Orthogonal Polynomials Quadrature Algorithm: a functional analytic approach to inverse problems in deep learning

Anonymous Author(s) Affiliation Address email

Abstract

 We present the new Orthogonal Polynomials–Quadrature Algorithm (OPQA), a parallelizable algorithm that solves two common inverse problems in deep learning from a functional analytic approach. First, it finds a smooth probability density function as an estimate of the posterior, which can act as a proxy for fast inference; second, it estimates the evidence, which is the likelihood that a particular set of observations can be obtained. Everything can be parallelized and completed in one ⁷ pass.

 A core component of OPQA is a functional transform of the square root of the joint distribution into a special functional space of our construct. Through this transform, the evidence is equated with the L^2 norm of the transformed function, squared. Hence, the evidence can be estimated by the sum of squares of the transform coefficients.

 To expedite the computation of the transform coefficients, OPQA proposes a new computational scheme leveraging Gauss–Hermite quadrature in higher dimen- sions. Not only does it avoid the potential high variance problem associated with random sampling methods, it also enables one to speed up the computation by parallelization, and significantly reduces the complexity by a vector decomposition.

18 1 Introduction

19 Let P be a probability density function, $X = (x_i)_{i=1}^D$ be a set of observations and $\theta = (\theta_i)_{i=1}^N$ be the ²⁰ set of (unknown) latent variables. We are interested in the posterior

$$
P(\theta|X) := \frac{P(\theta, X)}{\int_{\theta} P(\theta, X)}
$$
\n(1)

²¹ and the evidence

$$
P(X) = \int_{\theta} P(\theta, X). \tag{2}
$$

 In most cases, there are limitations that make it impractical to compute the posterior or the evidence directly (see Appendix [3.3\)](#page-5-0). For posterior inference, there are two major approaches. The first approach is random sampling, including Markov chain Monte Carlo methods such as the Metropolis– Hastings algorithm [\(Metropolis et al., 1953;](#page-7-0) [Hastings, 1970\)](#page-6-0) and the Hamilton Monte Carlo algorithm [\(Hoffman & Gelman, 2014\)](#page-6-1). The second approach is the proxy model approach, including variational [i](#page-6-2)nference which was first developed about three decades ago [\(Peterson & Anderson, 1987;](#page-7-1) [Hinton &](#page-6-2) [Camp, 1993;](#page-6-2) [Waterhouse et al., 1996;](#page-7-2) [Jordan et al., 1999\)](#page-6-3). The idea behind variational inference is to find the optimal proxy of the posterior by means of optimization.

Submitted to DLDE-III Workshop (NeurIPS 2023). Do not distribute.

³⁰ In this paper, we introduce a new approximation approach, the Orthogonal Polynomials–

³¹ Quadrature Algorithm (OPQA) (see *Problem Statement* in Section [2.1\)](#page-1-0). Polynomials have been a ³² staple tool in the world of mathematical physics [\(Simon, 1971;](#page-7-3) [Vinck et al., 2012\)](#page-7-4), approximation

³³ theory [\(Deift, 2000\)](#page-6-4) and statistics [\(Walter, 1977;](#page-7-5) [Diaconis et al., 2008\)](#page-6-5). However, applications of

³⁴ orthogonal polynomials to machine learning are scarce to the best of our knowledge.

 It is also important to note that even though both OPQA and Polynomial Chaos Expansion (PCE) involve the use of polynomials, they are completely different in nature. The most crucial difference is 37 that the orthogonality of the basis of OPQA is with respect to the measure $d\nu_{1:N}$ of our construct in equation [\(5\)](#page-1-1), while for PCE the orthogonality is with respect to a known prior. For most of the problems we study, the prior is not known at all.

⁴⁰ 2 OPQA: Problem Statement, Algorithm and Computation Scheme

⁴¹ 2.1 Problem Statement

⁴² OPQA accomplishes two goals: first, it expresses the evidence as a series

$$
P(X) = \sum_{\tau} |a_{\tau}|^2,\tag{3}
$$

43 where a_{τ} are the coefficients of $P(\theta, X)$ of a special functional transform of our choice (see eq. ⁴⁴ [\(11\)](#page-2-0)). This expression allows one to attain the second goal, which is to get a smooth estimate of the

45 posterior, $P(\theta|X)$ by a probability density function $f_T(\theta)$, that is,

$$
P(\theta|X) \approx f_T(\theta) := p_T(\theta)^2 \prod_{j=1}^N e^{-\theta_j^2} \ge 0,
$$
\n(4)

46 where $p_T(\theta)$ is a multivariate polynomial and $\int_{\mathbb{R}^N} f_T(\theta) d\theta = 1$.

