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Abstract

Vision-Language Models (VLMs) and Multi-Modal Lan-001
guage Models (MMLMs) have become prominent in au-002
tonomous driving research, as these models can provide in-003
terpretable textual reasoning and responses for end-to-end004
autonomous driving safety tasks using traffic scene images005
and other data modalities. However, current approaches to006
these systems use expensive large language model (LLM)007
backbones and image encoders, making such systems un-008
suitable for real-time autonomous driving systems where009
tight memory constraints exist and fast inference time is010
necessary. To address these previous issues, we develop011
EM-VLM4AD, an efficient, lightweight, multi-frame vision012
language model which performs Visual Question Answer-013
ing for autonomous driving. In comparison to previous014
approaches, EM-VLM4AD requires at least 10 times less015
memory and floating point operations, while also achiev-016
ing higher BLEU-4, METEOR, CIDEr, and ROGUE scores017
than the existing baseline on the DriveLM dataset. EM-018
VLM4AD also exhibits the ability to extract relevant infor-019
mation from traffic views related to prompts and can answer020
questions for various autonomous driving subtasks. We re-021
lease our code to train and evaluate our model here.022

1. Introduction023

Vision-Language Models (VLMs) have emerged as power-024
ful tools that possess holistic knowledge to solve tasks at025
the intersection of vision and language. This makes them026
a promising asset in autonomous driving (AD), allowing027
for a driver to interact with the VLM which can provide028
interpretable language representations of various driving029
safety tasks. Furthermore, VLMs can serve as end-to-end030
autonomous driving systems, eliminating integration and031
propagating errors between separate models specializing in032
specific sub-tasks of autonomous driving such as percep-033
tion [14–16] and trajectory planning [25]. These potential034
benefits have propelled the development of many vision-035

language models and multimodal language models tailored 036
for autonomous driving applications [5, 24, 31, 32, 38]. 037
These models cover various aspects of autonomous driving 038
including closed-loop control, perception tasks, and traffic 039
agent behavior analysis. 040

Typically, the process in a VLM is the following: vision 041
and text features are encoded separately, then fused together 042
through a concatenation or projection layer, and then finally 043
fed into an LLM to output some probability distribution 044
over the vocabulary [37]. While generating text embeddings 045
is relatively low-cost, the LM and image embeddings can 046
often entail high computational costs. In real-time systems 047
such as autonomous driving, prioritizing the development of 048
VLMs with efficient inference times is crucial for practical 049
deployment in vehicles. However, current research in ap- 050
plying multimodal language models to autonomous driving 051
predominantly use large models such as BLIP-2 [20], GPT 052
3.5 [24], and LLaMA-7b [32], all of which contain over one 053
billion parameters. Consequently, these models require ex- 054
pensive hardware and longer inference times, limiting their 055
potential to be applied in current vehicles and accessibility 056
for researchers with limited computational resources. 057

This paper focuses on the development of lightweight 058
vision-language models with less than one billion param- 059
eters than can accurately and efficiently answer questions 060
related to autonomous driving safety tasks. We develop 061
the model EM-VLM4AD: Efficient, Multi-Frame Vision- 062
Language Model for Autonomous Driving. We use the 063
DriveLM dataset [31], which offers real, multi-view traf- 064
fic scene images paired with question/answer pairs to train 065
this model. Our contributions are as follows: 066

• We develop an efficient, smaller vision-language model 067
EM-VLM4AD that consumes at least 10x less memory 068
and floating point operations (FLOPs) than current AD- 069
VLMs, and can also respond to questions conditioned on 070
multiple frames. 071

• We explore two different lightweight LM backbones for 072
EM-VLM4AD: a finetuned Text-to-Text Transfer Trans- 073
former (T5) Base LM and an 8-bit quantized T5-Large 074
LM finetuned using low-rank adaptation (LoRA) [18]. 075
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• We compare our model efficiency and performance on076
BLEU-4 (Bilingual Evaluation Understudy), CIDEr077
(Consensus-based Image Description Evaluation),078
ROUGE-L (Recall-Oriented Understudy for Gisting079
Evaluation), and METEOR (Metric for Evaluation of080
Translation with Explicit Ordering) to the baseline081
for the DriveLM dataset [31], demonstrating stronger082
performance in all metrics even with superior efficiency083
using a much smaller model.084

