
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS UNDERSTANDING MEMORY BUFFER BASED
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) is a paradigm that adapts to and retains knowledge from
a stream of tasks. Despite the growing number of experimental methods in CL,
there is a lack of rigorous theoretical analysis, particularly in memory-based
continual learning (MCL), which remains an open research area. In this paper, we
theoretically analyze the impact of memory in CL and derive explicit expressions
for expected forgetting and generalization errors under overparameterized linear
models. We propose a detailed matrix decomposition of the data to distinguish
between current and previous datasets, effectively decoupling the coupled data for
different tasks. Additionally, we conduct a comprehensive mathematical analysis
for scenarios with a small number of tasks and employ numerical analysis for
larger task scenarios to evaluate the overall properties of expected forgetting and
generalization errors. Compared with CL, our theoretical analysis suggests that (1)
a larger memory buffer must be paired with a larger model to effectively reduce
forgetting; (2) training with a larger memory buffer generalizes better when tasks
are similar but may perform worse when tasks are dissimilar, while training with a
large model can help mitigate this negative effect. Ultimately, our findings here
sheds new light on how memory can assist CL in mitigating catastrophic forgetting
and improving generalization.

1 INTRODUCTION

Continual learning (CL) aims to dynamically learn from a sequence of tasks without forgetting
previously acquired knowledge. Traditional neural networks are typically trained on fixed datasets
and evaluated in static environments. However, in real-world scenarios, data is often presented in
a non-stationary manner, requiring models to update their knowledge continuously. This dynamic
learning faces a major challenge known as catastrophic forgetting (McCloskey & Cohen, 1989),
where acquiring new information results in the forgetting of previously learned knowledge.

Even though various empirical continual learning (CL) methods (Riemer et al., 2018; Buzzega
et al., 2020; Bohao et al., 2024) have been proposed recently, rigorous theoretical analysis remains
limited, particularly for memory buffer-based continual learning (MCL). As MCL is one of the
most straightforward and widely used approaches to mitigate catastrophic forgetting, a thorough
theoretical investigation into its mechanisms and limitations is essential. Recent works have attempted
to develop a theoretical understanding of memory in CL (Knoblauch et al., 2020; Chen et al., 2022;
Han et al., 2023). However, none of these studies provide explicit forms to characterize forgetting and
generalization for MCL. In this paper, we consider both limited and unlimited-size memory buffers
to provide a more comprehensive analysis of memory buffers. We derive explicit expressions under
overparameterized linear models to offer a clearer understanding of how memory can assist CL in
mitigating catastrophic forgetting and improving generalization.

To conduct these theoretical studies, there are two main challenges: (i) The training dataset contains
both the data from previous and current tasks, resulting in the coupling of the data matrix and label
vector. This coupling means that it is not possible to represent the labels for each task using a single
ground truth matrix. (ii) In the expressions for forgetting and generalization error, the increasing
and decreasing terms are coupled, making it difficult to analyze their monotonicity directly. To
address these challenges, we first perform a detailed matrix decomposition of the data matrix and
the label vector, using the ground truth matrix from each previous task in combination to represent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of reservoir sampling-based memory buffer (RMB) and full rehearsal memory buffer
(FMB) with no memory buffer (NMB). Here, T represents the number of training tasks, s denotes the number of
samples per task, d represents the number of training model parameters, and Mmax is the maximum size of the
memory buffer. To simplify notation, we define r := 1− s

d
, ci,j := rT−i + rT−j − rj−i, u := 1− Mmax+s

d
,

ui,j := uT−i + uT−j − uj−i, and f(l) := 1− ls
d

.

TYPE OF MEMORY BUFFER FORGETTING & GENERALIZATION ERROR MEMORY

NMB (LIN ET AL., 2023)
E[FT] =

1
T−1

∑T−1
i=1

[
(rT − ri)∥w∗

i ∥2 + s
d

∑T
j>i ci,j∥w

∗
j −w∗

i ∥2
]

#

E[Gt] =
1
T

∑T
i=1 r

T ∥w∗
i ∥2 + s

Td

∑T
i=1

∑T
k=1 r

T−i∥w∗
k −w∗

i ∥2 #

RMB (OURS)

E[FT] =
1

T−1

∑T−1
i=1

{[
(uT−1 − ui−1)r∥w∗

i ∥2 + s
d
∥w∗

T −w∗
i ∥2

]
+
∑T−1

j>i

[(∑T
k=j+1+

∑T
k=i+1

)
uT−k Mmax

(k−1)d
−
∑j

k=i+1 u
j−k Mmax

(k−1)d
+

ui,js

d

]
∥w∗

j −w∗
i ∥2

}
!

E[GT] =
1
T

∑T
i=1

[
uT−1r∥w∗

i ∥2 + s
d
∥w∗

T −w∗
i ∥

]
+ 1

T

∑T
i=1

∑T−1
j=1

[∑T
k=j+1

uT−kMmax
(k−1)d

+ uT−js
d

]
∥w∗

j −w∗
i ∥2 !

FMB (OURS)

E[FT] =
1

T−1

{∑T−1
i=1

[∏T
l=1 f(l)−

∏i
l=1 f(l)

]
∥w∗

i ∥2

+ s
d

∑T
j>i

[(∑T
k=j +

∑T
k=i

)∏T
l=k+1 f(l)−

∑j
k=i

∏j
l=k+1 f(l)

]
∥w∗

j −w∗
i ∥2

}
!

E[Gt] =
1
T

∑T
i=1

∏T
l=1 f(l)∥w

∗
i ∥2 + s

Td

∑T
i=1

∑T
j=1

∑T
k=j

∏T
l=k+1 f(l)∥w

∗
j −w∗

i ∥2 !

the corresponding label vector. Then, we conduct a comprehensive mathematical analysis for the
expression of forgetting and generalization error with a small number of tasks and employ numerical
analysis for larger task scenarios.

Here are our insights based on the theoretical results for both reservoir sampling-based memory buffer
and full rehearsal memory buffer. For the reservoir sampling-based memory buffer 1) When T = 2,
increasing the memory buffer size consistently reduces forgetting. However, for T > 2, forgetting
may worsen unless the condition Mmax+s

d < 1
T−1 is satisfied, which ensures the effectiveness of

a larger memory buffer; 2) When T = 2, a larger memory buffer improves generalization when
tasks are highly similar, but it degrades generalization when tasks are highly dissimilar. For T > 2,
even with highly dissimilar tasks, increasing the memory buffer can still reduce forgetting in certain
specific cases. For the full rehearsal memory buffer: 1) when T = 2, incorporating a memory buffer
effectively mitigates forgetting compared to methods without memory. When T > 2, the condition
s
d < 1

T 2 is necessary to ensure good performance. If new tasks are similar to all previous ones,
storing more samples leads to less forgetting. 2) In terms of generalization, if all tasks are similar to
each other, full rehearsal results in better generalization than training without memory. Conversely, if
tasks are highly dissimilar, full rehearsal leads to worse generalization compared to methods without
memory.

Our main contributions are summarized as follows.

• We consider the reservoir sampling-based memory buffer as our limited memory buffer and
the full rehearsal memory buffer as the unlimited memory buffer. For both buffer types,
we derive explicit expressions for the expected forgetting and generalization errors under
overparameterized linear models.

• We investigate the impact of memory buffer size and the number of parameters on both
forgetting and generalization when training with a reservoir sampling-based memory buffer,
revealing the following important insights: (1) A larger memory buffer must be paired with
a larger model to reduce forgetting effectively. (2) A sufficiently large model can result in
zero forgetting. (3) A larger memory buffer may improve generalization when tasks are
highly similar but can degrade generalization when tasks are highly dissimilar.

