (Lee et al., 2016)

Lwta(p̂(x), p) =
1

T

T∑
t=1

min
k∈J1,KK

ℓ(p̂kt (x),pt) , (2)

where ℓ(p̂kt (x), pt) ≜
1
J

∑J−1
j=0 ∥pt,j− p̂kt,j(x)∥2, and p̂kt (x) denotes the pose prediction at time

t using the kth head. The second term, Lscore, is the scoring loss

Lscore(p̂(x), γ(x), p) =
1

T

T∑
t=1

H
(
δ(p̂t, pt), γt(x)

)
, (3)

where H(·, ·) is the cross-entropy, p̂t = (p̂kt )
K
k=1, and

[δ(p̂t, pt)]k ≜ 1
[
k ∈ argmin

k′∈J1,KK
ℓ
(
p̂k

′
t ,pt

) ]
(4)

is the indicator function of the winner pose hypothesis, which is the closest to the ground
truth. Eq. (3) is the average cross-entropy between target and predicted scores γt(x) ∈
[0, 1]K at each time t.

Those losses are complementary. The winner-takes-all loss updates only the best pre-
dicted hypothesis, specializing each head on part of the data distribution (Lee et al., 2016).
The scoring loss allows the model to learn how likely each head is to winning, thus avoiding
overconfidence of non-winner heads (cf.Lee et al. (2017); Tian et al. (2019)).

Conditional distribution estimation. As detailed in Letzelter et al. (2024), the model
may be interpreted probabilistically as a multimodal conditional density estimator. More
precisely, it models the distribution P(p|x) of 3D poses conditioned on 2D poses as a mixture
of Dirac distributions:

P̂(p|x)≜
K∑
k=1

γk(x)δp̂k(x)(p) . (5)

Hence, the predicted conditional distribution has, at each predicted hypothesis p̂k, a peak
whose likelihood is given by the predicted score γk. As described in Section 3, interpreting
hypotheses and scores probabilistically enables us to handle depth ambiguity.
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Appendix B. Further experimental details and results

B.1. Experimental setup

Datasets. We evaluate our model on two 3D-HPE datasets. Human 3.6M (Ionescu et al.,
2014) contains 3.6 million images of 7 actors performing 15 different indoor actions. It is
the most widely used dataset for 3D-HPE. Following previous works (Zhang et al., 2022;
Li et al., 2022; Zheng et al., 2021; Pavllo et al., 2019), we train on subjects S1, S5, S6, S7,
S8, and test on subjects S9 and S11, adopting a 17-joint skeleton (cf.Fig. 5). We employ
a pre-trained CPN (Chen et al., 2018) to compute the input 2D keypoints, as in Pavllo
et al. (2019); Zhang et al. (2022). MPI-INF-3DHP (Mehta et al., 2017) also adopts a
17-joint skeleton, but, with fewer samples and containing both indoor and outdoor scenes, it
is more challenging than Human 3.6M. We used ground-truth 2D keypoints for this dataset,
as usually done (Zheng et al., 2021; Chen et al., 2021; Zhang et al., 2022).

Traditional evaluation metrics. The mean per-joint position error (MPJPE) is the
usual performance metric for the datasets above, under different protocols, both reported
in mm. In protocol #1, the root joint position is set as a reference, and the predicted
root position is translated to 0. In protocol #2 (P-MPJPE), predictions are additionally
Procrustes-corrected. For MPI-INF-3DHP, additional thresholded metrics derived from
MPJPE are often reported, such as AUC (Area Under Curve) and PCK (Percentage of
Correct Keypoints) with a threshold at 150 mm, as explained in Mehta et al. (2017).

Pose consistency metrics. MPJPE being insufficient to assess pose consistency (Sec-
tion 3), we further assess to which extent predicted skeletons are rigid by measuring the
average standard deviations of segment lengths across time in predicted action sequences:

MPSCE ≜
1

J − 1

J−1∑
j=1

√√√√ 1

T

T∑
t=1

(st,j,τ(j) − s̄j,τ(j))2 , (6)

with st,j,i = ∥p̂t,j − p̂t,i∥2 and s̄j,i =
1
T

∑T
t=1 st,j,i, where τ was defined in Section 2.1. We

call this metric, reported in mm, the Mean Per Segment Consistency Error (MPSCE).
Following Holmquist and Wandt (2023); Rommel et al. (2023), we also assess the bi-

lateral symmetry of predicted skeletons through the Mean Per Segment Symmetry Error
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(MPSSE), in mm:

MPSSE ≜
1

T |Jleft|

T∑
t=1

∑
j∈Jleft

|st,j,τ(j) − st,j′,τ(j′)| , with j′ = ζ(j) , (7)

where Jleft denotes the set of indices of left-side joints and ζ maps left-side joint indices to
their right-side counterparts.

