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Abstract

Human-AI text recognition has emerged as an essential prob-
lem in maintaining the authenticity of digital content world-
wide. In spite of advancements, current detection tools largely
cater to English texts only, causing a major lacuna in cov-
ering multilingual scenarios. This paper introduces the first
end-to-end multilingual approach to human vs. AI text cat-
egorization for Hindi and Spanish languages. We compare
traditional machine learning classifiers and state-of-the-art
transformer models using three stages: baseline validation
on English data, multilingual evaluation on carefully filtered
Hindi and Spanish datasets, and zero-shot generalization from
English outputs of various modern large language models like
Gemini, Phi, and others. Our findings show better accuracy and
F1-scores, with models like XGBoost and T5 posting perfect
scores (1.00) in multilingual environments. Interestingly, clas-
sical models beat transformer-based methods in cross-lingual
settings by a maximum of 0.17 increase in F1-score. Experi-
ments in zero-shot testing indicate inconsistent detectability of
current LLMs, with commercial models detected consistently
but smaller open-source models going undetected. This paper
tackles critical gaps in text authenticity check, facilitating se-
cure multilingual AI text detection for real-world applications
in education, media, and content verification.

Introduction
There has been unprecedented progress in Large Language
Models such as GPT-4 (1), Claude 3 (2), and Gemini 1.5 Pro
(3) that can produce text similar to human authors in terms of
coherence, context understanding, and fluency. While these
abilities have enabled revolutionary advances in education,
arts, and customer service (4), they simultaneously have
opened up fundamental risks including academic plagiarism,
AI-manipulated disinformation campaigns, and diminished
trust in information on the web (5; 6). Text detection as being
written by human vs. by AI is therefore emerging as a key
research issue.

Previous detection methods relied on stylometric and statis-
tical analysis along with conventional machine learning clas-
sifiers such as Logistic Regression and Random Forests (7; 8).
These models could learn surface-level and syntactic patterns
that distinguished early-generation neural text from human
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writing. However, as large autoregressive LLMs emerged,
such methods could not offer reliable accuracy—particularly
when the generated text is post-edited or adversarially para-
phrased (9). In contrast, transformer-based detectors such as
fine-tuned RoBERTa and T5 significantly enhanced detection
accuracy in monolingual English settings (10; 11).

Nevertheless, recent large-scale multilingual evaluation
studies such as MULTITuDE (12) and MultiSocial (13) have
indicated that English-trained models suffer drastic perfor-
mance declines when evaluated on typologically divergent or
morphologically rich languages (14; 15). Such limitations in-
dicate that cross-lingual robustness remains a key bottleneck
in current detection approaches.

Adversarial robustness is equally pressing an issue. De-
tectors like DetectRL (16) and BUST (17) have shown that
detection performance can be drastically degraded by slight
text manipulation—paraphrasing, summarization, or superfi-
cial stylistic editing. In real-life scenarios, such vulnerabili-
ties can be exploited by malicious actors attempting to evade
detection in disinformation operations or plagiarism.

To address these issues, recent research has explored
Explainable Artificial Intelligence (XAI) to enhance inter-
pretability and transparency in text detection. Methods such
as LIME (18) and SHAP (19) enable the extraction of dis-
criminative lexical, syntactic, or semantic information and
expose model decision boundaries. In multilingual NLP ap-
plications, XAI techniques have been shown to enhance trust
and debuggability and uncover model biases (20; 21).

The HULLMI approach (22) demonstrated that inter-
pretable, simple models such as XGBoost and LSTM over
TF-IDF features could match or surpass fine-tuned trans-
former detectors in binary human vs. LLM text classification
problems. However, HULLMI was limited to English and
only a few classes of LLM outputs, with open questions re-
garding multilingual adaptability as well as generalizability
to newer LLM architectures.

This paper overcomes these shortcomings through exten-
sive AI text detection evaluation in Hindi and Spanish. Our
approach, which is inspired by the HULLMI framework,
makes three important contributions:

Multilingual Evaluation – We develop Hindi and Span-
ish datasets consisting of equal numbers of human and AI-
generated samples from recent state-of-the-art LLMs, includ-
ing GPT-4o, Gemini 1.5 Pro, and Claude 3 Opus.