• We analyze the effects of memory buffer size and model parameters on both forgetting
and generalization when training with a full rehearsal memory buffer, revealing: (1) More
parameters help mitigate forgetting when tasks are highly similar. (2) A sufficiently large
model can lead to zero forgetting. (3) Storing more samples improves generalization when
tasks are highly similar but may worsens it when tasks are highly dissimilar.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Memory buffer-based CL. Memory buffer-based methods are mainly divided into experience replay
and generative replay. Experience replay stores a subset of data from previous tasks in a replay
buffer, following specific sample selection principles, and uses it for training in the current task. One
common buffer strategy is reservoir sampling (Riemer et al., 2018; Buzzega et al., 2020), where every
previously seen example has an equal probability of being stored in the buffer at each training round.
More advanced strategies include gradient-based (Saha et al., 2021; Aljundi et al., 2019; Borsos
et al., 2020) and optimization-constrained approaches (Chaudhry et al., 2019; Yin et al., 2020; Yoon
et al., 2021). Generative replay typically requires an additional generative model to produce synthetic
samples for previous tasks. Earlier methods generally use GAN or VAE as the generator (Shin
et al., 2017; Chenshen et al., 2018; Zhai et al., 2019). Recently, leveraging the powerful generative
capabilities of diffusion models, some methods have begun to explore using diffusion models as the
generator (Gao & Liu, 2023; Kim et al., 2024). In addition, there are some methods combine memory
with other techniques like knowledge distillation. For example, iCaRL (Rebuffi et al., 2017) uses a
buffer to train a nearest-mean-of-exemplars classifier while preventing representation degradation in
later tasks through a self-distillation loss.

Theoretical analysis of CL. There have been only a few attempts to develop a theoretical understand-
ing of memory in CL. For instance, (Knoblauch et al., 2020) uses set theory to show that achieving
perfect memory for optimal CL is NP-hard. (Chen et al., 2022) applies the PAC framework to analyze
the lower bound of memory requirements in CL. (Han et al., 2023) provides a convergence analysis
of memory-based CL with stochastic gradient descent, framing it as a smooth nonconvex finite-sum
optimization problem. Several theoretical studies focus on linear regression tasks. (Evron et al.,
2022) proves an upper bound for catastrophic forgetting under specific task orderings. (Lin et al.,
2023) presents explicit expressions for forgetting and generalization error in overparameterized linear
models. (Goldfarb & Hand, 2023) analyze the impact of overparameterization for linear models in a
two-task scenario. (Ding et al., 2024) offers a general theoretical analysis of forgetting in the linear
regression model using stochastic gradient descent. (Zhao et al., 2024) provides a statistical analysis
of regularization-based continual learning across a sequence of linear regression tasks. However,
none of these works provide explicit forms of forgetting and generalization errors for memory-based
continual learning (MCL). In contrast, we offer explicit results for MCL without making assumptions
about the ground truth vectors and provide a comprehensive discussion on how memory buffer size
and the number of parameters affect forgetting and generalization.

The most relevant study to our work is (Lin et al., 2023), which also investigated CL in overpa-
rameterized linear models. However, our work differs significantly from (Lin et al., 2023) in the
following aspects: (1) We focus on analyzing forgetting and generalization errors when training with
memory buffers, whereas (Lin et al., 2023) considered training without memory buffers; (2) Our
analysis explores the interplay between memory buffer size, overparameterization, and the number
of tasks, emphasizing the conditions under which these factors can mitigate forgetting and enhance
generalization. In contrast, (Lin et al., 2023) did not address the impact of the number of tasks;
(3) Our findings provide new insights into how memory can assist CL in alleviating catastrophic
forgetting and improving generalization.

3 PRELIMINARY

3.1 PROBLEM SETUP

We consider the standard CL setup with T training tasks. We define Dt = {Xt,yt} as the training
dataset for task t, where Xt ∈ Rd×st is the feature matrix containing st samples of d-dimensional
feature vectors, and yt ∈ Rst is the corresponding output vector. Additionally, we assume that each
element of the feature matrix Xt follows standard Gaussian distribution N (0, 1) and is independent
of each other. For any task t, we define a linear ground truth vector w∗

t (Belkin et al., 2018; Evron
et al., 2022; Lin et al., 2023), which satisfies yt = XT

t w
∗
t . The set of ground truth vectors for all

T tasks is denoted as WT = {w∗
1 , . . . ,w

∗
T }. This paper focuses on two memory buffer strategies:

the reservoir sampling-based memory buffer and the full rehearsal memory buffer. We assume the
current size of memory buffer Mt for the t-th task is Mt, with a maximum size of Mmax. We define
the feature matrix stored in the memory buffer as XMt ∈ Rd×Mt , and the corresponding label vector

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as yMt
∈ RMt . We use ein ∈ Rn to denote the standard basis vector of length n, where the i-th

element is 1, and all other elements are 0. Similarly, we define Ei
n = diag{ein} ∈ Rn×n, where

diag creates a diagonal matrix with ein as its diagonal. To simplify subsequent discussions, we set
mt = ⌊Mmax/t⌋, where ⌊·⌋ denotes the floor function, and m̄t = Mmax − (t− 1)mt.

For ease of the statements, we assume the number of samples for each task is equal, as shown in
Assumption 1, and without this assumption, our conclusions will not be fundamentally affected.

Assumption 1. st = s for all t ∈ [T].

3.2 MEMORY BUFFER

3.2.1 RESERVOIR SAMPLING-BASED MEMORY BUFFER

This memory buffer updates using reservoir sampling, ensuring that for task t, the probability of any
example from the previous t−1 tasks being in the buffer is equal. Therefore, we assume the number
of samples stored in the memory buffer for each previous task is nearly equal. This approach
ensures diversity and balance among samples from previous tasks while adhering to the constraints
of a limited-size buffer. We limit the buffer capacity to not exceed s and define it as follows.

When t ≥ 2, the memory buffer stores mt−1 samples for each of the previous t−1 tasks and 1 sample
for each of the m̄t−1 distinct tasks from the previous t − 1 tasks. This ensures that the difference
in the number of samples stored in the buffer for each task does not exceed 1, satisfying the above
assumption. We assume that each element of XMt follows standard Gaussian distribution N (0, 1)
and is independent of each other. We generate the corresponding label yMt

∈ RMmax as follows:

yMt =

t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

El
Mmax

X⊤
Mt

w∗
k +

m̄t−1∑
j=1

E
(t−1)mt−1+j
Mmax

X⊤
Mt

w∗
tj , (1)

where {w∗
t1 , . . . ,w

∗
tm̄t−1

} ⊆ Wt, with each element uniformly drawn from Wt.

3.2.2 FULL REHEARSAL MEMORY BUFFER

A full rehearsal memory buffer stores all samples from previous tasks. Training a model with this
buffer means retraining with all samples, including both old and new tasks, making it the most
straightforward memory-based approach. However, it requires significant computational resources
and memory storage. We define the full rehearsal memory buffer as follows.

When t ≥ 2, the memory buffer stores all samples from the previous t − 1 tasks. We assume that
each element of XMt

follows standard Gaussian distribution N (0, 1) and is independent of each
other. Therefore, Mt = (t− 1)s and we generate the corresponding label yMt

∈ RMt as follows:

yMt
=

t−1∑
k=1

ks∑
l=(k−1)s+1

El
Mt

X⊤
Mt

w∗
k. (2)

3.3 TRAINING SETTING

Training dataset. For any task t ∈ {2, . . . , T}, we consider training with the original dataset Xt

alongside the memory buffer Mt. Thus, we define the expanded training dataset D̂t := {X̂t, ŷt}
for task t by concatenating Mt and Dt, where X̂t ∈ Rd×(s+Mt) is defined as [XMt

,Xt] and
ŷt ∈ Rs+Mt is defined as [y⊤

Mt
,y⊤

t]
⊤. To simplify our analysis, we consider the expanded training

dataset with i.i.d. Gaussian features, which is stated in the following Assumption 2.

Assumption 2. For any task t ∈ {2, . . . , T}, each element of X̂t follows standard Gaussian
distribution N (0, 1) and is independent of each other.