Multi-hypothesis evaluation protocol. One must decide how to use multiple hypotheses
to compute the metrics. The dominant approach (Li and Lee, 2019, 2020; Oikarinen et al.,
2021; Sharma et al., 2019; Wehrbein et al., 2021; Holmquist and Wandt, 2023) is the oracle
evaluation, i.e. , using the predicted hypothesis closer to the ground truth (i.e. , Eq. (2) for
MPJPE). That makes sense for multi-hypothesis methods, as the oracle metric measures
the distance between the target and the discrete set of predicted hypotheses. It aligns with
the idea of many possible outputs for a given input.

Hypotheses can also be aggregated into a final pose, e.g. , through unweighted or weighted
averaging (using predicted scores). The latter has the disadvantage of falling back to a one-
to-one mapping scheme, which is precisely what we want to avoid in a multi-hypothesis
setting.

We report both oracle and aggregated metrics in our experiments, favoring oracle results.

Implementation details. ManiPose, as presented in Section 2, is compatible with any
backbone. Here, we chose to build on the MixSTE (Zhang et al., 2022) network for both
the rotations and the segment modules (the latter in a reduced scale). Details about our
architecture and training appear in Appendix E.

B.2. Comparison with the state of the art

Table 2: Pose consistency evaluation of state-of-the-art methods on Human3.6M.
MPJPE performance and pose consistency are not correlated; only ManiPose excels in both.
T : sequence length. K: number of hypotheses. Orac.: Metric computed using oracle
hypothesis. Bold: best; Underlined: second best. *: MPSSE values reported in Holmquist
and Wandt (2023). Missing entries: methods with unavailable code.

T K Orac. MPJPE ↓ MPSSE ↓ MPSCE ↓

Single-hypothesis methods:
ST-GCN (Cai et al., 2019) 7 1 48.8 8.9 10.8
VideoPose3D (Pavllo et al., 2019) 243 1 46.8 6.5 7.8
PoseFormer (Zheng et al., 2021) 81 1 44.3 4.3 7.2
Anatomy3D (Chen et al., 2021) 243 1 44.1 1.4 2.0
MixSTE (Zhang et al., 2022) 243 1 40.9 8.8 9.9

Multi-hypothesis methods:
Sharma (Sharma et al., 2019) 1 10 ✓ 46.8 13.0 9.9
Wehrbein (Wehrbein et al., 2021) 1 200 ✓ 44.3 12.2 14.8
Diffpose (Holmquist and Wandt, 2023)* 1 200 ✓ 43.3 14.9 -
MHFormer (Li et al., 2022) 351 3 43.0 5.7 8.0
D3DP (P-Best) (Shan et al., 2023) 243 20 ✓ 39.5 6.9 9.0

ManiPose (Ours) 243 5 ✓ 39.1 0.3 0.5

Human 3.6M. Comparisons with state-of-the-art single- and multi-hypothesis methods are
presented in Table 2 and illustrated in Fig. 3. ManiPose outperforms previous methods in
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terms of MPJPE, while reaching nearly perfect consistency. Moreover, note that MPJPE
and consistency metrics are not positively correlated for single-hypothesis methods. As pre-
dicted in ??, our empirical results show that MPJPE improvements achieved by MixSTE
come at the cost of poorer consistency compared to previous models. In contrast, the only
single-hypothesis constrained model, Anatomy3D (Chen et al., 2021), achieves good consis-
tency at the expense of inferior MPJPE. Those results empirically validate the theoretical
predictions of ??, further confirming what we have shown, intuitively, in the simplified
1D-to-2D setting (Section 4.1). Note that while ManiPose is deterministic, previous multi-
hypothesis methods are generative and frame-based, except for MHFormer. Table 2 shows
that they require up to two orders of magnitude more hypotheses than ManiPose to reach
competitive performance. More detailed MPJPE results per action appear in ???? in the
supplemental.

