

000 001 002 003 004 005 006 007 008 009 010 011 DREAM: DECOUPLED REINFORCEMENT LEARNING 012 WITH REWARD MEASUREMENT FOR LARGE LAN- 013 GUAGE MODEL TEST-TIME TRAINING 014 015 016 017 018 019 020 021 022 023 024 025 026 027

028 **Anonymous authors**
029
030 Paper under double-blind review
031

032 ABSTRACT 033

034 This paper studies the problem of large language model (LLM) test-time training,
035 which aims to enhance the reasoning ability of LLMs via unlabeled test data. Re-
036 cent works usually utilize majority voting to infer the labels of samples to guide
037 the reinforcement learning process, which could be inaccurate and biased with
038 potential error accumulation. Towards this end, we propose a novel approach
039 named Decoupled Reinforcement Learning with RMeasurement (DREAM)
040 for LLM test-time training. The core of our proposed DREAM is to decouple the
041 reward estimation from reinforcement learning with enhanced calibration. In par-
042 ticular, our DREAM trains an LLM-based calibration model which takes both
043 questions and answers as input, and outputs the calibration scores. To mitigate
044 overconfident results, the judge model is trained by simulating on an independent
045 reference dataset with positive and negative pairs. The reference-based calibra-
046 tion scores would be incorporated into voting-based reward estimation to reduce
047 the potential biases, which enhance reliable test-time training. Extensive experi-
048 ments on benchmark datasets validate the superiority of the proposed DREAM in
049 comparison with competing baselines.
050

051 1 INTRODUCTION 052

053 Large language models (LLMs) (Zhao et al., 2024; Chang et al., 2024; Kasneci et al., 2023; Naveed et al., 2025) have become the backbone of modern natural language processing (NLP) (Khurana et al., 2023; Feuerriegel et al., 2025; Frenda et al., 2025), powering a wide range of downstream applications (Thirunavukarasu et al., 2023; Kaddour et al., 2023; Nie et al., 2024; Guo et al., 2024; Yan et al., 2025). Beyond their scale and architecture, the effectiveness of LLMs crucially depends on their training paradigm (Minaee et al., 2024; Wang et al., 2025; Dong et al., 2025), which can be broadly divided into *pre-training* (Ma et al., 2024) and *post-training* (Zosa et al., 2025; Kumar et al., 2025). While pre-training builds general-purpose capabilities from large-scale corpora, post-training emphasizes aligning LLMs with human preferences and adapting them to task-specific requirements, making it a critical stage for improving reasonability and reliability.

054 Among post-training paradigms for large language models (Lai et al., 2025; Lv et al., 2025; Tie et al., 2025), test-time reinforcement learning (Odena et al., 2017; Qu et al., 2025) has emerged as a promising strategy to enhance reasoning and generalization on complex tasks (Ge et al., 2023; Han et al., 2024) and unseen knowledge (Farquhar et al., 2023; Li et al., 2025). Unlike conventional reinforcement learning that requires labeled data, TTRL (Zuo et al., 2025) leverages unlabeled test inputs and majority voting based rewards to refine policies online without explicit supervision. Early approaches exploit consistency-based signals, such as self-consistency across multiple reasoning paths, to generate pseudo-rewards for stable adaptation (Wang et al., 2022; Ghosh et al., 2024), while subsequent work integrates calibration and uncertainty modeling to mitigate overconfident or biased feedback (Stangel et al., 2025; Park et al., 2025). Extensions of TTRL combine it with test-time training (TTT) (Sun et al., 2020; Osowiechi et al., 2024), introducing auxiliary self-supervised objectives to improve robustness under distribution shifts (Zhang et al., 2025d), and task-specific designs, such as leveraging region consistency in GUI grounding (Du et al., 2025), further demonstrate its adaptability. Collectively, these advances establish test-time reinforcement learning as a

flexible and rapidly evolving framework that unifies self-supervision, calibrated reward estimation, and reinforcement learning to enhance LLMs’ reasoning, robustness, and task adaptability.

Despite the advantages of test-time reinforcement learning, several challenges remain when handling unlabeled data. For instance, TTTRL (Zuo et al., 2025) derives rewards by aggregating multiple outputs via majority voting. However, such voting may yield inaccurate rewards that deviate from the ground-truth labels, thereby introducing negative feedback into the subsequent reinforcement learning process. These observations raise a critical question: **① How can reinforcement learning be enhanced with reliable rewards in the absence of explicit supervision?** More importantly, reward generation and policy updates are inherently coupled within the reinforcement learning paradigm. Consequently, inaccurate rewards can lead to biased policy optimization, which in turn compounds generation errors and creates a vicious cycle during the post-training process. This concern motivates a second key question: **② Can reward estimation be decoupled from policy optimization to mitigate bias accumulation in post-training?**

To address these challenges, we propose a simple yet effective framework DREAM for enhancing adaptation on unlabeled test data by decoupling reward estimation from reinforcement learning in LLM test-time training. Specifically, DREAM constructs an independent labeled reference dataset to train an auxiliary judge model, which is employed to estimate the reliability of model outputs. Built upon this, we design a hybrid reward calibration module that incorporates reliability scores predicted by the frozen judge model to produce final rewards. Subsequently, these calibrated rewards are leveraged to perform unbiased test-time reinforcement learning, thereby promoting generalizability when handling diverse inputs in unsupervised scenarios. To demonstrate the reliability and effectiveness of DREAM, we further conduct extensive experiments on benchmark datasets, showing outstanding advantages over state-of-the-art baseline approaches.

To better elucidate the contributions of DREAM, we summarize them as follows:

- ① **Novel Perspective.** To the best of our knowledge, we are the first to decouple reward estimation from reinforcement learning for unlabeled test data during the test-time training phase.
- ② **Unified Framework.** To enhance reinforcement learning without labeled data, we introduce an auxiliary module trained on independent reference data to estimate output reliability, which is subsequently leveraged to calibrate the final reward for policy optimization.
- ③ **Empirical Validation.** We demonstrate the effectiveness of DREAM through extensive experiments on benchmark datasets against several baselines, showing its superiority empirically.

2 RELATED WORK

2.1 LLM POST-TRAINING

While *pre-training* provides a general foundation by learning from large-scale corpora, *post-training* aligns LLMs with specific knowledge, enhancing reasoning capabilities and refining outputs through target feedback (Kumar et al., 2025). Furthermore, classic paradigms for *post-training* include: (i) **Test-time scaling (TTS)**, which improves inference performance by allocating additional computational resources during reasoning (e.g. sequential scaling (Madaan et al., 2023; Brinkmann & Bizer, 2025) and parallel sequential (Korikov et al., 2025; Zhou et al., 2025)); (ii) **Fine-tuning**, which adapts the pretrained model to specific downstream domains to enhance task alignment Zhang et al. (2024); and (iii) **Reinforcement learning (RL)**, which optimizes models using reward signals derived from human preferences or other evaluative feedback (Laleh & Ahmadabadi, 2024; Yu et al., 2025; Hu et al., 2025). **Test-time scaling** improves inference performance without updating model parameters but incurs higher computational cost and may generalize poorly (Zhang et al., 2025c). **Fine-tuning** (Pletenev et al., 2025) enables strong task specialization but risks overfitting and requires high-quality labeled data. In contrast, **reinforcement learning** provides a flexible framework for post-training optimization, leveraging reward signals to enhance task alignment even under limited supervision. This flexibility motivates our focus on RL in the work.