2. Related Research085

2.1. Vision-Language Models086

Initially designed to operate on sequence data, Transform-087
ers [33] achieved state-of-the-art performance for natural088
language processing tasks. This propelled the develop-089
ment of Large Language Models, which learn general sta-090
tistical properties of language through pretraining Encoder091
[9], Encoder-Decoder [29], and Decoder [2, 27, 32] Trans-092
former architectures on a large corpus of tokens. These pre-093
trained models can then be finetuned for downstream, more094
specialized language tasks. Dosovitskiy et al. [10] intro-095
duced the application of Transformers to image tasks with096
the Vision Transformer (ViT), which converts images into097
a sequence representation of image patches that can be pro-098
cessed by Transformers. Vision-Language Models bridge099
the gap between LLMs and Vision Transformers, encod-100
ing images and text into a combined latent representation101
and then utilizing cross-modal pre-training tasks to learn102
text and image correlations. This general approach to mul-103
timodal learning has sparked a variety of vision-language104
models. Radford et al. [28] devise a pre-training task of105
matching text captions with images to develop CLIP, which106
learns state-of-the-art image representations and exhibits107
strong zero-shot transfer capabilities for many image classi-108
fication tasks. BLIP-2 [20] introduces a two stage pretrain-109
ing process to train a Querying Transformer “QFormer” that110
serves as a intermediary between a frozen image encoder111
and language model. This approach outperforms much112
larger vision-language models such as Flamingo [1] and113
is capable of zero-shot image-to-text generation. Instruct-114
BLIP [7] builds off BLIP-2 and is a general-purpose VLM115
that aggregates public vision-language datasets and trans-116
forms them into an instruction tuning format. The VLM117
most similar to the model introduced in this paper is VL-118
T5 [6], which extends a pre-trained T5 to learn to generate119
text labels conditioned on a combination of a text and im-120
age embedding. Using a pre-trained LLM as a framework121
for multi-modal tasks harnesses the text generation ability122
of these models, critical for the question-answering task123
in our research. Despite their strong performance across124
many tasks, deploying these large models, which often ex-125
ceed one billion parameters, is difficult for real-time appli-126

cations [11]. Consequently, researching compression tech- 127
niques like distillation [12, 21], quantization, and pruning is 128
imperative to reduce VLM latency and computational costs. 129

2.2. Multimodal LLMs for Autonomous Driving 130

While autonomous driving systems mainly use visual fea- 131
tures, introducing linguistic features can enhance the inter- 132
pretability of these systems and even help identify novel 133
traffic situations [13]. This benefit has sparked research in- 134
terest in integrating multimodal data to train language mod- 135
els to become autonomous driving agents. Chen et al. [5] 136
design an architecture that fuses vectorized numeric modal- 137
ities with a pretrained LLaMA-7b [32] to solve Driving 138
Question Answering tasks. Using a two-step training ap- 139
proach, they initially ground the vector representations into 140
interpretable embeddings for the frozen LLaMA model, fol- 141
lowed by finetuning the LLM with LoRA [18]. DriveGPT4 142
[38] also adopts LLaMA as a backbone LLM and CLIP as 143
a visual encoder, using a traffic scene video and prompt text 144
as input to generate answers and low-level vehicle control 145
signals. To expand off the fixed and rigid QA labels from 146
the BDD-X dataset [19], DriveGPT4 is trained on instruc- 147
tion tuning data generated by ChatGPT/GPT4. DriveGPT4 148
only uses a single-view camera, which restricts it to ques- 149
tions involving a single view. Wang et al. [35] introduce 150
DriveMLM, which uses multi-view images, LiDAR Point 151
Clouds, traffic rules, and user commands from a realistic 152
simulator to perform closed-loop driving. This multimodal 153
model is built from LLaMA-7B and ViT-g/14 as the image 154
processor. Sha et al. [30] devise a chain-of-thought [36] 155
framework for driving scenarios using ChatGPT 3.5 to pro- 156
vide interpretable, logical reasoning for autonomous driving 157
systems. Mao et al. [24] also leverage the GPT-3.5 model 158
to create a motion planner for autonomous vehicles. Their 159
model, GPT-Driver, reformulates motion planning as a lan- 160
guage modeling problem by representing planner inputs and 161
outputs as language tokens. Recently, Sima et al. [31] re- 162
leased the DriveLM dataset, a Graph Visual Question An- 163
swering dataset that provides question-answer pairs related 164
to perception, behavior, and ego-vehicle planning based off 165
multi-view image data from the NuScenes dataset [4]. To 166
introduce a baseline, Sima et al. finetune BLIP-2 [20] for 167
this novel dataset. 168

