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ABSTRACT

This paper studies the problem of large language model (LLM) test-time training,
which aims to enhance the reasoning ability of LLMs via unlabeled test data. Re-
cent works usually utilize majority voting to infer the labels of samples to guide
the reinforcement learning process, which could be inaccurate and biased with
potential error accumulation. Towards this end, we propose a novel approach
named Decoupled Reinforcement Learning with Reward Measurement (DREAM)
for LLM test-time training. The core of our proposed DREAM is to decouple the
reward estimation from reinforcement learning with enhanced calibration. In par-
ticular, our DREAM trains an LLM-based calibration model which takes both
questions and answers as input, and outputs the calibration scores. To mitigate
overconfident results, the judge model is trained by simulating on an independent
reference dataset with positive and negative pairs. The reference-based calibra-
tion scores would be incorporated into voting-based reward estimation to reduce
the potential biases, which enhance reliable test-time training. Extensive experi-
ments on benchmark datasets validate the superiority of the proposed DREAM in
comparison with competing baselines.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2024; Chang et al., 2024; Kasneci et al., 2023; Naveed
et al., 2025) have become the backbone of modern natural language processing (NLP) (Khurana
et al., 2023; Feuerriegel et al., 2025; Frenda et al., 2025), powering a wide range of downstream
applications (Thirunavukarasu et al., 2023; Kaddour et al., 2023; Nie et al., 2024; Guo et al., 2024;
Yan et al., 2025). Beyond their scale and architecture, the effectiveness of LLMs crucially depends
on their training paradigm (Minaee et al., 2024; Wang et al., 2025; Dong et al., 2025), which can be
broadly divided into pre-training (Ma et al., 2024) and post-training (Zosa et al., 2025; Kumar et al.,
2025). While pre-training builds general-purpose capabilities from large-scale corpora, post-training
emphasizes aligning LLMs with human preferences and adapting them to task-specific requirements,
making it a critical stage for improving reasonability and reliability.

Among post-training paradigms for large language models (Lai et al., 2025; Lv et al., 2025; Tie
et al., 2025), test-time reinforcement learning (Odena et al., 2017; Qu et al., 2025) has emerged as
a promising strategy to enhance reasoning and generalization on complex tasks (Ge et al., 2023;
Han et al., 2024) and unseen knowledge (Farquhar et al., 2023; Li et al., 2025). Unlike conven-
tional reinforcement learning that requires labeled data, TTRL (Zuo et al., 2025) leverages unlabeled
test inputs and majority voting based rewards to refine policies online without explicit supervision.
Early approaches exploit consistency-based signals, such as self-consistency across multiple reason-
ing paths, to generate pseudo-rewards for stable adaptation (Wang et al., 2022; Ghosh et al., 2024),
while subsequent work integrates calibration and uncertainty modeling to mitigate overconfident or
biased feedback (Stangel et al., 2025; Park et al., 2025). Extensions of TTRL combine it with test-
time training (TTT) (Sun et al., 2020; Osowiechi et al., 2024), introducing auxiliary self-supervised
objectives to improve robustness under distribution shifts (Zhang et al., 2025d), and task-specific
designs, such as leveraging region consistency in GUI grounding (Du et al., 2025), further demon-
strate its adaptability. Collectively, these advances establish test-time reinforcement learning as a
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flexible and rapidly evolving framework that unifies self-supervision, calibrated reward estimation,
and reinforcement learning to enhance LLMs’ reasoning, robustness, and task adaptability.

Despite the advantages of test-time reinforcement learning, several challenges remain when handling
unlabeled data. For instance, TTRL (Zuo et al., 2025) derives rewards by aggregating multiple out-
puts via majority voting. However, such voting may yield inaccurate rewards that deviate from the
ground-truth labels, thereby introducing negative feedback into the subsequent reinforcement learn-
ing process. These observations raise a critical question: ❶ How can reinforcement learning be
enhanced with reliable rewards in the absence of explicit supervision? More importantly, reward
generation and policy updates are inherently coupled within the reinforcement learning paradigm.
Consequently, inaccurate rewards can lead to biased policy optimization, which in turn compounds
generation errors and creates a vicious cycle during the post-training process. This concern moti-
vates a second key question: ❷ Can reward estimation be decoupled from policy optimization to
mitigate bias accumulation in post-training?