2.2 REINFORCEMENT LEARNING IN LLMs

Reinforcement learning (RL) (Chen et al., 2025b; Dang & Ngo, 2025) has become a mainstream post-training paradigm for aligning large language models (LLMs) with human preferences (Zhang et al., 2025a; Yu et al., 2025; Hariharan, 2025), thereby enhancing their reasoning ability and adap-

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

tive generalization during inference. For instance, Proximal Policy Optimization (PPO) (Schulman et al., 2017) performs policy updates through multiple epochs of stochastic gradient ascent and serves as a cornerstone of Reinforcement Learning with Human Feedback (RLHF) (Bai et al., 2022; Chaudhari et al., 2024). Beyond on-policy methods (Mroueh et al., 2025), several off-policy approaches (e.g., Implicit Language Q-Learning (ILQL) (Snell et al., 2023) and VerifierQ (Qi et al., 2024)) exploit offline datasets or auxiliary verifier signals to improve efficiency and reasoning reliability. More importantly, DeepSeek-R1 (Guo et al., 2025) introduces Group Relative Policy Optimization (GRPO) (Zhang et al., 2025b; Sane, 2025), which extends LLMs’ reasoning capabilities through outcome-based relative rewards. Despite these advances, most RL-based post-training (Sun & van der Schaar, 2025) frameworks rely on reliable supervised signals from humans or AI models, limiting their versatility when such labels are unavailable (Wang et al., 2024; Chen et al., 2025a;b). To address this challenge, Test-time Reinforcement Learning (TTRL) (Zuo et al., 2025) employs majority voting to derive consistency-based rewards, enabling reinforcement learning directly on unlabeled test data. However, coupling output generation and reward evaluation often leads to over-confident predictions and biased reinforcement learning. This motivates the need to decouple reward estimation from policy optimization for more robust test-time training.

3 THE PROPOSED DREAM

Problem Definition. In this work, we address the problem of test-time training for large language models (LLMs) using unlabeled test data. Formally, let $\mathcal{D}_U = \{x_i\}_{i=1}^{N_U}$ denote the set of test-time inputs without ground-truth labels, where $x_i \in \mathcal{X}$ belongs to the input space. Let $\pi_\theta(\cdot | x)$ represents the base policy model, which could generate candidate outputs $\{y_i\}$ according to $y_i \sim \pi_\theta(y | x)$ for a given input x . Since the true labels are unavailable, our objective is to design a reliable reward estimation module $R(\cdot)$ and to leverage the resulting calibration scores to optimize the policy model π_θ within a reinforcement learning framework.

3.1 DREAM: DECOUPLING REWARD ESTIMATION AND REINFORCEMENT LEARNING

To provide reliable rewards for test-time training with unlabeled data, our DREAM framework decouples reward estimation from reinforcement learning to generate enhanced calibration scores. Specifically, DREAM first generates multiple outputs from the policy model via repeated sampling, which are then employed to construct rewards for the unlabeled data through majority voting. To mitigate overly confident reward signals, we additionally train a judge model using a simulated independent reference dataset with supervised labels, which identifies whether the generated outputs are reliable. The calibration scores produced by the judge model are subsequently leveraged to further refine the rewards, thereby enabling more reliable test-time training. A detailed overview of the DREAM pipeline is presented in Figure 1.

3.2 CALIBRATION MODEL OPTIMIZATION WITH REFERENCE DATA

For unlabeled data, directly incorporating rewards into reinforcement learning (Zuo et al., 2025) may lead to biased and overconfident outcome during test-time training. To address this challenge, we introduce an additional model to calibrate the rewards, thereby providing more reliable evaluations based on an established reference dataset. More specifically, we construct a reference dataset $\mathcal{D}_L = \{(x_i, y_i)\}_{i=1}^{N_L}$, where x_i denotes a question and y_i represents its corresponding answer. This dataset is then leveraged to independently train a judge model. For each input x_i , we sample K candidate outputs from the policy model $\pi_\theta(\cdot | x_i)$, forming a candidate set denotes as:

$$\mathcal{O}_i = \{\hat{y}_{i,k} \mid \hat{y}_{i,k} \stackrel{\text{i.i.d.}}{\sim} \pi_\theta(\cdot | x_i), 1 \leq k \leq K\}, \quad (1)$$

where $\hat{y}_{i,k}$ are independently and identically distributed (i.i.d.) samples draw from the policy model $\pi(\cdot | x_i)$. These outputs are then passed through a canonical answer extraction function C , which generates binary labels indicating whether each sampled output matches the ground-truth answer:

$$\mathcal{S}_i = \{s_{i,k}\}_{k=1}^K = \{\mathbb{I}(C(\hat{y}_{i,k}) = y_i) \mid \hat{y}_{i,k} \in \mathcal{O}_i\}, \quad (2)$$

where $s_{i,k}$ is the binary label representing the consistency with the ground-truth label, and \mathbb{I} is the indicator function. Built upon these formulation, the judge model F_ϕ is trained to learn a mapping