Training procedure. We train our model parameters sequentially on a series of tasks. To simplify
our analysis, we always set the initial training weight for the first task to zero matrix, although setting
it to any other fixed matrix does not affect our theoretical results. In each training round, we use

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the updated weight from the previous task as the initial weight for the next task. For any task t, we
consider the mean squared error (MSE) with respect to D̂t as our training loss:

Ltr
t (w, D̂t) =

1

s
∥X̂⊤

t w − ŷt∥22. (3)

When we focus on the overparameterized regime, there are infinitely many solutions that make
Equation (3) equal to zero. We use stochastic gradient descent (SGD) to minimize Equation (3). The
convergence point of SGD is the unique solution among these infinitely many solutions, which can
be found by solving the following optimization problem:

min
wt

∥wt −wt−1∥2, s.t. X̂⊤
t wt = ŷt. (4)

We can use the method of Lagrange multipliers to directly obtain the solution to the optimization
problem in Equation (4). The resulting solution is given by:

wt = wt−1 + X̂t(X̂
⊤
t X̂t)

−1(ŷt − X̂⊤
t wt−1). (5)

4 THEORETICAL RESULTS ON FORGETTING AND GENERALIZATION

For the overparameterized model, we define Lt(w) as the model error for task t ∈ [T]:

Lt(w) = ∥w −w∗
t ∥22. (6)

which characterizes the generalization performance of w on task t. As shown in (Chaudhry et al.,
2019; Lin et al., 2023), we can define forgetting and overall generalization error similarly as follows:
(1) Forgetting. This metric quantifies how much the model forgets previous tasks after being trained
on a sequence of tasks. For any t ∈ [2, T], we define it as follows:

Ft =
1

t− 1

t−1∑
i=1

(Li(wt)− Li(wi)). (7)

(2) Overall generalization error. It assesses the model’s generalization performance from the final
training round by calculating the average model error across all tasks:

Gt =
1

t

t∑
i=1

Li(wT). (8)

These are two important metrics for evaluating the performance of continual learning (CL) in the
overparameterized regime. To facilitate a comparison with training methods that do not utilize
memory, we refer to Lemma 1, which is derived from (Lin et al., 2023) without considering noise.
For notational simplicity, we adopt the notation r := 1− s

d and ci,j := rT−i + rT−j − rj−i.
Lemma 1 (Lin et al. (2023)). When d > s+ 2, we have

E[FT] =
1

T − 1

T−1∑
i=1

[
(rT − ri)︸ ︷︷ ︸
Term F 1

1

∥w∗
i ∥2 +

s

d

T∑
j>i

ci,j∥w∗
j −w∗

i ∥2
]
, (9)

E[Gt] =
1

T

T∑
i=1

rT ∥w∗
i ∥2 +

s

Td

T∑
i=1

T∑
k=1

rT−i∥w∗
k −w∗

i ∥2. (10)

Lemma 1 provides the result for the case without a buffer. Next, We consider the impact of memory
on CL. We will present explicit forms of forgetting and overall generalization error for memory-based
CL using reservoir sampling-based buffers and full rehearsal buffers as follows.

4.1 RESERVOIR SAMPLING-BASED MEMORY BUFFER

The reservoir sampling-based memory buffer is a typical limited-sized buffer that ensures every
previously seen example has an equal probability of being stored at each training round. To simplify
our statements, we define u := 1− Mmax+s

d , and ui,j := uT−i+uT−j−uj−i. Next, we will provide
explicit expressions in Theorem 1 for the expected forgetting and generalization errors for CL trained
with this buffer under overparameterized linear models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1. Suppose d > s+Mmax + 2. When T ≥ 2, we have

E[FT] =
1

T − 1

T−1∑
i=1

{[
(uT−1 − ui−1)r︸ ︷︷ ︸

Term F 1
2

∥w∗
i ∥2 +

s

d
∥w∗

T −w∗
i ∥2

]

+

T−1∑
j>i

[(T∑
k=j+1

+

T∑
k=i+1

)
uT−k Mmax

(k − 1)d
−

j∑
k=i+1

uj−k Mmax

(k − 1)d
+

ui,js

d︸ ︷︷ ︸
Term F 2

2

]
∥w∗

j −w∗
i ∥2

}

(11)

E[GT] =
1

T

T∑
i=1

[
uT−1r︸ ︷︷ ︸
Term G1

2

∥w∗
i ∥2 +

s

d
∥w∗

T −w∗
i ∥
]

+
1

T

T∑
i=1

T−1∑
j=1

[T∑
k=j+1

uT−kMmax

(k − 1)d
+

uT−js

d︸ ︷︷ ︸
Term G2

2

]
∥w∗

j −w∗
i ∥2

(12)

Proof Sketch. First, we perform a detailed matrix decomposition of the data X̂t:
t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

El
Mmax+sX̂

⊤
t w∗

k +

m̄t−1∑
j=1

E
(t−1)mt−1+j
Mmax+s X̂⊤

t w∗
tj +

Mmax+s∑
l=Mmax+1

El
Mmax+sX̂

⊤
t w∗

t .

(13)
Second, we perform a detailed decomposition of the projector onto the row space of X̂t. Then, we
provide the corresponding probabilistic properties and algebraic characteristics of the decomposed
projector. A comprehensive discussion is provided in Appendix A.1.

Third, we calculate the model error by combining the decomposed data matrix with the decomposed
projector matrix obtained in the first two steps:

E∥wt −w∗
i ∥2 = uE∥wt−1 −w∗

i ∥2 +
Mmax

(t− 1)d

t−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

t −w∗
i ∥2. (14)

Finally, we recursively apply Equation (14) and substitute the results into Equation (7) and (8) to
obtain explicit expressions for expected forgetting and generalization errors. Then, we finish the
proof and leave the details of this proof in Appendix B.1.

Before diving into the discussion, we first provide the definition of task similarity in Definition 1.
Definition 1. The task similarity between any tasks j and i is defined by ∥w∗

j −w∗
i ∥2

An interesting discovery is that incorporating a memory buffer does not always reduce forgetting or
generalization errors. In some cases, it can even exacerbate forgetting, leading to wasted memory
and unnecessary computation. Therefore, it is crucial to analyze E[FT] and E[GT]. Specifically, we
focus on the coefficients in front of each norm to avoid imposing additional constraints on the norm
of the ground truth or task similarity. Some insights are presented as follows.
Remark 1. Term F 1

2 is not always smaller than Term F 1
1 , indicating instability in their size relation-

ship as the parameters vary. However, as shown in Lemma 10, we find that when Mmax+s
d < 1

T−1 ,
this instability is resolved, and the inequality F 1

2 < F 1
1 consistently holds. This suggests that with

a smaller memory buffer or a larger number of parameters, the model forgets less than without
memory when all tasks are highly similar. Both rT−1 − ri−1 and uT−1 − ui−1 initially decreases
and then increases as d grows, with the corresponding critical points obeying r = (i−1

T−1)
1

T−i and

u = (i−1
T−1)

1
T−i , respectively. Therefore, when we fix s, i, T , the critical point w.r.t d of the former

will be smaller than that of the latter, indicating that a larger d is more beneficial for the case with a
buffer compared to without a buffer, especially when the buffer size is large.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In Remark 1, we discuss the impact of Term F 1
2 on forgetting. We find that for MCL to effectively

mitigate forgetting, the memory buffer size, model parameters, and the number of tasks must satisfy
the condition Mmax+s

d < 1
T−1 . Before we discuss the impact of Term F 2

2 on forgetting, we consider
some fixed number of tasks for Theorem 1 in the following Lemma 2:
Lemma 2. Suppose d > s+Mmax + 2, we have

E[F2] = (ur − r)∥w∗
1∥2 +

s

d
∥w∗

2 −w∗
1∥2, (15)

E[G2] =
1

2
{ur(∥w∗

1∥2 + ∥w∗
2∥2) + [

Mmax

d
+ (u+ 1)

s

d
]∥w∗

2 −w∗
1∥2}, (16)

E[F3] =
1

2

2∑
i=1

[(u2 − ui−1)r∥w∗
i ∥2 +

s

d
∥w∗

3 −w∗
i ∥2] + (

uMmax

d
+

u2s

d
)∥w∗

2 −w∗
1∥2. (17)

When Mmax = 0, Equation (11) is equivalent to Equation (9). Therefore, analyzing the monotonicity
of Term F 2

2 w.r.t Mmax will provide a clearer comparison between memory-based methods and those
without a memory buffer regarding forgetting.
Remark 2. In Lemma 2, we find that Term F 2

2 = 0 when T = 2, indicating that the effect of memory
on E[F2] only depends on the term ur − r. This term decreases as Mmax increases from 0 to s,
leading to a reduction in E[F2]. Therefore, when training with only two tasks, increasing the memory
buffer size is beneficial for mitigating forgetting.