To address these challenges, we propose a simple yet effective framework DREAM for enhancing
adaptation on unlabeled test data by decoupling reward estimation from reinforcement learning in
LLM test-time training. Specifically, DREAM constructs an independent labeled reference dataset
to train an auxiliary judge model, which is employed to estimate the reliability of model outputs.
Built upon this, we design a hybrid reward calibration module that incorporates reliability scores
predicted by the frozen judge model to produce final rewards. Subsequently, these calibrated re-
wards are leveraged to perform unbiased test-time reinforcement learning, thereby promoting gen-
eralizability when handling diverse inputs in unsupervised scenarios. To demonstrate the reliability
and effectiveness of DREAM, we further conduct extensive experiments on benchmark datasets,
showing outstanding advantages over state-of-the-art baseline approaches.

To better elucidate the contributions of DREAM, we summarize them as follows:
❶ Novel Perspective. To the best of our knowledge, we are the first to decouple reward estimation

from reinforcement learning for unlabeled test data during the test-time training phase.
❷ Unified Framework. To enhance reinforcement learning without labeled data, we introduce an

auxiliary module trained on independent reference data to estimate output reliability, which is
subsequently leveraged to calibrate the final reward for policy optimization.

❸ Empirical Validation. We demonstrate the effectiveness of DREAM through extensive experi-
ments on benchmark datasets against several baselines, showing its superiority empirically.

2 RELATED WORK

2.1 LLM POST-TRAINING

While pre-training provides a general foundation by learning from large-scale corpora, post-training
aligns LLMs with specific knowledge, enhancing reasoning capabilities and refining outputs through
target feedback (Kumar et al., 2025). Furthermore, classic paradigms for post-training include: (i)
Test-time scaling (TTS), which improves inference performance by allocating additional computa-
tional resources during reasoning (e.g. sequential scaling (Madaan et al., 2023; Brinkmann & Bizer,
2025) and parallel sequential (Korikov et al., 2025; Zhou et al., 2025)); (ii) Fine-tuning, which
adapts the pretrained model to specific downstream domains to enhance task alignment Zhang et al.
(2024); and (iii) Reinforcement learning (RL), which optimizes models using reward signals de-
rived from human preferences or other evaluative feedback (Laleh & Ahmadabadi, 2024; Yu et al.,
2025; Hu et al., 2025). Test-time scaling improves inference performance without updating model
parameters but incurs higher computational cost and may generalize poorly (Zhang et al., 2025c).
Fine-tuning (Pletenev et al., 2025) enables strong task specialization but risks overfitting and re-
quires high-quality labeled data. In contrast, reinforcement learning provides a flexible framework
for post-training optimization, leveraging reward signals to enhance task alignment even under lim-
ited supervision. This flexibility motivates our focus on RL in the work.