While these approaches provide valuable explainability 169
for AD systems and exhibit strong performance for end-to- 170
end tasks, all these models use LLMs with over one billion 171
parameters (GPT 3.5, LLaMA, etc.) and expensive image 172
encoders like CLIP and ViT-g/14. This makes them primar- 173
ily suitable for offline scenarios where latency is not a pri- 174
ority, but not for online situations where real-time inference 175
is paramount. 176
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2.3. Multi-Image Vision-Language Models177

In the realm of autonomous driving, modalities beyond text178
and image such as LiDAR, radar, or video offer important179
features for many downstream tasks. However, most vision-180
language models are pre-trained for single-image single-181
text problems, making it unfeasible to directly input mul-182
tiple images or modalities with a piece of text [37]. Con-183
sequently, it is necessary to consolidate multiple modali-184
ties and text into a single embedding that can be used by185
a VLM. DriveGPT4 [38] encodes video input by pooling186
CLIP visual encodings of each video frame. DriveMLM’s187
[31] multimodal tokenizer uses QFormer to embed video188
and LiDAR data, and then concatenates these embeddings189
with text and system message embeddings. Wu et al. [37]190
find that using gated attention pooling across each individ-191
ual image embedding helps introduce more non-linearity192
and extracts visual information across multiple images. Im-193
portantly, this gated attention method introduces a negligi-194
ble amount of computational overhead, rendering it an ideal195
choice for our model to aggregate multi-view traffic scene196
images into a unified embedding.197

3. Methods198

Our model for Visual Question Answering (VQA) in Au-199
tonomous Driving, EM-VLM4AD, consists of a custom200
image embedding network and a pre-trained T5 language201
model [29]. We describe these following modules and the202
overall training process in this section.203

3.1. Image Embedding Network204

To tackle multi-view (Front, Front-Left, Front-Right, Back,205
Back-Left, Back-Right) QA tasks for autonomous driving,206
individual image embeddings need to be aggregated into a207
single embedding. This unified embedding can then be con-208
catenated with a text embedding to serve as input to the LM.209
In typical VLMs, the image embedding process uses models210
like CLIP or object detection networks, resulting in a slow211
extraction process. To address this, we adopt the patch pro-212
jection embedding scheme introduced by ViT [10]. Given213
an RGB image I ∈ R3×H×W , the images are flattened214
and sliced into patches with a linear projection and posi-215
tional embedding. This creates a latent image representa-216
tion Vi ∈ RSI×HI , where SI is the sequence length for the217
image embedding and HI is the hidden dimension of the218
image embedding. We use the pretrained weights of ViT-219
B/32 pretrained on ImageNet [8] to generate these image220
embeddings.221

This leaves us with 6 distinct individual image embed-222
dings from each view, which now need to be combined. We223
first flatten each image embedding into a one-dimensional224
vector and then use gated pooling attention as described by225
Wu et al. [37]. Given the individual image embeddings Vi,226

gated pooling attention learns a single embedding: 227

V =

N∑
i=1

αiVi (1) 228

in which αi are weights for the ith image such that 229∑N
i=1 αi = 1 that are calculated using: 230

αi =
exp{wT (tanh(ZV T

i )⊗ sigm(GV T
i ))}∑N

j=1 exp{wT (tanh(ZV T
j )⊗ sigm(GV T

j ))}
(2) 231

where w ∈ RK , Z ∈ RK×M , G ∈ RK×M ,M = SIHI , 232
and K is a hyperparameter we set to 128. Gated pooling 233
attention introduces non-linearity which helps pool visual 234
information across the image. With this combined image 235
embedding V ∈ RSI×HI , we then project this embedding 236
to match the embedding dimension HT of the text embed- 237
ding so that we can concatenate the text and image embed- 238
ding together with dimension R(ST+SI)×HI , where ST is 239
the sequence length of the text embedding. This concate- 240
nated, multimodal embedding is then inputted into the LM 241
to generate answer text. 242