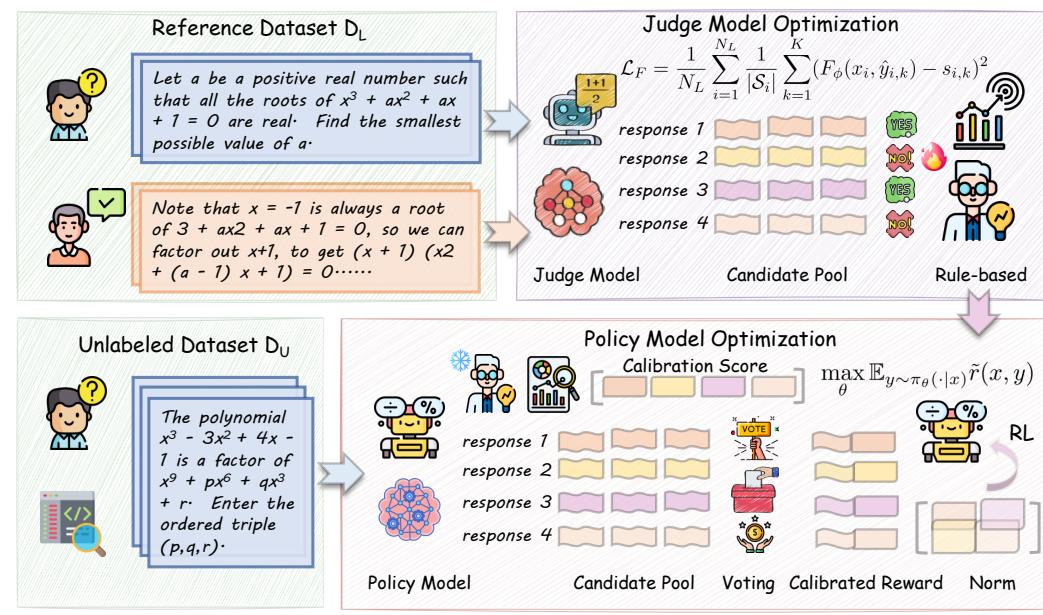


Figure 1: Overview of DREAM. The framework is composed of two optimization modules: judge model optimization and policy model optimization.

from (x_i, \mathcal{O}_i) to \mathcal{S}_i , i.e., $F_\phi : (x_i, \hat{y}_{i,k}) \rightarrow s_{i,k}$. The parameters of F_ϕ are then optimized with a mean squared error (MSE) regression loss:

$$\mathcal{L}_F = \frac{1}{N_L} \sum_{i=1}^{N_L} \frac{1}{|\mathcal{S}_i|} \sum_{k=1}^K (F_\phi(x_i, \hat{y}_{i,k}) - s_{i,k})^2, \quad (3)$$

where $F_\phi(x_i, \hat{y}_{i,k})$ denotes the calibration score predicted by the judge model, and $s_{i,k}$ is the binary alignment score. By incorporating these additional signals, the judge model gains the ability to assess the reliability of generated outputs, thereby serving as an auxiliary module to refine reward estimation for unlabeled data during test-time training.

3.3 REWARD ENHANCEMENT THROUGH CALIBRATION

Generally, the policy model π_θ is optimized using a supervised reward function to guide reinforcement learning. However, in the absence of supervisory signals for unlabeled data, direct reward-based optimization becomes unreliable and overconfident. To tackle this, we propose a hybrid reward enhancement module that incorporates calibration via a previously trained judge model, enabling more effective utilization of rewards under unsupervised conditions.

Voting-Based Consistency Reward. To generate rewards that enhance reinforcement learning, we first construct a candidate set by repeatedly sampling from the policy model π_θ . For the unlabeled dataset $\mathcal{D}_U = \{x_i\}_{i=1}^{N_U}$, an answer set $\mathcal{O}_i = \{\hat{y}_{i,k}\}_{k=1}^K$ is obtained for each input x_i following Eq. 1. Subsequently, we apply majority voting (Zhou et al., 2024; Zhao et al., 2025) to evaluate the consistency within the answer set, formulated as:

$$r_{i,k}^v = \mathbb{I}(\hat{y}_{i,k} = \tilde{y}_i), \quad \text{where } \tilde{y}_i = \text{MV}(\mathcal{O}_i) \quad \text{and} \quad 1 \leq k \leq K. \quad (4)$$

Here K denotes the number of sampled outputs, and $\text{MV}(\mathcal{O}_i)$ represents the consensus output determined by the majority voting aggregation strategy. The indicator $r_{i,k}^v$ thus defines a consistency reward for each output in the candidate set \mathcal{O}_i . This approach allows us to derive intrinsic rewards in the absence of supervised signals, providing guidance for the optimization of the policy model.

Calibration for Reward Reliability. Recalling that we have trained a judge model F_ϕ to assess the confidence of each output individually. By integrating this confidence assessment component, we can decouple pseudo-label generation from quality evaluation on the unlabeled dataset. This

paradigm provides more reliable rewards to enhance the policy model through reinforcement learning during test-time training. Accordingly, the final reward for each output is obtained by combining the voting-based reward with the calibration score from the judge model:

$$r_{i,k} = r_{i,k}^v + s_{i,k}, \quad \text{where } 1 \leq i \leq N_U, \quad 1 \leq k \leq K. \quad (5)$$

This approach decouples pseudo-labels from confidence estimation, promoting correct answers while penalizing incorrect ones, thereby mitigating overconfidence in erroneous outputs.

3.4 UNBIASED TEST-TIME REINFORCEMENT LEARNING

To enable unbiased test-time reinforcement learning, DREAM incorporates rewards that combine voting-based consistency with calibration scores for enhanced reliability.

Group-wise Reward Normalization. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) optimizes policies by comparing the relative strengths of different responses within a group, which reduces both memory usage and computational overhead. Motivated by this, we normalize rewards using a candidate set \mathcal{O}_i . Specifically, given an output $\hat{y}_{i,k} \in \mathcal{O}_i$ with its associated reward $r_{i,k}$, the normalized score is computed as:

$$\tilde{r}_{i,k} = \frac{r_{i,k} - \mu_i}{\sigma_i}, \quad \text{where } \mu_i = \frac{1}{K} \sum_{k=1}^K r_{i,k} \quad \text{and} \quad \sigma_i = \sqrt{\frac{1}{K} \sum_{k=1}^K (r_{i,k} - \mu_i)^2}. \quad (6)$$

This reward normalization provides a more stable and comparable signal, which can effectively guide the optimization of the policy model.

Policy Model Optimization. Here, we leverage the previously generated rewards to optimize the policy model using unlabeled data during the test-time training process. The reinforcement learning objective is to maximize the expected reward, formulated as:

$$\max_{\theta} \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} \tilde{r}(x, y), \quad (7)$$

where $\tilde{r}(x, y)$ represents the calibrated reward according to Eq. 6. What's more, the parameters θ are then updated via gradient ascent:

$$\theta \leftarrow \theta + \gamma \cdot \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} \tilde{r}(x, y), \quad (8)$$

in which γ represents the learning rate. This update strategy provides a robust reward estimation by incorporating auxiliary calibration from an independent judge model, thereby enhancing the effective utilization of unlabeled data during test-time training. In conclusion, DREAM demonstrates significantly improved generalizability when handling diverse inputs under unsupervised scenarios.