2.2 REINFORCEMENT LEARNING IN LLMS

Reinforcement learning (RL) (Chen et al., 2025b; Dang & Ngo, 2025) has become a mainstream
post-training paradigm for aligning large language models (LLMs) with human preferences (Zhang
et al., 2025a; Yu et al., 2025; Hariharan, 2025), thereby enhancing their reasoning ability and adap-
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tive generalization during inference. For instance, Proximal Policy Optimization (PPO) (Schulman
et al., 2017) performs policy updates through multiple epochs of stochastic gradient ascent and
serves as a cornerstone of Reinforcement Learning with Human Feedback (RLHF) (Bai et al., 2022;
Chaudhari et al., 2024). Beyond on-policy methods (Mroueh et al., 2025), several off-policy ap-
proaches (e.g., Implicit Language Q-Learning (ILQL) (Snell et al., 2023) and VerifierQ (Qi et al.,
2024)) exploit offline datasets or auxiliary verifier signals to improve efficiency and reasoning reli-
ability. More importantly, DeepSeek-R1 (Guo et al., 2025) introduces Group Relative Policy Opti-
mization (GRPO) (Zhang et al., 2025b; Sane, 2025), which extends LLMs’ reasoning capabilities
through outcome-based relative rewards. Despite these advances, most RL-based post-training (Sun
& van der Schaar, 2025) frameworks rely on reliable supervised signals from humans or AI models,
limiting their versatility when such labels are unavailable (Wang et al., 2024; Chen et al., 2025a;b).
To address this challenge, Test-time Reinforcement Learning (TTRL) (Zuo et al., 2025) employs
majority voting to derive consistency-based rewards, enabling reinforcement learning directly on
unlabeled test data. However, coupling output generation and reward evaluation often leads to over-
confident predictions and biased reinforcement learning. This motivates the need to decouple reward
estimation from policy optimization for more robust test-time training.

3 THE PROPOSED DREAM

Problem Definition. In this work, we address the problem of test-time training for large language
models (LLMs) using unlabeled test data. Formally, let DU = {xi}NU

i=1 denote the set of test-time
inputs without ground-truth labels, where xi ∈ X belongs to the input space. Let πθ(· | x) represents
the base policy model, which could generate candidate outputs {yi} according to yi ∼ πθ(y | x)
for a given input x. Since the true labels are unavailable, our objective is to design a reliable reward
estimation module R(·) and to leverage the resulting calibration scores to optimize the policy model
πθ within a reinforcement learning framework.

3.1 DREAM: DECOUPLING REWARD ESTIMATION AND REINFORCEMENT LEARNING

To provide reliable rewards for test-time training with unlabeled data, our DREAM framework de-
couples reward estimation from reinforcement learning to generate enhanced calibration scores.
Specifically, DREAM first generates multiple outputs from the policy model via repeated sampling,
which are then employed to construct rewards for the unlabeled data through majority voting. To
mitigate overly confident reward signals, we additionally train a judge model using a simulated in-
dependent reference dataset with supervised labels, which identifies whether the generated outputs
are reliable. The calibration scores produced by the judge model are subsequently leveraged to fur-
ther refine the rewards, thereby enabling more reliable test-time training. A detailed overview of the
DREAM pipeline is presented in Figure 1.

3.2 CALIBRATION MODEL OPTIMIZATION WITH REFERENCE DATA

For unlabeled data, directly incorporating rewards into reinforcement learning (Zuo et al., 2025) may
lead to biased and overconfident outcome during test-time training. To address this challenge, we
introduce an additional model to calibrate the rewards, thereby providing more reliable evaluations
based on an established reference data. More specifically, we construct a reference dataset DL =
{(xi, yi)}NL

i=1, where xi denotes a question and yi represents its corresponding answer. This dataset
is then leveraged to independently train a judge model. For each input xi, we sample K candidate
outputs from the policy model πθ(· | xi), forming a candidate set denotes as:

Oi = {ŷi,k | ŷi,k
i.i.d.∼ πθ(· | xi), 1 ≤ k ≤ K}, (1)

where ŷi,k are independently and identically distributed (i.i.d.) samples draw from the policy model
π(· | xi). These outputs are then passed through a canonical answer extraction function C, which
generates binary labels indicating whether each sampled output matches the ground-truth answer:

Si = {si,k}Kk=1 = {I(C(ŷi,k) = yi) | ŷi,k ∈ Oi}, (2)

where si,k is the binary label representing the consistency with the ground-truth label, and I is the
indicator function. Built upon these formulation, the judge model Fϕ is trained to learn a mapping
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Let a be a positive real number such 

that all the roots of x3 + ax2 + ax 

+ 1 = 0 are real.  Find the smallest 

possible value of a.

Note that x = -1 is always a root 

of 3 + ax2 + ax + 1 = 0, so we can 

factor out x+1, to get (x + 1) (x2 

+ (a - 1) x + 1) = 0......