To analyze the impact of Term F 2
2 on forgetting, we consider more than two tasks. We present the

monotonicity of Term F 2
2 w.r.t Mmax for the case when T = 3 in the following Remark 3:

Remark 3. When T = 3, the derivative of the term uMmax

d + u2s
d on Mmax is given by 1

d [−
Mmax

d −
1− (2sd − 1)Mmax+s

d]. This derivative is negative under the condition Mmax+s
d < 1

2 , indicating that
the term uMmax

d + u2s
d decreases as Mmax increases from 0 to s under this condition. Furthermore,

when Mmax+s
d < 1

2 and T = 3, a larger memory buffer will result in less forgetting compared to
training without memory. However, it is important to note that while a larger memory buffer is
beneficial, it requires a correspondingly larger model due to the constraint Mmax+s

d < 1
2 .

The discussion above demonstrates that enlarging the memory buffer size will always mitigate
forgetting when considering only two tasks. However, for T = 3, under the condition Mmax+s

d < 1
2 ,

enlarging memory buffer size can be beneficial. The analysis provided by (Lin et al., 2023), which
focuses on the effects of various parameters on forgetting and generalization for T = 2, is not
applicable to our study, as extreme cases begin to arise when T > 2.
Remark 4. We find that for T > 3, enlarging the memory size is also not always advantageous for
mitigating forgetting. To explain this phenomenon, we prefer to use numerical methods. As shown
in Figure (1) (a)(b), there are specific combinations of i, j, and T that cause Term F 2

2 w.r.t. Mmax

to increase. This implies that extreme cases may arise: when task j is highly dissimilar to task i,
while other tasks remain similar to each other, enlarging the memory buffer exacerbates forgetting.
Furthermore, we find that E[FT] → 0 as d → ∞, indicating that a large-scale model will result in
zero forgetting, even though extreme cases may still occur.

Next, we will consider the impact of memory on the expected generalization error. When Mmax = 0,
Equation (12) is equivalent to Equation (10). Therefore, we examine how Equation (12) changes
as Mmax varies from 0 to s, as discussed in Remark 5. This analysis will help us understand how
varying memory buffer sizes influence the generalization error.
Remark 5. When T = 2, the term ur in Equation 16 decreases as Mmax increases, indicating that a
larger memory buffer improves generalization when two tasks are highly similar. As for the remaining
term in Equation 16, taking the derivative of Mmax

d + (u+ 1) sd on Mmax, we have 1
d (1−

s
d). This

shows that, under overparameterized linear models, Mmax

d + (u+1) sd increases as Mmax increases.
Hence, a larger memory buffer can hurt generalization when the two tasks are highly dissimilar.
Remark 6. When T > 2, this result changes. Specifically, G1

2 decreases as Mmax increases, making
the effect of G2

2 in Equation 12 more critical for analysis. We observe that enlarging the memory
buffer can reduce generalization error in some specific cases, as demonstrated in Figure 1 (c)(d).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Term F 2
2 (b) Term F 2

2 (c) Term G2
2 (d) Term G2

2

Figure 1: Monotonicity w.r.t. Mmax for Term F 2
2 (a)&(b) and Term G2

2 (c)&(d) under special cases,
respectively. Each term is analyzed for both a small-scale model and a large-scale model to illustrate
our findings. For the monotonicity of Term F 2

2 w.r.t. Mmax, we fix
d = 10000, T = 50, s = 70, i = 20, j = 30 for Subfigure (a), and
d = 1000000, T = 500, s = 700, i = 200, j = 300 for Subfigure (b). Under these settings, Term
F 2
2 increases as Mmax increases. For the monotonicity of Term G2

2 w.r.t. Mmax, we fix
d = 500, T = 50, j = 40, s = 70 for Subfigure (c), and d = 100000, t = 500, j = 400, s = 700 for
Subfigure (d). In both cases, Term G2

2 decreases as Mmax increases.

This implies that despite the presence of highly dissimilar tasks, some beneficial cases may arise. For
instance, when task j is highly dissimilar to task i, as shown in Figure 1 (c)(d), but other tasks remain
similar to each other, enlarging the memory buffer can still mitigate forgetting.

4.2 FULL REHEARSAL MEMORY BUFFER

The full rehearsal memory buffer is considered as an unlimited memory buffer, which stores all
previous datasets and retrains the model using both the previous and current task datasets. In this
section, we also provide explicit expressions for the expected forgetting and generalization errors
under overparameterized linear models. To simplify our statements, we define f(l) := 1− ls

d .
Theorem 2. Suppose d > s+Mmax + 2.When T ≥ 2, we have

E[FT] =
1

T − 1

{ T−1∑
i=1

[T∏
l=1

f(l)−
i∏

l=1

f(l)︸ ︷︷ ︸
Term F 1

3

]
∥w∗

i ∥2

+
s

d

T∑
j>i

[(T∑
k=j

+

T∑
k=i

) T∏
l=k+1

f(l)−
j∑

k=i

j∏
l=k+1

f(l)︸ ︷︷ ︸
Term F 2

3

]
∥w∗

j −w∗
i ∥2

}
,

(18)

E[Gt] =
1

T

T∑
i=1

T∏
l=1

f(l)︸ ︷︷ ︸
Term G1

3

∥w∗
i ∥2 +

s

Td

T∑
i=1

T∑
j=1

T∑
k=j

T∏
l=k+1

f(l)︸ ︷︷ ︸
Term G2

3

∥w∗
j −w∗

i ∥2.
(19)

Proof Sketch. First, we perform a detailed matrix decomposition of the data X̂t:

t∑
k=1

ks∑
l=(k−1)s+1

El
tsX̂

⊤
t w∗

k. (20)

Second, we combine the matrix decomposition of X̂t from the first step with the properties of the
decomposed projector discussed in Appendix A.1 to derive the model error:

E∥wt −w∗
i ∥2 =

(
1− ts

d

)
E∥wt−1 −w∗

i ∥2 +
s

d

t∑
j=1

∥w∗
j −w∗

i ∥2. (21)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Finally, we recursively apply Equation (21) and substitute the results into Equation (7) and (8) to
obtain explicit expressions for expected forgetting and generalization errors. Then, we finish the
proof and leave the details of this proof in Appendix C.1.

Multi-task Training For the t-th training round, the full rehearsal memory buffer retains all samples
from the previous t− 1 tasks. Consequently, at any given training round, training with a full rehearsal
memory buffer effectively operates as a form of multi-task learning (MTL), utilizing samples from
both the previous tasks and the current task simultaneously. Previous theoretical analyses of MTL
often rely on concepts such as VC dimension (Crammer & Mansour, 2012; Ben-David & Borbely,
2008), covering number (Baxter, 2000), and Rademacher complexity (Maurer, 2006; Pontil &
Maurer, 2013) to derive generalization bounds. However, these approaches do not account for the
overparameterized regime and fail to provide explicit forms for generalization error. In Theorem
2, we address these limitations by offering explicit expressions for forgetting and generalization
errors in MCL under the overparameterized linear regime. Additionally, while MTL learns tasks
simultaneously, MCL handles a sequential stream of tasks.

Training with a full rehearsal buffer may indeed exacerbate forgetting in certain cases, similar to
the reservoir sampling-based memory buffer discussed in Subsection 4.1. Moreover, training with
the full rehearsal buffer in these scenarios results in significantly higher computational and storage
costs. Therefore, we will analyze the impact of memory size and model parameters on the forgetting
and generalization errors discussed in Theorem 2. It is important to emphasize that increasing
memory size is effectively equivalent to increasing the number of tasks, T . Next, we will discuss the
coefficients in front of each norm term. Some key insights are presented as follows:

Remark 7. We observe that Term F 1
3 is not always smaller than Term F 1

1 , which is similar to the
phenomenon described in Remark 1. However, when s

d < 1
T 2 , the inequality F 1

3 < F 1
1 consistently

holds, as shown in Appendix C.2. This suggests that having more parameters can help mitigate
forgetting when tasks are highly similar. When d → ∞, Term F 1

3 → 0, indicating that a larger model
will lead to zero forgetting when tasks are highly similar.

In Remark 7, we establish the condition s
d < 1

T 2 to ensure that when tasks are similar, incorporating
memory helps mitigate forgetting compared to the no-memory case. Next, we will examine the
impact of F 2

3 on the expected forgetting.

Remark 8. Based on Equation 18, we have E[F2] = (f(2) − 1)r∥w∗
1∥2 + s

d∥w
∗
2 −w∗

1∥2. From
Equation 9, it follows that E[F2] = (r − 1)r∥w∗

1∥2 + s
d∥w

∗
2 − w∗

1∥2. Given that f(2) < r, we
conclude that the expected forgetting of the memory-based method is less than that of the method
without memory, indicating that memory-based approaches forget less than those without memory.

