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Abstract

Saddle point optimization is a critical problem employed in numerous real-world applications,
including portfolio optimization, generative adversarial networks, and robotics. It has
been extensively studied in cases where the objective function is known and differentiable.
Existing work in black-box settings with unknown objectives that can only be sampled either
assumes convexity-concavity in the objective to simplify the problem or operates with noisy
gradient estimators. In contrast, we introduce a framework inspired by Bayesian optimization
which utilizes Gaussian processes to model the unknown (potentially nonconvex-nonconcave)
objective and requires only zeroth-order samples. Our approach frames the saddle point
optimization problem as a two-level process which can flexibly leverage existing general-sum
Nash game solvers to solve for saddle points of zero-sum games. The upper level of our
framework produces a model of the objective function by sampling in promising locations,
and the lower level of our framework uses the existing model to frame and solve a general-
sum game to identify locations to sample. This lower level procedure can be designed in
complementary ways, and we demonstrate the flexibility of our approach by introducing
variants which appropriately trade off between factors like runtime, the cost of function
evaluations, and the number of available initial samples. We experimentally demonstrate
these algorithms on synthetic and realistic datasets in black-box nonconvex-nonconcave
settings, showcasing their ability to efficiently locate local saddle points in these contexts.

1 Introduction

We consider the problem of finding saddle points for smooth two-player zero-sum games of the form

PLAYER 1: min f(z,y) PLAYER 2: min—f(z,y) r €R™ yecR™ (1)
z y

with an unknown, nonconvex-nonconcave objective f. We assume that we can draw noisy zeroth-order
samples of f (i.e., sampling does not provide any derivative information) via a possibly expensive process
given coordinates (z,y), where € R, y € R"s.

Saddle points are points at which the function f is simultaneously a minimum along the z-coordinate and a
maximum along the y-coordinate. Such points specialize the well-known Nash equilibrium concept to the
setting of two-player, zero-sum games. Saddle point optimization (Tind, [2009) is widely used in real-world
applications like economics (Luxenberg et all 2022, machine learning (Goodfellow et al., [2020), robotics
(Agarwal et all 2023), communications (Moura & Hutchison) 2019)), chemistry (Henkelman et al.;, [2000), and
more.

Zero-sum games have been widely studied for known and differentiable objective functions. However, this
assumption does not encompass numerous real-world situations with nonconvex-nonconcave objectives which
may be unknown and can only be sampled. Such objectives are often referred to as “black-box.” For
example, in robust portfolio optimization, the goal is to create portfolios resistant to stock market fluctuations
(Nyikosal [2018), which are inherently random and difficult to model but can be sampled in a black-box
fashion through trial and error. Similar problems arise in various physical settings, such as robotics (Lizotte
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et al 2007) and communication networks (Qureshi & Khan| 2023). Motivated by these real-world examples
in nonconvex-nonconcave black-box settings, we present a flexible and extensible framework that seeks to
identify a saddle point, (z*,y*), such that f(z*,y) < f(z*,y*) < f(z,y*), for all z,y in its neighborhood.

Most previous research in this area has focused on solving minimax problems (Bogunovic et al., [2018; [Frohlich
et al} 2020; Wang et al., 2022), which take the form min, max, f(z,y). The difference between minimax
and saddle points is subtle: a minimax point achieves the best worst-case outcome for the minimizer (i.e., a
Stackelberg equilibrium). In contrast, at a saddle point, the best worst-case and worst best-case outcomes
coincide (i.e., a Nash equilibrium). Solutions to minimax problems in general nonconvex-nonconcave settings
are not necessarily Nash, and encode an leader-follower hierarchy which is not present for the saddle point
concept. In settings like racing, chess, and resource allocation, where rational, adversarial actors make
decisions simultaneously, equilibria are best described as saddle points.

Many previous works in saddle point optimization assume convex-concave objectives (v. Neumann) |1928;
Korpelevich, [1976; [Tseng, [1995; [Nemirovskil [2004), for which every minimax point is a saddle and vice versa
because the best worst-case and worst best-case always coincide. However, this equivalence does not hold
in general nonconvex-nonconcave settings. Notably, some prior works addressing black-box convex-concave
settings use zeroth-order samples (Maheshwari et al., |2022). Lastly, finding global saddle points remains
an open problem in general settings, so our work specifically focuses on discovering local saddle points, as
detailed in Remark [3.5]

In contrast to previous works, we approach this problem in the spirit of bilevel Bayesian optimization: at
a high-level, we use Gaussian processes to build a surrogate model for the black-box function f(z,y) by
sampling points (z,y) at promising locations, and at a low-level, we identify these sample points by solving
general-sum games defined on the surrogate model. Specifically, the low-level game selects these samples by
seeking local Nash points (Defn. of these two-player general-sum games. The high-level optimizer then
aims to ensure that in the limit, these samples converge to local saddle points of the black-box problem. We
present our contributions as follows.

1. To the best of our knowledge, our method for saddle point optimization is the first to experimentally
demonstrate an approach that (1) finds saddle points in black-box settings (2) on nonconvex-nonconcave
objectives (3) with zeroth-order samples. Prior work either achieves only one or two of these simultaneously
or fails to theoretically and experimentally validate the approach in nonconvex-nonconcave settings.

2. We use our framework to propose a set of algorithms for the lower-level game, with each variant catering
to a different real-world case based on uncertainty and sampling cost. Thus, our approach allows for
versatility in trading off between factors like ease of sampling, exploration and exploitation, and provides
a template for future work in this area.

3. We experimentally demonstrate our algorithms’ effectiveness on a variety of challenging synthetic and
realistic datasets. Due to the limitations of extending Gaussian Processes to higher dimensions, we focus
our experiments on low-dimensional settings which are amenable to GPs. We discuss this choice further in
our experiments.

2 Related Work and Preliminaries

Saddle Point Optimization: Saddle point problems are widely studied in the game theory (Basar & Olsder,
1998; |Cherukuri et al.| [2017)), optimization (Dauphin et all 2014; Pascanu et al.| 2014)), and machine learning
communities (Benzi et all 2005} Jin et al., [2021). We note three previous varieties of algorithms in the area
of nonconvex-nonconcave saddle point optimization which guarantee convergence to local saddle points rather
than stationary points. Of these, |Adolphs et al.| (2019) and |Gupta et al.| (2024)) introduce algorithms which
solve for saddle points in deterministic settings and neither approach handles unknown objectives. [Mazumdar
et al.| (2019)) introduces local symplectic surgery (LSS), a method that, when it converges, provably does so
to a local saddle point given access to first-order and second-order derivative measurements by the sampler.
However, derivative information is not always available in systems of interest. Moreover, while zeroth-order
samplers can estimate noisy first-order (and second-order) derivatives via finite differencing, the extensive
sampling requirements for such an approach is prohibitive when sampling is expensive. By contrast, our
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work proposes an extensible zeroth-order framework for black-box saddle point optimization, and we provide
extensive experimental evaluation of several variants tailored to distinct settings.

Gaussian Process (GP): A GP (Rasmussen, 2003), denoted by GP(u(-),%(+,-)), is a set of random
variables, such that any finite sub-collection {f(z;)}7; is jointly Gaussian with mean p(z;) = E[f(z;)], and

covariance % = E[(f(x;) — () (f(x;) — pa;)], Vi j € {1,...,n}.

GPs are mainly used for regression tasks, where they predict an underlying function, f : R™ — R, given some
previously observed noisy measurements. That is, for any inputs z1, ..., 2, € X C R* and the corresponding
noisy measurements, ri,...,r, € R, the vector r = [r1,72,...,r,] is modeled as multivariate Gaussian
distribution with mean vector p (typically assumed to be zero), and covariance matrix ¥ € R™*™. The
covariance matrix, ¥, is calculated as follows: 3; ; = K(z;,2;),V4,j € {1,...,n}, where K(-,-) is the kernel
function. Typically, it is assumed that errors z; = r; — f(z;) are normally, independently, and identically
distributed, i.e. z; € N'(0,02). At a test point x,, we compute the marginal distribution of f(z.) given r via

flz)|r ~ ./\/'(k;r(E +O’§I)71T,K(I*7l‘*) — kI(E Jraff)*lk*), (2)

e () or(zx)

where k. = [K (z1,24), -+, K (xn,als*)]—r A more detailed description of can be found in

. For typical (e.g., squared exponential) kernels, the number of samples required for GP regression
increases exponentially in the number of dimensions; thus, GPs are appropriate for only relatively low
dimensional spaces. Nevertheless, GPs form a useful tool in addressing many relevant real-world problems.
They are well-suited for modeling uncertainty in black-box optimization problems because they predict both
the function value and the uncertainty of that prediction, which is crucial for balancing exploration and
exploitation in optimization frameworks. Moreover, the smoothness of GP estimates allow for the deployment
of standard gradient-based algorithms to estimate solutions to optimization problems.