Fig. 6 showcases qualitative results, where multiple hypotheses help in depth-ambiguous
situations.
Table 3: Comparison with the state-of-the-art on MPI-INF-3DHP using ground-
truth 2D poses. T : sequence length.

T PCK ↑ AUC ↑ MPJPE ↓ MPSSE ↓ MPSCE ↓

VideoPose3D (Pavllo et al., 2019) 81 85.5 51.5 84.8 10.4 27.5
PoseFormer (Zheng et al., 2021) 9 86.6 56.4 77.1 10.8 14.2
MixSTE (Zhang et al., 2022) 27 94.4 66.5 54.9 17.3 21.6
P-STMO (Shan et al., 2022) 81 97.9 75.8 32.2 8.5 11.3

ManiPose (Ours) Aggr. 27 98.0 75.3 37.7 0.6 1.3
ManiPose (Ours) Orac. 27 98.4 77.0 34.6 0.6 1.3

MPI-INF-3DHP. Similar results were obtained for this dataset (cf.Table 3). Not only
does ManiPose reach consistency errors close to 0, but also best PCK and AUC performance.
As for MPJPE, only Shan et al. (2022) achieves slightly better performance, at the cost of
large pose consistency errors.

B.3. Ablation study

Table 4: Ablation study: Single hypothesis cannot optimize both MPJPE and
consistency. ManiPose uses the same backbone as MixSTE. MR: with manifold regular-
ization. MC: manifold-constrained. Bold: best. Underlined: second best.

MR MC K # Params. MPJPE ↓ MPSSE ↓ MPSCE ↓

ManiPose (Ours) ✗ ✓ 5 34.44 M 39.1 0.3 0.5
w/o MH ✗ ✓ 1 34.42 M 44.6 0.3 0.5
w/o MC, w/ MR ✓ ✗ 1 33.78 M 42.3 5.7 7.3
w/o MR (MixSTE) ✗ ✗ 1 33.78 M 40.9 8.8 9.9

Impact of components. We evaluate the impact of removing each component of ManiPose
on the Human 3.6M performance (Table 4). The components tested are the multiple hy-
potheses (MH) and the manifold constraint (MC). We also compare MC to a more standard
manifold regularization (MR), i.e. , adding Eq. (6) to the loss. Note that without all these
components, we fall back to MixSTE (Zhang et al., 2022), and that the performances re-
ported in Table 4 also appear in Fig. 3.

12



Extended Abstract Track
ManiPose

Figure 5: MPSCE, MPSSE and MPJPE per segment/coordinate (lower is bet-
ter). ManiPose mostly helps to deal with the depth ambiguity (z coordinate). Ground-
truth poses are represented but not visible because they have perfect consistency.

We see that MR helps to improve pose consistency, but not as much as MC. However,
without multiple hypotheses, MC consistency improvements come at the cost of degraded
MPJPE performance, as foreseen by our formal analysis (Section 3). Only the combination
of both MC and MH allows us to optimize both consistency and MPJPE.

Fine error analysis. We can see in Fig. 5 that, compared to MixSTE, ManiPose reaches
substantially superior MPSSE and MPSCE, consistency across all skeleton segments. Fur-
thermore, note that larger MixSTE errors occur for segments knee-foot and elbow-
wrist, which are the most prone to depth ambiguity. That agrees with coordinate-wise
errors depicted in Fig. 5, showing that ManiPose improvements mostly translate into a re-
duction of MixSTE depth errors, which are twice as large as for other coordinates. Further
ablations, including the effect of the number of hypotheses K and the score loss weight β
appear in the supplemental.

Ground-truth

Hypothesis 1: p1(x)

Single hypothesis

Hypothesis 2: p2(x)

10
Score : γk(x)

Hypothesis 3: p3(x)

Figure 6: Qualitative comparison between ManiPose and state-of-the-art regres-
sion method, MixSTE. Two pairs of predicted hypotheses by ManiPose are illustrated in
green-pink (left) and green-purple (right), where opacity is used to represent the predicted
scores. Multiple hypotheses and constraints help to deal with depth ambiguities and avoids
predicting shorter limbs (red circles).
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Appendix C. Further theoretical elements

C.1. Assumptions verifications

Let us first define a few elements that we will need needed for our derivations.