⁴⁷ 2.2 Outline of the Algorithm

48 We consider the functional space $L^2(d\nu_{1:N})$ associated with the following measure on \mathbb{R}^N

$$
d\nu_{1:N}(\theta) := \prod_{j=1}^{N} e^{-\theta_j^2} d\theta_j,
$$
\n(5)

- 49 where $\theta = (\theta_1, \theta_2, \dots, \theta_N) \in \mathbb{R}^N$. Let $h_i(x)_{i=0}^{\infty}$ be the normalized one-dimensional Hermite
- 50 polynomials that are orthogonal with respect to the measure $d\nu = e^{-\theta^2} d\theta$ on R, that is,

$$
\int_{\mathbb{R}} h_i(x) h_j(x) e^{-\theta^2} dx = \delta_{ij}
$$
\n(6)

⁵¹ Such orthogonality implies that the tensor products of Hermite polynomials of the form

$$
\phi_{\tau}(\theta) := h_{i_1}(\theta_1) h_{i_2}(\theta_2) \cdots h_{i_N}(\theta_N)
$$
\n(7)

- 52 form an orthogonal polynomial basis that is orthogonal with respect to $d\nu_{1:N}$. The N-tuple $\tau =$ 53 (i_1, i_2, \ldots, i_N) is known as a **multi-index**.
- 54 The measure $d\nu_{1:N}$ is special because it fulfills the finite moment criterion [\(22\)](#page-4-0). Hence, by the Riesz
- 55 Theorem (Theorem [3.1\)](#page-4-1), the family of polynomials is dense in $L^2(d\nu_{1:N})$. In particular, observe that
- 56 the square root of the following function is in $L^2(d\nu_{1:N})$,

$$
\tilde{P}(\theta, X) := P(\theta, X) \prod_{j=1}^{N} e^{\theta_j^2}
$$
\n(8)

 57 and its L^2 norm squared is the evidence:

$$
\|\tilde{P}^{1/2}\|_{L^2(d\nu_{1:N})}^2 = \left(\int_{\mathbb{R}^N} \left|\tilde{P}(\theta, X)^{1/2}\right|^2 d\nu_{1:N}\right) = \left(\int_{\mathbb{R}^N} |P(\theta, X)| d\theta_{1:N}\right) = P(X),\tag{9}
$$

58 which is finite. Next, we transform $\tilde{P}(\theta, X)^{1/2}$ into an infinite series by projecting it onto the 59 polynomial basis $(\phi_{\tau})_{\tau}$. The transform coefficients are given by

$$
a_{\tau} = \left\langle \tilde{P}(\theta, X)^{1/2}, \phi_{\tau} \right\rangle_{d\nu_{1:N}}, \qquad (10)
$$

⁶⁰ which is equivalent to

$$
a_{\tau} := \int_{\mathbb{R}^N} P(\theta, X)^{1/2} \phi_{\tau}(\theta) \left(\prod_{j=1}^N e^{-\theta_j^2/2} \right) d\theta_{1:N}.
$$
 (11)

⁶¹ Recall that this polynomial basis is dense due to Riesz' Theorem. Suce density allows one to invoke ϵ the Parseval Identity, which equates the L^2 -norm with the sum of its transform coefficieints, that is,

$$
\|\tilde{P}^{1/2}\|_{L^2(d\nu_{1:N})}^2 = \sum_{\tau} a_{\tau}^2.
$$
 (12)

⁶³ Combining this with [\(9\)](#page-1-2), we obtain one of our two results,

$$
P(X) = \sum_{\tau} a_{\tau}^2.
$$
 (13)

64 The fact that the coefficients $(a_{\tau})_{\tau}$ are absolutely convergent implies that the summation can be ⁶⁵ executed in any order. Furthermore,

$$
\tilde{P}(\theta, X)^{1/2} \approx \sum_{\tau} a_{\tau} \phi_{\tau}(\theta), \tag{14}
$$

