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Abstract

We present the new Orthogonal Polynomials–Quadrature Algorithm (OPQA), a1

parallelizable algorithm that solves two common inverse problems in deep learning2

from a functional analytic approach. First, it finds a smooth probability density3

function as an estimate of the posterior, which can act as a proxy for fast inference;4

second, it estimates the evidence, which is the likelihood that a particular set of5

observations can be obtained. Everything can be parallelized and completed in one6

pass.7

A core component of OPQA is a functional transform of the square root of the joint8

distribution into a special functional space of our construct. Through this transform,9

the evidence is equated with the L2 norm of the transformed function, squared.10

Hence, the evidence can be estimated by the sum of squares of the transform11

coefficients.12

To expedite the computation of the transform coefficients, OPQA proposes a new13

computational scheme leveraging Gauss–Hermite quadrature in higher dimen-14

sions. Not only does it avoid the potential high variance problem associated with15

random sampling methods, it also enables one to speed up the computation by16

parallelization, and significantly reduces the complexity by a vector decomposition.17

1 Introduction18

Let P be a probability density function, X = (xi)
D
i=1 be a set of observations and θ = (θi)

N
i=1 be the19

set of (unknown) latent variables. We are interested in the posterior20

P (θ|X) :=
P (θ,X)∫
θ
P (θ,X)

(1)

and the evidence21

P (X) =

∫
θ

P (θ,X). (2)

In most cases, there are limitations that make it impractical to compute the posterior or the evidence22

directly (see Appendix 3.3). For posterior inference, there are two major approaches. The first23

approach is random sampling, including Markov chain Monte Carlo methods such as the Metropolis–24

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) and the Hamilton Monte Carlo algorithm25

(Hoffman & Gelman, 2014). The second approach is the proxy model approach, including variational26

inference which was first developed about three decades ago (Peterson & Anderson, 1987; Hinton &27

Camp, 1993; Waterhouse et al., 1996; Jordan et al., 1999). The idea behind variational inference is to28

find the optimal proxy of the posterior by means of optimization.29
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In this paper, we introduce a new approximation approach, the Orthogonal Polynomials–30

Quadrature Algorithm (OPQA) (see Problem Statement in Section 2.1). Polynomials have been a31

staple tool in the world of mathematical physics (Simon, 1971; Vinck et al., 2012), approximation32

theory (Deift, 2000) and statistics (Walter, 1977; Diaconis et al., 2008). However, applications of33

orthogonal polynomials to machine learning are scarce to the best of our knowledge.34

It is also important to note that even though both OPQA and Polynomial Chaos Expansion (PCE)35

involve the use of polynomials, they are completely different in nature. The most crucial difference is36

that the orthogonality of the basis of OPQA is with respect to the measure dν1:N of our construct37

in equation (5), while for PCE the orthogonality is with respect to a known prior. For most of the38

problems we study, the prior is not known at all.39

2 OPQA: Problem Statement, Algorithm and Computation Scheme40

2.1 Problem Statement41

OPQA accomplishes two goals: first, it expresses the evidence as a series42

P (X) =
∑
τ

|aτ |2, (3)

where aτ are the coefficients of P (θ,X) of a special functional transform of our choice (see eq.43

(11)). This expression allows one to attain the second goal, which is to get a smooth estimate of the44

posterior, P (θ|X) by a probability density function fT (θ), that is,45

P (θ|X) ≈ fT (θ) := pT (θ)
2

N∏
j=1

e−θ2
j ≥ 0, (4)

where pT (θ) is a multivariate polynomial and
∫
RN fT (θ)dθ = 1.46

2.2 Outline of the Algorithm47

We consider the functional space L2(dν1:N ) associated with the following measure on RN48

dν1:N (θ) :=

N∏
j=1

e−θ2
j dθj , (5)

where θ = (θ1, θ2, · · · , θN ) ∈ RN . Let hi(x)
∞
i=0 be the normalized one-dimensional Hermite49

polynomials that are orthogonal with respect to the measure dν = e−θ2

dθ on R, that is,50 ∫
R
hi(x)hj(x)e

−θ2

dx = δij (6)

Such orthogonality implies that the tensor products of Hermite polynomials of the form51

ϕτ (θ) := hi1(θ1)hi2(θ2) · · ·hiN (θN ) (7)

form an orthogonal polynomial basis that is orthogonal with respect to dν1:N . The N -tuple τ =52

(i1, i2, . . . , iN ) is known as a multi-index.53

The measure dν1:N is special because it fulfills the finite moment criterion (22). Hence, by the Riesz54