Reference Dataset DL

The polynomial 

x3 - 3x2 + 4x -
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x9 + px6 + qx3

+ r.  Enter the 

ordered triple 

(p,q,r).

Judge Model Optimization

Judge Model Candidate Pool Rule-based

response 1

response 2

response 3

response 4

Unlabeled Dataset DU

Policy Model

response 1

response 2

response 3

response 4

Candidate Pool

Calibration Score

Voting Calibrated Reward

Policy Model Optimization

Norm

RL

Figure 1: Overview of DREAM. The framework is composed of two optimization modules: judge
model optimization and policy model optimization.

from (xi,Oi) to Si, i.e., Fϕ : (xi, ŷi,k) → si,k. The parameters of Fϕ are then optimized with a
mean squared error (MSE) regression loss:

LF =
1

NL

NL∑
i=1

1

|Si|

K∑
k=1

(Fϕ(xi, ŷi,k)− si,k)
2, (3)

where Fϕ(xi, ŷi,k) denotes the calibration score predicted by the judge model, and si,k is the binary
alignment score. By incorporating these additional signals, the judge model gains the ability to
assess the reliability of generated outputs, thereby serving as an auxiliary module to refine reward
estimation for unlabeled data during test-time training.

3.3 REWARD ENHANCEMENT THROUGH CALIBRATION

Generally, the policy model πθ is optimized using a supervised reward function to guide reinforce-
ment learning. However, in the absence of supervisory signals for unlabeled data, direct reward-
based optimization becomes unreliable and overconfident. To tackle this, we propose a hybrid
reward enhancement module that incorporates calibration via a previously trained judge model,
enabling more effective utilization of rewards under unsupervised conditions.

Voting-Based Consistency Reward. To generate rewards that enhance reinforcement learning, we
first construct a candidate set by repeatedly sampling from the policy model πθ. For the unlabeled
dataset DU = {xi}NU

i=1, an answer set Oi = {ŷi,k}Kk=1 is obtained for each input xi following
Eq. 1. Subsequently, we apply majority voting (Zhou et al., 2024; Zhao et al., 2025) to evaluate the
consistency within the answer set, formulated as:

rvi,k = I(ŷi,k = ỹi), where ỹi = MV(Oi) and 1 ≤ k ≤ K. (4)

Here K denotes the number of sampled outputs, and MV(Oi) represents the consensus output de-
termined by the majority voting aggregation strategy. The indicator rvi,k thus defines a consistency
reward for each output in the candidate set Oi. This approach allows us to derive intrinsic rewards
in the absence of supervised signals, providing guidance for the optimization of the policy model.

Calibration for Reward Reliability. Recalling that we have trained a judge model Fϕ to assess
the confidence of each output individually. By integrating this confidence assessment component,
we can decouple pseudo-label generation from quality evaluation on the unlabeled dataset. This
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paradigm provides more reliable rewards to enhance the policy model through reinforcement learn-
ing during test-time training. Accordingly, the final reward for each output is obtained by combining
the voting-based reward with the calibration score from the judge model:

ri,k = rvi,k + si,k, where 1 ≤ i ≤ NU , 1 ≤ k ≤ K. (5)

This approach decouples pseudo-labels from confidence estimation, promoting correct answers
while penalizing incorrect ones, thereby mitigating overconfidence in erroneous outputs.

3.4 UNBIASED TEST-TIME REINFORCEMENT LEARNING

To enable unbiased test-time reinforcement learning, DREAM incorporates rewards that combine
voting-based consistency with calibration scores for enhanced reliability.

Group-wise Reward Normalization. Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) optimizes policies by comparing the relative strengths of different responses within a group,
which reduces both memory usage and computational overhead. Motivated by this, we normalize
rewards using a candidate set Oi. Specifically, given an output ŷi,k ∈ Oi with its associated reward
ri,k, the normalized score is computed as:

r̃i,k =
ri,k − µi

σi
, where µi =

1

K

K∑
k=1

ri,k and σi =

√√√√ 1

K

K∑
k=1

(ri,k − µi)2. (6)

This reward normalization provides a more stable and comparable signal, which can effectively
guide the optimization of the policy model.