Figure 1: Overview of the three-phase methodology: Phase 1
validates baseline performance, Phase 2 constructs multilin-
gual benchmark datasets, and Phase 3 evaluates on advanced
LLM outputs.

Zero-Shot Generalization – We test trained detectors
on outputs from state-of-the-art LLMs such as Gemini 2.0,
Gemma 2B, and Phi-3 Mini to evaluate robustness to model
advancement.

Comparative Analysis – Through the integration of cross-
lingual analysis and interpretability, our approach aims to
contribute to robust, transparent, and generalizable AI text
detection systems that can cope with the rapid pace of gener-
ative AI development.

Methodology
This section explains our end-to-end methodology for mul-
tilingual AI vs. human text classification. Our method intro-
duces three novel contributions: (1) multilingual evaluation
beyond English to Hindi and Spanish, (2) zero-shot gener-
alization testing on modern LLMs not encountered during
training, and (3) comparative analysis between traditional
machine learning models and modern transformer architec-
tures across various linguistic contexts.

Our methodology is organized into three distinct phases:
(i) baseline validation using established English datasets,
(ii) construction and evaluation of multilingual benchmark
datasets, and (iii) zero-shot performance assessment on out-
puts from state-of-the-art LLMs. All experiments follow a
unified preprocessing and modeling pipeline to ensure com-
parability across evaluations.

Figure 1 illustrates the comprehensive three-phase method-
ology employed in our study.

Phase 1: Baseline Validation
To establish a foundation for our multilingual extensions,
we first validate our approach using the OpenGPTText-Final
dataset, which contains balanced samples of human and LLM
text. Human text samples are sourced from OpenWebText,
while LLM samples are paraphrased versions of the same
paragraphs generated by GPT-3.5-turbo.

Our preprocessing pipeline includes newline character re-
moval, duplicate elimination, and tokenization. For tradi-
tional ML models, we transform text into normalized vector

representations using CountVectorizer followed by TF-IDF
transformation. The data is split into 80-20 train-test par-
titions. We evaluate various model architectures including
Naive Bayes, Logistic Regression, Random Forests, XG-
Boost, Multi-Layer Perceptron (MLP), and Long Short-Term
Memory (LSTM) networks. Performance is assessed using
six standard metrics: Accuracy, F1-Score, False Positive
Rate (FPR), False Negative Rate (FNR), True Negative Rate
(TNR), and True Positive Rate (TPR). This phase serves to
validate our modeling approach and establish baseline perfor-
mance metrics for subsequent multilingual comparisons.

Phase 2: Multilingual Benchmark Construction and
Evaluation
The core novelty of our research lies in extending AI text de-
tection to Hindi and Spanish languages. For human-generated
content, we collect data from publicly accessible repositories
such as AI4Bharat for Hindi and Wikipedia/government cor-
pora for Spanish. Each dataset is manually validated for lin-
guistic correctness and topic variability, yielding 338 human-
written instances across 13 topics per language.

To generate corresponding AI samples, we employ three
state-of-the-art LLMs: GPT-4o (OpenAI), Gemini 2.0 Flash
(Google), and Claude 3 Opus (Anthropic). Each model gen-
erates 26 articles per topic, resulting in 338 AI samples
per language. We ensure consistency across models using
a standardized generation prompt: “You are a professional
¡LANGUAGE¿ journalist. Write a 500–700 word article on
¡TOPIC¿. Use an encyclopedic neutral tone. Use one in-
context example from the human corpus as a style guide.”
This methodology ensures domain and stylistic consistency
with human-written text while capturing model-specific gen-
eration patterns.

Language-specific normalization and tokenization are ap-
plied to each dataset. Traditional models use CountVectorizer
and TF-IDF transformation, while LSTM, T5, and RoBERTa
models use their respective tokenizers. Data splits maintain
80:20 ratios with balanced class distributions. This multilin-
gual extension enables systematic evaluation of cross-lingual
generalization capabilities and identification of language-
specific detection challenges.