3.2. Language Model 243

To mitigate the computational and inference costs of our 244
vision-language model, we aim to use more lightweight 245
LMs with less than one billion parameters. To achieve this, 246
we use two different pre-trained versions of the T5 LM 247
model: T5-Base, which contains around 223 million param- 248
eters, and an 8-bit quantized version of T5-Large (≈ 750M 249
parameters). Using these pre-trained LMs, we perform fine- 250
tuning to adapt the LM to the concatenated multi-view im- 251
age and text embeddings. In our experimentation, we found 252
that fine-tuning the whole model for T5-Base works best, 253
but for the quantized T5-Large we use LoRA-Fine-Tuning- 254
Aware Quantization [22], which helps minimize quantiza- 255
tion error with the initialization of LoRA weights. 256

3.3. Training Process 257

To train EM-VLM4AD, we use the DriveLM dataset [31], 258
the most recent and comprehensive dataset for autonomous 259
driving multi-view VQA with questions related to safety 260
tasks such as perception, planning, prediction, and ego- 261
vehicle behavior prediction. We use the training split of 262
the DriveLM dataset, which contains 656 different scenes 263
from NuScenes [4], 4,072 different multi-view frames, and 264
377,983 different multi-view/QA pairs. To evaluate our ap- 265
proach, we use a 90%/5%/5% split of the traffic scenes from 266
DriveLM so we can evaluate how our model performs on 267
unseen situations. Rather than train all components of our 268
model in one stage, we use a two-stage approach as shown 269
by Figure 1: 270
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Figure 1. The diagram our model uses to respond to multi-view image input and question prompts. The T5 LM is frozen during Stage 1 of
training so the image embedding network learns to align with the T5 embeddings. The image patch encoder is frozen throughout all stages
of training, and the Gated Pooling Attention and Projection Layer is trained in both stages.

• In the first stage, we first freeze the image patch encoder271
and the LM and only train the gated pooling attention and272
projection layer. This forces the multi-view image em-273
beddings to align with the type of embeddings the LM274
expects.275

• Then in the last stage, we only keep the image patch en-276
coder frozen and start to finetune the LM.277

In summary, the image patch encoder is always frozen278
to maintain generalized image information gathered from279
pretraining, the gated pooling attention and projection layer280
is always trained, and the Language Model is only finetuned281
during the last stage of training.282

We perform each training stage for six epochs, which283
takes around 2.5 days to finish for each model. We use a284
NVIDIA RTX 3090 Ti to train the T5-Large version of EM-285
VLM4AD and a V100 Google Colab instance to train EM-286
VLM4AD with T5-Base. We note that our models can be287
fit into a single T4 GPU instance, which allows to evaluate288
these models for free with Google Colab. For hyperparam-289
eters, we use a learning rate of 1e-4, weight decay of 0.05,290
an exponential learning rate scheduler, and a batch size of 4291
for both approaches.292

4. Experiments293

This section presents an analysis of the quantitative, qual-294
itative, and computational performance of EM-VLM4AD.295
We use the following metrics commonly used in image cap-296

tioning tasks to assess the quality of the model-generated 297
answers: 298

• BLEU-4 [26]: Measures how many 4-grams in the gener- 299
ated text match those in the reference text. 300

• ROUGE-L [23]: Calculates sentence similarity scores us- 301
ing the longest common sub-sequence between the gen- 302
erated text and ground-truth text. 303

• METEOR [3]: Considers exact matches, stemming, syn- 304
onymy, and word order to measure alignment between 305
model outputs and references. 306

• CIDEr [34]: To account for lexical and semantic 307
similarity between the generated and reference text, 308
CIDEr weights n-grams with their corresponding TF-IDF 309
weight. This helps de-emphasize n-grams that commonly 310
occur across all examples that may not have important 311
meaning. 312

For computational analysis, we aim to analyze the memory 313
and computational efficiency of our model, essential aspects 314
in real-time systems where resource constraints exist and 315
inference efficiency is paramount. 316

4.1. Quantitative Results 317

We evaluate the BLEU-4, ROUGE-L, METEOR, and 318
CIDEr scores using the test set of unseen traffic scenes we 319
create. Currently, the only existing approach on the Driv- 320
eLM dataset is DriveLM-Agent [31], which is a finetuned 321
version of BLIP-2. Since this model is not yet public and 322
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Figure 2. Example correct answer generations from EM-VLM4AD. As shown these in these examples, our model is able to perform VQA
for various autonomous driving tasks such as perception, planning, and traffic agent behavior prediction.