⁶⁶ which id equivalent to

$$
P(\theta, X) \approx \left(\sum_{\tau} a_{\tau} \phi_{\tau}(\theta)\right)^2 \prod_{j=1}^N e^{-\theta_j^2}
$$
 (15)

67 Combining with $P(\theta|X) = P(\theta, X)/P(X)$ and $P(X) > 0$, we obtain

$$
P(\theta|X) \approx p_T(\theta)^2 \prod_{j=1}^N e^{-\theta_j^2},\tag{16}
$$

⁶⁸ where

$$
p_T(\theta) := \left(\sum_{\tau \in T} |a_\tau|^2\right)^{-1/2} \left(\sum_{\tau \in T} a_\tau \phi_\tau(\theta)\right). \tag{17}
$$

⁶⁹ Observe that the right hand side of [16](#page-2-1) is a probability density function because

$$
\int p_T(\theta)^2 \left(\prod_{j=1}^N e^{-\theta_j^2}\right) d\theta = \left(\sum_{\tau \in T} |a_\tau|^2\right)^{-1} \sum_{\tau, \sigma \in T} \left(\int a_\tau a_\sigma \phi_\tau(\theta) \phi_\sigma(\theta) d\mu_{1:N}\right) = 1. \tag{18}
$$

70 The last equality follows from the fact that ϕ_τ are orthogonal polynomials with respect to $d\nu_{1:N}$, so τ_1 the integral (inside the parenthesis) is zero for $\tau \neq \sigma$, and a_τ^2 otherwise.

⁷² 2.3 Outline of the Computation Scheme

73 Due to the unique nature of the measure $(\prod_{j=1}^{N} e^{-\theta_j^2/2}) d\theta_{1:N}$. in [\(11\)](#page-2-0), we propose the use of 74 Gauss–Hermite quadrature to estimate a_{τ} . Not only does it expedite the computation by allowing ⁷⁵ parallelization, it reduces the high variance problems caused by random sampling methods.

⁷⁶ The readers should be reminded that the following computational scheme could be further optimized, ⁷⁷ and has no bearing on the mathematical correctness of the algorithm.

⁷⁸ First, we choose a quadrature order Γ. Quadrature of order Γ works well to approximate function

 79 which can be well estimated by a polynomial of degree $2\Gamma - 1$. For that reason, usually a single-digit ⁸⁰ Γ will suffice.

Algorithm 1 The Orthogonal Polynomials–Quadrature Algorithm (OPQA)

Input Quadrature order Γ. Joint distribution $P(\theta, X)$. **Output** Coefficients $(a_{\tau})_{\tau \in T}$ which can be used to compute evidence $P(X)$ and a smooth probability density function $f_T(\theta)$ that estimates $P(\theta|X)$. while $\Sigma = \sum_{|\tau| < d} |a_{\tau}|^2$ does not converge do Increase the degree d by 1. Compute $h_d(x)$ for $x = \tilde{r}_1, \ldots, \tilde{r}_\Gamma$. for multi-index τ of degree d do Compute $\Phi_{\tau} = (\phi_{\tau}(\tilde{r}^{(j)}))_{(j) \in I}$ Compute $a_{\tau} = \vec{\Pi} \cdot \Phi_{\tau}$ Add a_τ^2 to Σ . end for end while

8[1](#page-3-0) From the one-dimensional Gauss quadrature nodes and weights $(r_i, w_i)_{i=1}^{\Gamma-1}$, we form our multivariate s2 nodes in \mathbb{R}^N , $(\tilde{r}^{(j)})_{(j)}$; and weights, $(\tilde{w}^{(j)})_{(j)}$ for each grid-index $(j) \in I$. The transform coefficients

⁸³ can then be estimated by

$$
a_{\tau} \approx \sum_{(j)\in I} \tilde{w}_{(j)} P(\tilde{r}^{(j)}, X)^{1/2} \phi_{\tau}(\tilde{r}^{(j)}).
$$
 (19)