Theorem (Theorem 3.1), the family of polynomials is dense in L2(dν1:N ). In particular, observe that55

the square root of the following function is in L2(dν1:N ),56

P̃ (θ,X) := P (θ,X)

N∏
j=1

eθ
2
j (8)

and its L2 norm squared is the evidence:57

∥P̃ 1/2∥2L2(dν1:N ) =

(∫
RN

∣∣∣P̃ (θ,X)1/2
∣∣∣2 dν1:N) =

(∫
RN

|P (θ,X)|dθ1:N
)

= P (X), (9)
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which is finite. Next, we transform P̃ (θ,X)1/2 into an infinite series by projecting it onto the58

polynomial basis (ϕτ )τ . The transform coefficients are given by59

aτ =
〈
P̃ (θ,X)1/2, ϕτ

〉
dν1:N

, (10)

which is equivalent to60

aτ :=

∫
RN

P (θ,X)1/2ϕτ (θ)

 N∏
j=1

e−θ2
j/2

 dθ1:N . (11)

Recall that this polynomial basis is dense due to Riesz’ Theorem. Suce density allows one to invoke61

the Parseval Identity, which equates the L2-norm with the sum of its transform coefficieints, that is,62

∥P̃ 1/2∥2L2(dν1:N ) =
∑
τ

a2τ . (12)

Combining this with (9), we obtain one of our two results,63

P (X) =
∑
τ

a2τ . (13)

The fact that the coefficients (aτ )τ are absolutely convergent implies that the summation can be64

executed in any order. Furthermore,65

P̃ (θ,X)1/2 ≈
∑
τ

aτϕτ (θ), (14)

which id equivalent to66

P (θ,X) ≈

(∑
τ

aτϕτ (θ)

)2 N∏
j=1

e−θ2
j (15)

Combining with P (θ|X) = P (θ,X)/P (X) and P (X) > 0, we obtain67

P (θ|X) ≈ pT (θ)
2

N∏
j=1

e−θ2
j , (16)

where68

pT (θ) :=

(∑
τ∈T

|aτ |2
)−1/2(∑

τ∈T

aτϕτ (θ)

)
. (17)

Observe that the right hand side of 16 is a probability density function because69 ∫
pT (θ)

2

 N∏
j=1

e−θ2
j

 dθ =

(∑
τ∈T

|aτ |2
)−1 ∑

τ,σ∈T

(∫
aτaσϕτ (θ)ϕσ(θ)dµ1:N

)
= 1. (18)

The last equality follows from the fact that ϕτ are orthogonal polynomials with respect to dν1:N , so70

the integral (inside the parenthesis) is zero for τ ̸= σ, and a2τ otherwise.71

2.3 Outline of the Computation Scheme72

Due to the unique nature of the measure (
∏N

j=1 e
−θ2

j/2)dθ1:N . in (11), we propose the use of73

Gauss–Hermite quadrature to estimate aτ . Not only does it expedite the computation by allowing74

parallelization, it reduces the high variance problems caused by random sampling methods.75

The readers should be reminded that the following computational scheme could be further optimized,76

and has no bearing on the mathematical correctness of the algorithm.77

First, we choose a quadrature order Γ. Quadrature of order Γ works well to approximate function78

which can be well estimated by a polynomial of degree 2Γ− 1. For that reason, usually a single-digit79

Γ will suffice.80
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Algorithm 1 The Orthogonal Polynomials–Quadrature Algorithm (OPQA)
Input Quadrature order Γ. Joint distribution P (θ,X).
Output Coefficients (aτ )τ∈T which can be used to compute evidence P (X) and a smooth
probability density function fT (θ) that estimates P (θ|X).
while Σ =

∑
|τ |<d |aτ |2 does not converge do

Increase the degree d by 1.
Compute hd(x) for x = r̃1, . . . , r̃Γ.
for multi-index τ of degree d do

Compute Φτ = (ϕτ (r̃
(j)))(j)∈I

Compute aτ = Π⃗ · Φτ

Add a2τ to Σ.
end for

end while

From the one-dimensional Gauss quadrature nodes and weights (ri, wi)
Γ
i=1

1, we form our multivariate81

nodes in RN , (r̃(j))(j); and weights, (w̃(j))(j) for each grid-index (j) ∈ I . The transform coefficients82

can then be estimated by83

aτ ≈
∑
(j)∈I

w̃(j)P (r̃(j), X)1/2ϕτ (r̃
(j)). (19)

