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Abstract

Geometric deep learning has recently gained influence, as it allows the extension of con-
volutional neural networks to non euclidean domains. In this paper graph neural net-
works (GNNs) are used for the image reconstruction and coil combination of undersampled
concentric-ring k-space MRSI data. We show that graph U-nets perform better on under-
sampled data than GNNs. Specifically, results suggest that the omission of self-connecting
edges results in a more stable behavior and better training for graph U-nets.
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1. Introduction

MR spectroscopy imaging (MRSI) is an imaging modality that has many applications in
medicine, as it allows the identification of various biochemical substances in vivo (Mauds-
ley et al., 2009). In recent years, fueled by advances in deep learning (DL), new imaging
techniques have been developed in medicine and also MRI has gained from this develop-
ment (Lundervold and Lundervold, 2019). However, in MRSI irregular sampling schemes
can be beneficial, and for those, DL based reconstruction is lacking. Here, we investigate
geometrical deep learning for k-space reconstruction of undersampled concentric-ring sam-
pled MRSI data. The current state of the art approach for reconstruction of undersampled
multi-coil data is parallel imaging (with schemes such as SENSE and GRAPPA) (Uecker
et al., 2014). The latter is a kernel based approach, and therefore naturally gives rise to deep
learning based methods. In this paper, graph U-nets are proposed for the reconstruction of
non-Cartesian k-space data.

2. Data and Method

Non-water surppressed MRSI data was collected from seven volunteers in ten random po-
sitions. The data of the first six volunteers was used for training and the data of the last
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volunteer was split up into validation and testing set. In each scan concentric ring trajec-
tories where used, in total 16 rings with 388 points per ring each were acquired. Graphs
were defined by connecting point pairs with a distance less than 1.5 times Nyqusit crite-
rion. These rings were undersampled, by fully sampling the inner 6 and then skipping every
second of the outer rings. The output data for training and evaluation was computed by
transforming the fully sampled data to image space, where ESPIRiT (Uecker et al., 2014)
sensitivity maps were applied, and then back to k-space. We evaluated two models. The
first network (referred to as GNN ) consists of four gaussian mixture model (GMM) convo-
lutional layers (Monti et al., 2017), each followed by a tanh activation function. The second
model (U-Net) is a U-net (Ronneberger et al., 2015). Here five GMM convolutional layers
are used, each followed by max-pooling or up-sampling with a window size of 4×2 and tanh
or ReLU activation.

Additionally, a naive GRAPPA approach was implemented. Therefore, the circles were
split up in segments with a width of 24 nodes and a length of all 16 rings. In the fully
sampled area a kernel with six weights per coil was optimized and used to reconstruct the
missing rings of its segment.

3. Evaluation and Results

Figure 1: Training/Validation loss of GNN and U-net.

First the four layer GNN was trained on fully sampled and undersampled data, as well as
with and without self-connecting edges. The training and validation loss, computed by the
mean squared difference, is shown in figure 3 on the left. Self-connecting edges improve the
validation loss during training of the network in both cases.

GRAPPA GNN U-net

Position 1 5908.9 137.0 67.9
Position 2 6713.1 55.7 53.0
Position 3 2610.4 42.5 27.8
Position 4 7548.6 126.9 39.1

Table 1: Mean squared error of four scanned
head positions in the test set.

In figure 3 on the right, the training-
and validation loss of the graph U-net
with undersampled data with and with-
out self-connections is plotted. In this
case, the omitted self-connecting edge
leads to a reduced and more stable loss.

On the test set we reconstructed im-
ages from understampled data by the
naive GRAPPA algorithm, the GNN with
self-connecting edges and the graph U-net
without self-connecting edges and used
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Fourier transform in all spacial dimensions to reconstruct the image. The mean squared
error of each scanned position is presented in table 3 and shows that the U-net performs
best. In figure 3 qualitative results of each approach are compared.

Figure 2: Self-normalized images. Left to right: Ground Truth, GRAPPA, GNN, U-net.

4. Discussion

Compared to the naive GRAPPA approach and the GNN, the graph U-net leads to an
improvement of the reconstruction of undersampled concentric-ring MRSI, due to its ability
to identify high-level features.

The omission of self-connecting edges leads to a decreased and more stable loss with
the U-net. This may be the case, because the network is forced to search for informative
features in the neighborhood of each node, instead of simply passing on information.
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