The right hand side of [\(19\)](#page-3-1) can be expressed by vectors \vec{W} , \vec{P} and $\vec{\Phi}_{\tau}$ as^{[2](#page-3-2)} 84

$$
a_{\tau} \approx \vec{W} \odot \vec{P} \cdot \vec{\Phi}_{\tau}.
$$
 (20)

⁸⁵ This decomposition into three vectors will bring many computational advantages that help tackle ⁸⁶ the problem of dimensionality, with the major advantages being: (1) most of the values can be σ obtained from simple arithmetic, and (2) both \vec{W} and $\vec{\Phi}_{\tau}$ depend on values of size $O(\Gamma \cdot d)$ where $88 \, d$ is the degree of polynomial estimation; and (3) the expression [\(20\)](#page-3-3) allows parallelization, which ⁸⁹ substantially increases the speed of computation.

90 2.4 Our Contributions

91 A new functional analytic perspective. Instead of finding a proxy through optimization, we 92 identified a special functional transform onto $L^2(d\nu_{1:N})$ (see equation [\(8\)](#page-1-3)) such that the evidence 93 $P(X)$ is equal to the sums of squares of the transform coefficients.

94 Leveraging the density of polynomials and Parseval Identity. The measure $\nu_{1:N}$ is special because ⁹⁵ it satisfies the moment criteria of the Riesz Theorem, which ensures the density of polynomials in 96 $L^2(d\nu_{1:N})$, which ensure that [\(13\)](#page-2-2) is an equality.

⁹⁷ A flexible and scalable approach. OPQA does not require any assumptions about the prior or the in-⁹⁸ dependence of the latent variables. Furthermore, OPQA can produce arbitrarily good approximations ⁹⁹ as we increase the degree of polynomial approximation and order of quadrature Γ.

¹⁰⁰ An accurate, parallelizable and efficient computation scheme. By using quadrature, it counters 101 the variance problems from random sampling methods; the discretization of a_{τ} in [\(20\)](#page-3-3) allows for 102 efficient computation. In particular, both \vec{W} and $\vec{\Phi}_{\tau}$ are independent of the distribution in question P, so both \vec{W} and $\vec{\Phi}_{\tau}$ are essentially universal constants that apply to all OPQA applications. Besides, 104 \vec{W} only depends on Γ quadrature weights; and $\vec{\Phi}_{\tau}$ on a set of $\Gamma \cdot |\tau|$ values, namely,

$$
V_{|\tau|} := \{ h_d(\tilde{r}_i) : 0 \le d \le |\tau|; 1 \le i \le \Gamma \}. \tag{21}
$$

These constants are available in Numpy libraries and numerical analysis handbooks such as Abramowitz $\&$ [Stegun](#page-6-6) [\(1972\)](#page-6-6).

 2^2 The symbols ⊙ and \cdot denote the pointwise multiplication and dot product of two vectors respectively.

¹⁰⁵ 3 Appendix

¹⁰⁶ 3.1 Appendix: Supporting Theorems

¹⁰⁷ In Section [2.2,](#page-1-4) it was shown that OPQA relies on the Riesz Theorem, which guarantees the density 108 of polynomials in $L^2(d\nu_{1:N})$ if the measure $d\nu_{1:N}$ satisfies the moment condition [\(22\)](#page-4-0), which is a ¹⁰⁹ classic result in approximation theory.

110 **Theorem 3.1** (Density of polynomials in L^2). [\(Riesz, 1922\)](#page-7-6). Let v be a measure on \mathbb{R}^N satisfying

$$
\int_{\mathbb{R}^N} e^{c|\theta|} d\nu < \infty \tag{22}
$$

for some constant $c > 0$, where $|\theta| = \sum_{j=1}^{N} |\theta_j|$; then the family of polynomials is dense in $L^2(\nu)$. *In other words, given any* $f \in L^2(\nu)$, there is a sequence of polynomials $f_n(\theta)$ such that

$$
\lim_{n \to \infty} \int_{\mathbb{R}^N} |f(\theta) - f_n(\theta)|^2 d\nu = 0.
$$
 (23)

- ¹¹³ Related moment problems are discussed in depth by [Akhiezer](#page-6-7) [\(1965\)](#page-6-7) (Theorem 2.3.3 and Corollary ¹¹⁴ 2.3.3). A nice short proof of the result was presented in [Schmuland](#page-7-7) [\(1992\)](#page-7-7).
- 115 An important implication of criterion [\(22\)](#page-4-0) is that all polynomials are in $L^p(\nu)$, for any $p \ge 1$. To see 116 that, it suffices to show that for any $c > 0$ and integer $k \ge 0$

$$
\lim_{x \to \infty} \frac{x^k}{e^{cx}} < \infty \tag{24}
$$

¹¹⁷ via the repeated application of the L'Hôpital rule.