Remark 8 demonstrates that incorporating a memory buffer can mitigate forgetting more effectively
than methods without a memory buffer when only two tasks are considered, without any additional
conditions. As the number of tasks, T , Equation 19 introduces the ground truth ∥w∗

T ∥. Therefore, if
the {T + 1}-th task is similar to all previous tasks, we can ignore the term ∥w∗

T+1 −w∗
i ∥ for any

i ∈ [T]. As for j ̸= T and any i ∈ [T − 1], F 2
2 will decrease. Hence, when additional tasks are

considered, and the new task is similar to previous ones, storing more samples will lead to reduced
forgetting. Moreover, when combined with the condition discussed in Remark 7, we conclude that if
the new task is similar to previous tasks and s

d < 1
T 2 , incorporating a memory buffer will mitigate

forgetting more effectively than methods without memory. Furthermore, we observe that E[FT]
in Equation 18 approaches zero as d → ∞, indicating that training with a large-scale model will
eventually result in zero forgetting.

Next, we will consider the impact of memory on the expected generalization error. Similarly, we
compare the coefficients of each norm in Equation 19 with the method without a memory buffer in
Equation 10. This comparison helps us assess how incorporating a memory buffer influences the
generalization performance relative to methods that do not utilize memory.

Remark 9. It is evident that G1
3 < rT implies that incorporating memory can reduce generalization

error when tasks are similar compared to methods without memory. However, we observe that
G2

3 > 1 > rT−i for any i ∈ [T] and fixed j, indicating that when tasks are dissimilar, incorporating
a memory buffer results in worse generalization than without memory. Furthermore, the second sum
term of Equation 19 increases as T increases, eventually surpassing the second sum term of Equation

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

10. This suggests that storing more samples from previous tasks can lead to worse generalization,
particularly when there are highly dissimilar tasks as the number of tasks increases.

Remark 9 shows that the impact of training with a full rehearsal memory buffer on generalization
is highly dependent on task similarity. When all tasks are similar to each other, incorporating full
rehearsal results in better generalization compared to training without memory. Conversely, if there
are highly dissimilar tasks, incorporating full rehearsal will lead to worse generalization than training
without memory. This suggests that task similarity plays a key role in determining the effectiveness
of memory buffers for generalization in continual learning.

5 CONCLUSION

In this paper, we studied MCL in overparameterized linear models. Specifically, we analyzed the
impact of limited-size memory and unlimited-size memory in CL. To achieve this, we selected the
reservoir sampling-based memory buffer and the full rehearsal memory buffer as the primary focus of
our analysis. We provided explicit expressions for the expected forgetting and generalization errors
for both memory strategies. Additionally, we investigated the impact of memory buffer size and the
number of model parameters on both forgetting and generalization errors. To verify our findings, we
conducted a comprehensive mathematical analysis for scenarios with a small number of tasks and
employed numerical analysis for larger task scenarios.

Limitation: Our work focuses on overparameterized linear models, without considering deep neural
networks (DNNs) or nonlinear activation functions. This simplifies the theoretical analysis and allows
us to derive explicit expressions for expected forgetting and generalization errors. However, extending
this analysis to DNNs and incorporating the effects of nonlinear activation functions remains an
important direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. In International Conference on Machine Learning, pp. 541–549. PMLR, 2018.

Shai Ben-David and Reba Schuller Borbely. A notion of task relatedness yielding provable multiple-
task learning guarantees. Machine learning, 73:273–287, 2008.

PENG Bohao, Zhuotao Tian, Shu Liu, Ming-Chang Yang, and Jiaya Jia. Scalable language model
with generalized continual learning. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in neural information processing systems, 33:14879–14890,
2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=Hkf2_sC5FX.

Xi Chen, Christos Papadimitriou, and Binghui Peng. Memory bounds for continual learning. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 519–530. IEEE,
2022.

W Chenshen, L Herranz, L Xialei, X Liu, Y Wang, J van de Weijer, and B Raducanu. Memory
replay gans: Learning to generate images from new categories without forgetting [c]. In The
32nd International Conference on Neural Information Processing Systems, Montréal, Canada, pp.
5966–5976, 2018.

Koby Crammer and Yishay Mansour. Learning multiple tasks using shared hypotheses. Advances in
Neural Information Processing Systems, 25, 2012.

Meng Ding, Kaiyi Ji, Di Wang, and Jinhui Xu. Understanding forgetting in continual learning with
linear regression. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
10978–11001. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
ding24c.html.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
can catastrophic forgetting be in linear regression? In Conference on Learning Theory, pp.
4028–4079. PMLR, 2022.

Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative replay. In
International Conference on Machine Learning, pp. 10744–10763. PMLR, 2023.

Daniel Goldfarb and Paul Hand. Analysis of catastrophic forgetting for random orthogonal transfor-
mation tasks in the overparameterized regime. In International Conference on Artificial Intelligence
and Statistics, pp. 2975–2993. PMLR, 2023.

Seungyub Han, Yeongmo Kim, Taehyun Cho, and Jungwoo Lee. On the convergence of continual
learning with adaptive methods. In Uncertainty in Artificial Intelligence, pp. 809–818. PMLR,
2023.

11

https://openreview.net/forum?id=Hkf2_sC5FX
https://proceedings.mlr.press/v235/ding24c.html
https://proceedings.mlr.press/v235/ding24c.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peizhong Ju, Yingbin Liang, and Ness B Shroff. Theoretical characterization of the generalization
performance of overfitted meta-learning. arXiv preprint arXiv:2304.04312, 2023.

Junsu Kim, Hoseong Cho, Jihyeon Kim, Yihalem Yimolal Tiruneh, and Seungryul Baek. Sddgr:
Stable diffusion-based deep generative replay for class incremental object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 28772–28781,
2024.

Jeremias Knoblauch, Hisham Husain, and Tom Diethe. Optimal continual learning has perfect
memory and is np-hard. In International Conference on Machine Learning, pp. 5327–5337. PMLR,
2020.

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR,
2023.

Andreas Maurer. Bounds for linear multi-task learning. The Journal of Machine Learning Research,
7:117–139, 2006.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Massimiliano Pontil and Andreas Maurer. Excess risk bounds for multitask learning with trace norm
regularization. In Conference on Learning Theory, pp. 55–76. PMLR, 2013.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910, 2018.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=3AOj0RCNC2.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Dong Yin, Mehrdad Farajtabar, Ang Li, Nir Levine, and Alex Mott. Optimization and generaliza-
tion of regularization-based continual learning: a loss approximation viewpoint. arXiv preprint
arXiv:2006.10974, 2020.

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for
rehearsal-based continual learning. arXiv preprint arXiv:2106.01085, 2021.

Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha Nawhal, and Greg Mori. Lifelong gan:
Continual learning for conditional image generation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 2759–2768, 2019.

Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
based continual learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
61021–61039. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
zhao24n.html.

12

https://openreview.net/forum?id=3AOj0RCNC2
https://openreview.net/forum?id=3AOj0RCNC2
https://proceedings.mlr.press/v235/zhao24n.html
https://proceedings.mlr.press/v235/zhao24n.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Indices
ein The standard basis vector of length n, where the i-th element is 1 and all other

elements are 0.
Ei

n diag{ein}
N (0, 1) Standard Gaussian distribution.
E[x] The expected value of x.

Parameters
T Total number of tasks.
st Sample size of the t-th task.
d The dimension of parameters/feature vectors.

Random Variables
Dt The original dataset for the t-th task.
Mt The memory buffer for the t-th task.
D̂t The expanded training dataset for the t-th task by concatenating Mt and Dt.
Xt The feature matrix for the t-th task.
XMt

The feature matrix stored in the memory buffer.
X̂t Concatenation of Xt and XMt

, given by [XMt
,Xt].

yt The corresponding label of Xt.
yMt

The corresponding label of XMt
.

ŷt Concatenation of yt and yMt
, given by [y⊤

Mt
,y⊤

t]
⊤.

Mmax The maximum size of the memory buffer.
Mt The current size of the memory buffer for the t-th task.

Table 2: Notation table for key indices, parameters, and random variables used in the paper.