Phase 3: Zero-Shot Evaluation on Contemporary
LLMs
Our third major contribution involves evaluating model ro-
bustness against LLM outputs unseen during training. We
construct a custom test set (custom test final.csv) containing
25 human-written and 25 AI-written samples across diverse
domains including literature, user reviews, recipes, forum
posts, and social media.

To minimize lexical overlap with training data, AI samples
undergo a two-step generation process using ChatGPT-4o: ini-
tial compression of source samples into three-line abstracts,
followed by expansion of abstracts into complete articles.
This approach reduces direct textual similarities while pre-
serving semantic content.

The test set includes outputs from six contemporary mod-
els spanning commercial and open-source frameworks: Gem-
ini 2.0, GPT-2 (Filtered), LLaMA 3.2 1B, Qwen1.5 8B, Phi-3



Mini, and Gemma 2B. These models were deliberately ex-
cluded from training data to simulate real-world deployment
scenarios where content originates from unknown or evolving
model architectures. This zero-shot evaluation assesses gen-
eralization capabilities and reveals potential vulnerabilities
in current detection approaches.

Model Architecture and Training
Our modeling approach encompasses both traditional ma-
chine learning and modern deep learning architectures. Clas-
sical models—Naive Bayes, Logistic Regression, Random
Forests, XGBoost, and MLP—operate on TF-IDF vector rep-
resentations of text. These models provide high interpretabil-
ity and computational efficiency while maintaining competi-
tive performance.

Deep learning models include LSTM networks, RoBERTa-
Sentinel, and T5-Sentinel models. RoBERTa-Sentinel em-
ploys a pre-trained RoBERTa encoder with a classifica-
tion head, while T5-Sentinel reformulates classification as a
sequence-to-sequence text generation task. All models use
consistent hyperparameter settings and loss functions to en-
sure fair comparisons.

Training is conducted independently for each language
and experimental phase to prevent data leakage. This inde-
pendence enables isolation of language-specific effects and
model-specific biases across different linguistic contexts.

Evaluation Framework
Binary classification performance is assessed using standard
metrics: Accuracy, F1-score, True Positive Rate (TPR), True
Negative Rate (TNR), False Positive Rate (FPR), and False
Negative Rate (FNR). These metrics are computed across all
models for English, Hindi, and Spanish datasets, as well as for
contemporary LLM outputs. ROC and DET curves provide
additional visualization of model discriminative ability and
error trade-offs.

In multilingual settings, we carefully examine class-wise
and overall performance metrics while controlling for po-
tential linguistic confounds that might influence detection
accuracy. This comprehensive evaluation framework enables
identification of strengths and weaknesses across different
model types and linguistic environments.

Interpretability Analysis
To ensure transparency and identify potential biases, we ap-
ply Local Interpretable Model-agnostic Explanations (LIME)
across all models and experimental phases. For traditional
models trained on TF-IDF vectors, LIME reveals the most
influential tokens driving classification decisions. For deep
learning models (LSTM, RoBERTa, T5), we adapt LIME’s
perturbation mechanism to accommodate model-specific tok-
enization and softmax outputs.

LIME analysis generates the top 10 features influencing
each model’s predictions, providing insights into model be-
havior across English, Hindi, and Spanish texts, as well
as contemporary LLM outputs. This comprehensive inter-
pretability analysis helps verify whether models rely on valid
linguistic patterns rather than spurious correlations, domain-
specific artifacts, or language-specific biases. Such analysis

is crucial for identifying overfitting, feature leakage, and
ensuring robust generalization across diverse linguistic and
generative scenarios.

Results
Introduction
In this section, we demonstrate an overall analysis of our
models for three discrete stages of the study: (i) baseline vali-
dation with the OpenGPTText corpus to determine method-
ological soundness, (ii) multilingual classification accuracy
on methodically developed Hindi and Spanish corpora with
balanced human and machine-generated data points, and (iii)
zero-shot generalization capacity when applied to text drawn
from modern LLMs never seen during training. All models
were thoroughly tested with six common binary classification
metrics: Accuracy, F1 score, False Positive Rate (FPR), False
Negative Rate (FNR), True Positive Rate (TPR), and True
Negative Rate (TNR). We also provide ROC curves and Area
Under the Curve (AUC) values to ensure complete visualiza-
tion of discriminative ability of the models. This quantitative
study provides a strong basis for contrasting conventional
machine learning methods with current transformer frame-
works in a variety of linguistic contexts and generative model
configurations.