¹¹⁸ 3.2 Appendix: Hermite Polynomials and Density of Polynomials

119 Hermite polynomials^{[3](#page-4-2)} are polynomials on $\mathbb R$ that are orthogonal with respect to the measure

$$
d\nu := e^{-x^2} dx \text{ on } \mathbb{R}.
$$
 (25)

¹²⁰ Hermite polynomials satisfy the following orthogonality relation

$$
\int_{\mathbb{R}} H_m(x)H_n(x)d\nu(x) = \sqrt{\pi}2^n n!\delta_{nm}.
$$
\n(26)

121 Normalized Hermite polynomials are denoted as $h_n(x) := H_n(x)/||H_n||$. The Hermite polynomials ¹²² used in this paper are

$$
H_0(x) = 1,
$$
 $h_0(x) = \pi^{-1/4}$
\n $H_1(x) = 2x,$ $h_1(x) = \sqrt{2}\pi^{-1/4}x$

¹²³ and the higher order polynomials can be obtained from the following recurrence relation

$$
H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x).
$$
\n(27)

124 The measure ν is the building block of the measure $\nu_{1:N}$ defined in equation [\(5\)](#page-1-1). A critical property 125 of ν is that it has finite moments, that is, there is a constant $c > 0$ such that

$$
\int_{\mathbb{R}} e^{c|\theta|} d\nu \le 2 \int e^{-(\theta - c/2)^2 + \frac{c^2}{4}} d\theta < \infty.
$$
 (28)

¹²⁶ Following a similar argument, one can prove that

$$
\int_{\mathbb{R}^N} e^{c|\theta|} d\nu_{1:N}(\theta) = \prod_{j=1}^N \int e^{c|\theta_j|} e^{-\theta_j^2} d\theta_j < \infty.
$$
\n(29)

- 127 Condition [\(29\)](#page-4-3) makes $\nu_{1:N}$ eligible for the Riesz Theorem (Theorem [3.1\)](#page-4-1), which implies the density
- 128 of polynomials in $L^2(\nu_{1:N})$. Without this density, the equality [\(13\)](#page-2-2) may not hold.
- ¹²⁹ Apart from Hermite polynomials, Chebyshev's polynomials and Jacobi polynomials are among the
- ¹³⁰ most commonly known families of orthogonal polynomials. For a comprehensive introduction to

¹³¹ orthogonal polynomials, the readers may refer to [Simon](#page-7-8) [\(2005\)](#page-7-8); [Koornwinder](#page-6-8) [\(2013\)](#page-6-8).

³The Hermite polynomials used in this paper are often known as the physicists' Hermite polynomials because they are orthogonal to e^{-x^2} instead of $e^{-x^2/2}$.

¹³² 3.3 Appendix: Example of a Gaussian Mixture Model with 3 Clusters

133 We ran this experiment: first, we sampled $N_0 = 3$ points, $\mu \sim N(0, 10)$ and obtained $\mu_1 = -18.61$, 134 $\mu_2 = 3.81$ and $\mu_3 = 8.84$. Then we generated $n = 1000$ samples by first randomly selecting as an integer i from [1, 2, 3], and then drawing $x \sim N(\mu_i, 1)$ $x \sim N(\mu_i, 1)$ $x \sim N(\mu_i, 1)$. Figure 1 presents a plot of the joint 136 distribution $p(x, \mu_1, \mu_2, \mu_3)$ of this particular experiment, alongside with a normalized histogram of 137 these 1000 samples.

Figure 1: Example of a Mixed Gaussian Model.