Bayesian Optimization (BO) with Gaussian Processes: Mockus| (1975); Brochu et al.| (2010b)); |Shahriari
, is a sequential search method for maximizing an unknown objective function f : R¥ — R with
as few evaluations as possible. It starts with initializing a prior over f and uses an acquisition function to
select the next point x; given the history of observations, f(x1),..., f(x¢—1). The unknown objective, f,
is sampled at xz;, and its observed value f(z;) is used to update the current estimate of f. Typically, f is
modeled as a GP, and the GP prior is updated with new samples. One common acquisition function, used in
the GP-UCB algorithm, is the Upper Confidence Bound UCB;(x,y) = pt (2, y) + Srot (z,y) (defined here to
estimate the two-argument zero-sum objectives from (I))). GP-UCB (Srinivas et al), [2010) has been used in a
variety of settings including robotics (Deisenroth et al.; [2013)), chemistry (Westermayr & Marquetand} [2021)),
user modeling (Brochu et al., 2010a)), and reinforcement learning (Cheung et al., 2020). A high 3; parameter
in UCB; implies a more optimistic maximizer (i.e. favoring exploration) in the presence of uncertainty. The
UCB acquisition function combines the estimated mean, p:(z,y), and the estimated standard deviation,
ot(x,y), of the unknown objective function f at point z at iteration ¢. Analogously, we can also define the
Lower Confidence Bound (LCBy(x,y) = i (x,y) — Bioe (z,y)).

3 Problem Formulation

Problem Setup: We consider the two-player, zero-sum game in , and focus on the case in which the
objective f is an unknown function defined on the domain R™* x R™v, and can only be realized through
(possibly expensive, noisy) evaluations. That is, we query the objective at a point (x,y) € R™ x R™ and
observe a noisy sample r = f(x,y) + z, where z ~ A/ (O7 Jg). Although f itself is unknown, we will assume
that it is smooth and can be differentiated twice. Our goal is to find Local Saddle Points (LSPs) of f.

Our proposed framework will consist of two stages: at the lower level, we will solve a general-sum game
defined on a GP surrogate model to identify (local) Nash points, and at the high level we will sample f at
those points and refine the GP surrogate model. Next, we formally define Nash points for general-sum games,
the conditions they satisfy, and when such a point coincides with a saddle point for a zero-sum game. For a
two-player general-sum game, where player 1 is minimizing function f;, and player 2 is minimizing function
f2, a Nash point, (z*,y*), is defined as:
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Definition 3.1 (Global Nash Point (GNP) for Two-Player General-Sum Game). (Basar & Olsder], 1998
Defn. 2.1) Point (z*,y*) is a global Nash point of objectives f1, fo if, for all 2,y € R™ x R™v,

fi@",y*) < filz,y"), fola™, ") < fola®,y). (3)

At a GNP, variables x and y cannot change their respective values without achieving a less favorable outcome.
In general, there does not always exist a global saddle point, and when it exists, it is not necessarily unique.
Finding a GNP is computationally intractable in nonconvex settings (as in global nonconvex optimization),
so we seek a Local Nash Point (LNP), where this property need only hold within a small neighborhood. A
LNP is characterized by first- and second-order conditions.

Definition 3.2 (LNP for Two-Player General-Sum Game). (Ratliff et al., 2016, Defn. 1) Let || - || denote a
vector norm. A point, (z*,y*), is a local Nash point of cost functions f; and fs if there exists a 7 > 0 such
that for any z and y satisfying ||z — 2*|| < 7 and [ly — y*|| < 7, we have (3).

Proposition 3.3 (First-order Necessary Condition). (Ratliff et all (2016, Prop. 1) For differentiable f1 and
f2, a local Nash point (x*,y*) satisfies Vy f1(z*,y*) =0 and V, fa(z*,y*) = 0.

Proposition 3.4 (Second-order Sufficient Condition). (Ratliff et all, (2016, Defn. 3) For twice-differentiable
f1 and fa, if (x,y) satisfies the conditions in Prop. Vicfi(z,y) =0, and V2, fo(x,y) = 0, then it is a
strict local Nash point.

Remark 3.5 (Nash Point is a Saddle Point when f; = —fs). If f = fi = —fa, then the point (z*,y*) is a
global saddle point of f when Defn. holds and a local saddle point when Defn. holds. A local saddle
point is characterized by the same first- and second-order conditions defined in Prop. and Prop.
respectively. Henceforth, we use the term saddle point to refer to Nash points in zero-sum games and refer to

Defns. [3.1] and B:2) and Props. [3.3] and [3.4] for Nash and saddle points.
4 Black-box Algorithms for Finding Local Saddle Points

We summarize our Bayesian Optimization (BO)-inspired bilevel framework for identifying local saddle points
in the black-box setting. Let u; and X4, respectively, define mean and covariance functions that estimate
the unknown objective f as a Gaussian process based on a dataset S; = {(z;,v;,7:)}!_; where r; € R is
a (potentially noisy) sample of f at point (x;,y;). We define a zero-sum game, which we refer to as the
high-level game,

PLAYER 1: 2" = argmin ps(z,y) PLAYER 2: y* = argmin —pu(z,y) (4)

z Y
This game has two purposes: primarily, it seeks to solve for a LSP of the original problem . Doing so
requires solving the secondary problem of refining the GP estimate by strategically sampling f to form
Str1 = St U{x441, Yer1,mer1} at iteration ¢ 4 1. To identify promising points, we solve a low-level general-sum

game

PLAYER 1: Z* = argmin LCB¢(z,y) PLAYER 2: y* = argmin —UCB(z, y) (5)

k4 y

for a local Nash point. As p; and ¥; are smooth functions, we can solve by deploying standard gradient-
based algorithms on them to solve the lower-level game for first-order stationary points. In our work, we
solve (j5) using a technique (Alg. [1)) which is based on Newton’s method, but the structure of our method
allows for any general-sum Nash game solver to be used.

Critically, our method relies on an observation about the relationship between this general-sum LNP and the
zero-sum LSP (z*,y*) we wish to find. In the limit of infinite samples in the neighborhood of (z*,y*), when
the GP surrogate converges to f, then the uncertainty o converges to zero and LCB; and UCB; converge to
the mean g, which converges to f and leads problems and to coincide. These games optimize uy,
which is an estimate of f, so note that any solutions will be approximate.

4.1 Defining and Solving The Low-Level Game For Local Nash Points

Extending the familiar “optimization in the face of uncertainty” principle from BO (Snoek et al. 2012)) and
active learning (Yang et al.l 2015), we construct the low-level game in so that each player minimizes a
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Function LLGAME ((z,y, LCB,UCB)): Input: Sy, GP prior (ug,00), €.

Zo, Yo = T, Y. 1: Start with initial point (zo,yo) = argmin, ,)cs, M{ (2, y).
while MCB(zy, ;) > € do 2: while M/} (x;,y;) > € do
Get next iterate (441, Yea1) 3: (t41,Yt+1) = LLGAME(z¢, y¢, LCB¢, UCBy).
using LCB, UCB as shown in 4 Sample f(z41,y:+1) and add to Syi1.
" . 5: Update Ht+1,0t+1, LCBH_l, UCBt+1 .
end 6: (Tt, Y1) = (Te41, Yit1)-
: Return z*, y*. end
End Function 7: Return Saddle point z*, y*.
Algorithm 1: LLGAME Algorithm 2: Bayesian Saddle Point (BSP) Algorithm

lower bound on its nominal performance index. As in active learning, this design is intended to encourage
“exploration” of promising regions of the optimization landscape early on, before “exploiting” the estimated
GP model. These bounds, LCB; and UCBy, are constructed at each iteration ¢ of the high-level game.

Finding LNPs is computationally intractable in general; therefore, in practice we seek only points which
satisfy the first-order conditions of Prop. To find this solution, we introduce a new function, GB(z,y) :
R™ x R™ — R¥, whose roots coincide with these first-order Nash points. The superscript CB and subscript
t signify that we are finding the roots with confidence bounds (CB) at iteration ¢. Specifically, we seek the
roots of the following nonlinear system of (algebraic) equations:

CB V. LCB,(z,y)
Gy (,y) = —V,UCB,(z,y)
The LLGame Algorithm: In Alg. [I] we present our approach to solving the low-level game, which we
refer to as LLGAME. LLGAME utilizes the current confidence bounds, (LCB;, UCB;), to determine the
local Nash points by finding roots of G¢B using Newton’s method. The LLGAME function does not make
any new queries of f; instead, it uses the most up-to-date confidence bounds to identify the local Nash
points. LLGAME takes an initial point, (z,y), and current confidence bounds, (LCB;, UCBy;), as inputs.
Starting from line 2, the algorithm iteratively updates the point, (Z;, §:), using —discussed below—and
halts when a merit function, MB(z4, 7;), and therefore the gradients Vz, LCB,(Z4, 7;) and Vy, UCB,(Z¢, §t),
are sufficiently small. Ultimately in line 4, the function returns the final point, (z*,y*), once it discovers a
stationary point satisfying first-order Nash conditions as per Prop. B3]

—0. (6)

Defining Convergence (line 2): To gauge the progress towards a root of GSB(x, %), we employ a merit
function, a scalar-valued function of (x,y), which equals zero at a root and grows unbounded far away from a
root. Specifically, we use the squared ¢, norm as the merit function, i.e., M®(z,y) = 1||GFB(z,y)||3; each
LNP of is a global minimizer of M.