Phase 1: Baseline Validation Results
Table 1 shows the overall performance measures of our mod-
els on the OpenGPTText-Final dataset as our baseline ver-
ification. The results show that conventional ML models,
when they are provided with proper vectorization and pre-
processing techniques, can have comparable performance in
human vs. AI text classification tasks. Common models like
XGBoost, Logistic Regression, and MLP provided accept-
able performance, as shown by F1-scores between 0.88 and
0.92. The LSTM model also did equally well, recording an
F1-score of 0.92 and TPR of 0.93, which reflects excellent
ability in identifying AI-generated text.

Interestingly, Naive Bayes performed drastically poorer
with increased FNR (0.52), indicating low detection quality
for AI texts while retaining reasonable detection quality on
human-written data. T5 had the best overall performance
with F1-score of 0.97 and balanced error rates (FPR: 0.05,
FNR: 0.04), followed by RoBERTa with strong performance
and F1-score of 0.94. These baseline results confirm the
reproducibility of proven detection approaches and offer a
robust platform for multilingual extensions.

Phase 2: Multilingual Evaluation Results
Hindi Dataset Performance We evaluated the ability of
generalization of classification models on Hindi and Spanish
texts using datasets constructed according to our methodol-
ogy. Tables 2 and 3 show the results for Hindi and Spanish,
respectively. We rigorously tested the generalization perfor-
mance of all classification models on our meticulously la-
beled Hindi dataset. Table 2 uncovers stunning performance
trends that are very different from English baseline data.
Tree-based (Random Forests, XGBoost) and neural mod-
els (LSTM, T5) achieved perfect or near-perfect accuracy



Table 1: Baseline Validation Results on OpenGPTText
Dataset

Model Acc. F1 FPR FNR TNR TPR

Naive Bayes 0.70 0.62 0.08 0.52 0.92 0.48
Logistic Reg. 0.90 0.90 0.12 0.08 0.88 0.92
Random Forests 0.85 0.83 0.22 0.08 0.78 0.92
XGBoost 0.91 0.91 0.10 0.08 0.90 0.93
MLP 0.88 0.88 0.12 0.11 0.88 0.89
LSTM 0.93 0.92 0.08 0.06 0.92 0.93
RoBERTa 0.94 0.94 0.09 0.02 0.91 0.98
T5 0.97 0.97 0.05 0.04 0.94 0.995

Table 2: Evaluation Results on Hindi Dataset

Model Acc. F1 FPR FNR TNR TPR

Naive Bayes 0.92 0.92 0.16 0.00 0.84 1.00
Logistic Reg. 0.99 0.99 0.02 0.01 0.98 0.99
Random Forests 0.99 1.00 0.02 0.00 0.98 1.00
XGBoost 1.00 1.00 0.01 0.00 0.99 1.00
MLP 0.98 0.98 0.02 0.02 0.98 0.98
LSTM 0.99 0.99 0.00 0.015 1.00 0.984
RoBERTa 0.68 0.63 0.00 0.69 1.00 0.31
T5 1.00 1.00 0.00 0.00 1.00 1.00

with very low error rates, implying that Hindi linguistic char-
acteristics might indeed enable rather than impede AI text
detection.

Most striking is the outstanding performance of T5 and
XGBoost, both with F1-scores of 1.00 and a zero false posi-
tive and false negative rate. This is noteworthy compared to
their English performance and suggests possibly language-
specific strengths in detection tasks. RoBERTa, though, per-
formed much worse with an F1-score of 0.63, and that is a
stark -0.31 decline from its English baseline performance.