A USEFUL LEMMAS

A.1 PROPERTIES OF THE PROJECTOR

For any task t ∈ [T] and any l ∈ [s + Mt], we define Pt := X̂t(X̂
⊤
t X̂t)

−1X̂⊤
t , P l

t :=

X̂t(X̂
⊤
t X̂t)

−1El
s+Mt

X̂⊤
t and pl

t := X̂t(X̂
⊤
t X̂t)

−1els+Mt
.

The properties of Pt have been thoroughly discussed in linear algebra, but the characteristics of P l
t

have not been fully explored. Interestingly, P l
t can serves as a decomposition of Pt, meaning that

Pt =
∑s+Mt

l=1 P l
t . In this section, we propose some properties of the projector P l

t and its projected
subspace P l

t .
Lemma 3. For any task t ∈ [T] and any l ∈ [s +Mt], P l

t is a projector to a 1-dim subspace P l
t

which is spanned by pl
t.

Proof. By verifying that (P l
t)

2
= P l

t , we conclude that P l
t is idempotent and thus a projector. Next,

we should confirm the dimension of the projected subspace and identify its basis vectors.

dim(P l
t) = rank(P l

t) ≤ rank(El
s+Mt

X̂⊤
t) = 1,

so the dimension of P l
t is 1. We can find the vector in P l

t as follows:

P l
tp

l
t = pl

t.

Since the dimension of P l
t is 1, we can choose any vector in P l

t as its basis vector. Therefore, we
select pl

t as its basis vector

In Lemma 3, we verify that any P l
t is a projector and determine the dimension and basis vectors of

its projected subspace P l
t . Additionally, as shown in the following Lemma 4, we find that applying

P l
t to any vector in Rd results in a scalar multiple of pl

t.
Lemma 4. For any vector v ∈ Rd, we have

P l
tv = cvp

l
t, (22)

where cv is a constant.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Next, we will present the probabilistic properties of any projector P l
t . In the following Lemma 5,

we demonstrate that the expectation of the inner product between two different projection operators
acting on any two vectors is zero. In Lemma 7, we provide the expectation of the norm of any vector
in Rd when acted upon by any projection operator.

Lemma 5. Suppose d ≥ s+Mt +2. For any given vectors v1,v2 ∈ Rd and m,n ∈ [s+Mt] where
m ̸= n, we have

E⟨Pm
t v1,P

n
t v2⟩ = 0. (23)

Proof. By Remark 4, there are constants c1 and c2 such that

Pm
t v1 = c1p

m
t , P n

t v2 = c2p
n
t . (24)

By substituting Equation (24) back to Equation (23), we have

E⟨Pm
t v1,P

n
t v2⟩ = E⟨c1pm

t , c2p
n
t ⟩ = c1c2(e

m
s+Mt

)⊤E((X̂⊤
t X̂t)

−1)ens+Mt
. (25)

We know that (X̂⊤
t X̂t)

−1 follows the inverse-Wishart distribution. For d ≥ s+Mt + 2,

E((X̂⊤
t X̂t)

−1) =
1

d− s−Mt + 1
I. (26)

Due to the condition m ̸= n, by substituting Equation (26) back to Equation (25), we obtain that

E⟨Pm
t v1,P

n
t v2⟩ = 0.

Lemma 6. For any task t and any l ∈ [s+Mt], P l
t has rotational symmetry.

Proof. For any rotation S ∈ SO(p) where SO(p) ⊆ Rd×d denotes the set of all rotations in
p-dimensional space, we have

Spl
t = SX̂t((SX̂t)

⊤(SX̂t))
−1es+Mt

l . (27)

Because of the rotational symmetry of Gaussian distribution, we know that the rotated random
matrices SX̂t has the same probability distribution with the original random matrices X̂t. Therefore,
by Eq. 27, we can conclude that Spl

t has the same probability distribution as pl
t.

In Lemma 3, we verify that P l
t has rotational symmetry for any task t and any l ∈ [s+Mt]. Therefore,

we can directly apply the Lemma16 from (Ju et al., 2023) to obtain the following Lemma 7.

Lemma 7. Considering any random projector P l
t ∈ Rd×d to a 1-dim subspace where the subspace

has rotational symmetry, then for any given v ∈ Rd we must have

E∥P l
tv∥22 =

1

d
∥v∥22.

A.2 RESERVOIR SAMPLING-BASED MEMORY BUFFER

We will introduce Lemma 8, which plays a crucial role in the subsequent proof of the Theorem 1.

Lemma 8. Suppose d > s+Mmax + 2. For any t ∈ {2, . . . , T} and i ∈ [t]:

E∥wt −w∗
i ∥2 =

(
1− Mmax + s

d

)
E∥wt−1 −w∗

i ∥2 +
Mmax

(t− 1)d

t−1∑
j=1

∥w∗
j −w∗

i ∥2

+
s

d
∥w∗

t −w∗
i ∥2.

(28)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. We can rewrite Equation (5) as follows:

wt =wt−1 + X̂t(X̂
⊤
t X̂t)

−1

(t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

El
Mmax+sX̂

⊤
t w∗

k +

m̄t−1∑
j=1

E
(t−1)mt−1+j
Mmax+s X̂⊤

t w∗
tj

+

Mmax+s∑
l=Mmax+1

El
Mmax+sX̂

⊤
t w∗

t − X̂⊤
t wt−1

)

=(I − Pt)wt−1 +

t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

P l
tw

∗
k +

m̄t−1∑
j=1

P
(t−1)mt−1+j
t w∗

tj +

Mmax+s∑
l=Mmax+1

P l
tw

∗
t .

(29)
By Equation (29), we have

E∥wt −w∗
i ∥2

=E∥(I − Pt)(wt−1 −w∗
i) +

t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

P l
tw

∗
k +

m̄t−1∑
j=1

P
(t−1)mt−1+j
t w∗

tj

+

Mmax+s∑
l=Mmax+1

P l
tw

∗
t − Ptw

∗
i ∥2

=E∥(I − Pt)(wt−1 −w∗
i) +

t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

P l
t (w

∗
k −w∗

i) +

m̄t−1∑
j=1

P
(t−1)mt−1+j
t (w∗

tj −w∗
i)

+

Mmax+s∑
l=Mmax+1

P l
t (w

∗
t −w∗

i)∥2

=E∥(I − Pt)(wt−1 −w∗
i)∥2︸ ︷︷ ︸

(a)

+ E∥
t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

P l
t (w

∗
k −w∗

i)+

m̄t−1∑
j=1

P
(t−1)mt−1+j
t (w∗

tj −w∗
i)+

Mmax+s∑
l=Mmax+1

P l
t (w

∗
t −w∗

i)∥2︸ ︷︷ ︸
(b)

+ 2

t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

E⟨(I − Pt)(wt−1 −w∗
i),P

l
t (w

∗
k −w∗

i)⟩︸ ︷︷ ︸
(c)

+ 2

m̄t−1∑
j=1

E⟨(I − Pt)(wt−1 −w∗
i),P

(t−1)mt−1+j
t (w∗

tj −w∗
i)⟩︸ ︷︷ ︸

(d)

+ 2

Mmax+s∑
l=Mmax+1

E⟨(I − Pt)(wt−1 −w∗
i),P

l
t (w

∗
t −w∗

i)⟩︸ ︷︷ ︸
(e)

.

(30)

(1) For the term (a), we have

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E∥(I − Pt)(wt−1 −w∗
i)∥2 = E∥(wt−1 −w∗

i)∥2 − E∥Pt(wt−1 −w∗
i)∥2

= E∥(wt−1 −w∗
i)∥2 −

Mmax + s

d
E∥(wt−1 −w∗

i)∥2

= (1− Mmax + s

d
)E∥(wt−1 −w∗

i)∥2,

(31)

where the first equation is due to properties of orthogonal projection and the second equation is due
to the rotational symmetry of the standard normal distribution, which is also described in Lin et al.
(2023).