Nonlinear Root-finding with Newton’s Method (line 3): To find the roots of GSB(x,y), our work
employs Newton’s method, which is an iterative method that is widely utilized for solving nonlinear systems.
The Newton step, p;(z,y), is obtained by linearly approximating the function, G&®, with its Jacobian matrix
Ji(x,y) at the current estimate (z,y) and identifying the root of that approximation. The step p:(z,y)
therefore satisfies:

) V2 LCB, V2 LCB;
Je(z, y)pe(x,y) = —GSP(x,y), with Jy(z,y) = 75" 75Y : (7)
¢ -Vv2,UCB, -V UCB,

Consequently, we update the current point, (x,y), by taking the step p; to reach the next point. In our
experiments, we employ Newton’s method with a Wolfe linesearch, which is known to converge rapidly
when initialized near a root, as shown in (Nocedal & Wright| [2006, Ch. 11). Note that the Jacobian .J;
requires minimal effort to compute in the lower-dimensional spaces that are classically amenable to black-box
optimization. We provide exact implementation details in Appendix [B]

Adapting LLGame: We note that other optimizers can be used to solve for (first-order) LNPs of . One
prevalent example is the gradient ascent-descent method (discussed by Mescheder et al.| (2017) and Balduzzi
et al.| (2018]), among others), which uses gradient steps instead of Newton steps as in our method. Our
framework is flexible and LLGAME can readily be adapted to use these methods to identify local Nash points.
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4.2 Solving the High-Level Game: Finding Local Saddle Points with BSP

In the high-level game, we seek to solve zero-sum game to identify the saddle points of p;. Upon extracting
a solution to in LLGAME, we sample the objective f around the low-level Nash point (z*,3y*). The
result of this sampling is used to update the mean p; and uncertainty estimate o; for the GP surrogate of f.
Following the design of Sec. we seek to identify first-order LSPs of with roots of the function G{ and

global minima of the corresponding merit function Mtf :

o) =| ST M) = 6w ®)

However, as f is unknown, we instead define function G} and corresponding merit function M}* using the
GP surrogate model of f by replacing f in with p;. Thus, our method identifies saddle points of f by
finding the roots of G} and global minima of M}".

The Bayesian Saddle Point Algorithm: We now present our overall algorithm BSP (Alg. , which
searches for the local saddle points. As stated earlier, this distinction between the two games allows us to
confirm if a local Nash point is a local saddle point. In Alg. 2] we start by optimizing the hyperparameters of
our GP kernel using the initial dataset, Sp, a standard procedure in BO (Snoek et al.; [2012). Upon learning
the hyperparameters, an initial GP prior, (uo,00), is obtained. Then in line 1, we select a starting point,
(20,90), from the initial dataset, Sy, based on the lowest merit value. From this point, an iterative search for
the local saddle point is conducted in the outer while loop (lines 2-6). The LLGAME function is utilized in
line 3 to determine the subsequent point (241, y:+1), which is a local Nash point of the general-sum game
(5). The point, (z41,ys+1), is only a local Nash point for the given LCB; and UCB;; we will not be sure if it
is a local saddle point of f until we sample f at that point and calculate M}* to validate the conditions in

Prop.

Consequently, in line 4, the point returned by LLGAME is sampled and added to the current dataset. In
line 5, new hyperparameters are learned from dataset S;y1, and pyy1,0141, LCByy1, UCBy41 are updated
accordingly. E| After sampling at the point (2441, yr+1), we have decreased the variance at that point, and
thus the mean, pi(zi41,y141), and its gradient Vy, are better representations of f and its gradient V f. After
each update to the GP surrogate, we check if the merit function value is sufficiently small, i.e. M} (z¢, ;) <€,
where € > 0 is a user-specified tolerance. Ultimately in line 7, the local first-order saddle point (z*,y*) is
returned after the completion of the outer loop.

4.3 Convergence

In Lemma [I.1] we demonstrate that Alg. [[] will terminate and converge to a point which satisfies Prop. [3.3]
under standard technical assumptions for Newton steps to be descent directions on the merit function.
Our experiments in Sec. [5| include cases that both satisfy and violate these assumptions, showcasing the
performance of our algorithm under various circumstances. The precise statement of Lemma closely
follows Theorem 11.6 from [Nocedal & Wright] (2006)), which is a standard result on the convergence of Newton
methods for identifying roots of nonlinear equations.

Lemma 4.1 (Convergence to Stationary Point Satisfying Prop. [3.3|in LLGAME). Let J(z,y) be Lipschitz con-

tinuous in a neighborhood D C R"=*"v surrounding the sublevel set L = {x,y : MEB(z,y) < MEB (w0, yo)}.

Assume that both ||J(z,y)|l2 and |GEB(z,y)|l2 have upper bounds in D. Let step lengths oy, satisfy the Wolfe

conditions (Nocedal & Wright, 2006, Sec. 3.1). If |Jﬁ;)1||2 has an upper bound, then Alg. (1| will converge
3

and return a root of GYB(x,y) which satisifes Prop.|3.5,

Proof. These assumptions match those of Theorem 11.6 of [Nocedal & Wright| (2006)), which can be applied
to find that the Zoutendijk condition holds, that is

> " cos® (0k) |7 (2, yi) GE (2, y) |13 < o, 9)
E>0

1This is a standard procedure in black-box optimization, explained in further detail in Appendix
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where 6}, is the angle between the Newton direction and the gradient of the merit function, VA/©B, cf. Eq. 11.40
in [Nocedal & Wright| (2006). We are assured that cosf) > ¢ for some ¢ > 0 if we take Newton steps at every
iteration k. Specifically, recall that ||.J(zg,yx)||2 and ||J = (zk, yx)||2 are bounded above by finite and nonzero
By, By € R, respectively. From these assumptions, we can provide an upper bound on the condition number
K(J) = omax(J)/omim (), which is the ratio of the largest singular value of J, omax(J), and smallest singular
value of J, omin(J). Since inverting a matrix inverts its singular values, we know that ||J||2 = omax(J) < By
and that ||J 7|2 = omax(J 1) = Yo (J) < Bg, which further implies that o, (J) > 1/B, and produces the
desired bound on the condition number, x(J) > By Bs. Using Eq. 11.42 of Nocedal & Wright| (2006)), we find
that cosfy > 1/x(7) = §. Lastly, it follows from that limy 0 JT (2, Y )GSE (7k, yi) = 0, implying that
the iterates approach a stationary point of M©B at which G¢Z = 0. Thus, the Newton iterates converge to a
root of G¢B which satisifies the first-order necessary Nash conditions (Prop. [3.3)). O

In Alg. [2| we sample f at the LNP returned by Alg. [l to reduce the variance, oy, in the confidence bounds.
This improves the accuracy of the mean function u; and its gradient Vu; as estimators for f and its gradient
V f around the sampled point. Consequently, the merit function, M}*, closely approximates M/ and thus
effectively validates convergence to the local (first-order) saddle point. As estimates improve with iterations,
the loop in Alg. [2]is expected to terminate at a local saddle point.

Next, we provide an intuitive explanation of why sampling at local Nash points of confidence bounds in
will lead to local saddle points of f in . As we sample local Nash points, the variance in the confidence
bounds at those points will decrease, and LCB/UCB will get closer to each other, as shown by Lemma
and Remark [A22] As we keep sampling, the variance will eventually become the noise variance, o,. As such,
Vo — 0 and therefore VLCB, VUCB — Vu — Vf, and therefore finding local Nash points of the confidence
bounds will eventually lead to first-order saddle points of u and consequently of f. To confirm that we find
a saddle, we verify the second-order condition (Prop. for the final saddle point returned by Alg. [2| If
this point does not satisfy the second-order conditions, we reinitialize our algorithm from a new initial point.
We find that, in practice, our algorithms find LSPs on the first initialization more frequently than baseline
methods.

4.4 Variants of BSP

BSP Expensive: Our BSP method in Alg. [2| aims to minimize queries of the function f by taking multiple
Newton steps per query of f. However, the algorithm may become unstable if the confidence bounds
UCBy¢4+1,LCBy1 do not accurately approximate f. Additionally, it is possible that querying f can often be
inexpensive, for example, in the case of Reinforcement Learning in simulated environments
. In this case, we query f during each iteration of Alg. [2[ after taking a single Newton step, in contrast
to the multiple steps taken in Alg. [1| (lines 2-3). This approach is referred to as BSP-expensive since we make
more queries of f, while our original algorithm in Alg. [2| is referred to as BSP-efficient. We demonstrate
in our results that this variant can more effectively and efficiently solve complex scenarios than baseline
methods under these conditions.

Exploration and Exploitation: In Alg. [2] we encourage more exploration by using LCB for minimization
and UCB for maximization. Since the value of unexplored regions has high variance and thus a lower LCB
value, the minimization procedure will explore those regions first (vice-versa for UCB and maximization).
As such, we refer to our original proposed method, as BSP-explore. Alternatively, we can use LCB for
maximization and UCB for minimization, thus promoting more exploitation by our algorithm. We will refer
to this variant as BSP-exploit. In real-world scenarios, this approach might be suitable when optimizing a
well-understood process, fine-tuning known models, or when domain knowledge allows for confidently focusing
on exploitation.

5 Experiments

In this section, we evaluate the BSP algorithms presented in Alg.[2land Sec. [f.4]across various test environments.
We consider four versions: 1) BSP-efficient-explore (EF-XPLORE), 2) BSP-efficient-exploit (EF-XPLOIT),
3) BSP-expensive-explore (EXP-XPLORE), and 4) BSP-expensive-exploit (EXP-XPLOIT). Our experiments,
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designed around challenging baseline problems widely recognized in prior work, demonstrate that each
algorithm excels in specific settings.