Definition 2 (Human skeleton) We define a human skeleton as an undirected connected
graph G = (V,E) with J = |V | nodes, called joints, associated with different human body
articulation points. We assume a predefined order of joints and denote A = [Aij ]0≤i,j<J ∈
{0, 1}J×J the adjacency matrix of G, defining joints connections.

Definition 3 (Human pose and movement) Let G be a skeleton of J joints. We at-
tach to each joint i a position pGi in R3 and call the vector pG = [pG0 , . . . ,p

G
J−1] ∈ (R3)J a

human pose. Furthermore, given a series of increasing time steps t1 < t2 < · · · < tT ∈ R,
we define a human movement m as a sequence of poses of the same subject at those instants
m = [pGt1 , . . . ,p

G
tT
] ∈ (R3)J×T .

We base the theoretical results of ?? on the following assumptions. The first states the
reference frame traditionally used for assessing 3D-HPE models:

Assumption 4 (Reference root joint) For any skeleton G and movement m of length
T , the joint of index 0, called the root joint, is at the origin pGt,0 = [0, 0, 0] at all times

t1 ≤ t ≤ tT . That is equivalent to measuring positions pGt in a reference frame attached to
the root joint.

The second assumption concerns the rigidity of human body parts:

Assumption 5 (Rigid segments) We assume that the Euclidean distance between adja-
cent joints is constant within a movement m: for any pair of instants t and t′ and for any
joints i, j such that Aij = 1, we assume that

st,i,j = st′,i,j = si,j , (8)

where st,i,j = ∥pGt,i − pGt,j∥2 > 0.

Finally, we assume that the conditional distribution of poses does not collapse to a single
point, i.e. , that we have a one-to-many problem:

Assumption 6 (Non-degenerate conditional distribution) Given a joint distribution
P(xG, pG) of 3D poses pG ∈ (R3)J and corresponding 2D inputs xG ∈ (R2)J , we assume that
the conditional distribution P(pG|xG) is non-degenerate, i.e. , it is not a single Dirac distri-
bution.

Note that can be true even when P(xG,pG) is unimodal (e.g. , Fig. 2).
We verified on Human 3.6M (Ionescu et al., 2014) ground-truth data that assumptions

5 and 6 hold for actual poses in both training and test splits.

Segments rigidity. As shown on Fig. 5, ground-truth 3D poses have perfect MPSSE (7)
and MPSCE (6) metrics, meaning that ground-truth skeletons are perfectly symmetric,
with rigid segments. Assumption 5 is thus verified in actual training and test data.

Non-degenerate distributions. As shown on Fig. 7, the conditional distribution of
ground-truth 3D poses given 2D keypoints position is clearly multimodal, and, thus, non-
degenerate (not reduced to a single Dirac distribution). That validates assumption 6 and
explains why multi-hypothesis techniques are necessary.
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Figure 7: Estimated joint distributions of ground-truth 2D inputs (u, v pixel
coordinates) together with 3D z-coordinates (depth) for different subjects and
actions. The depth density conditional on inputs is clearly multimodal. Vertical red lines
are examples of depth-ambiguous inputs. Distributions are estimated with a kernel density
estimator from the Seaborn plotting library (Waskom, 2021).
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C.2. Proofs and additional corollaries

This section contains the proofs of the theoretical results presented in Section 3, together
with a few corollaries.

First, we state more formally our result on the existence of a human pose manifold:

Proposition 7 (Human pose manifold) Assuming a rigid skeleton (assumptions 4 and
5), all poses of a movement m = [pt]

T
t=1 lie on a manifoldM of dimension 2(J − 1):

∀t ∈ {1, . . . , T}, pt ∈M . (9)

Proof [Proposition 7] Let i be a joint connected to the root p0 (i.e. , Ai0 = 1). From
assumptions 4 and 5, we know that at any instant t, pGt,i lies on the sphere S2(0, si,0)
centered at 0 with radius si,0 independent of time. Therefore, its position can be fully
parameterized in spherical coordinates by two angles (θt,i, ϕt,i). Let j be a joint connected
to i. Like before, assumption 5 implies that at any instant t, pGt,j lies on the moving

sphere S2(pGt,i, sj,i) centered at pGt,i with radius sj,i independent of time. Thus, we can fully

describe pGt,j with the position of its center, pGt,i and the spherical coordinates (θt,j , ϕt,j)
of joint j relative to the center of the sphere, i.e. , joint i. That means that there is a
bijection between the possible positions attainable by pGt,j at any instant and the direct

product of spheres S2(0, si,0) ⊗ S2(0, sj,i).
1 That bijection is an homeomorphism since it is

a composition of homeomorphisms: we can compute pGt,j from (θt,i, ϕt,i, θt,j , ϕt,j) following
the forward kinematics algorithm (Murray et al., 2017) (cf. algo. 2), i.e. , using a composition
of rotations and translations.