Policy Model Optimization. Here, we leverage the previously generated rewards to optimize the
policy model using unlabeled data during the test-time training process. The reinforcement learning
objective is to maximize the expected reward, formulated as:

max
θ

Ey∼πθ(·|x)r̃(x, y), (7)

where r̃(x, y) represents the calibrated reward according to Eq. 6. What’s more, the parameters θ
are then updated via gradient ascent:

θ ← θ + γ · Ey∼πθ(·|x)r̃(x, y), (8)

in which γ represents the learning rate. This update strategy provides a robust reward estimation
by incorporating auxiliary calibration from an independent judge model, thereby enhancing the ef-
fective utilization of unlabeled data during test-time training. In conclusion, DREAM demonstrates
significantly improved generalizability when handling diverse inputs under unsupervised scenarios.

3.5 TRAINING PROCEDURE OF DREAM

To enable better test-time training with unlabeled data, DREAM carefully decouples reward esti-
mation from reinforcement learning, allowing the model to leverage unlabeled inputs without in-
troducing overly confident or biased updates. The process proceeds in two interlinked stages, each
designed to ensure reliable reward signals and stable policy optimization. (i) Judge model opti-
mization. In the first stage, DREAM constructs an auxiliary judge model that serves as a reliable
reward estimator. To provide supervision for the judge model, we generate a set of additional math
questions with known ground-truth answers. For each question, the policy model is queried multiple
times (e.g., K = 4) to produce diverse candidate solutions, capturing the inherent stochasticity and
variability of the model outputs. Each candidate output is then evaluated against the correspond-
ing ground-truth answer using rule-based verification. Outputs that correctly solve the question are
grouped into positive pairs, while incorrect outputs form negative pairs. The labeled pairs are subse-
quently used to train the judge model using a supervised learning objective, allowing it to effectively
assign reliability scores to candidate outputs. (ii) Policy model optimization. For a given math ques-
tion, we first sample multiple outputs from the policy model to construct a candidate set Oi, which
captures the range of plausible solutions that the policy may generate. Each candidate in Oi is then
evaluated by the judge model, which produces a calibration score reflecting its estimated quality.
These scores are combined with a voting-based reward scheme, which are then refined by the cali-
bration scores. Finally, these calibrated rewards are used to perform reinforcement learning updates
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Algorithm 1: Test-time Training Procedure of DREAM

Input: Reference dataset DL = {(xi, yi)}NL
i=1 and policy model πθ

1 for iteration i← 1 to NL do // Judge model optimization
2 Generate a candidate set Oi for each input xi using πθ according to Eq. 1
3 Compute the matching score between ŷi,k ∈ Oi and the ground-truth yi by Eq. 2
4 Optimize the judge model Fϕ using the MSE loss defined in Eq. 3
5 end

Output: Trained judge model Fϕ // Calibration for reward reliability
Input: Unlabeled test dataset DU = {xi}NU

i=1 and the frozen judge model Fϕ

6 for iteration i← 1 to NU do // Policy model optimization
7 Generate a candidate set Oi for each input xi using πθ according to Eq. 1
8 Estimate the calibration score si,k for each candidate ŷi,k // Predict with judge model
9 Compute the voting-based reward rvi,k within Oi using Eq. 4

10 Derive the calibrated reward ri,k according to Eq. 5
11 Normalize the group-wise reward r̃i,k using Eq. 6
12 Optimize πθ by Eq. 7 and Eq. 8.
13 end

Output: Trained policy model πθ // Optimize the policy with calibrated rewards

on the policy model, allowing it to improve its performance iteratively while accounting for the
judge’s assessment. The entire process, including both the judge and policy model optimizations, is
formally summarized in Algorithm 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Backbone Models. To verify the generalizability of our reward score calibration, we conduct ex-
periments on a broad range of backbone models, encompassing both base and instruct models at
different scales. Specifically, we select Qwen2.5-Math-1.5B (Yang et al., 2024), Qwen2.5-Math-
7B (Yang et al., 2024), Qwen2.5-7B (Qwen et al., 2025), LLaMA3.1-8B-Instruct (Dubey et al.,
2024), and DeepSeek-R1-7B-Instruct (Guo et al., 2025) as backbone models.