While GPs are most effective in lower-dimensional spaces, we evaluate our methods on problems with up to 10
dimensions. We acknowledge that our experiments may not fully capture the complexity of high-dimensional
real-world applications; however, our primary goal is to establish a foundation for solving these problems. We
view this work as a first step and aim to extend our approach to more complex real-world settings in future
research.

1. Decaying Polynomial: In our first experiment, we examine the performance of our algorithms for a
nonconvex-nonconcave objective taken from (Mazumdar et al., |2020; |Gupta et al.l [2024):

Joxo () = exp (~0.01 (a2 + 32)) (0322 +9)” + (059> +2)°). (10)

This example is particularly difficult for three reasons: first, multiple LSPs exist. Second, the origin is
a spurious saddle point which satisfies first-order conditions but not second-order conditions. Third, the
function gradients decay to zero further from the origin, meaning that an iterative algorithm strays too far
may “stall,” taking smaller and smaller step sizes, but never converging to a fixed point.

2. High-Dimension Polynomial: We consider a sixth-order polynomial from [Bertsimas et al.| (2010):

Foertsimas (T,Y) = =225 +12.225 — 21.22* — 6.2z + 6.42 + 4.72% — 35 + 1135
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—43.3y" + 10y + 74.8y> — 56.9y% + 4.1zy + 0.1y%x? — 0.4y%2 — 0.42%y. (1)
The decision space is within [Zmin = —0.95, Zmax = 3.2] X [Ymin = —0.45, Ymax = 4.4].  The objective,
fpoly(x,y), is nonconvex-nonconcave and has multiple LSPs (Defn. [3.2). We form a high-dimension (2n)-D
polynomial by letting, for ¥ € R™ i € R",

n
fpoly(fa ?7) = Z fbcrtsimas (l’i7 yz) (12)
i=1
We set n = 5 to evaluate how well our proposed algorithms identify LSPs with more dimensions. A 10-
dimensional space is sufficient for many relevant applications, though we note that it may constitute a
relatively low dimensionality for others.

3. ARIMA Tracking Model Predictive Controller (MPC): Finally, we test our algorithms on a more
realistic zero-sum game involving an ARIMA process that synthesizes a discrete time 1D time series of length
F, denoted by sp € R, for a model predictive controller to track. This setup mirrors real-world systems like
that of |Stent et al.| (2024)), in which an autonomous system corrects for distracted human driving. We represent
the ARIMA process for initial state sp € R and model parameters a € R, 5 € R: sp = ARIMA(s, o, 8).
The MPC takes the ARIMA time series, sg, as input and returns a controller cost fypc € R incurred while
tracking the given time series. The MPC solves an optimization problem with quadratic costs and linear
constraints, encapsulating vehicle dynamics and control limits. The optimization problem is represented as
fupc = MPC(A, B, so, sr), returning the final overall cost of tracking the ARIMA-generated time series sp,
initial state, sp and model dynamics A, B. Further details can be found in Appendix [B.6

Zero-Sum Game Formulation: We formulate the interaction between the ARIMA forecaster and the MPC as
a zero-sum game. The antagonist selects the ARIMA parameters «, 5 to generate difficult-to-track time series
forecasts, sp, resulting in a higher MPC cost fypc. In many scenarios, we want to find model dynamics that
are robust and can effectively handle various tracking signals. As such, the protagonist chooses the MPC
model dynamics parameters A, B to accurately track sp and minimize the controller cost. This competitive
scenario is formulated as follows:

fMPC = MPC( A, B ,§0, Sp = ARIMA(SQ, [ ﬂ )) (13)
t, ist tagonist
protagonis antagonis

This game is motivated by real-world scenarios requiring robust controllers for adversarial and out-of-
distribution inputs, and it has multiple LSPs (Defn. [3.2)).
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Experimental Setup: We compare our algorithms in two settings. In the first, we initialize our algorithms
with a large number of sample points, modeling a scenario where the objective is well understood. In the
second, we initialize algorithms with a small number of sample points, modeling a scenario where obtaining
samples is expensive. In all our experiments, we use a squared exponential kernel, where the kernel value of
two data points x; and z; is given by:

1(zi—2)" (2 — 2,
k(xi,xj):aj%exp 75( ])02( i) , (14)
1

where oy (signal variance) and o; (signal length scale) are hyperparameters. We learn these hyperparameters
via maximum likelihood to initialize our algorithms. In all experiments, we assume that we observe noisy
measurements of the underlying function. To ensure that algorithms are initialized at points with a non-zero
gradient in the decaying polynomial example (top row of Fig. , we ensure these are selected from the non-flat
regions of the function. All experiments are performed with 20 seeds for each algorithm. For the scenario
with a limited number of initially sampled points, we sampled 50 points for the decaying and high-dimension
polynomial objectives, and 10 points for the ARIMA-MPC objective. We present the exact experimental
setup for each test case in Appendix

5.1 Experimental Results

Fig. [[] summarizes the performance of the EF-XPLORE and EXP-XPLOIT variants of our algorithms for the
first two scenarios mentioned above; for results related to EF-XPLOIT and EXP-XPLORE, we refer the reader
to Fig. [4 in Appendix [C] where we report similar results to EF-XPLORE and EXP-XPLOIT, respectively. The
middle column of Fig. [1| considers test cases with a large number of initially sampled points, while the right
column considers test cases with a limited number of initially sampled points. We sample 1000 initial points
for the decaying polynomial and 500 initial points for the high-dimensional polynomial and for ARIMA-MPC
(for which we report results in Fig. .

We assess the performance of our algorithms using the merit function from Eq. , M7, which is calculated
based on the true gradients of the underlying function, rather than the confidence bounds employed in the
actual algorithm. As previously mentioned, M/ will attain a global minimum (of 0) when the first-order
conditions in Prop. [3.3] are satisfied. This evaluation metric offers a direct measure of the algorithms’
effectiveness in identifying local saddle points of the underlying function. We also compute success rates
for each algorithm in finding a saddle point (Table . We only include a run as a success if the BSP
solution satisfies second-order sufficient conditions Prop. according to the ground truth derivatives V f and
V2f. Lastly, we also compute rates of convergence, measured in Newton steps, for our algorithms. Overall,
our results show that our first-order algorithm finds saddle points at a higher rate than all baselines, even
outperforming the success rate of a state-of-the-art second-order method!

Baselines: We consider multiple baseline algorithms: naive random sampling (RANDOM), gradient descent-
ascent with finite differencing (GDA wiTH FD), and local symplectic surgery (LSS), a state-of-the-art
baseline from [Mazumdar et al.| (2019), and four algorithm variants from [Maheshwari et al.| (2022)). The first
three methods assume access to zeroth-, first-, and second-order derivatives, respectively, and the last is a
zeroth-order method. In the random sampling baseline, we uniformly sample a fixed number of points (z,y)
from the hyperbox {2,y : Zmin < 2 < Zmax, Ymin < Y < Ymax 1> and retain the point with the lowest real merit
function value (MY). In the gradient descent-ascent baseline, we employ finite differencing to estimate each
player’s gradient and use a Wolfe linesearch to select step sizes. This approach allows for a more directed
search compared to random sampling. Approximating the gradient with finite differencing provides a fair
comparison between our method and a first-order approach using zeroth-order samples. For the decaying and
high-dimension polynomial examples, we compare with LSS. LSS requires access to function gradients and
Hessians; rather than provide finite differenced estimates (which can be extremely noisy and require excessive
function evaluations), we provide oracle access to the true function derivatives and corrupt sampels with
standard Gaussian noise as explained in Appendix [B]
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Figure 1: Comparisons of selected algorithm variants with baselines: We compare variants of our
proposed algorithms with baseline methods across two domains (rows), the decaying and high-dimension
polynomials, landscapes of which are shown in the first column. The middle column considers test cases
with a large number of initially sampled points, while the right column examines test cases with a limited
number of initially sampled points. In each case, we report the value of (real) merit function M7 vs. the
number of underlying function evaluations. Key takeaway: Generally, EF-XPLORE converges faster with a
large number of initial samples by taking multiple Newton steps at each step in order to exploit the accurate
prior while EXP-XPLOIT exhibits quicker convergence with limited samples by taking single Newton steps to
avoid unfavorable regions amid uncertainty. Finally, we find that EF-XPLORE and EXP-XPLOIT converge
faster than all three baseline methods, indicating the benefit of the GP surrogate in improving convergence
compared to baselines which are often unable to converge.

We provide an additional set of four baselines (OGDA-RR, OGDA-WR, SGDA-RR, SGDA-WR) from
(Maheshwari et al., 2022) for the decaying and high-dimension polynomial experiments. These algorithms are
designed for and validated on zeroth-order convex-concave problems but can be applied in general settings.

Analysis of a Large Number of Initially Sampled Points: In this setting, we observed that the exploit
variants of our proposed algorithms, EF-XPLOIT (blue) and EXP-XPLOIT (orange), demonstrated the fastest
convergence. This outcome is expected since the accuracy of the confidence bounds was higher, reducing
the need for exploration. Overall, EF-XPLOIT (blue) achieved the fastest convergence in these experiments
due to its ability to take multiple accurate Newton steps. In the decaying polynomial example from Fig. [I]
Er-XPLORE converges quickly as well as taking single Newton steps helps the algorithm converge in this
particularly complicated landscape. In contrast, the explore algorithms had slower convergence, as they
prioritize exploration. This general pattern continues to hold in Fig. 2] for the ARIMA-MPC scenario.