Spanish Dataset Performance The Spanish dataset per-
formance, as shown in Table 3, shows interesting patterns of
performance that both replicate and are contrary to Hindi out-
comes. All the models except a few kept great performance
with XGBoost, Random Forests, LSTM, and T5 having per-
fect accuracy and F1-scores of 1.00. This consistency in both
non-English languages indicates strong cross-lingual gener-

Figure 2: ROC and DET curves for Hindi dataset evaluation
demonstrating superior performance for most models.

(a) RoBERTa on Hindi (AUC =
1.00). (b) T5 on Hindi (AUC = 1.00).

Figure 3: Individual ROC curves for Hindi dataset models.

Table 3: Evaluation Results on Spanish Dataset

Model Acc. F1 FPR FNR TNR TPR

Naive Bayes 0.99 0.99 0.02 0.0 0.98 1.0
Logistic Reg. 0.98 0.99 0.02 0.0 0.98 1.00
Random Forests 1.00 1.00 0.0 0.0 1.00 1.00
XGBoost 1.00 1.00 0.0 0.0 1.00 1.00
MLP 0.98 0.98 0.02 0.02 0.98 0.98
LSTM 1.00 1.00 0.0 0.0 1.00 1.00
RoBERTa 0.96 0.962 0.07 0.0 0.93 1.00
T5 1.00 1.00 0.0 0.0 1.00 1.00

alization ability for all but a few architectures.
RoBERTa’s Spanish performance (F1-score: 0.962) was

far better than its Hindi performance, yet not as high as its En-
glish baseline. The relative performance difference between
languages underscores the sophisticated interaction between
model architecture, pre-train data, and target language fea-
tures. The better performance of classical ML models on
both languages supports the efficacy of TF-IDF-based feature
extraction for cross-lingual AI text detection.

Cross-Language Performance Analysis Table 4 gives sys-
tematic comparison results for model performance across all
three languages, with profound insights into cross-lingual
generalization patterns. XGBoost exhibited surprising con-
sistency, actually reaching higher performance on both Hindi
(+0.09) and Spanish (+0.09) compared to English baselines.
T5 too exhibited modest improvements on both non-English
languages, reflecting strong multilingual capabilities.

Figure 4: ROC and DET curves for Spanish dataset evalua-
tion.



(a) RoBERTa on Spanish (AUC
= 0.96). (b) T5 on Spanish (AUC = 1.00).

Figure 5: Individual ROC curves for Spanish dataset models.

Table 4: Cross-Language Performance Comparison

Model Eng. Hin. Spa. Drop
E→H

Drop
E→S

XGBoost 0.91 1.00 1.00 +0.09 +0.09
T5 0.97 1.00 1.00 +0.03 +0.03
RoBERTa 0.94 0.63 0.962 -0.31 -0.022
LSTM 0.92 0.99 1.00 +0.07 +0.08
Random F. 0.83 1.00 1.00 +0.17 +0.17

The most salient result is RoBERTa’s extreme performance
fluctuation: while it retained close-to-baseline performance
on Spanish (-0.022 loss), it plummeted a whopping -0.31 on
Hindi. This trend indicates that cross-lingual performance
of transformer models is unusually sensitive to linguistic
similarity with pre-training data and might need language-
specific fine-tuning to achieve the best results.

Phase 3: Zero-Shot Generalization Results
Performance on Contemporary LLM Outputs The zero-
shot detection on outputs of contemporary LLMs uncovered
striking fluctuations in detection success, as shown in Table 5.
The findings unveil essential weaknesses in present detection
systems faced with changing generative architectures. Gemini
2.0 outputs had ideal detectability with F1-score of 1.00 and
no error rates, indicating that commercial large-scale models
can maintain detectable generative signatures.

On the other hand, smaller open-source models offered
unprecedented difficulty: both Gemma 2B and Phi-3 Mini at-
tained complete evasion with F1-scores of 0.00, which means
our trained classifiers correctly classified all the samples from
these sources. This is a complete detection failure, with FNR
achieving 1.00 for both models. Mid-size models yielded
intermediate performance, with LLaMA 3.2 1B attaining F1-
score of 0.44 and Qwen1.5 8B attaining 0.67, suggesting
partial but unreliable detection ability.