(2) For the term (b), based on Lemma 5 and Lemma 7, we have

E∥
t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

P l
t (w

∗
k −w∗

i)+

m̄t−1∑
j=1

P
(t−1)mt−1+j
t (w∗

tj −w∗
i) +

Mmax+s∑
l=Mmax+1

P l
t (w

∗
t −w∗

i)∥2

①
=

t−1∑
k=1

kmt−1∑
l=(k−1)mt−1+1

E∥P l
t (w

∗
k −w∗

i)∥2 +
m̄t−1∑
j=1

E∥P (t−1)mt−1+j
t (w∗

tj −w∗
i)∥2

+

Mmax+s∑
l=Mmax+1

E∥P l
t (w

∗
t −w∗

i)∥2

②
=

t−1∑
k=1

mt−1

d
∥w∗

k −w∗
i ∥2 +

m̄t−1∑
j=1

1

d
E∥w∗

tj −w∗
i ∥2 +

s

d
∥w∗

t −w∗
i ∥2

③
=
mt−1

d

t−1∑
k=1

∥w∗
k −w∗

i ∥2 +
m̄t−1

(t− 1)d

t−1∑
n=1

∥w∗
n −w∗

i ∥2 +
s

d
∥w∗

t −w∗
i ∥2

=

(
(t− 1)mt−1 + m̄t−1

(t− 1)d

) t−1∑
k=1

∥w∗
k −w∗

i ∥2 +
s

d
∥w∗

t −w∗
i ∥2

=
Mmax

(t− 1)d

t−1∑
k=1

∥w∗
k −w∗

i ∥2 +
s

d
∥w∗

t −w∗
i ∥2,

(32)
where the equation ① is based on Lemma 5, equation ② is based on Lemma 7, and equation ③ is
derived by

E∥w∗
tj −w∗

i ∥2 =
1

t− 1

t−1∑
n=1

∥w∗
n −w∗

i ∥2, (33)

which holds for any j ∈ [m̄t−1].

(3) For the terms (c), (d), and (e), for any k ∈ [t] and l ∈ [Mmax + s], we have

E⟨(I − Pt)(wt−1 −w∗
i),P

l
t (w

∗
k −w∗

i)⟩
=E[(wt−1 −w∗

i)
⊤(I − X̂t(X̂

⊤
t X̂t)

−1X̂⊤
t)X̂t(X̂

⊤
t X̂t)

−1El
Mt+sX̂

⊤
t (w∗

k −w∗
i)].

(34)

Through calculation, we obtain that

(I − X̂t(X̂
⊤
t X̂t)

−1X̂⊤
t)X̂t(X̂

⊤
t X̂t)

−1El
Mt+sX̂

⊤
t = 0, (35)

which leads to
(c) = (d) = (e) = 0. (36)

Combining terms (a), (b), (c), (d), and (e), we obtain that

E∥wt −w∗
i ∥2

=

(
1− Mmax + s

d

)
E∥(wt−1 −w∗

i)∥2 +
Mmax

(t− 1)d

t−1∑
k=1

∥w∗
k −w∗

i ∥2 +
s

d
∥w∗

t −w∗
i ∥2

(37)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 FULL REHEARSAL MEMORY BUFFER

We will introduce Lemma 9, which plays a crucial role in the subsequent proof of the Theorem 2.
Lemma 9. Suppose d > s+Mmax + 2. For any t ∈ {2, . . . , T} and i ∈ [t]:

E∥wt −w∗
i ∥2 =

(
1− ts

d

)
E∥wt−1 −w∗

i ∥2 +
s

d

t∑
j=1

∥w∗
j −w∗

i ∥2. (38)

Proof. We can rewrite Equation (5) as follows:

wt = wt−1 + X̂t(X̂
⊤
t X̂t)

−1

(t∑
k=1

ks∑
l=(k−1)s+1

El
tsX̂

⊤
t w∗

k − X̂⊤
t wt−1

)

= (I − Pt)wt−1 +

t∑
k=1

ks∑
l=(k−1)s+1

P l
tw

∗
k.

(39)

By Equation (39), we have

E∥wt −w∗
i ∥2

=E∥(I − Pt)(wt−1 −w∗
i) +

t∑
k=1

ks∑
l=(k−1)s+1

P l
tw

∗
k − Ptw

∗
i ∥2

=E∥(I − Pt)(wt−1 −w∗
i) +

t∑
k=1

ks∑
l=(k−1)s+1

P l
t (w

∗
k −w∗

i)∥2

=E∥(I − Pt)(wt−1 −w∗
i)∥2︸ ︷︷ ︸

(a)

+E∥
t∑

k=1

ks∑
l=(k−1)s+1

P l
t (w

∗
k −w∗

i)∥2︸ ︷︷ ︸
(b)

+ 2

t∑
k=1

ks∑
l=(k−1)s+1

E⟨(I − Pt)(wt−1 −w∗
i),P

l
t (w

∗
k −w∗

i)⟩︸ ︷︷ ︸
(c)

.

(1) For the term (a), we have

E∥(I − Pt)(wt−1 −w∗
i)∥2 = E∥wt−1 −w∗

i ∥2 − E∥Pt(wt−1 −w∗
i)∥2

=

(
1− ts

d

)
E∥wt−1 −w∗

i ∥2.
(40)

(2) For the term (b), based on Lemma 5 and Lemma 7, we have

E∥
t∑

k=1

ks∑
l=(k−1)s+1

P l
t (w

∗
k −w∗

i)∥2 =

t∑
k=1

ks∑
l=(k−1)s+1

E∥P l
t (w

∗
k −w∗

i)∥2

=

t∑
k=1

s

d
∥w∗

k −w∗
i ∥2.

(41)

(3) For the term (c) , by applying Equation (35), we have
(c) = 0 (42)

Combining terms (a), (b), and (c), we obtain that

E∥wt −w∗
i ∥2 =

(
1− ts

d

)
E∥wt−1 −w∗

i ∥2 +
t∑

k=1

s

d
∥w∗

k −w∗
i ∥2. (43)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B RESERVOIR SAMPLING-BASED MEMORY BUFFER

B.1 PROOF OF THEOREM 1

By recursively applying Equation (28), we obtain that

E∥wt −w∗
i ∥2

=

(
1− Mmax + s

d

)t−1

E∥w1 −w∗
i ∥2

+

t∑
k=2

(
1− Mmax + s

d

)t−k[
Mmax

(k − 1)d

k−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

k −w∗
i ∥2

]
.

(44)

When t = 1, we train without a memory buffer, so we can’t directly apply Equation (28). However,
we can directly apply the results from Lin et al. (2023). We make the same assumption that w0 = 0,
and we obtain that

E∥wt −w∗
i ∥2

=

(
1− Mmax + s

d

)t−1[(
1− s

d

)
∥w∗

i ∥2 +
s

d
∥w∗

1 −w∗
i ∥
]

+

t∑
k=2

(
1− Mmax + s

d

)t−k[
Mmax

(k − 1)d

k−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

k −w∗
i ∥2

]
.

(45)

When t = i, we can similarly derive that

E∥wi −w∗
i ∥2

=

(
1− Mmax + s

d

)i−1[(
1− s

d

)
∥w∗

i ∥2 +
s

d
∥w∗

1 −w∗
i ∥
]

+

i∑
k=2

(
1− Mmax + s

d

)i−k[
Mmax

(k − 1)d

k−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

k −w∗
i ∥2

]
.

(46)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Based on Equation (44) and Equation (46), we calculate the expected forgetting as follows:

E[FT]

=
1

T − 1

T−1∑
i=1

E[∥wT −w∗
i ∥2 − ∥wi −w∗

i ∥2]

=
1

T − 1

T−1∑
i=1

{[(
1− Mmax + s

d

)T−1

−
(
1− Mmax + s

d

)i−1][(
1− s

d

)
∥w∗

i ∥2 +
s

d
∥w∗

1 −w∗
i ∥
]

+

T∑
k=2

(
1− Mmax + s

d

)T−k[
Mmax

(k − 1)d

k−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

k −w∗
i ∥2

]