Analysis of Limited Number of Initially Sampled Points: In this setting, we observed that the
explore variants of our proposed algorithms, EF-XPLORE (green) and EXpP-XPLORE (red), achieved the best
performance. Notably, the algorithm variant EXP-XPLORE (red) demonstrated fast convergence, which can be
attributed to its exploration approach and avoiding multiple incorrect Newton steps in the face of uncertainty.
The exploit variants, EF-XPLOIT (blue) and ExP-XPLOIT (orange) exhibited slower convergence, as they
relied too heavily on prior information and consequently took incorrect steps. Specifically, the EF-XPLOIT
(blue) variant failed to converge for some seeds since it took incorrect Newton steps and was unable to explore.
Finally, the expensive variants, in general, are more stable in this setting, as they only take single Newton
steps and are less likely to reach unfavorable regions. EXP-XPLOIT (orange), for example, converges to a real
merit vaue M/ = 0 for both experiments. We note that for the decaying polynomial example, we still see the
efficient variants converge faster, and this result reflects the complexity of the objective landscape.
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Comparisons with Baselines: RANDOM sampling and GDA wiTH FD never converge, though random
sampling reduces the merit function value. The noise introduced by finite differencing renders GDA wWITH
FD ineffective in this problem setting. Despite reaching a low merit function value, we note that LSS fails
to converge in many of these scenarios. In the decaying polynomial example, we see LSS iterate outward
far from the origin where V f becomes very small and no saddle points exist. Note that this behavior is
consistent with |Mazumdar et al.| (2019), which claims only that if LSS converges, it finds a saddle. Our
experiments on the decaying and high-dimension polynomials indicate that LSS fails to converge to a saddle
point far more often than BSP (Table . Furthermore, we find that OGDA-RR, OGDA-WR, SGDA-RR,
and SGDA-WR (Maheshwari et al., [2022)) always fail to find saddles in the two polynomial settings.

Runtime and Success Rate: We compare the runtimes of each algorithm variant in terms of the total
number of Newton steps taken. In Table[I} we present the total number of Newton steps taken by each
algorithm variant over 10 seeds for scenarios with a limited number of initially sampled points. Neglecting
the time to query the underlying function, the efficient variants require 400-500% more time compared to the
expensive variants. This outcome is expected, as ezpensive variants only take one Newton step between each
sample of the underlying function evaluation. Furthermore, as anticipated, the explore variants require more
Newton steps due to their exploration approach, but the difference is not substantial.

Domain Type of steps | Efficient | Expensive
High-Dimension Polynomial Explore 2858 1464
Exploit 2613 1381
Decaying Polynomial Explore 2690 1893
Exploit 3000 3000
ARIMA-MPC Explore 1053 353
Exploit 815 229

Table 1: Runtime Comparison: In this table, we show the number of Newton steps taken by each algorithm
variant for the limited number of initially sampled points scenarios over 10 seeds.

Domain Ef- Exp- Ef- Exp- LSS | SGDA- | SGDA- | OGDA- | OGDA- | RaNDOM GDA
Xplore | Xplore | Xploit | Xploit RR WR RR WR w/ FD
Decaying
Polynomial 60% 60% 30% 50% 15% 0% 0% 0% 0% 0% 0%

High-Dimension
Polynomial 95% 100% 65% 80% 70% 0% 0% 0% 0% 0% 0%

‘ARIMA-MPC‘90%‘95%‘75%‘85%‘—‘—‘-‘-‘-‘_‘_‘

Table 2: Success Rate: In this table, we show the percent of successful seeds out of 20 seeds for each
algorithm variant for the limited number of initially sampled points scenarios. We show results on our baseline
algorithms for two of the experiments. We adapt LSS to the black box setting by providing an oracle to
sample derivative information. To avoid including spurious saddle points as successes, we report the success
rate according to the true second-order conditions, defined in Prop. at the first solution BSP finds (i.e.,
without reinitialization). The methods proposed by [Maheshwari et al.| (2022)) always fail to find saddle points.

In Table 2] we display the full results for the percentage of successful seeds out of 20 seeds for each algorithm
variant in scenarios with a limited number of initially sampled points. The results reveal that the explore
variants exhibit more reliable convergence to saddle points compared to the ezploit variants. This outcome is
expected, as explore variants emphasize exploration and, therefore, are more likely to converge. Additionally,
the expensive variants demonstrate greater stability in this setting, as they only take single Newton steps and
are less prone to reaching unfavorable regions. The EF-XPLOIT variant exhibits the lowest success rate in
convergence; it did not achieve a 100% success rate in cases with a limited number of initial samples, as it
relied on exploitation and took incorrect Newton steps due to high uncertainty. We note that LSS often fails
to converge to a LSP due to algorithmic assumptions (which only guarantee that when LSS converges, it finds
a saddle) or domain-specific factors (iterating towards low-gradient regions of the objective landscape). We
find that Exp-XPLOIT, EXP-XPLORE, and EF-XPLORE find saddle points strictly more often than LSS, and
that EF-XPLOIT performs similarly or better depending on the experiment. Neither of our other baselines
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(RanpoMm and GDA wiTH FD) find solutions for these problems. Lastly, none of the algorithms from
[Maheshwari et al. (2022) (OGDA-RR, OGDA-WR, SGDA-RR, SGDA-WR) ever find a LSP, confirming
that methods for convex-concave settings are unable to find solutions for these problems of interest.

ARIMA MPC
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Figure 2: Saddle Point Optimization with BSP leads to Robust MPC on out-of-distribution
(OoD) data: Oun the left, we display the MPC tracking of the timeseries generated by the ARIMA model at
various iterations for the EF-XPLORE variant. The ARIMA target trajectory is depicted in purple, while
the corresponding MPC tracking is illustrated in orange. Initially, MPC performs poorly (iteration 0), but
gradually improves its tracking (iteration 17). Consequently, the ARIMA makes tracking more challenging
for the MPC (iteration 31), until they both reach equilibrium (iteration 50). On the right, we compare the
final robust MPC parameters (orange), obtained through our algorithm, to the nominal MPC parameters
(blue) on in-distribution data (left column) and OoD data (right column). Key takeaway: significantly, the
robust MPC successfully identifies robust MPC parameters and achieves 27.6% lower mean MPC cost on
OoD data compared to nominal MPC without reducing performance on in-distribution data.

Key takeaways from our experimental results: Our experimental results highlight several important
insights about our algorithms variants. 1) The efficient variants require fewer underlying function evaluations
and will work best when the prior is accurate. 2) The ezpensive variants offer faster runtimes and will provide
more stable convergence when the prior is inaccurate. 3) The ezplore variants provide a higher success rate
when the number of initial samples is limited. 4) The exploit variants exhibit faster convergence in the
setting with a large number of initial samples. These findings suggest that the choice of an algorithm variant
should depend on the specific characteristics of the problem at hand, such as the number of available initial
samples, runtime requirements, and domain knowledge of the underlying objective. Moreover, we find that
our methods converge faster than simple baselines based on random sampling and finite differencing, and
that they converge faster (and more reliably) than the state-of-the-art (second-order) LSS algorithm when it
is adapted to the black-box setting. This occurs even though our algorithm uses first-order methods to find
critical points and then verifies the result with second-order saddle point conditions.

Performance of BSP Variants in ARIMA-MPC Example: In Fig. [2| we evaluate the performance
of the MPC parameters found by our algorithms. Specifically, we compare the performance of the MPC
parameters obtained at the end of the EF-XPLORE variant on both the in-distribution and out-of-distribution
(OoD) ARIMA forecasting timeseries datasets. When MPC operates at a LSP, we can expect it to be robust
to perturbations in ARIMA parameters and therefore to OoD time series. Indeed, controller parameters
found by our algorithm toughly match in-distribution performance and achieve 27.6% lower mean MPC cost
on OoD data, thus showcasing our algorithm’s ability to locate saddle points which correspond to robust
performance on OoD data without reducing performance on in-distribution data. We provide the exact
details of this experiment in Appendix [B] and present full convergence results on the ARIMA-MPC example
in Fig. [d] These results mirror those of previous experiments, and we find that the exploit variants converge
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faster with many initial samples while the efficient variants do so with limited initial samples. Due to the poor
performance of the baselines RANDOM, LSS, OGDA-RR, OGDA-WR, SGDA-RR, and SGDA-WR on
the simpler polynomial examples, we do not add them for the ARIMA-MPC experimental setting.

Summary: Our experimental results demonstrate that our proposed BSP algorithms converge faster, sample
more efficiently, and produce more robust solutions than existing methods in a variety of black-box saddle
point optimization problems.

6 Conclusion

We present a BO-inspired framework for identifying local saddle points for an unknown objective function, f,
with zeroth-order samples. We frame the problem of finding local saddle points for an unknown objective
function as a two-level procedure. A low-level algorithm constructs a general-sum game from a Gaussian
process which approximates the unknown function f, and solves for the local Nash points of this game by
finding the roots of a system of nonlinear algebraic equations. A high-level algorithm queries the points
returned by the low-level algorithm to refine the GP estimate and monitor convergence toward local saddle
points of the original problem. We validate the effectiveness of our algorithm through extensive Monte
Carlo testing on multiple examples. Our results outperform several approaches, including a state-of-the-art
approach (LSS) our zeroth-order method outperforms despite providing it with a gradient oracle.