Evaluation Setup. We evaluate DREAM on three challenging mathematical reasoning benchmarks:
AIME 2024, AMC, and MATH-500. For better evaluation, we adopt avg@k, maj@k, and pass@k to
evaluate the experimental results. Following the practice of (Zuo et al., 2025), we generate responses
with non-zero temperature sampling with a temperature of 0.6 and a top-p value of 0.95 unless
specified. The maximum generation length is set to 3,072 tokens. We prompt the model to perform
step-by-step reasoning and to present the final answer enclosed within “\boxed{}”.

Baselines. Our primary baseline for comparison is TTRL (Zuo et al., 2025), the state-of-the-art
method for test-time reinforcement learning on unlabeled data. This direct comparison allows us to
isolate and measure the performance gains attributable to our decoupled reward calibration mecha-
nism. Additionally, we report the performance of the original backbone models without any test-time
training to establish a performance floor and quantify the absolute improvement.

Implementation Details. We implement DREAM by applying GRPO (Shao et al., 2024) to the
policy model, guided by our calibrated reward signals. For the policy model’s hyperparameters, we
use a cosine learning rate schedule with a peak value of 5×10−7 and employ the AdamW optimizer.
During the rollout phase, we sample 64 responses per prompt, which are then used for majority
voting and scoring by the judge model. Subsequently, we downsample to 32 responses per prompt
for the training batch. The maximum generation length is set to 3,072 tokens. The number of training
episodes is adapted to the dataset size: 80 for AIME 2024, 30 for AMC, and 10 for MATH-500. All
experiments were conducted on a cluster of 8 NVIDIA H20 GPUs.

Reward Calibration Model. A core component of our methodology is the judge model for reward
calibration. As the proprietary datasets used for the pre-training and supervised fine-tuning (SFT) of
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Table 1: Performance comparison with TTRL on various backbone models. We report avg@16 on
AIME 2024, AMC, and MATH-500 datasets.

Backbone Model AIME 2024 AMC MATH-500 Avg.

Math Base Models

Qwen2.5-Math-1.5B 7.5 29.5 33.8 23.6
w/ TTRL 12.1↑4.6 45.9 ↑16.4 68.2↑34.4 42.1↑18.5
w/ DREAM 16.7↑9.2 46.8↑17.3 72.9↑39.1 45.5↑21.9

Qwen2.5-Math-7B 13.5 36.5 46.5 32.2
w/ TTRL 40.8↑27.3 67.0↑30.5 83.4↑36.9 63.7↑31.5
w/ DREAM 40.0↑26.5 67.4↑30.9 84.5↑38.0 64.0↑31.8

Vanilla Base Model
Qwen2.5-7B 7.3 32.0 60.9 33.4
w/ TTRL 23.3↑16.0 51.8↑19.8 81.1↑20.2 52.1↑18.7
w/ DREAM 23.3↑16.0 55.4↑23.4 80.1↑19.2 52.9↑19.5

Instruct Model

LLaMA3.1-8B-Instruct 4.8 21.5 48.4 24.9
w/ TTRL 10.0↑5.2 32.3↑10.8 61.4↑13.0 34.6↑9.7
w/ DREAM 13.3↑8.5 34.8↑13.3 59.6↑11.2 35.9↑11.0

DeepSeek-R1-7B-Instruct 1.7 16.0 43.1 20.3
w/ TTRL 1.0↓0.7 19.3↑3.3 50.8↑7.7 23.7↑3.4
w/ DREAM 1.7↑0.0 20.8↑4.8 51.5↑8.4 24.7↑4.4
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(a) Qwen2.5-Math-1.5B
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Figure 2: Performance comparison of our DREAM and TTRL on out-of-distribution testing data.
We select Qwen2.5-Math-1.5B as the backbone model and report avg@16.