−
i∑

k=2

(
1− Mmax + s

d

)i−k[
Mmax

(k − 1)d

k−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

k −w∗
i ∥2

]}

=
1

T − 1

T−1∑
i=1

{[(
1− Mmax + s

d

)T−1

−
(
1− Mmax + s

d

)i−1](
1− s

d

)
∥w∗

i ∥2 +
s

d
∥w∗

T −w∗
i ∥2

+

T−1∑
j=1

[T∑
k=j+1

(
1− Mmax + s

d

)T−k
Mmax

(k − 1)d
+

(
1− Mmax + s

d

)T−j
s

d

]
∥w∗

j −w∗
i ∥2

−
i−1∑
j=1

[i∑
k=j+1

(
1− Mmax + s

d

)i−k
Mmax

(k − 1)d
+

(
1− Mmax + s

d

)i−j
s

d

]
∥w∗

j −w∗
i ∥2

}

=
1

T − 1

{T−1∑
i=1

{[(
1− Mmax + s

d

)T−1

−
(
1− Mmax + s

d

)i−1](
1− s

d

)
∥w∗

i ∥2+
s

d
∥w∗

T −w∗
i ∥2

}

+

T−1∑
i<j

{(T∑
k=j+1

+

T∑
k=i+1

)(
1− Mmax + s

d

)T−k
Mmax

(k − 1)d
−

j∑
k=i+1

(
1− Mmax + s

d

)j−k
Mmax

(k − 1)d

+

[(
1− Mmax + s

d

)T−j

+

(
1− Mmax + s

d

)T−i

−
(
1− Mmax + s

d

)j−i]
s

d

}
∥w∗

j −w∗
i ∥2

}

Based on Equation (44), we calculate the expected overall generalization error as follows:

E[GT]

=
1

T

T∑
i=1

E[∥wT −w∗
i ∥2]

=
1

T

T∑
i=1

(
1− Mmax + s

d

)T−1[(
1− s

d

)
∥w∗

i ∥2 +
s

d
∥w∗

1 −w∗
i ∥
]

+
1

T

T∑
i=1

T∑
k=2

(
1− Mmax + s

d

)T−k[
Mmax

(k − 1)d

k−1∑
j=1

∥w∗
j −w∗

i ∥2 +
s

d
∥w∗

k −w∗
i ∥2

]

=
1

T

T∑
i=1

{[(
1− Mmax + s

d

)T−1(
1− s

d

)
∥w∗

i ∥2 +
s

d
∥w∗

T −w∗
i ∥
]

+

T−1∑
j=1

[T∑
k=j+1

(
1− Mmax + s

d

)T−k
Mmax

(k − 1)d
+

(
1− Mmax + s

d

)T−j
s

d

]
∥w∗

j −w∗
i ∥2

}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.2 ADDITIONAL RESULTS OF THEOREM 1

Lemma 10. For any i ∈ [T], we have{
uT − ui > rT − ri s

d > 1
i+1

uT − ui < rT − ri M+s
d < 1

T

(47)

Proof. We first consider the case when i = T − 1:

uT − uT−1 − rT − rT−1

=uT−1Mmax+ s

d
+ rT−1 s

d

=
1

d
[srT−1 − (M + s)uT−1]

(48)

To determine the sign conditions for Equation (48), we introduce the function f(x) := x(1− x
d)

T−1.
We consider the derivative of f(x):

f
′
(x) = (1− x

d
)T−2(1− Tx

d
) (49)

Therefore, when x > d
T , f

′
(x) < 0; when x < d

T , f
′
(x) > 0. Furthermore, we have{

uT − uT−1 > rT − rT−1 s > d
T

uT − uT−1 < rT − rT−1 M + s < d
T

(50)

By reusing Equation (48), we obtain that{
ui+1 − ui > ri+1 − ri s > d

i+1

ui+1 − ui < ri+1 − ri M + s < d
i+1

(51)

Therefore, by reusing Equation 48 T − i times and summing the expressions, we have{
uT − ui > rT − ri s

d > 1
i+1

uT − ui < rT − ri M+s
d < 1

T

(52)

C FULL REHEARSAL MEMORY BUFFER

C.1 PROOF OF THEOREM 2

By recursively applying Equation (38), we obtain that

E∥wt −w∗
i ∥2

=

t∏
l=2

(
1− ls

d

)
∥w∗

1 −w∗
i ∥2 +

t∑
k=2

t∏
l=k+1

(
1− ls

d

)
s

d

k∑
j=1

∥w∗
j −w∗

i ∥2

=

t∏
l=1

(
1− ls

d

)
∥w∗

i ∥2 +
t∑

j=1

t∑
k=j

t∏
l=k+1

(
1− ls

d

)
s

d
∥w∗

j −w∗
i ∥2,

(53)

where we define the empty product as
∏n

i=m f(i) = 1 when m > n.

When t = i, we can similarly derive that

E∥wi −w∗
i ∥2 =

i∏
l=1

(
1− ls

d

)
∥w∗

i ∥2 +
i∑

j=1

i∑
k=j

i∏
l=k+1

(
1− ls

d

)
s

d
∥w∗

j −w∗
i ∥2. (54)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Based on Equation (53) and Equation (54), we calculate the expected forgetting as follows:

E[FT] =
1

T − 1

T−1∑
i=1

E[∥wT −w∗
i ∥2 − ∥wi −w∗

i ∥2]

=
1

T − 1

T−1∑
i=1

{[T∏
l=1

(
1− ls

d

)
−

i∏
l=1

(
1− ls

d

)]
∥w∗

i ∥2

+

T∑
j=1

T∑
k=j

T∏
l=k+1

(
1− ls

d

)
s

d
∥w∗

j −w∗
i ∥2 −

i∑
j=1

i∑
k=j

i∏
l=k+1

(
1− ls

d

)
s

d
∥w∗

j −w∗
i ∥2

}

=
1

T − 1

{ T−1∑
i=1

[T∏
l=1

(
1− ls

d

)
−

i∏
l=1

(
1− ls

d

)]
∥w∗

i ∥2

+
s

d

T∑
j>i

[(T∑
k=j

+

T∑
k=i

) T∏
l=k+1

(
1− ls

d

)
−

j∑
k=i

j∏
l=k+1

(
1− ls

d

)]
∥w∗

j −w∗
i ∥2

}
.

Based on Equation (53), we calculate the expected overall generalization error as follows:

E[GT] =
1

T

T∑
i=1

E[∥wT −w∗
i ∥2]

=
1

T

T∑
i=1

{ t∏
l=1

(
1− ls

d

)
∥w∗

i ∥2 +
T∑

j=1

T∑
k=j

T∏
l=k+1

(
1− ls

d

)
s

d
∥w∗

j −w∗
i ∥2

}

C.2 ADDITIONAL RESULTS OF THEOREM 2

Lemma 11. For any i ∈ [T], when s
d < 1

T 2 , we have

T∏
l=1

f(l)−
i∏

l=1

f(l) < f(1)T − f(1)i (55)

Proof. We first consider the case when i = T − 1:

T∏
l=1

f(l)−
T−1∏
l=1

f(l)− [f(1)T − f(1)T−1]

=

T−1∏
l=1

f(l)[f(T)− 1]− f(1)T−1[f(1)− 1]

=
s

d
f(1)T−1 − Ts

d

T−1∏
l=1

f(l)

=
s

d
[f(1)T−1 − T

T−1∏
l=1

f(l)]

=
s

d
[f(1)T−1 −

T−1∏
l=1

l + 1

l
f(l)].

(56)

For any l ∈ [T], if s
d < 1

l2 , we have l+1
l f(l) > f(1).

Therefore, if s
d < 1

T 2 , we have that

T∏
l=1

f(l)−
T−1∏
l=1

f(l) < f(1)T − f(1)T−1 (57)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Based on Eq.(56), we have that

T−1∏
l=1

f(l)−
T−2∏
l=1

f(l) < f(1)T−1 − f(1)T−2,

. . .

i+1∏
l=1

f(l)−
i∏

l=1

f(l) < f(1)i+1 − f(1)i.

(58)

By summing the above expressions, we obtain that

T∏
l=1

f(l)−
i∏

l=1

f(l) < f(1)T − f(1)i. (59)

22

	INTRODUCTION
	Related Work
	PRELIMINARY
	Problem setup
	Memory Buffer
	Reservoir sampling-based memory buffer
	Full Rehearsal memory buffer

	Training setting

	Theoretical results on forgetting and generalization
	Reservoir Sampling-based Memory Buffer
	FULL REHEARSAL MEMORY BUFFER

	conclusion
	Useful Lemmas
	Properties of the Projector
	RESERVOIR SAMPLING-BASED MEMORY BUFFER
	FULL REHEARSAL MEMORY BUFFER

	RESERVOIR SAMPLING-BASED MEMORY BUFFER
	proof of Theorem 1
	Additional Results of Theorem 1

	FULL REHEARSAL MEMORY BUFFER
	PROOF OF THEOREM 2
	Additional Results of Theorem 2