Now let us assume for some arbitrary joint k that pGt,k lies at all times on a spaceM2d

homeomorphic to a product of spheres of dimension 2d. That means that pGt,k can be fully
parametrized using 2d spherical angles (θ1, ϕ1, . . . , θd, ϕd). Let l be a joint connected to
k (typically one further step away from the root joint p0 and not already represented in
M2d). As before, at any instant t, pGt,l needs to lie on the sphere centered on pGt,k of constant

radius sk,l. Thus, we can fully describe pGt,l using the 2(d+ 1)-tuple of angles obtained
by concatenating its spherical coordinates relative to joint k, together with the 2d-tuple
describing pGt,k, i.e. the center of the sphere. So pGt,l lies on a spaceM2(d+1) homeomorphic
to a product of spheres of dimension 2(d+ 1).

We can conclude by induction that at any instant t, pt = [pGt,1, . . . ,p
G
t,J ] lies on the same

subspace of (R3)J , which is homeomorphic to a product of spheres centered at the origin:⊗
i<j/Aij=1

S2(0, si,j) . (10)

Finally, the previous space is trivially homeomorphic to (S2)J−1 through the scaling (1/si,j)i<j/Aij=1.

(S2)J−1 is a manifold of dimension 2(J − 1) as the direct product of J − 1 manifolds of
dimension 2. ■

Proof [Proposition 1] Let G be a skeleton with J joints, x ∈ (R2)J a 2D pose, p ∈ (R3)J its
corresponding 3D pose, and P(x, p) a joint distribution of poses in 2D and 3D. We define

1. S2(0, sj,i) is homeomorphic to S2(pG
t,j ; sj,i).
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ℓ = (ℓj)
J−1
j=1 as the function allowing us to compute the length of the segments of a pose p:

ℓj : p 7→ ∥pj − pτ(j)∥2 , 0 < j ≤ J − 1 , (11)

where τ : {1, . . . , J − 1} → {0, . . . , J − 1} maps joint indices to the index of their parent
joint:

τ(i) = j < i, s.t. Aij = 1 . (12)

From assumption 5, we know that for any pose p from the training distribution,

∀j , ℓj(p) = sj,τ(j) . (13)

Given D = {(xi,pi)}Ni=1 ∼ P(x,p), some i.i.d. evaluation data, the MSE of a model f is
defined as:

MSE(f ;N) =
1

N

N∑
i=1

∥pi − f(xi)∥22 , (14)

and converges to

MSE∗(f) = Ex,p

[
∥p− f(x)∥22

]
(15)

as the dataset size N goes to infinity. We then define the oracle MSE minimizer as

f∗ = argmin
f

MSE∗(f) . (16)

The quantity in (15) is known in statistics as the expected L2-risk and it is a well-known
fact that its minimizer is the conditional expectation:

f∗(x) = E[p|x = x] . (17)

Thus, since ℓ2j are strictly convex and P(p|x) is non-degenerate according to assumption 6,
we can conclude from Jensen’s strict inequality that for all j,

ℓ2j (f
∗(x)) = ℓ2j (E[p|x = x]) < E[ℓ2j (p)|x = x] = s2jτ(j) , (18)

where the last equality arises from the fact that ℓ2j (p) is not random according to (13).
Thus, given that ℓj > 0 and sj,τ(j) > 0, we can say that ℓj(f

∗(x)) < sj,τ(j) for all joints j.
We conclude that the model f∗ minimizing MSE∗ predicts poses that violate assumption 5
and are inconsistent. ■

As an immediate corollary of proposition 1, we may state the following result, which
was empirically illustrated in many parts of our paper:

Corollary 8 Given a fixed training distribution P(x, p) respecting assumptions 4-6, for all
3D-HPE model f predicting consistent poses, i.e. , that respect assumption 5, there is an
inconsistent model f ′ with lower mean-squared error.
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Proof Let f ′ ∈ argminf̃ MSE∗(f̃). According to proposition 1, f ′ is inconsistent. Suppose
that the consistent model f is such that