the backbone models are often not accessible, we simulate a representative labeled dataset to train
our reward calibration model. We utilize the training split of the MATH dataset for this purpose.
For each question in the MATH training set (Hendrycks et al., 2024), we generate four candidate
responses from the target policy model using a sampling temperature of 0.6 and a top-p of 0.9. These
responses are then assigned a binary score based on a rule-based comparison against the ground-truth
answer. This process yields a dataset of < question, response, score > tuples for training the
judge model as a regression task. Further details on the judge model’s training data distribution,
architecture, and optimization are provided in Appendix A.

4.2 EXPERIMENT RESULTS AND ANALYSIS

Reward calibration generally leads to better test-time RL training. As shown in Table 1,
DREAM mitigates the accumulation of reward noise caused by overconfidence during training by
calibrating the voting-based reward with a decoupled reliability estimation, thereby demonstrating a
positive average performance gain over the majority voting baseline on most of the scenarios. The
benefits of our calibration mechanism are most pronounced for weaker models, where the initial
reward signal from majority voting is inherently noisier. For example, DREAM achieves a signif-
icant improvement of 4.6 on AIME 2024 for the smaller Qwen2.5-Math-1.5B, as its judge model
effectively filters erroneous positive rewards and mitigates overconfident optimization on flawed
outputs. However, the impact of calibration can be nuanced. We observed a marginal performance
decrease with DREAM on Qwen2.5-Math-7B for the AIME dataset. This could be attributed to our
implementation choice for computational efficiency, where a single reward calibration model based
on Qwen2.5-Math-1.5B was used across all experiments. This approach may be suboptimal when
applied to larger, more capable models.

Reward calibration generalizes well beyond the target task. We evaluate the models trained with
DREAM on out-of-distribution (OOD) test data to assess their generalization capabilities. Specif-
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ically, we conduct cross-dataset validation between AIME 2024 and AMC. For each experiment,
we perform test-time training on one dataset and evaluate the resulting model on the other one. As
shown in Figure 2, the results on Qwen2.5-Math-1.5B and Qwen2.5-7B, measured by the avg@16
and maj@16, reveal that DREAM consistently improves upon both the backbone model and the
TTRL baseline. This not only validates that the improvements from test-time RL are generaliz-
able, but also indicates that the advantages of our method do not stem from overfitting to either the
in-distribution test data or the reward calibration model.

Table 2: Evaluation results of the reliability scores
generated by the calibration model.

Dataset Accuracy AUC F1-score
AIME 2024 84.58 0.820 49.32
AMC 73.57 0.821 72.21
MATH-500 96.66 0.965 84.85

Analysis of the reward calibration model.
The effectiveness of DREAM, which calibrates
reward scores by decoupling the reward relia-
bility measurement process, is based on the hy-
pothesis that for mathematical tasks, it is easier
for an LLM to act as a judge model and deter-
mine the correctness of a solution than to gen-
erate the correct answer itself (Tan et al., 2025).
Therefore, we further evaluate the ability of our reward calibration model to measure response relia-
bility for a given question. Following the pipeline used to construct the training set in Section 4.1, we
built OOD test sets from the AIME 2024, AMC, and MATH-500 datasets using the same method-
ology. We binarize the continuous reliability scores from the reward calibration model at a 0.5
threshold into labels indicating whether a response is correct, and then evaluate it on this binary
classification task using common metrics such as accuracy, AUC, and F1-score. As observed in
Table 2, while the base Qwen2.5-Math-1.5B model achieves an avg@16 of only 7.5 on AIME 2024,
our reward calibration model, after fine-tuning on a small dataset, reaches an accuracy of 84.58%
and an AUC of 0.820.

Table 3: Ablation Study of DREAM’s reward calibration process. In this table, “MV” represents
majority voting, while “RS” denotes reliability score.