3.5 TRAINING PROCEDURE OF DREAM

To enable better test-time training with unlabeled data, DREAM carefully decouples reward estimation from reinforcement learning, allowing the model to leverage unlabeled inputs without introducing overly confident or biased updates. The process proceeds in two interlinked stages, each designed to ensure reliable reward signals and stable policy optimization. (i) **Judge model optimization.** In the first stage, DREAM constructs an auxiliary judge model that serves as a reliable reward estimator. To provide supervision for the judge model, we generate a set of additional math questions with known ground-truth answers. For each question, the policy model is queried multiple times (e.g., $K = 4$) to produce diverse candidate solutions, capturing the inherent stochasticity and variability of the model outputs. Each candidate output is then evaluated against the corresponding ground-truth answer using rule-based verification. Outputs that correctly solve the question are grouped into positive pairs, while incorrect outputs form negative pairs. The labeled pairs are subsequently used to train the judge model using a supervised learning objective, allowing it to effectively assign reliability scores to candidate outputs. (ii) **Policy model optimization.** For a given math question, we first sample multiple outputs from the policy model to construct a candidate set \mathcal{O}_i , which captures the range of plausible solutions that the policy may generate. Each candidate in \mathcal{O}_i is then evaluated by the judge model, which produces a calibration score reflecting its estimated quality. These scores are combined with a voting-based reward scheme, which are then refined by the calibration scores. Finally, these calibrated rewards are used to perform reinforcement learning updates

270
271**Algorithm 1:** Test-time Training Procedure of DREAM

```

272 Input: Reference dataset  $\mathcal{D}_L = \{(x_i, y_i)\}_{i=1}^{N_L}$  and policy model  $\pi_\theta$ 
273 1 for iteration  $i \leftarrow 1$  to  $N_L$  do // Judge model optimization
274 2 | Generate a candidate set  $\mathcal{O}_i$  for each input  $x_i$  using  $\pi_\theta$  according to Eq. 1
275 3 | Compute the matching score between  $\hat{y}_{i,k} \in \mathcal{O}_i$  and the ground-truth  $y_i$  by Eq. 2
276 4 | Optimize the judge model  $F_\phi$  using the MSE loss defined in Eq. 3
277 5 end
278 Output: Trained judge model  $F_\phi$  // Calibration for reward reliability
279 Input: Unlabeled test dataset  $\mathcal{D}_U = \{x_i\}_{i=1}^{N_U}$  and the frozen judge model  $F_\phi$ 
280 6 for iteration  $i \leftarrow 1$  to  $N_U$  do // Policy model optimization
281 7 | Generate a candidate set  $\mathcal{O}_i$  for each input  $x_i$  using  $\pi_\theta$  according to Eq. 1
282 8 | Estimate the calibration score  $s_{i,k}$  for each candidate  $\hat{y}_{i,k}$  // Predict with judge model
283 9 | Compute the voting-based reward  $r_{i,k}^v$  within  $\mathcal{O}_i$  using Eq. 4
284 10 | Derive the calibrated reward  $r_{i,k}$  according to Eq. 5
285 11 | Normalize the group-wise reward  $\tilde{r}_{i,k}$  using Eq. 6
286 12 | Optimize  $\pi_\theta$  by Eq. 7 and Eq. 8.
287 13 end
288 Output: Trained policy model  $\pi_\theta$  // Optimize the policy with calibrated rewards
289
290
```

291
292
293

on the policy model, allowing it to improve its performance iteratively while accounting for the judge’s assessment. The entire process, including both the judge and policy model optimizations, is formally summarized in Algorithm 1.

294

4 EXPERIMENT

295

4.1 EXPERIMENTAL SETUP

296

Backbone Models. To verify the generalizability of our reward score calibration, we conduct experiments on a broad range of backbone models, encompassing both base and instruct models at different scales. Specifically, we select Qwen2.5-Math-1.5B (Yang et al., 2024), Qwen2.5-Math-7B (Yang et al., 2024), Qwen2.5-7B (Qwen et al., 2025), LLaMA3.1-8B-Instruct (Dubey et al., 2024), and DeepSeek-R1-7B-Instruct (Guo et al., 2025) as backbone models.

303

Evaluation Setup. We evaluate DREAM on three challenging mathematical reasoning benchmarks: AIME 2024, AMC, and MATH-500. For better evaluation, we adopt avg@k, maj@k, and pass@k to evaluate the experimental results. Following the practice of (Zuo et al., 2025), we generate responses with non-zero temperature sampling with a temperature of 0.6 and a top-p value of 0.95 unless specified. The maximum generation length is set to 3,072 tokens. We prompt the model to perform step-by-step reasoning and to present the final answer enclosed within “\boxed{}”.

304

Baselines. Our primary baseline for comparison is TTRL (Zuo et al., 2025), the state-of-the-art method for test-time reinforcement learning on unlabeled data. This direct comparison allows us to isolate and measure the performance gains attributable to our decoupled reward calibration mechanism. Additionally, we report the performance of the original backbone models without any test-time training to establish a performance floor and quantify the absolute improvement.

305

Implementation Details. We implement DREAM by applying GRPO (Shao et al., 2024) to the policy model, guided by our calibrated reward signals. For the policy model’s hyperparameters, we use a cosine learning rate schedule with a peak value of 5×10^{-7} and employ the AdamW optimizer. During the rollout phase, we sample 64 responses per prompt, which are then used for majority voting and scoring by the judge model. Subsequently, we downsample to 32 responses per prompt for the training batch. The maximum generation length is set to 3,072 tokens. The number of training episodes is adapted to the dataset size: 80 for AIME 2024, 30 for AMC, and 10 for MATH-500. All experiments were conducted on a cluster of 8 NVIDIA H20 GPUs.

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Reward Calibration Model. A core component of our methodology is the judge model for reward calibration. As the proprietary datasets used for the pre-training and supervised fine-tuning (SFT) of

Table 1: Performance comparison with TTRL on various backbone models. We report avg@16 on AIME 2024, AMC, and MATH-500 datasets.

Backbone	Model	AIME 2024	AMC	MATH-500	Avg.
<i>Math Base Models</i>	Qwen2.5-Math-1.5B	7.5	29.5	33.8	23.6
	w/ TTRL	12.1 \uparrow 4.6	45.9 \uparrow 16.4	68.2 \uparrow 34.4	42.1 \uparrow 18.5
	w/ DREAM	16.7 \uparrow 9.2	46.8 \uparrow 17.3	72.9 \uparrow 39.1	45.5 \uparrow 21.9
	Qwen2.5-Math-7B	13.5	36.5	46.5	32.2
	w/ TTRL	40.8 \uparrow 27.3	67.0 \uparrow 30.5	83.4 \uparrow 36.9	63.7 \uparrow 31.5
	w/ DREAM	40.0 \uparrow 26.5	67.4 \uparrow 30.9	84.5 \uparrow 38.0	64.0 \uparrow 31.8
<i>Vanilla Base Model</i>	Qwen2.5-7B	7.3	32.0	60.9	33.4
	w/ TTRL	23.3 \uparrow 16.0	51.8 \uparrow 19.8	81.1 \uparrow 20.2	52.1 \uparrow 18.7
	w/ DREAM	23.3 \uparrow 16.0	55.4 \uparrow 23.4	80.1 \uparrow 19.2	52.9 \uparrow 19.5
<i>Instruct Model</i>	LLaMA3.1-8B-Instruct	4.8	21.5	48.4	24.9
	w/ TTRL	10.0 \uparrow 5.2	32.3 \uparrow 10.8	61.4 \uparrow 13.0	34.6 \uparrow 9.7
	w/ DREAM	13.3 \uparrow 8.5	34.8 \uparrow 13.3	59.6 \uparrow 11.2	35.9 \uparrow 11.0
	DeepSeek-R1-7B-Instruct	1.7	16.0	43.1	20.3
	w/ TTRL	1.0 \downarrow 0.7	19.3 \uparrow 3.3	50.8 \uparrow 7.7	23.7 \uparrow 3.4
	w/ DREAM	1.7 \uparrow 0.0	20.8 \uparrow 4.8	51.5 \uparrow 8.4	24.7 \uparrow 4.4