Limitations and Future Work: While our proposed framework shows promising results, we plan to
address certain limitations in future work. First, we plan to extend our strong experimental efforts with more
thorough theoretical guarantees using promising techniques introduced by recent works (Han et al.| 2024;
Gemp et al.| 2024) which propose objective functions using an equivalent definition of Nash equilibria and for
which local optima approximate Nash equilibria. Moreover, [Han et al.| (2024) introduce a GP-based game
solver based on trust-region methods and an associated no-regret proof which may be relevant for developing
future theoretical results. Second, our method currently finds saddle points by solving for first-order critical
points, checking that they satisfy second-order conditions, and reinitializing the algorithm with the additional
data if not. In future work, we intend to explore ways to directly incorporate second-order sufficient conditions
(Prop. to enhance the performance within the general-sum low-level game of our framework. Third,
we recognize that GPs can become prohibitive in higher dimensions, limiting this method’s application to
some real-world problems. As such, we plan to identify methods to adapt the framework to increasing
dimensionality. Fourth, to further demonstrate our framework’s adaptability, we will test our algorithm with
other acquisition functions, such as knowledge gradient (Ryzhov et al.,|2012) and entropy search (Hennig
& Schuler] 2012)). Lastly, we plan to apply our method to additional real-world scenarios, including stock
market portfolio optimization, online marketplace auctions, and robust dynamic control by extending our
MPC example.

References

Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. Local saddle point optimization:
A curvature exploitation approach. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings
of Machine Learning Research, pp. 486-495. PMLR, 16-18 Apr 2019. URL https://proceedings.mlr)|
press/v89/adolphsi9a.htmll

Shubhankar Agarwal, David Fridovich-Keil, and Sandeep P Chinchali. Robust forecasting for robotic control:
A game-theoretic approach. In 2023 IEEFE International Conference on Robotics and Automation (ICRA),
2023.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization
layers. In Advances in Neural Information Processing Systems, 2019.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel. The
mechanics of n-player differentiable games. In International Conference on Machine Learning, pp. 354—-363.
PMLR, 2018.

13


https://proceedings.mlr.press/v89/adolphs19a.html
https://proceedings.mlr.press/v89/adolphs19a.html

Under review as submission to TMLR

Tamer Basar and Geert Jan Olsder. Dynamic Noncooperative Game Theory, 2nd Edition. Society for
Industrial and Applied Mathematics, 1998. doi: 10.1137/1.9781611971132. URL https://epubs.siam|
org/doi/abs/10.1137/1.9781611971132.

Michele Benzi, Gene H. Golub, and Jorg Liesen. Numerical solution of saddle point problems. Acta Numerica,
14:1-137, 2005. doi: 10.1017/50962492904000212.

Dimitris Bertsimas, Omid Nohadani, and Kwong Meng Teo. Robust optimization for unconstrained simulation-
based problems. Operations Research, 58(1):161-178, 2010. doi: 10.1287/0pre.1090.0715. URL https:
//doi.org/10.1287/opre.1090.0715.

Tlija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher. Adversarially robust optimization
with gaussian processes. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning. ArXiv,
abs/1012.2599, 2010a.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning, 2010b. URL
https://arxiv.org/abs/1012.2599.

Ashish Cherukuri, Bahman Gharesifard, and Jorge Cortes. Saddle-point dynamics: conditions for asymptotic
stability of saddle points. SIAM Journal on Control and Optimization, 55(1):486-511, 2017.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary markov
decision processes: The blessing of (more) optimism. In International Conference on Machine Learning,
pp. 1843-1854. PMLR, 2020.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Advances
in neural information processing systems, 27, 2014.

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-efficient
learning in robotics and control. IEEE transactions on pattern analysis and machine intelligence, 37(2):

408-423, 2013.

John D’Errico. nearestspd. https://www.mathworks.com/matlabcentral/fileexchange/
42885-nearestspd. Accessed: 2025-04-07.

Lukas Frohlich, Edgar Klenske, Julia Vinogradska, Christian Daniel, and Melanie Zeilinger. Noisy-input
entropy search for efficient robust bayesian optimization. In Silvia Chiappa and Roberto Calandra
(eds.), Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics,
volume 108 of Proceedings of Machine Learning Research, pp. 2262-2272. PMLR, 26-28 Aug 2020. URL
https://proceedings.mlr.press/v108/frohlich20a.htmll

Tan Gemp, Luke Marris, and Georgios Piliouras. Approximating nash equilibria in normal-form games via
stochastic optimization. arXiv preprint arXiv:2310.06689, 2024.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139-144, 2020.

14


https://epubs.siam.org/doi/abs/10.1137/1.9781611971132
https://epubs.siam.org/doi/abs/10.1137/1.9781611971132
https://doi.org/10.1287/opre.1090.0715
https://doi.org/10.1287/opre.1090.0715
http://github.com/google/jax
https://arxiv.org/abs/1012.2599
https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
https://proceedings.mlr.press/v108/frohlich20a.html

Under review as submission to TMLR

Kushagra Gupta, Xinjie Liu, Ufuk Topcu, and David Fridovich-Keil. Second-order algorithms for finding
local nash equilibria in zero-sum games. arXiv preprint arXiv:2406.03565, 2024.

Minbiao Han, Fengxue Zhang, and Yuxin Chen. No-regret learning of nash equilibrium for black-box games
via gaussian processes. 2024.

Graeme Henkelman, Blas P. Uberuaga, and Hannes Jénsson. A climbing image nudged elastic band method
for finding saddle points and minimum energy paths. The Journal of Chemical Physics, 113(22):9901-9904,
12 2000.

Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global optimization. J.
Mach. Learn. Res., 13(null):1809-1837, jun 2012. ISSN 1532-4435.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex optimization
for machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM (JACM), 68(2):
1-29, 2021.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. In Fkonomika ¢
Matematicheskie Metody, volume 12, pp. 747-756, 1976.

Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait optimization with gaussian
process regression. In Proceedings of the 20th International Joint Conference on Artifical Intelligence,
IJCAT 07, pp. 944-949, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

Eric Luxenberg, Philipp Schiele, and Stephen Boyd. Robust bond portfolio construction via convex-concave
saddle point optimization. arXiv preprint arXiv:2212.02570, 2022.

Chinmay Maheshwari, Chih-Yuan Chiu, Eric Mazumdar, Shankar Sastry, and Lillian Ratliff. Zeroth-order
methods for convex-concave min-max problems: Applications to decision-dependent risk minimization. In
Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pp. 6702-6734. PMLR, 28-30 Mar 2022.

FEric Mazumdar, Lillian J Ratliff, and S Shankar Sastry. On gradient-based learning in continuous games.
SIAM Journal on Mathematics of Data Science, 2(1):103-131, 2020.

Eric V. Mazumdar, Michael I. Jordan, and S. Shankar Sastry. On finding local Nash equilibria (and only
local Nash equilibria) in zero-sum games. ArXiv, abs/1901.00838, 2019.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

J. Mockus. On bayesian methods for seeking the extremum. In G. I. Marchuk (ed.), Optimization Techniques
IFIP Technical Conference Novosibirsk, July 1-7, 1974, pp. 400-404, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg.

José Moura and David Hutchison. Game theory for multi-access edge computing: Survey, use cases, and
future trends. IEEE Communications Surveys & Tutorials, 21(1):260-288, 2019. doi: 10.1109/COMST.
2018.2863030.

Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 15(1):229-251, 2004.

J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and Financial
Engineering. Springer New York, 2006. ISBN 9780387400655. URL https://books.google.co.in/books?
1d=VbHYoSyelFcC.

FM Nyikosa. Adaptive Bayesian optimization for dynamic problems. PhD thesis, University of Oxford, 2018.

15


https://books.google.co.in/books?id=VbHYoSyelFcC
https://books.google.co.in/books?id=VbHYoSyelFcC

Under review as submission to TMLR

Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio. On the saddle point problem for
non-convex optimization, 2014. URL https://arxiv.org/abs/1405.4604.

Muhammad I. Qureshi and Usman A. Khan. Distributed saddle point problems for strongly concave-convex
functions. IEEE Transactions on Signal and Information Processing over Networks, 9:679-690, 2023. doi:
10.1109/TSIPN.2023.3317807.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine learning,
pp. 63-71. Springer, 2003.

Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. On the characterization of local nash equilibria in
continuous games. IEEE transactions on automatic control, 61(8):2301-2307, 2016.

J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic differentiation in Julia. arXiv:1607.07892
[es.MS], 2016. URL https://arxiv.org/abs/1607.07892.

Ilya O. Ryzhov, Warren B. Powell, and Peter I. Frazier. The knowledge gradient algorithm for a general class
of online learning problems. Operations Research, 60(1):180-195, 2012.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the human
out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2016. doi:
10.1109/JPROC.2015.2494218.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, pp. 1015-1022, Madison, WI, USA, 2010.
Omnipress. ISBN 9781605589077.

Simon Stent, Andrew P. Best, Shabnam Hakimi, Guy Rosman, Emily S. Sumner, and Jonathan DeCastro.
Adversarial simulation for developing and testing assistive driving technology, Jul 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. second. A Bradford Book,
2018.