5



CVPR
#8

CVPR
#8

CVPR 2024 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. More example generations from EM-VLM4AD. As shown by the red QA examples, EM-VLM4AD can sometimes struggle with
grammatical semantics and questions related to ego-vehicle behavior prediction, which may require video input for improved performance.

Model BLEU-4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑
EM-VLM4ADBase 68.73 48.11 81.43 3.96

EM-VLM4ADQ-Large 67.86 47.64 81.00 3.90
DriveLM-Agent [31] 53.09 36.19 66.79 2.79

Table 1. Qualitative comparison of generated answers between DriveLM-Agent and EM-VLM4AD on their respective test sets.
EM-VLM4ADBase uses a T5-Base LM backbone, while EM-VLM4ADQ-Large uses an 8-bit quantized T5-Large backbone. Both mod-
els outperform DriveLM-Agent in all statistics.

we do not have the computational resources to perform full-323
precision LoRA training of BLIP-2 , we benchmark our ap-324
proach using the results Sima et al. [31] provide on their325
private evaluation set. The results from Table 1 demonstrate326
how both versions of EM-VLM4AD outperform DriveLM-327
Agent on all metrics, despite having at least 3 billion less328
model parameters. Out of all three models, the version329
of EM-VLM4AD that uses T5-Base is the top-performing330
model.331

The superior performance of EM-VLM4AD with the332
T5-Base backbone over the 8-bit quantized T5-Large ver-333
sion can be attributed to the former’s ability to train a334
larger parameter set. This facilitates a better adaptation of335
the language model to the input vision-language embed-336
dings. Conversely, the LoRA finetuning approach for the337

8-bit quantized T5-Large LM only changes 3.4% of the net- 338
work’s weights. While we did try full finetuning for the 339
quantized LM, this over fine-tuned the LM and caused mode 340
collapse. 341

The integration of multiple frames is a critical advan- 342
tage that contributes to EM-VLM4AD’s performance ver- 343
sus DriveLM-Agent. Unlike DriveLM-Agent, which only 344
uses the front-view frame as input, our model successfully 345
aggregates information across multiple views with our cus- 346
tom multi-view embedding network. Furthermore, while 347
certain tasks done by LMs are defined as emergent, re- 348
quiring larger models for sufficient results, our study un- 349
derscores that learning to perform VQA on the DriveLM 350
dataset can be done without increasing model complexity. 351
Therefore, simply adding model complexity may not result 352
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Model Pretrained Models Used # of Parameters ↓ FLOP Count ↓ Memory (GB) ↓
EM-VLM4ADBase T5-Base, ViT-b/32 patch

embedder
235M 9.47B 0.94

EM-VLM4ADQ-Large T5-Large, ViT-b/32 patch
embedder

769M 31.5B 0.77

DriveLM-Agent [31] BLIP-2 3.96B 439B 14.43
DriveMLM [35] LLaMA-7B, Vit-g/14 8.37B 535B 36
LLM-Driver [5] LLaMA-7B 7B 268B 28
Drive-GPT4 [38] LLaMA 2, CLIP 7.3B 329B 29.2

Table 2. Computational comparison of other LMs for Autonomous Driving with both versions of EM-VLM4AD. The EM-VLM4AD
models have the smallest number of parameters, memory space, and FLOP count, making them the most efficient and computationally
efficient VLM for autonomous driving.