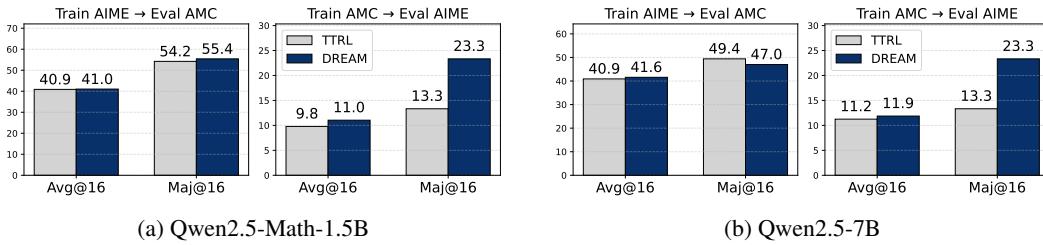


Figure 2: Performance comparison of our DREAM and TTRL on out-of-distribution testing data. We select Qwen2.5-Math-1.5B as the backbone model and report avg@16.

the backbone models are often not accessible, we simulate a representative labeled dataset to train our reward calibration model. We utilize the training split of the MATH dataset for this purpose. For each question in the MATH training set (Hendrycks et al., 2024), we generate four candidate responses from the target policy model using a sampling temperature of 0.6 and a top-p of 0.9. These responses are then assigned a binary score based on a rule-based comparison against the ground-truth answer. This process yields a dataset of $\langle \text{question}, \text{response}, \text{score} \rangle$ tuples for training the judge model as a regression task. Further details on the judge model’s training data distribution, architecture, and optimization are provided in Appendix A.

4.2 EXPERIMENT RESULTS AND ANALYSIS

Reward calibration generally leads to better test-time RL training. As shown in Table 1, DREAM mitigates the accumulation of reward noise caused by overconfidence during training by calibrating the voting-based reward with a decoupled reliability estimation, thereby demonstrating a positive average performance gain over the majority voting baseline on most of the scenarios. The benefits of our calibration mechanism are most pronounced for weaker models, where the initial reward signal from majority voting is inherently noisier. For example, DREAM achieves a significant improvement of 4.6 on AIME 2024 for the smaller Qwen2.5-Math-1.5B, as its judge model effectively filters erroneous positive rewards and mitigates overconfident optimization on flawed outputs. However, the impact of calibration can be nuanced. We observed a marginal performance decrease with DREAM on Qwen2.5-Math-7B for the AIME dataset. This could be attributed to our implementation choice for computational efficiency, where a single reward calibration model based on Qwen2.5-Math-1.5B was used across all experiments. This approach may be suboptimal when applied to larger, more capable models.

Reward calibration generalizes well beyond the target task. We evaluate the models trained with DREAM on out-of-distribution (OOD) test data to assess their generalization capabilities. Specif-

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870

432 a preliminary exploration of this approach, where we replaced the internal model with Qwen2.5-
 433 Math-PRM-7B.

434 Here, instead of using process-
 435 supervised rewards, we compute
 436 the reward directly at the entire response
 437 level. We performed tests similar to
 438 those in Table 2 and found that the
 439 quality of the reliability scores obtained
 440 this way is viable. The comparison
 441 between the internal and external cali-
 442 bration models is presented in Table 4.
 443 As shown, their performance is largely
 444 on par across three models and two
 445 datasets. Our model was trained on data consisting of only $\sim 7k$ queries with 4 responses sampled
 446 for each, whereas Qwen2.5-Math-PRM-7B was trained on $\sim 500k$ queries with 6-8 responses each.
 447 This indicates that for our task, fine-tuning the model itself on a small-scale dataset can achieve
 448 performance comparable to that of a general-purpose math reward model trained on a much larger
 449 dataset. In the future, we will further explore the use of more powerful external calibration models,
 450 such as Qwen2.5-Math-PRM-72B or Qwen2.5-Math-RM-72B.

451 **The effectiveness of test-time RL.** To demonstrate the efficacy of test-time RL, we compare the
 452 performance of Qwen2.5-Math-1.5B against its instruction-tuned version and similarly-sized, RL-
 453 trained models, using the pass@1 score with greedy decoding. The results in Table 5 indicate that
 454 test-time RL with the voting-based TTTRL already surpasses the heavily instruction-tuned Qwen2.5-
 455 Math-1.5B-Instruct. Building on this, our proposed DREAM further improves performance by
 456 decoupling reliability estimation from reward calibration, achieving results comparable to models
 457 trained with large-scale RL. Importantly, large-scale RL methods rely on labeled datasets, whereas
 458 such labels are unavailable in our setting. Under these constraints, DREAM delivers competitive
 459 performance with only scarce labels and relatively small-scale RL during test-time training. These
 460 findings highlight both the efficiency and practicality of test-time adaptation, underscoring the broad
 461 applicability of DREAM comprehensively.

462 Table 5: Pass@1 comparison on AIME 2024 and AMC against similar models trained on large-scale
 463 labeled data. All results are based on greedy decoding, with baselines sourced from Dr. GRPO.

Model	AIME 2024	AMC	MATH-500	Avg.
Qwen2.5-Math-1.5B	20.0	32.5	36.2	29.6
w/ TTTRL	16.7	48.2	72.4	45.8
w/ DREAM	20.0	50.6	73.8	48.1
Qwen2.5-Math-1.5B-Instruct	10.0	48.2	74.2	44.1
DeepSeek-R1-Distill-1.5B-@3k	2.5	21.7	52.2	25.5
DeepSeek-R1-Distill-1.5B-@8k	20.0	49.4	77.4	48.9
Oat-Zero-1.5B	20.0	53.0	74.2	49.1

5 CONCLUSION

477 In this work, we introduce DREAM, a novel reward calibration framework that decouples reward
 478 estimation from reinforcement learning to address the challenge of unreliable rewards on unlabeled
 479 data. To disentangle reward estimation from reinforcement learning, DREAM introduces an aux-
 480 iliary judge model trained to assess the consistency between generated responses and ground-truth
 481 answers. By incorporating the judge model to calibrate voting-based rewards, DREAM enables
 482 more accurate policy optimization without explicit supervision. Extensive experiments on multiple
 483 mathematical reasoning benchmarks and diverse LLM backbones demonstrate the generalizability
 484 of our approach. We believe DREAM opens up promising directions for advancing test-time scaling
 485 of LLMs, particularly in scenarios where labeled data is scarce or unavailable.