The right hand side of (19) can be expressed by vectors W⃗ , P⃗ and Φ⃗τ as284

aτ ≈ W⃗ ⊙ P⃗ · Φ⃗τ . (20)

This decomposition into three vectors will bring many computational advantages that help tackle85

the problem of dimensionality, with the major advantages being: (1) most of the values can be86

obtained from simple arithmetic, and (2) both W⃗ and Φ⃗τ depend on values of size O(Γ · d) where87

d is the degree of polynomial estimation; and (3) the expression (20) allows parallelization, which88

substantially increases the speed of computation.89

2.4 Our Contributions90

A new functional analytic perspective. Instead of finding a proxy through optimization, we91

identified a special functional transform onto L2(dν1:N ) (see equation (8)) such that the evidence92

P (X) is equal to the sums of squares of the transform coefficients.93

Leveraging the density of polynomials and Parseval Identity. The measure ν1:N is special because94

it satisfies the moment criteria of the Riesz Theorem, which ensures the density of polynomials in95

L2(dν1:N ), which ensure that (13) is an equality.96

A flexible and scalable approach. OPQA does not require any assumptions about the prior or the in-97

dependence of the latent variables. Furthermore, OPQA can produce arbitrarily good approximations98

as we increase the degree of polynomial approximation and order of quadrature Γ.99

An accurate, parallelizable and efficient computation scheme. By using quadrature, it counters100

the variance problems from random sampling methods; the discretization of aτ in (20) allows for101

efficient computation. In particular, both W⃗ and Φ⃗τ are independent of the distribution in question P ,102

so both W⃗ and Φ⃗τ are essentially universal constants that apply to all OPQA applications. Besides,103

W⃗ only depends on Γ quadrature weights; and Φ⃗τ on a set of Γ · |τ | values, namely,104

V|τ | := {hd(r̃i) : 0 ≤ d ≤ |τ |; 1 ≤ i ≤ Γ}. (21)
1These constants are available in Numpy libraries and numerical analysis handbooks such as Abramowitz &

Stegun (1972).
2The symbols ⊙ and · denote the pointwise multiplication and dot product of two vectors respectively.
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3 Appendix105

3.1 Appendix: Supporting Theorems106

In Section 2.2, it was shown that OPQA relies on the Riesz Theorem, which guarantees the density107

of polynomials in L2(dν1:N ) if the measure dν1:N satisfies the moment condition (22), which is a108

classic result in approximation theory.109

Theorem 3.1 (Density of polynomials in L2). (Riesz, 1922). Let ν be a measure on RN satisfying110 ∫
RN

ec|θ|dν < ∞ (22)

for some constant c > 0, where |θ| =
∑N

j=1 |θj |; then the family of polynomials is dense in L2(ν).111

In other words, given any f ∈ L2(ν), there is a sequence of polynomials fn(θ) such that112

lim
n→∞

∫
RN

|f(θ)− fn(θ)|2dν = 0. (23)

Related moment problems are discussed in depth by Akhiezer (1965) (Theorem 2.3.3 and Corollary113

2.3.3). A nice short proof of the result was presented in Schmuland (1992).114

An important implication of criterion (22) is that all polynomials are in Lp(ν), for any p ≥ 1. To see115

that, it suffices to show that for any c > 0 and integer k ≥ 0116

lim
x→∞

xk

ecx
< ∞ (24)

via the repeated application of the L’Hôpital rule.117

3.2 Appendix: Hermite Polynomials and Density of Polynomials118

Hermite polynomials3 are polynomials on R that are orthogonal with respect to the measure119

dν := e−x2

dx on R. (25)

Hermite polynomials satisfy the following orthogonality relation120 ∫
R
Hm(x)Hn(x)dν(x) =

√
π2nn!δnm. (26)

Normalized Hermite polynomials are denoted as hn(x) := Hn(x)/∥Hn∥. The Hermite polynomials121

used in this paper are122

H0(x) = 1, h0(x) = π−1/4

H1(x) = 2x, h1(x) =
√
2π−1/4x

and the higher order polynomials can be obtained from the following recurrence relation123

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (27)
The measure ν is the building block of the measure ν1:N defined in equation (5). A critical property124

of ν is that it has finite moments, that is, there is a constant c > 0 such that125 ∫
R
ec|θ|dν ≤ 2

∫
e−(θ−c/2)2+ c2

4 dθ < ∞. (28)

Following a similar argument, one can prove that126 ∫
RN

ec|θ|dν1:N (θ) =

N∏
j=1

∫
ec|θj |e−θ2

j dθj < ∞. (29)