Detection Success Rate by Model Architecture Table 6
groups the zero-shot results by type of model architecture and
indicates alarming trends in detection reliability. Large-scale
commercial models (Gemini 2.0, GPT-2) had an average F1-
score of 0.795 with a 79.5% rate of detection, with generally
reliable detectability despite improvements in architecture.
Small open-source models totally avoided being detected
with 0% success rate and 0.00 average F1-score.

Table 5: Zero-Shot Results on Modern LLM Outputs

LLM Source Acc. F1 FPR FNR TNR TPR

Gemini 2.0 1.00 1.00 0.00 0.00 1.00 1.00
Gemma 2B 0.50 0.00 0.00 1.00 1.00 0.00
GPT-2 (Filt.) 0.58 0.59 0.41 0.42 0.59 0.58
LLaMA 3.2 1B 0.54 0.44 0.28 0.64 0.72 0.36
Qwen1.5 8B 0.50 0.67 1.00 0.00 0.00 1.00
Phi-3 Mini 0.50 0.00 0.00 1.00 1.00 0.00

Table 6: Detection Success Rate by Model Architecture

Model Type Comm.
Models

Small
OS

Mid
Size

Avg F1 0.795 0.00 0.555
Detect Rate 79.5% 0% 55.5%

Mid-size models showed intermediate difficulties with
55.5% mean detection rate, indicating that model size and op-
timization strategies have a significant impact on detectability.
This stratified performance trend has important real-world
deployment implications, where adversaries may deliberately
select ”undetectable” model structures to circumvent security
mechanisms.

Error Pattern Analysis The zero-shot testing identified
characteristic error trends among various LLM types. Com-
pact open-source models (Gemma 2B, Phi-3 Mini) caused
systematic false negative errors, with classifiers routinely
classifying AI output as human-written. This trend indicates
such models create text that possesses human-like statisti-
cal characteristics that mislead conventional TF-IDF-based
detection techniques.

In contrast, such models as Qwen1.5 8B had very large
false positive rates (1.00), showing the classifiers falsely iden-
tified human text as AI-generated when they were trained on
this model’s output. This two-way error pattern illustrates the
intricate connection between detection system weaknesses
and generative model architectures, highlighting the impor-
tance of adaptive training techniques that are constantly draw-
ing on outputs from novel LLM architectures.

Discussion and Conclusion
Discussion
We implemented a robust pipeline framework in this study
to support holistic multilingual evaluation of human versus
AI-generated text categorization. Our three-stage approach
identified important findings in terms of cross-lingual de-
tection ability, zero-shot generalization issues, and relative
performance trends between classical and modern architec-
tures.

Cross-Language Performance Analysis Multilingual
evaluation results contain striking trends that contradict tradi-
tional hypotheses regarding cross-lingual AI text detection.
The higher performance of the majority categories on Hindi
and Spanish datasets over English baselines is a counterintu-
itive finding. XGBoost and T5 scored ideal F1-scores (1.00)



on both non-English languages, which translates to +0.09 and
+0.03 improvements respectively over their English counter-
parts.

This remarkable performance is thanks to linguistic prop-
erties unique to every language. Hindi’s morphological intri-
cacies and unusual syntactic patterns can potentially bring
about greater stylistic contrasts between machine and hu-
man writing. Likewise, Spanish’s morphological redundancy
and regular orthographic spelling can yield strong statisti-
cal signals that classical TF-IDF-based methods can readily
capitalize on.

Yet, the dramatic performance decline of RoBERTa on
Hindi text (F1 = 0.63 compared to 0.94 on English) reveals in-
herent deficits in transformer-based detection methods. That
-0.31 performance decline suggests pre-training language
alignment continues to be a significant bottleneck to cross-
lingual generalization, highlighting the need for multilingual
model creation for trustworthy detection systems.