¹³⁸ In general, we are interested in the inverse problem of approximating the posterior

$$
P(\mu|x_{1:n}): \mathbb{R}^N \mapsto \mathbb{R}
$$
\n(30)

139 as a function of the latent variables $\mu \in \mathbb{R}^N$ given the observations $x_{1:n}$. Observe that the joint ¹⁴⁰ probability density function is given by

$$
P(\mu_{1:K_0}, x_{1:n}) = \prod_{k=1}^{K_0} p(\mu_k) \prod_{i=1}^n p(x_i | \mu_{1:K_0}).
$$
\n(31)

141 To obtain the posterior in [\(30\)](#page-5-2), one needs the normalizing weight $P(x_{1:n})$, which requires us to sum 142 [\(31\)](#page-5-3) in k and integrate in $\mu_{1:K_0}$. First, note that for any one sample x,

$$
P(x|\mu_{1:K_0}) = \sum_{k=1}^{K_0} p(x, z_k | \mu_{1:K_0}) = \sum_{k=1}^{K_0} p(\mu_k | \mu_{1:K_0}) p(x, \mu_k) = \frac{1}{K_0} \sum_{k=1}^{K_0} p(x, \mu_k).
$$
 (32)

143 Then we need to integrate [\(32\)](#page-5-4) against $d\mu_{1:K_0}$. That results in the following formula

$$
P(x_{1:n}) = \int_{\mu_{1:K_0}} \prod_{k=1}^{K_0} p(\mu_k) \prod_{i=1}^n \left(\sum_{k=1}^{K_0} \frac{1}{K_0} p(x_i, \mu_k) \right) d\mu_{1:K_0}.
$$
 (33)

¹⁴⁴ While it may be possible to compute [\(33\)](#page-5-5) directly, the computation is far from straightforward.

145 Furthermore, there are K_0^n terms, making the computations extremely expensive as n increases.

146 To illustrate the aforementioned point, we consider the simplest case of just one latent variable μ and ¹⁴⁷ one sample x. We chose this particular example because the evidence comes in closed form and it ¹⁴⁸ will allow us to compute the ground truth evidence.

¹⁴⁹ The evidence [\(33\)](#page-5-5) is given by

$$
P(x) = \int_{\mathbb{R}} p(\mu)p(x|\mu)d\mu = \frac{1}{2\pi\sigma_{\mu}\sigma_{x}} \int_{\mathbb{R}} e^{-\frac{\mu^{2}}{2\sigma_{\mu}^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma_{x}^{2}}} d\mu
$$
 (34)

¹⁵⁰ Expanding the function inside the integral, we get

$$
(34) = \frac{\exp\left(-\frac{x^2}{2\sigma_x^2}\right)}{2\pi\sigma_\mu\sigma_x} \int_{\mathbb{R}} \exp\left(-\left(\frac{1}{2\sigma_\mu^2} + \frac{1}{2\sigma_x^2}\right)\mu^2 + \frac{x}{\sigma_x^2}\mu\right) d\mu. \tag{35}
$$

¹⁵¹ We perform a change of variable

$$
t = \left(\sqrt{\frac{1}{2\sigma_{\mu}^2} + \frac{1}{2\sigma_x^2}}\right)\mu\tag{36}
$$

¹⁵² and let

$$
C_0 := \sqrt{\frac{1}{2\sigma_\mu^2} + \frac{1}{2\sigma_x^2}}.
$$
\n(37)

¹⁵³ Then

$$
(35) = \frac{\exp\left(-\frac{x^2}{2\sigma_x^2}\right)}{2C_0\pi\sigma_\mu\sigma_x} \int_{\mathbb{R}} \exp\left(-t^2 + \frac{x}{C_0\sigma_x^2}t\right) dt.
$$
 (38)

¹⁵⁴ Note that

$$
-t^2 + \frac{x}{C_0 \sigma_x^2} = -\left(t - \frac{x}{2C_0 \sigma_x^2}\right)^2 + \left(\frac{x}{2C_0 \sigma_x^2}\right)^2 \tag{39}
$$

and that $\int e^{-y^2} dy = \sqrt{\pi}$. Combining all of these, we arrive at the following expression for the ¹⁵⁶ evidence

$$
P(x) = \frac{\exp\left(-\frac{x^2}{2\sigma_x^2}\right) \exp\left(\left(\frac{x}{2C_0\sigma_x^2}\right)^2\right)}{2C_0\sqrt{\pi}\sigma_\mu\sigma_x}.
$$
\n(40)