MSE∗(f) ≤ MSE∗(f ′) . (19)

Since MSE∗ reaches its minimum at f ′, we have MSE∗(f) = MSE∗(f ′). Thus, f ∈
argminf̃ MSE∗(f̃), which means that f is also inconsistent according to proposition 1.
That is impossible given that we assumed f to be consistent. We conclude that Eq. (19) is
wrong and that

MSE∗(f) > MSE∗(f ′) . (20)

■

Note that propositions 1 and 8 assume the use of the MSE loss, which is the most widely
used loss in 3D-HPE. We can however extend them to the case where MPJPE serves as
optimization criteria under an additional technical assumption:

Corollary 9 The predicted poses minimizing the mean-per-joint-position-error loss are in-
consistent if the training poses distribution P(x,p) verifies Asm. 4-6 and if the joint-wise
residuals’ norm standard deviation is small compared to the joint-wise loss:

0 ≤ j < J ,

√
Vx,p

[
∥pj − fj(x)∥2

]
Ex,p

[
∥pj − fj(x)∥2

] ≃ 0 . (21)

Proof From proposition 1 we know that the poses predicted by the minimizer f∗ of

MSE∗(f) = Ex,p

[
∥p− f(x)∥22

]
(22)

are inconsistent. Let fj be the component of f corresponding to the jth joint. We define
the jth mean-per-joint-position-error component as:

MPJPE∗
j (f) ≜ Ex,p

[
∥pj − fj(x)∥2

]
. (23)

Under the small variance assumption, we have:

Vx,p

[
∥pj − fj(x)∥2

]
Ex,p

[
∥pj − fj(x)∥2

]2 (24)

=
Ex,p

[
∥p− f(x)∥22

]
− Ex,p

[
∥pj − fj(x)∥2

]2
Ex,p

[
∥pj − fj(x)∥2

]2 (25)

=
MSE∗

j (f)−MPJPE∗
j (f)

2

MPJPE∗
j (f)

2
≃ 0 , (26)

so both criteria, MSE and MPJPE, are asymptotically equivalent and have the same mini-
mizer f∗, which is inconsistent according to proposition 1. ■
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Appendix D. Further details on the 1D-to-2D case study

D.1. Implementation details

Datasets. We created a dataset of input-output pairs {(xi, (xi, yi))}Ni=1, divided into 1 000
training examples, 1 000 validation examples and 1 000 test examples. Since the 2D posi-
tion of J1 is fully determined by the angle θ between the segment (J0, J1) and the x-axis,
the dataset is generated by first sampling θ from a von Mises mixture distribution, then
converting it into Cartesian coordinates (xi, yi) to form the outputs, and finally projecting
them into the x-axis to obtain the inputs.

Distribution scenarios. We considered three different distribution scenarios with different
levels of difficulty:

1. Easy scenario: a unimodal distribution centered at θ = 2π
5 , where the axis of maxi-

mum 2D variance is approximately parallel to the x-axis (Fig. 2-A).

2. Difficult unimodal scenario: a unimodal distribution centered at θ = 0, where the
axis of maximum 2D variance is perpendicular to the x-axis (Fig. 2-B).

3. Difficult multimodal scenario: a bimodal distribution, with modes at θ1 =
π
3 and

θ2 = −π
3 and mixture weights w1 =

2
3 and w2 =

1
3 , i.e. , where the projection of modes

onto the x-axis are close to each other (Fig. 2-C).

All von Mises components in all scenarios had concentrations equal to 20.

Architectures and training. All three models were based on a multi-layer perceptron
(MLP) with 2 hidden layers of 32 neurons each, using tanh activation.

The constrained and unconstrained MLPs were trained using the mean-squared loss
1
N

∑N
i=1((x̂i − xi)

2 + (ŷi − yi)
2). ManiPose was trained with the loss in Eq. (1), and had

K = 2 heads. We trained all models with batches of 100 examples for a maximum of 50
epochs. We used the Adam optimizer (Kingma and Ba, 2014), with default hyperparam-
eters and no weight decay. Learning rates were searched for each model and distribution
independently over a small grid: [10−5, 10−4, 10−3, 10−2] (cf. selected values in Table 5).
They were scheduled during training using a plateau strategy of factor 0.5, patience of 10
epochs and threshold of 10−4.