in optimal improvements for this specific task.353

4.2. Computational Analysis354

We also perform computational analysis to see how EM-355
VLM4AD compares to other multimodal LMs for au-356
tonomous driving. Specifically, we focus on three key com-357
putational metrics: the # of parameters, # of Floating Point358
Operations (FLOPs), and memory in gigabytes (GB). For359
these methods, the image encoder and LM constitute the360
most computationally expensive aspects of these models,361
so we only focus on these two aspects when calculating362
these metrics. To estimate the FLOP count for each of these363
models, we use the fvcore FLOP counter module on ex-364
amples from the DriveLM dataset with a A100 GPU. For365
the methods we compare to, we add the FLOPs of the366
image encoder and LM together. The results in Table 2367
underscore that EM-VLM4AD is considerably more effi-368
cient than other methods, requiring less memory, computa-369
tions, and model parameters. Notably, EM-VLM4AD with370
the T5-Base backbone has the least parameters and FLOP371
count, while EM-VLM4AD with the T5-Large backbone372
has the least memory requirements since model weights are373
only stored in 8 bits. These optimized model design choices374
enable EM-VLM4AD to provide fast inference times and375
require less computational resources, critical attributes for376
any LM implemented for real-time scenarios.377

4.3. Qualitative Results378

Figures 2 and 3 showcase some selected multi-frame an-379
swer generations produced by EM-VLM4AD. Our model380
can accurately respond to a variety of questions related to381
perception, traffic agent behavior identification, planning382
safe ego-vehicle behavior, and identifying important traffic383
elements in a scene. Through leveraging the general knowl-384
edge from the pretrained patch embedding network and T5-385
LM, our system can answer a wide spectrum of questions386
that encapsulate an end-to-end autonomous driving system.387
Additionally, EM-VLM4AD demonstrates the ability to un-388
derstand the c-tag format employed by DriveLM, which en-389

codes traffic objects as < c,CAM,xpos, ypos >. Moreover, 390
this model learns to intelligently extract the most relevant 391
frames for each question, making it an effective multi-frame 392
VLM system. However, EM-VLM4AD exhibits two spe- 393
cific weaknesses: grammatical issues and issues answer- 394
ing questions related to behavior. EM-VLM4AD can oc- 395
casionally generate answers with grammatical errors, hin- 396
dering someone to understand the answer to a question. 397
Adding training techniques such as distillation [17] with 398
larger vision-language models, which have a better under- 399
standing of grammar rules, will help this smaller model 400
learn these complex rules. EM-VLM4AD also struggles 401
with behavior related questions, where the prompt is “Pre- 402
dict the behavior for the ego vehicle”. Adding temporal 403
context through inputting multi-view videos to our network 404
would improve results on this type of question, since be- 405
havior related questions often need more than one frame to 406
make accurate predictions. 407

5. Conclusion 408

We introduce EM-VLM4AD, a lightweight multi-frame 409
vision-language model designed for Visual Question An- 410
swering across various autonomous driving tasks. Com- 411
pared to other LMs tailored for autonomous driving, EM- 412
VLM4AD exhibits notable advantages in terms of mem- 413
ory efficiency and computational requirements, and out- 414
performs the reported scores of DriveLM-Agent in BLEU- 415
4, METEOR, ROUGE, and CIDEr metrics on a DriveLM 416
test dataset. EM-VLM4AD demonstrates proficiency in re- 417
sponding to a variety of autonomous driving questions and 418
dynamically focuses on relevant camera views through our 419
gated pooling attention layer, which effectively integrates 420
view embeddings. In future research, we aspire to evolve 421
our model into a video-language model capable of gener- 422
ating responses from multi-view video inputs, thereby en- 423
hancing EM-VLM4AD’s ability to handle temporal-related 424
inquiries. Furthermore, incorporating multimodal retrieval 425
augmented generation to provide context can enable our 426
model to extract insights from analogous traffic scenar- 427
ios. 428

7

https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md


CVPR
#8

CVPR
#8

CVPR 2024 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References429

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine430
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,431
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a432
visual language model for few-shot learning. Advances in433
Neural Information Processing Systems, 35:23716–23736,434
2022. 2435

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-436
shamsi, Alessandro Cappelli, Ruxandra Cojocaru, Mérouane437
Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay,438
Quentin Malartic, Daniele Mazzotta, Badreddine Noune,439
Baptiste Pannier, and Guilherme Penedo. The falcon series440
of open language models, 2023. 2441