486 REFERENCES
487

488 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
489 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
490 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
491 2022.

492 Alexander Brinkmann and Christian Bizer. Self-refinement strategies for llm-based product attribute
493 value extraction. *arXiv preprint arXiv:2501.01237*, 2025.

494

495 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
496 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM*
497 *transactions on intelligent systems and technology*, 15(3):1–45, 2024.

498 Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan,
499 Karthik Narasimhan, Ameet Deshpande, and Bruno Castro da Silva. Rlhf deciphered: A criti-
500 cal analysis of reinforcement learning from human feedback for llms. *ACM Computing Surveys*,
501 2024.

502

503 Jack Chen, Fazhong Liu, Naruto Liu, Yuhang Luo, Erqu Qin, Harry Zheng, Tian Dong, Haojin Zhu,
504 Yan Meng, and Xiao Wang. Step-wise adaptive integration of supervised fine-tuning and rein-
505 forcement learning for task-specific llms. *arXiv preprint arXiv:2505.13026*, 2025a.

506 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
507 Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
508 ment learning. *arXiv preprint arXiv:2503.19470*, 2025b.

509

510 Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works
511 and what doesn't. *arXiv preprint arXiv:2503.16219*, 2025.

512

513 Haotian Dong, Jingyan Jiang, Rongwei Lu, Jiajun Luo, Jiajun Song, Bowen Li, Ying Shen, and
514 Zhi Wang. Beyond a single ai cluster: A survey of decentralized llm training. *arXiv preprint*
515 *arXiv:2503.11023*, 2025.

516

517 Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, and
518 Yongliang Shen. Test-time reinforcement learning for gui grounding via region consistency. *arXiv*
519 *preprint arXiv:2508.05615*, 2025.

520

521 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
522 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
523 *arXiv e-prints*, pp. arXiv–2407, 2024.

524

525 Sebastian Farquhar, Vikrant Varma, Zachary Kenton, Johannes Gasteiger, Vladimir Mikulik,
526 and Rohin Shah. Challenges with unsupervised llm knowledge discovery. *arXiv preprint*
527 *arXiv:2312.10029*, 2023.

528

529 Stefan Feuerriegel, Abdurahman Maarouf, Dominik Bär, Dominique Geissler, Jonas Schweisthal,
530 Nicolas Pröllochs, Claire E Robertson, Steve Rathje, Jochen Hartmann, Saif M Mohammad, et al.
531 Using natural language processing to analyse text data in behavioural science. *Nature Reviews*
532 *Psychology*, 4(2):96–111, 2025.

533

534 Simona Frenda, Gavin Abercrombie, Valerio Basile, Alessandro Pedrani, Raffaella Panizzon,
535 Alessandra Teresa Cignarella, Cristina Marco, and Davide Bernardi. Perspectivist approaches
536 to natural language processing: a survey. *Language Resources and Evaluation*, 59(2):1719–1746,
537 2025.

538

539 Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
540 Openagi: When llm meets domain experts. *Advances in Neural Information Processing Systems*,
541 36:5539–5568, 2023.

542

543 Bishwamittra Ghosh, Sarah Hasan, Naheed Anjum Arifat, and Arijit Khan. Logical consistency of
544 large language models in fact-checking. *arXiv preprint arXiv:2412.16100*, 2024.

540 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
 541 Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
 542 the rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.

543 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 544 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 545 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

546 Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, and Zhaozhuo Xu. Llm multi-agent sys-
 547 tems: Challenges and open problems. *arXiv preprint arXiv:2402.03578*, 2024.

548 Mohanakrishnan Hariharan. Reinforcement learning: Advanced techniques for llm behavior op-
 549 timization. *ESP International Journal of Advancements in Computational Technology (ESP-
 550 IJACT)*, 2(2):84–101, 2025.

551 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 552 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. *URL*
 553 <https://arxiv.org/abs/2103.03874>, 2, 2024.

554 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 555 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 556 model. *arXiv preprint arXiv:2503.24290*, 2025.

557 Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
 558 Robert McHardy. Challenges and applications of large language models. *arXiv preprint
 559 arXiv:2307.10169*, 2023.

560 Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
 561 Fischer, Urs Gasser, Georg Groh, Stephan Günemann, Eyke Hüllermeier, et al. Chatgpt for
 562 good? on opportunities and challenges of large language models for education. *Learning and
 563 individual differences*, 103:102274, 2023.

564 Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. Natural language processing: state
 565 of the art, current trends and challenges. *Multimedia tools and applications*, 82(3):3713–3744,
 566 2023.

567 Anton Korikov, Pan Du, Scott Sanner, and Navid Rekabsaz. Batched self-consistency improves llm
 568 relevance assessment and ranking. *arXiv preprint arXiv:2505.12570*, 2025.

569 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 570 Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan.
 571 Llm post-training: A deep dive into reasoning large language models. *arXiv preprint
 572 arXiv:2502.21321*, 2025.

573 Hanyu Lai, Xiao Liu, Junjie Gao, Jiale Cheng, Zehan Qi, Yifan Xu, Shuntian Yao, Dan Zhang,
 574 Jinhua Du, Zhenyu Hou, et al. A survey of post-training scaling in large language models. In *Pro-
 575 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
 576 1: Long Papers)*, pp. 2771–2791, 2025.

577 Alireza Rashidi Laleh and Majid Nili Ahmadabadi. A survey on enhancing reinforcement learning in
 578 complex environments: Insights from human and llm feedback. *arXiv preprint arXiv:2411.13410*,
 579 2024.

580 Xiang Li, Jiayi Xin, Qi Long, and Weijie J Su. Evaluating the unseen capabilities: How many
 581 theorems do llms know? *arXiv preprint arXiv:2506.02058*, 2025.

582 Xingtai Lv, Yuxin Zuo, Youbang Sun, Hongyi Liu, Yuntian Wei, Zhekai Chen, Lixuan He, Xuekai
 583 Zhu, Kaiyan Zhang, Bingning Wang, et al. Towards a unified view of large language model
 584 post-training. *arXiv preprint arXiv:2509.04419*, 2025.

585 Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
 586 Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
 587 with unlimited context length. *Advances in Neural Information Processing Systems*, 37:71831–
 588 71854, 2024.