Jorgen Tind. Saddle Point Theory and Optimality Conditions, pp. 3355—3357. Springer US, Boston, MA,
2009. ISBN 978-0-387-74759-0. doi: 10.1007/978-0-387-74759-0_574. URL https://doi.org/10.1007/
978-0-387-74759-0_574.

Paul Tseng. On linear convergence of iterative methods for the variational inequality problem. Journal of
Computational and Applied Mathematics, 60:237-252, 1995.

J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100(1):295-320, 1928. doi:
10.1007/BF01448847. URL https://doi.org/10.1007/BF01448847.

Zhongruo Wang, Krishnakumar Balasubramanian, Shigian Ma, and Meisam Razaviyayn. Zeroth-order
algorithms for nonconvex—strongly-concave minimax problems with improved complexities. Journal
of Global Optimization, 2022. doi: 10.1007/s10898-022-01160-0. URL https://doi.org/10.1007/
s10898-022-01160-0.

Julia Westermayr and Philipp Marquetand. Machine learning for electronically excited states of molecules.
Chemical Reviews, 121(16):9873-9926, 08 2021. doi: 10.1021/acs.chemrev.0c00749. URL https://doi|
org/10.1021/acs.chemrev.0c00749.

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann. Multi-class active learning
by uncertainty sampling with diversity maximization. International Journal of Computer Vision, 113:
113-127, 2015.

16


https://arxiv.org/abs/1405.4604
https://arxiv.org/abs/1607.07892
https://doi.org/10.1007/978-0-387-74759-0_574
https://doi.org/10.1007/978-0-387-74759-0_574
https://doi.org/10.1007/BF01448847
https://doi.org/10.1007/s10898-022-01160-0
https://doi.org/10.1007/s10898-022-01160-0
https://doi.org/10.1021/acs.chemrev.0c00749
https://doi.org/10.1021/acs.chemrev.0c00749

Under review as submission to TMLR

Appendix for A Framework for Finding Local Saddle Points in Two-Player Zero-Sum
Black-Box Games

[A Technical Insights| 17
IA.1 UCB and LCB will approach one another at sampled points| . . . . . . ... ... ... .... 17
IA.2 Variance of the Sampled Point| . . . . . . ... ... .. ... ... ... . . 19

B Experimental Details| 19
IB.1 Newton’s method implementation details| . . . . .. ... .. ... ... ... ... . 19
IB.2  Gradient Descent-Ascent with Finite Differencing implementation details] . . . . . . ... .. 20
IB.3  Local Symplectic Surgery implementation details| . . . . . .. ... ... ... 00 20
IB.4  Decaying polynomial implementation details|. . . . . . .. ... ... 0oL 20
IB.5 High-dimension polynomial implementation details| . . . . .. ... .. ... .. ... .... 20
[B.6 ARIMA tracking Model Predictive Controller (MPC)[. . . . . .. ... ... ... ... .... 20
IB.7 Robust MPC experimental details| . . . . . ... .. ... ... 0 . 21
IB.8 Updating Hyperparameters| . . . . . . . . . . . . . 21

[C Ablation Studics 21
IC.1  An Example of Unsuccesstul Runs using the Gradient Descent-Ascent with Finite Differencing |

[ Baselinel . . . . . o L e 23

A Technical Insights

In this section, we delve into the convergence properties of our proposed algorithms. As mentioned in Sec.
when we sample local Nash points obtained by Alg. [I} the variance in the confidence bounds at that local
Nash point decreases, and LCB/UCB converge towards each other eventually at the local Nash point. In
Lemma [A7T] we demonstrate that with zero observation noise, the confidence bounds at a sampled point are
equal, i.e., LCB = UCB. Subsequently, in Remark we explore the more general case involving non-zero
observation noise, positing that as we repeatedly sample in close proximity to the same point, the variance of
the sampled point becomes predominantly dependent on the observation noise, resulting in LCB ~ UCB.
Lastly, in Appendix [A-2] we provide experimental evidence to corroborate the decrease in the variance of the
sampled point during our algorithm’s execution.

Consequently, these results attest that as we sample the local Nash point, the variance in the GP at that point
will decrease, and eventually becomes a observation noise variance. As such, the gradient of the variance,
Vo — 0, and therefore VLCB, VUCB — V. As stated in Sec. [I.3] since V will become a reliable estimator
of the true gradients of the unknown function, V f, finding local Nash points of the confidence bounds will
eventually lead to local saddle points of p and consequently of f. This convergence property is a key feature
of our proposed algorithms, ensuring that the method converges to a solution that represents a local saddle
point of the underlying unknown function.

A.1 UCB and LCB will approach one another at sampled points

For the ease of the proofs, we will focus on the case when r = f(x) + 2z, where z ~ N’ (O, af). The proof can
easily be generalized for r = f(z,y) + z.

We denote the set of observed points as X = {z1,22,...,2,} and r = {r1,r2,...,r,}. Consider that the
point, x,, has already been sampled, as such z, = =; for some i € {1... N}. Now, recall the predictive

17



Under review as submission to TMLR

variance of the point x, is:
o(2. X, r,10) = K (24, 20) — k] (B(X, X) + 021) "Lk, (15)
where k, = [K(21,2.), K (22, %), ..., K(n,2,)] ", and (X, X) € R™ " given by

K (x1,21) K (x1,22) - K(x1,2)

K (zn,21) K(xn,z2) -+ K(xh,n)

Lemma A.1 (Equality of UCB; and LCB; at sampled points under zero observation noise). Consider the
upper confidence bound, UCBy, and the lower confidence bound, LCBy, for a given time step t. In the case of
zero observation noise, i.e., zz = 0, the confidence bounds become equal for any sampled point x such that
UCB;(z) = LCBy(z).

Proof. Since, z; = 0, the predictive variance at the point z, is:

o(z) X, 2,) = K (24, 2,) — k] 27k, (17)

Let the point z, be some point z; € X, i.e., x, = x; for some 1 < i < n. Then, the corresponding kernel
vector is given by the i-th column of the covariance matrix (X, X), so k. =k} = %.; and the kernel value
is K(xy,xs) = K(x;,x;). The variance at the new point z, becomes:

oz X, 1 zy) = K(x, ;) — EI—ZE—lE:,i. (18)
Next, we have:

Iy =e (19)

where e; is the i-th standard basis vector. This can be seen from the property of the inverse matrix, i.e.,
Y(X,X)12(X, X) = I, where I is the identity matrix.

Thus, the variance at the new point x, simplifies to:
o(xa| X,y r ) = K(x,25) — Zjiei = K(z;, ;) — Xy (20)

Since . is a previously sampled point, the kernel function K (x;,z;) and ¥;,; are equal to 1. Thus, the
variance at x, is:

o(x|X,ryzy) =1—-1=0. (21)

This shows that the variance at a previously sampled point z, is zero in the no observation noise case, for
any kernel function.

UCB and LCB at the point z, are given by:

UCB:¢(xx) = pit (z4) + Bror (zs), LCBi(xx) = pr (24) — Prot (z4) . (22)
Since we just showed the sampled point, x,, the variance o (x,) = 0. Then:

UCBy(zx) = LCBy(x,) = g (z4) (23)
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Figure 3: The variance at the sampled points decreases over time.

Remark A.2 (Approximate equality of UCB and LCB at sampled points under observation noise). Consider
the upper confidence bound, UCBy, and the lower confidence bound, LCBy, for a given time step ¢t. In the
presence of observation noise, i.e., z; ~ N (0, ag), when the same point is sampled repeatedly, or nearby
points are sampled, the predictive variance o(x) approaches the observation noise o2. This is based on the
fact after repeated sampling, the only uncertainty left about the sampling point will be due to the observation

noise. As such, as the predictive variance becomes smaller due to repeated sampling, the confidence bounds
at the sampled point = will have UCB,(z) ~ LCB,(z).

A.2 Variance of the Sampled Point

In Fig. 3] we demonstrate the reduction in the variance of the sampled points as we approach the saddle
point during the execution of our algorithms. We compare cases with and without observation noise for a
convex-concave objective function of the form az? + bxy — cy?, where coefficients a, b, ¢ > 0, scenario using 10
seeds. We note that LSPs will be locally convex-concave in their neighborhoods and so these results will
apply locally in those scenarios. The blue line represents the distance between two consecutive points for
each function evaluation, while the orange line indicates the variance in the GP prior at the sampled points.
The primary observation is that as we take smaller Newton steps and sample points close to each other, the
variance at those points decreases, thus increasing the accuracy of the mean function p; and its gradient V
as estimators for the objective function f and its gradient V f around the sampled points.

B Experimental Details

We provide the exact implementation details of all the experiments. Starting with compute, all experiments
were conducted on a desktop computer equipped with an AMD Ryzen 9 5900X CPU and 32 GB RAM. No
GPUs were required for these experiments.

B.1 Newton’s method implementation details

1. Invertibility of Jacobian: To solve for the Newton step p(x:,y:) in @, the Jacobian matrix J(z¢, y:)
must be non-singular. Therefore, at each new iterate, we need to verify the invertibility of J(z¢,y:). A
common way to ensure invertibility is by adding a constant factor A\I to the diagonal. In this work, we choose
the damping factor A by using the L2 norm of the difference between the Jacobian matrix and its nearest
symmetric positive semidefinite approximation. We obtain the nearest symmetric positive semidefinite matrix
to the Jacobian using the method using (D’Errico)).