[3] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic442
metric for mt evaluation with improved correlation with hu-443
man judgments. In Proceedings of the acl workshop on in-444
trinsic and extrinsic evaluation measures for machine trans-445
lation and/or summarization, pages 65–72, 2005. 4446

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,447
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-448
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-449
modal dataset for autonomous driving. In Proceedings of450
the IEEE/CVF conference on computer vision and pattern451
recognition, pages 11621–11631, 2020. 2, 3452

[5] Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund,453
Andrew James Willmott, Danny Birch, Daniel Maund, and454
Jamie Shotton. Driving with llms: Fusing object-level vector455
modality for explainable autonomous driving. arXiv preprint456
arXiv:2310.01957, 2023. 1, 2, 7457

[6] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying458
vision-and-language tasks via text generation. In Interna-459
tional Conference on Machine Learning, pages 1931–1942.460
PMLR, 2021. 2461

[7] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat462
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale463
Fung, and Steven Hoi. Instructblip: Towards general-464
purpose vision-language models with instruction tuning,465
2023. 2466

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,467
and Li Fei-Fei. Imagenet: A large-scale hierarchical image468
database. In 2009 IEEE conference on computer vision and469
pattern recognition, pages 248–255. Ieee, 2009. 3470

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina471
Toutanova. Bert: Pre-training of deep bidirectional472
transformers for language understanding. arXiv preprint473
arXiv:1810.04805, 2018. 2474

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,475
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,476
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-477
vain Gelly, et al. An image is worth 16x16 words: Trans-478
formers for image recognition at scale. arXiv preprint479
arXiv:2010.11929, 2020. 2, 3480

[11] Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. A481
survey of vision-language pre-trained models. arXiv preprint482
arXiv:2202.10936, 2022. 2483

[12] Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lijuan Wang,484
Yezhou Yang, and Zicheng Liu. Compressing visual-485

linguistic model via knowledge distillation. In Proceedings 486
of the IEEE/CVF International Conference on Computer Vi- 487
sion, pages 1428–1438, 2021. 2 488

[13] Ross Greer and Mohan Trivedi. Towards explainable, safe 489
autonomous driving with language embeddings for novelty 490
identification and active learning: Framework and experi- 491
mental analysis with real-world data sets. arXiv preprint 492
arXiv:2402.07320, 2024. 2 493

[14] Ross Greer, Akshay Gopalkrishnan, Jacob Landgren, Lulua 494
Rakla, Anish Gopalan, and Mohan Trivedi. Robust traffic 495
light detection using salience-sensitive loss: Computational 496
framework and evaluations. In 2023 IEEE Intelligent Vehi- 497
cles Symposium (IV), pages 1–7. IEEE, 2023. 1 498

[15] Ross Greer, Bjørk Antoniussen, Mathias V Andersen, An- 499
dreas Møgelmose, and Mohan M Trivedi. The why, when, 500
and how to use active learning in large-data-driven 3d object 501
detection for safe autonomous driving: An empirical explo- 502
ration. arXiv preprint arXiv:2401.16634, 2024. 503

[16] Ross Greer, Akshay Gopalkrishnan, Maitrayee Keskar, and 504
Mohan M Trivedi. Patterns of vehicle lights: Addressing 505
complexities of camera-based vehicle light datasets and met- 506
rics. Pattern Recognition Letters, 178:209–215, 2024. 1 507

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill- 508
ing the knowledge in a neural network. arXiv preprint 509
arXiv:1503.02531, 2015. 7 510

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen- 511
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 512
Lora: Low-rank adaptation of large language models. arXiv 513
preprint arXiv:2106.09685, 2021. 1, 2 514

[19] Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John Canny, 515
and Zeynep Akata. Textual explanations for self-driving ve- 516
hicles. In Proceedings of the European conference on com- 517
puter vision (ECCV), pages 563–578, 2018. 2 518

[20] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 519
Blip-2: Bootstrapping language-image pre-training with 520
frozen image encoders and large language models. arXiv 521
preprint arXiv:2301.12597, 2023. 1, 2 522