594 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 595 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 596 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
 597

598 Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
 599 atriain, and Jianfeng Gao. Large language models: A survey. *arXiv preprint arXiv:2402.06196*,
 600 2024.

601 Youssef Mroueh, Nicolas Dupuis, Brian Belgodere, Apoorva Nitsure, Mattia Rigotti, Kristjan Gree-
 602 newald, Jiri Navratil, Jerret Ross, and Jesus Rios. Revisiting group relative policy optimization:
 603 Insights into on-policy and off-policy training. *arXiv preprint arXiv:2505.22257*, 2025.

604 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 605 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 606 models. *ACM Transactions on Intelligent Systems and Technology*, 16(5):1–72, 2025.

607

608 Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M Mulvey, H Vincent Poor, Qingsong Wen, and
 609 Stefan Zohren. A survey of large language models for financial applications: Progress, prospects
 610 and challenges. *arXiv preprint arXiv:2406.11903*, 2024.

611 Augustus Odena, Dieterich Lawson, and Christopher Olah. Changing model behavior at test-time
 612 using reinforcement learning. *arXiv preprint arXiv:1702.07780*, 2017.

613

614 David Osowiechi, Gustavo A Vargas Hakim, Mehrdad Noori, Milad Cheraghalkhani, Ali Bahri,
 615 Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. Nc-ttt: A noise contrastive
 616 approach for test-time training. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 617 and Pattern Recognition*, pp. 6078–6086, 2024.

618 Young-Jin Park, Kristjan Greenewald, Kaveh Alim, Hao Wang, and Navid Azizan. Know what you
 619 don't know: Uncertainty calibration of process reward models. *arXiv preprint arXiv:2506.09338*,
 620 2025.

621

622 Sergey Pletenev, Maria Marina, Daniil Moskovskiy, Vasily Konovalov, Pavel Braslavski, Alexander
 623 Panchenko, and Mikhail Salnikov. How much knowledge can you pack into a lora adapter without
 624 harming llm? *arXiv preprint arXiv:2502.14502*, 2025.

625 Jianing Qi, Hao Tang, and Zhigang Zhu. Verifierq: Enhancing llm test time compute with q-learning-
 626 based verifiers. *arXiv preprint arXiv:2410.08048*, 2024.

627

628 Yuxiao Qu, Matthew YR Yang, Amirth Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
 629 Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
 630 tuning. *arXiv preprint arXiv:2503.07572*, 2025.

631 Qwen, , An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 632 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 633 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 634 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 635 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 636 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv
 637 preprint arXiv:2412.15115*, 2025.

638 Soham Sane. Hybrid group relative policy optimization: A multi-sample approach to enhancing
 639 policy optimization. *arXiv preprint arXiv:2502.01652*, 2025.

640

641 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 642 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

643

644 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 645 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 646 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

647 Charlie Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline rl for natural language
 648 generation with implicit language q learning. In *ICLR*, 2023.

648 Paul Stangel, David Bani-Harouni, Chantal Pellegrini, Ege Özsoy, Kamilia Zaripova, Matthias Ke-
 649 icher, and Nassir Navab. Rewarding doubt: A reinforcement learning approach to calibrated
 650 confidence expression of large language models. *arXiv preprint arXiv:2503.02623*, 2025.

651

652 Hao Sun and Mihaela van der Schaar. Inverse reinforcement learning meets large language model
 653 post-training: Basics, advances, and opportunities. *arXiv preprint arXiv:2507.13158*, 2025.

654

655 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
 656 ing with self-supervision for generalization under distribution shifts. In *International conference*
 657 *on machine learning*, pp. 9229–9248. PMLR, 2020.

658

659 Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang
 660 Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based judges.
 661 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=G0dkxFayVq>.

662

663 Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
 664 Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. *Nature medicine*,
 29(8):1930–1940, 2023.

665

666 Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang,
 667 Jiangyue Yan, Yao Su, et al. A survey on post-training of large language models. *arXiv e-prints*,
 668 pp. arXiv–2503, 2025.

669

670 Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin,
 671 Jinhu Fu, Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety:
 672 Data, training and deployment. *arXiv preprint arXiv:2504.15585*, 2025.

673

674 Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
 675 Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. *arXiv preprint*
 676 *arXiv:2412.10400*, 2024.

677

678 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 679 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 680 *arXiv preprint arXiv:2203.11171*, 2022.

681

682 Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Mengdi Zhang, Xunliang Cai, and Jian Shao.
 683 \mathcal{S}^3 cmath: Spontaneous step-level self-correction makes large language models better mathemat-
 684 ical reasoners. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
 685 25588–25596, 2025.

686

687 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 688 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 689 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

690

691 Qiyang Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 692 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 693 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

694

695 Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
 696 effect of data, model and finetuning method. *arXiv preprint arXiv:2402.17193*, 2024.

697

698 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
 699 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
 700 for llms: A survey. *arXiv preprint arXiv:2509.02547*, 2025a.

701

702 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
 703 Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
 704 relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025b.

705

706 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
 707 Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
 708 models: What, how, where, and how well? *arXiv preprint arXiv:2503.24235*, 2025c.

702 Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
703 Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. *arXiv preprint*
704 *arXiv:2505.23884*, 2025d.

705

706 Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
707 Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. *ACM Trans-*
708 *actions on Intelligent Systems and Technology*, 15(2):1–38, 2024.

709 Wenting Zhao, Pranjal Aggarwal, Swarnadeep Saha, Asli Celikyilmaz, Jason Weston, and Ilia Ku-
710 likov. The majority is not always right: RL training for solution aggregation. *arXiv preprint*
711 *arXiv:2509.06870*, 2025.

712

713 Enyu Zhou, Guodong Zheng, Binghai Wang, Zhiheng Xi, Shihan Dou, Rong Bao, Wei Shen, Limao
714 Xiong, Jessica Fan, Yurong Mou, et al. Rmb: Comprehensively benchmarking reward models in
715 llm alignment. *arXiv preprint arXiv:2410.09893*, 2024.

716 Zhi Zhou, Tan Yuhao, Zenan Li, Yuan Yao, Lan-Zhe Guo, Xiaoxing Ma, and Yu-Feng Li. Bridging
717 internal probability and self-consistency for effective and efficient llm reasoning. *arXiv preprint*
718 *arXiv:2502.00511*, 2025.

719 Elaine Zosa, Ville Komulainen, and Sampo Pyysalo. Got compute, but no data: Lessons from
720 post-training a finnish llm. *arXiv preprint arXiv:2503.09407*, 2025.