Table 5: Selected learning rates for 1D-to-2D synthetic experiment.

Distribution A B C

Unconstr. MLP 10−3 10−3 10−2

Constrained MLP 10−2 10−4 10−2

ManiPose 10−2 10−3 10−2

D.2. Extension to 2D-to-3D setup with more joints

We further extend the two-joint 1D-to-2D lifting experiment of Section 4.1 to 2D-to-3D
with three joints, aiming at providing a scenario that is closer to real-world 3D-HPE, but
that can still be fully dissected and visualized.
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As in Section 4.1, we suppose that joint J0 is at the origin at all times, that J1 is

connected to J0 through a rigid segment of length s1 and that J2 is connected to J1 through
a second rigid segment of length s1 < s0. We further assume that both J1 and J2 are allowed
to rotate around two axes orthogonal to each other. Thus, J1 is constrained to lie on a circle
S1(0, s0), while J2 lies on a torus T homeomorphic to S1(0, s0)⊗S1(0, s1). Without loss of
generality, we set the radii s0 = 2 and s1 = 1 and assume them to be known.

Given that setup, we are interested in learning to predict the 3D pose (J1, J2) = (x1, y1, z1, x2, y2, z2) ∈ R6,
given its 2D projection (K1,K2) = (x1, z1, x2, z2) ∈ R4. We create a dataset comprising
20, 000 training, 2, 000 validation, and 2, 000 test examples, sampled using an arbitrary von
Mises mixture of poloidal and toroidal angles (θ, ϕ) in T . We set the modes of such a mixture
at [(−π, 0), (0, π/4), (12 ,−π/4), (2π/3, π/2)], with concentrations of [2, 4, 3, 10] and weights
[0.3, 0.4, 0.2, 0.1]. Similarly to Fig. 2-C, that creates a difficult multimodal distribution,
depicted in Fig. 8.
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Figure 8: Visualisation of the von Mises mixture distribution on the torus T . The
different colors (blue, green, red, purple) represent the modes of the sampled points. We
are only representing joint J2 here for clarity.

We train and evaluate the same baselines as in Section 4.1 in that new scenario, using a
similar setup (cf.Appendix D.1, Architectures and training). The corresponding Mean Per
Segment Consistency Error (MPSCE) and Mean Per Joint Position Error (MPJPE) results
are reported in Table 6.

Table 6: Mean per joint prediction error (MPJPE) and mean per segment con-
sistency error (MPSCE) in a 2D-to-3D scenario. ManiPose reaches perfect MPSCE
consistency without degrading MPJPE performance.

MPJPE ↓ MPSCE ↓

Unconst. MLP 1.1468 0.2539
Constrained MLP 1.1593 0.0000
ManiPose 1.1337 0.0000

We see that the same observations as in Section 4.1 also apply here: although the
unconstrained MLP yields competitive MPJPE results, its predictions are not consistently
aligned with the manifold, as indicated by its poor MPSCE performance. Again, we show
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here that ManiPose offers an effective balance between maintaining manifold consistency
and achieving high joint-position-error performance.

Appendix E. Further ManiPose implementation details

E.1. Architectural details

Our architecture is backbone-agnostic, as shown on Fig. 1. Thus, in order to have a fair
comparison, we decided to implement it using the most powerful architecture available, i.e. ,
MixSTE (Zhang et al., 2022).

In practice, the rotations module follows the MixSTE architecture with dl = 8 spatio-
temporal transformer blocks of dimension dm = 512 and time receptive field of T = 243
frames for Human 3.6M experiments and T = 43 frames for MPI-INF-3DHP experiments.
Contrary to MixSTE, that network outputs rotation embeddings of dimension 6 for each
joint and frame, instead of Cartesian coordinates of dimension 3.

Concerning the segment module, it was also implemented with a smaller MixSTE back-
bone of depth dl = 2 and dimension dm = 128.

The ablation study presented in Table 4 shows that the increase in the number of
parameters between MixSTE and ManiPose is negligible.

E.2. Pose decoding details

The pose decoding block from Fig. 1 is described in Section 2.1 and is based on Algorithms 1
and 2. The whole procedure is illustrated on Fig. 4.

Table 7: Joint-wise weights used in the Winner-takes-all loss Eq. (2) (as in Zhang et al.
(2022)).