157 Furthermore, we simplify the expressions involving C_0 in (defined in [\(37\)](#page-6-9)) and we get

$$
P(x) = \frac{\exp\left(-\frac{x^2}{2\sigma_x^2}\right)\exp\left(\frac{x^2\sigma_\mu^2}{2\sigma_x^2(\sigma_x^2 + \sigma_\mu^2)}\right)}{\sqrt{2\pi}\sqrt{\sigma_\mu^2 + \sigma_x^2}} = \frac{\exp\left(\frac{-x^2}{2(\sigma_x^2 + \sigma_\mu^2)}\right)}{\sqrt{2\pi}\sqrt{\sigma_\mu^2 + \sigma_x^2}}.
$$
(41)

¹⁵⁸ References

- ¹⁵⁹ Abramowitz, M. and Stegun, I. A. *Handbook of Mathematical Functions*. Dover, 1972.
- ¹⁶⁰ Akhiezer, N. I. *The Classical Moment Problem and Some Related Questions in Analysis*. Dover ¹⁶¹ Publications, 1965.
- ¹⁶² Deift, P. *Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach*, volume 3. ¹⁶³ Courant Lecture Notes. American Mathematical Society, 2000.
- ¹⁶⁴ Diaconis, P., Khare, K., and Saloff-Coste, L. Gibbs sampling, exponential families and orthogonal ¹⁶⁵ polynomials. *Statistical Science*, 23(2):151–178, 2008. doi: https://doi.org/10.1214/07-STS252.
- ¹⁶⁶ Hastings, W. K. Monte carlo sampling methods using markov chains and their applications. ¹⁶⁷ *Biometrika*, 57(1):97–103, 1970.
- ¹⁶⁸ Hinton, G. and Camp, D. V. Keeping the neural networks simple by minimizing the description ¹⁶⁹ length of the weights. *Computational Learning Theory*, pp. 5–13, 1993.
- ¹⁷⁰ Hoffman, M. D. and Gelman, A. The no-u-turn sampler: Adaptively setting path lengths in hamilto-¹⁷¹ nian monte carlo. *Journal of Machine Learning Research*, 15:1593–1623, 2014.
- ¹⁷² Jordan, M. I., Ghahramani, Z., Jaakkola, T., and Saul, L. Introduction to variational methods for ¹⁷³ graphical models. *Machine Learning*, 37:183–233, 1999.
- ¹⁷⁴ Koornwinder, T. Orthogonal polynomials, a short introduction. In *C. Schneider, J. Bluemlein J.*
- ¹⁷⁵ *(eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation*
- ¹⁷⁶ *(A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz,*
- ¹⁷⁷ *Austria)*, pp. 145–170. Springer, Vienna, 2013.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, A. H. Equation of state calculations by fast computing machines. *The Journal of Chemical Physics*, 21, 1953.
- Peterson, C. and Anderson, J. R. A mean field theory learning algorithm for neural networks. *Complex Systems*, 1(5):995–1019, 1987.
- Riesz, M. Sur le problème des moments et le théorème de parseval correspondant. *Acta Sci. Math. Szeged*, 1:209–225, 1922.
- Schmuland, M. Dirichlet forms with polynomial domain. *Math. Japonica*, 37(6):1015–1024, 1992.
- Simon, B. Distributions and their hermite expansions. *Journal of Mathematical Physics*, 12(1), 1971.
- Simon, B. *Orthogonal polynomials on the unit circle. Part 1 & Part 2*, volume 54. American Mathematical Society, 2005.
- Vinck, M., Battaglia, F. P., Balakirsky, V. B., Vinck, A. J. H., and Pennartz, C. M. A. Estimation of the entropy based on its polynomial representation. *Phys. Rev. E*, 85(5), 2012. doi: https: //doi.org/10.1103/PhysRevE.85.051139.
- Walter, G. G. Properties of hermite series estimation of probability density. *Annals of Statistics*, 5(6): 1258–1264, 1977.
- Waterhouse, S., MacKay, D., and Robinson, T. Bayesian methods for mixtures of experts. *Neural Information Processing Systems*, 1996.