721

722 Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
723 Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. *arXiv preprint*
724 *arXiv:2504.16084*, 2025.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A DETAILS OF JUDGE MODEL
757758
759 A.1 TRAINING DATA CONSTRUCTION
760

761 The training data for our judge model was constructed using the training split of the MATH dataset as
762 the source of labeled data. Each sample in this dataset contains a mathematical problem (question)
763 and its corresponding golden answer. For each question, we employed our backbone model to
764 generate four diverse candidate responses. To encourage diversity, we used nucleus sampling with a
765 temperature of 0.6 and a top-p value of 0.9. Each of the generated responses was then automatically
766 evaluated for correctness by comparing its final answer to the golden answer from the MATH dataset.
767 A binary score was assigned: a score of 1 indicates a correct response, while a score of 0 indicates
768 an incorrect one. This procedure resulted in a dataset comprising $\sim 26,000$ training samples and
769 $\sim 3,000$ test samples. Each sample is a triplet containing the original question, a model-generated
770 response, and its assigned binary correctness score.
771

772 A.2 MODEL ARCHITECTURE
773

774 We fine-tune our backbone model it-
775 self to act as the judge model for
776 the subsequent test-time RL, pre-
777 dicting a scalar score for a given
778 question-response pair. In this pa-
779 per, we consistently use the judge
780 model built upon Qwen2.5-Math-
781 1.5B to reduce computational over-
782 head. Specifically, we initialized
783 the model from the pretrained back-
784 bone model. We then introduced
785 a new special token, `<| judge|>`,
786 into the tokenizer’s vocabulary. This
787 token is appended to the input se-
788 quence to signal the model to per-
789 form the evaluation task. To pro-
790 duce a fixed-size representation of the
791 entire input sequence, we employed
792 an attention pooling strategy, which
793 uses a learnable query vector to com-
794 pute an attention-weighted average of
795 the transformer’s final hidden states.
796 This allows the model to dynamically
797 determine which tokens are most rel-
798 evant for the final score prediction.
799 Finally, the pooled hidden represen-
800 tation is fed into a regression head to
801 predict the final score. This head is a
802 two-layer MLP with a SiLU activation function. The hidden dimension of the MLP is set to twice
803 the model’s hidden size, and a dropout rate of 0.05 is applied for regularization.
804

805 A.3 TRAINING HYPERPARAMETERS
806

807 The model was trained using the hyperparameters specified in Table 6. We use AdamW for opti-
808 mization with an initial learning rate of 2×10^{-5} that followed a cosine-annealing decay schedule
809 with a warm-up ratio of 0.03 and a weight decay coefficient of 0.01. The model was trained for 3
epochs with a per-device mini-batch of 4. Binary cross-entropy (BCE) loss was used as the training
objective.

Table 6: Hyperparameters for Judge Model Training.

Parameter Category	Value
Model Configuration	
Base Model	Qwen2.5-Math-1.5B
Pooling Strategy	Attention Pooling
Regression Head	2-layer MLP
Head Hidden Multiplier	2
Head Dropout	0.05
Data Configuration	
Training Samples	$\sim 26,000$
Evaluation Samples	$\sim 3,000$
Max Sequence Length	4096
Optimizer & Scheduler	
Optimizer	AdamW
Learning Rate	2×10^{-5}
LR Scheduler	Cosine Annealing
Warmup Ratio	0.03
Weight Decay	0.01
Training Strategy	
Training Epochs	3
Per-Device Train Batch Size	4
Per-Device Eval Batch Size	8
Gradient Accumulation Steps	1
Loss Function	BCE Loss

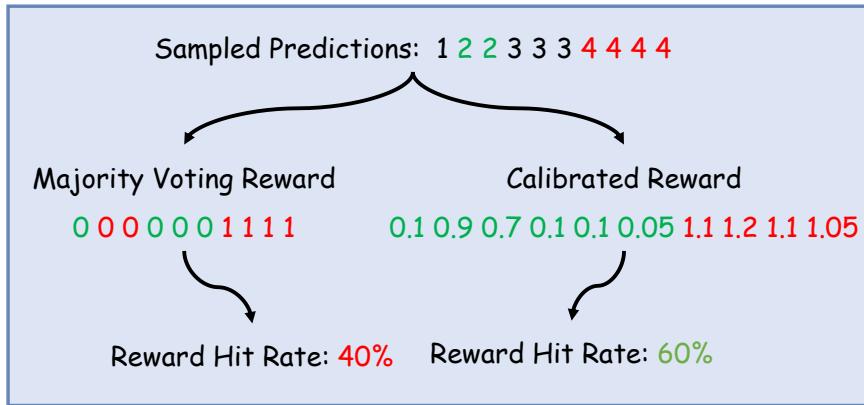


Figure 3: A simple case study of reward calibration.

B A SIMPLE CASE STUDY

Figure 3 provides a simple case study illustrating the critical limitation of voting-based reward mechanisms and the subsequent benefit of our DREAM’s decoupled calibration. In this scenario, the policy model’s sampled predictions are systematically biased, with the incorrect answer ’4’ appearing most frequently. A conventional majority voting approach, as employed in TTRL, would consequently assign a positive reward exclusively to the erroneous majority answer while penalizing all other candidates, including the correct answer ’2’. This creates a perverse incentive structure, initiating a vicious cycle of error accumulation where the policy is guided to reinforce its own most frequent mistake. The resulting reward signal is highly misleading, as evidenced by a low “Reward Hit Rate” of 40%, which provides a poor and often detrimental gradient for policy optimization.

In contrast, DREAM effectively mitigates this failure mode by decoupling reward estimation from the policy model’s consensus. By incorporating an independent reliability score from the judge model, the final calibrated reward corrects for the bias of majority voting. As shown, the correct but infrequent answers ’2’ is able to receive significant reward scores (0.9 and 0.7) despite their zero voting-based reward. This crucial step recovers the learning signal for the correct reasoning path, which would have otherwise been lost. Consequently, the calibrated reward structure is far more aligned with the ground truth, increasing the effective hit rate to 60% and guiding the reinforcement learning process toward a more accurate policy, rather than merely a more confident one.

Furthermore, the strength of this decoupled approach is not over-rely on a perfectly omniscient judge model. Even a moderately effective judge, one that is not flawless but is better at evaluation than the policy model is at generation, provides substantial benefits. The key advantage lies in introducing a source of evaluation whose errors are likely uncorrelated with the policy model’s systemic biases. For instance, even if a moderately accurate judge assigned a slightly lower score to the correct answer ’2’ (e.g., 0.6, even 0.4) and a small non-zero score to an incorrect answer ’3’ (e.g., 0.2 or 0.1), the final calibrated reward for ’2’ would still be substantially higher than that for other incorrect, non-majority answers like ’1’ and ’3’. The judge’s primary role is thus to break the “tyranny of the majority” and create a more nuanced relative reward landscape. This allows group-wise optimization methods like GRPO to better distinguish between varying degrees of correctness among the candidates, preventing the policy from collapsing into a confident but fundamentally flawed state.

C THE USE OF LARGE LANGUAGE MODELS

In this manuscript, we use LLMs to help polish writing at the sentence level and check grammar.