Condition (29) makes ν1:N eligible for the Riesz Theorem (Theorem 3.1), which implies the density127

of polynomials in L2(ν1:N ). Without this density, the equality (13) may not hold.128

Apart from Hermite polynomials, Chebyshev’s polynomials and Jacobi polynomials are among the129

most commonly known families of orthogonal polynomials. For a comprehensive introduction to130

orthogonal polynomials, the readers may refer to Simon (2005); Koornwinder (2013).131

3The Hermite polynomials used in this paper are often known as the physicists’ Hermite polynomials because
they are orthogonal to e−x2

instead of e−x2/2.
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3.3 Appendix: Example of a Gaussian Mixture Model with 3 Clusters132

We ran this experiment: first, we sampled N0 = 3 points, µ ∼ N(0, 10) and obtained µ1 = −18.61,133

µ2 = 3.81 and µ3 = 8.84. Then we generated n = 1000 samples by first randomly selecting134

an integer i from [1, 2, 3], and then drawing x ∼ N(µi, 1). Figure 1 presents a plot of the joint135

distribution p(x, µ1, µ2, µ3) of this particular experiment, alongside with a normalized histogram of136

these 1000 samples.137

Figure 1: Example of a Mixed Gaussian Model.

In general, we are interested in the inverse problem of approximating the posterior138

P (µ|x1:n) : RN 7→ R (30)

as a function of the latent variables µ ∈ RN given the observations x1:n. Observe that the joint139

probability density function is given by140

P (µ1:K0 , x1:n) =

K0∏
k=1

p(µk)

n∏
i=1

p(xi|µ1:K0). (31)

To obtain the posterior in (30), one needs the normalizing weight P (x1:n), which requires us to sum141

(31) in k and integrate in µ1:K0
. First, note that for any one sample x,142

P (x|µ1:K0
) =

K0∑
k=1

p(x, zk|µ1:K0
) =

K0∑
k=1

p(µk|µ1:K0
)p(x, µk) =

1

K0

K0∑
k=1

p(x, µk). (32)

Then we need to integrate (32) against dµ1:K0
. That results in the following formula143

P (x1:n) =

∫
µ1:K0

K0∏
k=1

p(µk)

n∏
i=1

(
K0∑
k=1

1

K0
p(xi, µk)

)
dµ1:K0 . (33)

While it may be possible to compute (33) directly, the computation is far from straightforward.144

Furthermore, there are Kn
0 terms, making the computations extremely expensive as n increases.145

To illustrate the aforementioned point, we consider the simplest case of just one latent variable µ and146

one sample x. We chose this particular example because the evidence comes in closed form and it147

will allow us to compute the ground truth evidence.148

The evidence (33) is given by149

P (x) =

∫
R
p(µ)p(x|µ)dµ =

1

2πσµσx

∫
R
e
− µ2

2σ2
µ e

− (x−µ)2

2σ2
x dµ (34)

Expanding the function inside the integral, we get150

(34) =
exp

(
− x2

2σ2
x

)
2πσµσx

∫
R
exp

(
−
(

1

2σ2
µ

+
1

2σ2
x

)
µ2 +

x

σ2
x

µ

)
dµ. (35)
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We perform a change of variable151

t =

(√
1

2σ2
µ

+
1

2σ2
x

)
µ (36)

and let152

C0 :=

√
1

2σ2
µ

+
1

2σ2
x

. (37)

Then153

(35) =
exp

(
− x2

2σ2
x

)
2C0πσµσx

∫
R
exp

(
−t2 +

x

C0σ2
x

t

)
dt. (38)

Note that154

−t2 +
x

C0σ2
x

= −
(
t− x

2C0σ2
x

)2

+

(
x

2C0σ2
x

)2

(39)

and that
∫
e−y2

dy =
√
π. Combining all of these, we arrive at the following expression for the155

evidence156

P (x) =

exp
(
− x2

2σ2
x

)
exp

((
x

2C0σ2
x

)2)
2C0

√
πσµσx

. (40)

Furthermore, we simplify the expressions involving C0 in (defined in (37)) and we get157

P (x) =
exp

(
− x2

2σ2
x

)
exp

(
x2σ2

µ

2σ2
x(σ

2
x+σ2

µ)

)
√
2π
√
σ2
µ + σ2

x

=
exp

(
−x2

2(σ2
x+σ2

µ)

)
√
2π
√
σ2
µ + σ2

x

. (41)
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