[21] Xuanlin Li, Yunhao Fang, Minghua Liu, Zhan Ling, 523
Zhuowen Tu, and Hao Su. Distilling large vision-language 524
model with out-of-distribution generalizability. In Proceed- 525
ings of the IEEE/CVF International Conference on Com- 526
puter Vision, pages 2492–2503, 2023. 2 527

[22] Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos 528
Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq: Lora- 529
fine-tuning-aware quantization for large language models, 530
2023. 3 531

[23] Chin-Yew Lin. Rouge: A package for automatic evaluation 532
of summaries. In Text summarization branches out, pages 533
74–81, 2004. 4 534

[24] Jiageng Mao, Yuxi Qian, Hang Zhao, and Yue Wang. 535
Gpt-driver: Learning to drive with gpt. arXiv preprint 536
arXiv:2310.01415, 2023. 1, 2 537

[25] Kaouther Messaoud, Nachiket Deo, Mohan M Trivedi, and 538
Fawzi Nashashibi. Trajectory prediction for autonomous 539
driving based on multi-head attention with joint agent-map 540
representation. In 2021 IEEE Intelligent Vehicles Symposium 541
(IV), pages 165–170. IEEE, 2021. 1 542

8



CVPR
#8

CVPR
#8

CVPR 2024 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing543
Zhu. Bleu: a method for automatic evaluation of machine544
translation. In Proceedings of the 40th annual meeting of the545
Association for Computational Linguistics, pages 311–318,546
2002. 4547

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario548
Amodei, Ilya Sutskever, et al. Language models are unsu-549
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 2550

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya551
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,552
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning553
transferable visual models from natural language supervi-554
sion. In International conference on machine learning, pages555
8748–8763. PMLR, 2021. 2556

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,557
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and558
Peter J. Liu. Exploring the limits of transfer learning with a559
unified text-to-text transformer, 2023. 2, 3560

[30] Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng Xu,561
Ping Luo, Shengbo Eben Li, Masayoshi Tomizuka, Wei562
Zhan, and Mingyu Ding. Languagempc: Large language563
models as decision makers for autonomous driving, 2023.564
2565

[31] Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen,566
Hanxue Zhang, Chengen Xie, Ping Luo, Andreas Geiger,567
and Hongyang Li. Drivelm: Driving with graph visual ques-568
tion answering. arXiv preprint arXiv:2312.14150, 2023. 1,569
2, 3, 4, 6, 7570

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier571
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste572
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.573
Llama: Open and efficient foundation language models.574
arXiv preprint arXiv:2302.13971, 2023. 1, 2575

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-576
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia577
Polosukhin. Attention is all you need. Advances in neural578
information processing systems, 30, 2017. 2579

[34] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi580
Parikh. Cider: Consensus-based image description evalua-581
tion. In Proceedings of the IEEE conference on computer582
vision and pattern recognition, pages 4566–4575, 2015. 4583

[35] Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou,584
Jianan Fan, Wenwen Tong, Yang Wen, Silei Wu, Hanming585
Deng, Zhiqi Li, Hao Tian, Lewei Lu, Xizhou Zhu, Xiaogang586
Wang, Yu Qiao, and Jifeng Dai. Drivemlm: Aligning multi-587
modal large language models with behavioral planning states588
for autonomous driving, 2023. 2, 7589

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten590
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny591
Zhou. Chain-of-thought prompting elicits reasoning in large592
language models, 2023. 2593

[37] Wenyi Wu, Qi Li, Wenliang Zhong, and Junzhou Huang.594
Mivc: Multiple instance visual component for visual-595
language models. In Proceedings of the IEEE/CVF Win-596
ter Conference on Applications of Computer Vision, pages597
8117–8126, 2024. 1, 3598

[38] Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo,599
Kenneth KY Wong, Zhenguo Li, and Hengshuang Zhao.600

Drivegpt4: Interpretable end-to-end autonomous driving via 601
large language model. arXiv preprint arXiv:2310.01412, 602
2023. 1, 2, 3, 7 603

9


	. Introduction
	. Related Research
	. Vision-Language Models
	. Multimodal LLMs for Autonomous Driving
	. Multi-Image Vision-Language Models

	. Methods
	. Image Embedding Network
	. Language Model
	. Training Process

	. Experiments
	. Quantitative Results
	. Computational Analysis
	. Qualitative Results

	. Conclusion