Joint 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Weight 1 1 2.5 2.5 1 2.5 2.5 1 1 1 1.5 1.5 4 4 1.5 4 4

Algorithm 1 6D rotation representation conversion (Zhou et al., 2019)

Require: Predicted 6D rotation representation r ∈ R6.
1: x′ ← [r0, r1, r2] ,
2: y′ ← [r3, r4, r5] ,
3: x← x′/∥x′∥2 ,
4: z′ ← x ∧ y′ ,
5: z ← z′/∥z′∥2 ,
6: y ← z ∧ x ,
7: return R = [x|y|z] ∈ R3×3 .

E.3. Training details

Training tactics. In order to have a fair comparison with MixSTE (Zhang et al., 2022),
we trained ManiPose using the same training tactics, such as pose flip augmentation both
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Algorithm 2 Forward Kinematics (Murray et al., 2017; Li et al., 2021)

Require: Scaled reference pose u′ ∈ (R3)J , predicted rotation matrices Rt,j , 0 ≤ j < J .
1: R′

t,0 ← Rt,0 ,

2: pt,0 ← u′0 , for j = 1, . . . , J − 1 do
3:

end
R′

t,j ← Rt,jR
′
t,τ(j) , ▷ Compose relative rotations

4: pt,j ← R′
t,j(u

′
j − u′τ(j)) + pt,τ(j) ,

5:

6: return pt = [pt,j ]0≤j<J

at training and test time. Moreover, the training loss (1) was complemented with two
additional terms described in Zhang et al. (2022):

1. a TCloss term, initially introduced in Hossain and Little (2018);

2. a velocity loss term, introduced in Pavllo et al. (2019).

We also weighted the Winner-takes-all MPJPE loss (2) as in Zhang et al. (2022) (cf.weights
in Table 7). The score loss weight, β, was set to 0.1, while TCloss and velocity loss terms
had respective weights of 0.5 and 2 (values from Zhang et al. (2022)).

Training settings. We trained our model for a maximum of 200 epochs with the Adam
optimizer (Kingma and Ba, 2014), using default hyperparameters, a weight decay of 10−6

and an initial learning rate of 4× 10−5. The latter was reduced with a plateau scheduler of
factor 0.5, patience of 11 epochs and threshold of 0.1 mm. Batches contained 3 sequences
of T = 243 frames each for the Human 3.6M training, and 30 sequences of T = 43 frames
for MPI-INF-3DHP.

Compute resources. Trainings were carried out on a single NVIDIA RTX 2000 GPU
with around 11GB of memory. The training of the large model with 243 frames on Hu-
man 3.6M dataset took around 26 hours.

Dataset licences. Human 3.6M is a dataset released under a research-only custom li-
cense, and is available upon request at this URL: http://vision.imar.ro/human3.6m/
description.php. MPI-INF-3DHP is released under non-commercial custom license and
can be found at: https://vcai.mpi-inf.mpg.de/3dhp-dataset/.

E.4. Baselines evaluation.

All Human 3.6M evaluations of MPSSE and MPSCE listed in Tables 2 and 4 were performed
using the official checkpoints of these methods and their corresponding official evaluation
scripts. Concerning MPI-INF-3DHP evaluations from Table 3, checkpoints were not avail-
able (except for P-STMO). Thus, baseline models were retrained from scratch using the
official MPI-INF-3DHP training scripts provided by the authors of each work, using hy-
perparameters reported in their corresponding papers. We checked that we were able to
reproduce the reported MPJPE results.

22

http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/description.php
https://vcai.mpi-inf.mpg.de/3dhp-dataset/

	Introduction
	ManiPose
	Constraining predictions to the pose manifold
	Multiple choice learning

	Formal analysis
	Experiments
	Insights to the formal argument on a simplified setting
	Comparison with state-of-the-art

	Conclusion
	Further details about the method
	Constraining predictions to the pose manifold
	Multiple choice learning

	Further experimental details and results
	Experimental setup
	Comparison with the state of the art
	Ablation study

	Further theoretical elements
	Assumptions verifications
	Proofs and additional corollaries

	Further details on the 1D-to-2D case study
	Implementation details
	Extension to 2D-to-3D setup with more joints

	Further ManiPose implementation details
	Architectural details
	Pose decoding details
	Training details
	Baselines evaluation.