2. Wolfe Linesearch: Newton’s method alone (with a unit step length) does not guarantee convergence to
the root unless the starting point is sufficiently close to the solution. The problem of nonlinear root-finding
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(Nocedal & Wrightl {2006, Ch.11) can be reframed in terms of minimizing a merit function which is typically
the squared norm of the first-order optimality conditions (Nocedal & Wrightl [2006, Eq. 11.35). To enhance
robustness, we employ a Wolfe linesearch to ensure sufficient decrease of the merit function M. Thus, our use
of linesearch aligns with standard practice, as discussed and explained in [Nocedal & Wright| (2006 Ch.3).

B.2 Gradient Descent-Ascent with Finite Differencing implementation details

We utilize JAX (Bradbury et all |2018]) to compute gradients via finite differencing of function samples.

B.3 Local Symplectic Surgery implementation details

For LSS, we utilize the same regularization and parameters described by (Mazumdar et al., 2019, Sec. 5.1).
We use ForwardDiff.jl (Revels et al., 2016]) for computing gradients for LSS.

B.4 Decaying polynomial implementation details

The objective function of the decaying polynomial problem is depicted in the top left plot of Fig.[[] The
decision variables were x,y € R%. To ensure that algorithms are initialized at points with a non-zero gradient
in the decaying polynomial example (top row), we ensure these are selected from the non-flat regions of the
function (a distance between 9 and 18 from the origin). The Hessian regularization constant was A = 0.01.
The strong Wolfe parameters, according to (Nocedal & Wright, [2006, Ch.3), were ¢; = 0.01 and ¢ = 0.7. We
added observation noise z; ~ N (0, 0% = 1) to each underlying objective function sample. We utilize JAX
(Bradbury et al., 2018) to compute gradients for this example.

B.5 High-dimension polynomial implementation details

The objective function of the high-dimension polynomial problem is depicted in the bottom left plot of Fig. [T}
The decision variables were x,y € R®, resulting in a combined decision variable of 10 dimensions. The Hessian
regularization constant was A = 0.01. The strong Wolfe parameters, according to (Nocedal & Wright], 2006,
Ch.3), were ¢; = 0.01 and c¢3 = 0.7. We added observation noise z; ~ N (O, ol = 0.003) to each underlying
objective function sample. We utilize JAX (Bradbury et all [2018) to compute gradients for this example.

B.6 ARIMA tracking Model Predictive Controller (MPC)

In this experiment, an ARIMA process synthesizes a discrete time 1D time series of length F', denoted by
sp € RF, for an MPC controller to track. Specifically, the ARIMA process generates the time series as:
Si41 = b+ asy + Bwy_1 + wy, where g € R is the mean, w = N (0,0) € R is noise, and a € R, 3 € R are
model parameters. Consequently, we represent the ARIMA process for initial state sg and model parameters
a, fB: sp = ARIMA(sg, o, B).

The MPC controller takes the ARIMA time series, sg, as input and returns a controller cost fypc € R to
track the given time series. The MPC controller solves the following optimization problem:

F
min MPC(A, B, 30, 5r) = % _ (8t — s¢) | Q (8¢ — s1) + ] Riy. (24a)
v =0
subject to: & = A§;_1 + Bly_1 (24b)
Umin S Ut S Umax- (24(3)

The optimization problem has quadratic costs and linear constraints. The quadratic costs in , measure
how well the controller tracks the timeseries sp, and how much controller effort was used. The linear constraints
in encapsulate the system dynamics, and A, B € R are controller parameters that describe the dynamics.
The MPC has additional control constraints in , which describe the control limits of the controller. As
such, we represent the optimization problem of the MPC controller as follows: fypc = MPC(A, B, 8¢, sF),
which returns the final overall cost of tracking the ARIMA-generated time series sg, and initial state, §q.
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In our experiment, the decision variables were z,y € R?, which resulted in a combined decision variable of
four dimensions. We set the Hessian regularization constant to A = 0.001. Following the recommendations
in (Nocedal & Wright|, 2006, Ch.3), we chose strong Wolfe parameters ¢; = 0.01 and ¢; = 0.8. Both the
parameters of the ARIMA process («, 8) and the MPC parameters (A, B) were constrained to lie within the
range [—1,1]. By incorporating these constraints and parameters, we ensured a consistent framework for the
optimization problem while providing sufficient flexibility for the ARIMA process and the MPC to interact in
the zero-sum game. We utilized CVXPYLAYERS (Agrawal et al.l |2019)) for computing gradients.

B.7 Robust MPC experimental details

In this section, we provide the details of the Robust MPC experiments. In this experiment, we demonstrated
that the MPC parameters found at the end of our zero-sum game between the ARIMA antagonist player and
the MPC protagonist player will be more robust to out-of-distribution data. Our algorithm will converge to a
local saddle point of this zero-sum game, where both players will be in equilibrium. The ARIMA antagonist
player cannot find more adversarial parameters for MPC, while MPC cannot get better at tracking ARIMA
generated forecasts.

Specifically, for the experiment, we compared a nominal MPC with a robust MPC (found using our method)
on in-distribution data and out-of-distribution data. To generate in-distribution data, we sampled 500 ARIMA
time series forecasts, s, with a, 8 € [—1,1]. We chose out-of-distribution ARIMA parameters similar to the
final ARIMA antagonist player parameters. Although the parameters were constrained to be within [—1, 1]
during the actual algorithm, we selected out-of-distribution parameters o = —0.1 and § = —1.2 and sampled
500 ARIMA time series forecasts for these parameters. This choice enabled us to evaluate the robustness
of the MPC against data that deviates from its original training distribution. Finally, we picked nominal
MPC parameters, A, B, by fitting the MPC parameters to in-distribution data using supervised learning,
i.e., the best A, B to minimize the MPC tracking cost for the in-distribution data. We chose robust MPC
parameters as the final MPC protagonist player at the convergence of the zero-sum game. By comparing the
performance of the nominal and robust MPCs on both in-distribution and out-of-distribution data, we aimed
to demonstrate the effectiveness of our method in finding robust MPC parameters that can handle deviations
from the original training data distribution better than the nominal MPC.

In Fig. |2 we compared the MPC tracking costs of both the MPCs on in-distribution data and out-of-
distribution data. As expected, the nominal MPC performs better on in-distribution data since it is trained
on this data. However, the robust MPC significantly outperforms the nominal MPC on out-of-distribution
data by achieving a 27.6% lower mean MPC cost. Additionally, the poor performance of the nominal MPC
indicates that the final ARIMA antagonist player parameters are indeed challenging. These results suggest
that our algorithm has successfully identified robust MPC parameters and adversarial ARIMA parameters.

B.8 Updating Hyperparameters

Steps for updating ps41, o441, UCByy1, and LCByyq:

1. Learn hyperparameters of the kernel function using maximum likelihood estimation, as explained in
Section 2.3 of |Rasmussen, (2003)).
2. Using the learned hyperparameter and updated kernel function, construct the p, oy using the current
dataset, as explained in Eq 2.25 and 2.26 in |Rasmussen| (2003).
3. Construct new UCB; and LCB;. This is straightforward since:
UCB; = puy + B % 04, LCB, = puy — 8 % 0y

4. Collect new samples and repeat the process.

C Ablation Studies

We generate full convergence rate results for all of our algorithm variants across the decaying polynomial,
high-dimension polynomial, and ARIMA-MPC examples. For a full discussion on our variants, we refer the
reader to Sec. Bl
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Figure 4: Comparisons of our proposed algorithm variants: We compare all four variants of our
proposed algorithms across the three experiments (each column) described in Sec. |5l The horizontal axis
denotes the number of underlying function evaluations, while the vertical axis represents the value of the real
merit function, Mf. The top row considers test cases with a large number of initially sampled points, while
the bottom row examines test cases with a limited number of initially sampled points. The key takeaway
is that generally, exploit variants converge faster with a large number of initial samples due to effective
utilization of accurate priors, while ezplore variants exhibit quicker convergence with limited samples by
prioritizing exploration amid uncertainty. Efficient variants converge faster with many initial samples by
taking multiple accurate Newton steps, while expensive variants show stable though often slower convergence
with limited samples, taking single Newton steps to avoid unfavorable regions.
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The results in Fig. [4] reveal that the explore variants exhibit more reliable convergence to saddle points
compared to the exploit variants. This outcome is expected, as explore variants emphasize exploration and,
therefore, are more likely to converge. Additionally, the expensive variants demonstrate greater stability in
this setting, as they only take single Newton steps and are less prone to reaching unfavorable regions. The
Er-XPLOIT variant exhibits the lowest success rate in convergence, as it relies on exploitation and may take
incorrect Newton steps.

C.1 An Example of Unsuccessful Runs using the Gradient Descent-Ascent with Finite Differencing
Baseline

In Fig. |5l we provide a random sample of four runs of the gradient descent-ascent with finite differencing on
the high-dimension polynomial example. This baseline never succeeds on this testbed, and these examples
indicate a few of the reasons, including noisy gradient estimates that prevent converging to a point which is
not a saddle, as well as leaving the feasible region and never recovering.
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Figure 5: A random sample of four runs of the GDA WiTH FD on the high-dimension polynomial. Three of
these runs fail because they leave the feasible region and follow the gradient (of the merit function) away from
it. Another fails to find a saddle point due to noise introduce by finite differencing, resulting in convergence
to a point which is not a Nash point. Each arrow indicates the direction of the step.
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