Zero-Shot Generalization Challenges The zero-shot test
uncovers essential weaknesses with far-reaching deployment
implications. The total evasion of smaller models (Gemma 2B
and Phi-3 Mini, both having F1-scores of 0.00) is a 100% rate
of failure to detect. This apocalyptic performance difference—
0% detect by small models and 79.5% by commercial ones—
is a fundamental flaw where lightweight, tuned architectures
produce text with statistical features indistinguishable from
human writing, which fully tricks TF-IDF-based detectors.

The inverse size-detectability relationship indicates that
smaller models (≤3B parameters) could be more human-like
in output patterns inherently because: (1) smaller parameter
space constrains to depend on basic linguistic patterns, (2)
aggressive optimisation removes detectable artifacts inherent
in larger models, and (3) training practices favoring natural
language generation over raw capacity increase.

Traditional vs. Transformer Model Performance The
most unexpected result is the overall dominance of classical
machine learning methods over transformer-based detectors
in multilingual conditions. XGBoost performed flawlessly on
all three languages, while the transformer models displayed
strong deviation and language-dependent failures. This con-
tradicts the hypothesis that more advanced models automati-
cally provide better performance for AI-based text detection
tasks.

The success of TF-IDF-based feature extraction indicates
that surface-level statistical patterns could be more linguisti-
cally universal than deep semantic representations induced by
transformer models. Conventional methods seem to encode
strong detection signals that cut across linguistic boundaries
and provide computational efficiency benefits for real-world
deployment.

Conclusion
This work shows that multilingual AI text detection is not
just possible but potentially holds surprising benefits over
monolingual methods. Our exhaustive analysis across Hindi
and Spanish languages, as well as zero-shot testing on mod-
ern LLM output, has uncovered both promising strengths and
crucial weaknesses in existing detection methods.

Performance Benchmarking Our multilingual system ex-
hibits significant overperformance in comparison with cur-
rent methods. Whereas prior English-only work had obtained
F1-scores between 0.91–0.97, our system obtains flawless
performance (F1 = 1.00) on Hindi and Spanish datasets—a
9% improvement in comparison to XGBoost baselines and
3% to transformer methods. Conventional classifiers outper-
formed transformers across all languages and consistently by
+0.17 F1-score for Random Forests.

Critically, our zero-shot evaluation exposes detection gaps
not previously considered: 79.5% success rate among com-
mercial models is starkly contrasted with 0% for small op-
timized models, creating the first exhaustive vulnerability
assessment of varied LLM architectures.

Key Findings Our research produces several key results:
(1) Machine learning models based on traditional methods
exhibit better cross-lingual detection than transformer-based
detectors, with perfect F1-scores on several non-English lan-
guages. (2) Some linguistic properties may prove to aid AI
text detection, with models detecting more accurately for
morphologically rich languages. (3) Compact, tuned LLM
architectures pose unprecedented difficulties, with some mod-
els evading detection entirely across all detection methods
employed.

Optimal F1-scores for Hindi and Spanish datasets, in ad-
dition to strong performance of interpretable models such
as XGBoost, present a sound basis for multilingual detec-
tion system deployment. Nevertheless, the total evasion by
smaller open-source models reveals essential gaps demand-
ing adaptive training practices and ongoing model upgrading
protocols.

Limitations Our evaluation was only carried out on Hindi
and Spanish, and its extension to more typologically di-
verse languages would enhance claims to generalizability.
The dataset sizes were relatively modest (338 samples per
language), and larger-scale evaluations would provide more
robust statistical validation. Our evaluation focused primar-
ily on formal, well-structured text; performance on informal
social media content or domain-specific jargon remains unex-
plored. The rapid evolution of LLM architectures means our
zero-shot evaluation may quickly become outdated as new
models emerge.

Future Research Directions Subsequent work must tar-
get the creation of adaptive training systems that constantly
integrate outputs from newer LLM architectures. The inves-
tigation of hybrid detection methods that merge classical
statistical resilience with transformer semantic comprehen-
sion presents promise for attaining both interpretability and
performance. Ternary system construction that can determine
unique model origins would offer increased detection granu-
larity. Cross-domain robustness testing and proactive defense
mechanism development are other research priorities for the
development of reliable, transparent, and globally deployable
AI text detection systems.
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