Method MV RS AIME AMC
Avg@16 Maj@16 Avg@16 Maj@16

Qwen2.5-Math-1.5B 7.5 20.0 29.5 42.2
w/ TTRL ✔ 12.1 20.0 45.9 53.0
w/ Reliability Score ✔ 11.9 20.0 44.0 51.8
w/ DREAM ✔ ✔ 16.7 23.3 46.8 51.8

Ablation study of DREAM. As shown in Eq. 5, our method, DREAM, uses the estimated reliability
score si,k ∈ (0, 1) to calibrate the voting-based reward rvi,k ∈ {0, 1}, rather than directly using si,k
as a fine-grained reward score. Therefore, we further explore the usage of the calibration score
as the reward, with the results presented in Table 3. As observed, on Qwen2.5-Math-1.5B, using
the calibration score alone for test-time RL training also yields a considerable improvement over
the backbone model. However, it still slightly underperforms the majority voting reward of TTRL.
In contrast, combining the two leads to a significant improvement. We attribute this to the fact
that the performance of using si,k alone as a reward is constrained by the capability of the reward
calibration model itself. Incorrect estimations of the reliability score can introduce noise during
training. More importantly, the reward calibration model is frozen during training and thus lacks the
positive feedback property of majority voting, where the accuracy of reward estimation and model
performance are mutually reinforcing. However, majority voting is prone to overconfidence, leading
to the accumulation and amplification of errors from the early stages of training. Therefore, by using
si,k to correct the voting-based reward rvi,k during training, DREAM combines the advantages of
both approaches, achieving superior test-time RL performance.

Comparison between internal and external reward calibration model. To maintain a self-
evolving framework, the reward calibration model should be internal for test-time RL training.
Specifically, its construction process involves only the labeled data from the pre-training/SFT stages
and the model itself, without relying on any external knowledge. In this setting, our method can
be naturally adapted to any unsupervised RL scenario. However, if the focus is solely on test-time
RL, we can introduce an external reward calibration model for reliability estimation. We conducted
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a preliminary exploration of this approach, where we replaced the internal model with Qwen2.5-
Math-PRM-7B.

Table 4: Comparison between internal and external re-
ward calibration model on avg@16.

Model Method AIME AMC
Qwen2.5-Math-1.5B Internal 16.7 46.8
(Math Base Model) External 12.5 47.0
Qwen2.5-7B Internal 23.3 55.4
(Vanilla Base Model) External 23.3 55.4
LLaMA3.1-8B-Instruct Internal 13.3 34.8
(Instruct Model) External 10.0 34.2

Here, instead of using process-
supervised rewards, we compute
the reward directly at the entire response
level. We performed tests similar to
those in Table 2 and found that the
quality of the reliability scores obtained
this way is viable. The comparison
between the internal and external cali-
bration models is presented in Table 4.
As shown, their performance is largely
on par across three models and two
datasets. Our model was trained on data consisting of only ∼7k queries with 4 responses sampled
for each, whereas Qwen2.5-Math-PRM-7B was trained on ∼500k queries with 6-8 responses each.
This indicates that for our task, fine-tuning the model itself on a small-scale dataset can achieve
performance comparable to that of a general-purpose math reward model trained on a much larger
dataset. In the future, we will further explore the use of more powerful external calibration models,
such as Qwen2.5-Math-PRM-72B or Qwen2.5-Math-RM-72B.

The effectiveness of test-time RL. To demonstrate the efficacy of test-time RL, we compare the
performance of Qwen2.5-Math-1.5B against its instruction-tuned version and similarly-sized, RL-
trained models, using the pass@1 score with greedy decoding. The results in Table 5 indicate that
test-time RL with the voting-based TTRL already surpasses the heavily instruction-tuned Qwen2.5-
Math-1.5B-Instruct. Building on this, our proposed DREAM further improves performance by
decoupling reliability estimation from reward calibration, achieving results comparable to models
trained with large-scale RL. Importantly, large-scale RL methods rely on labeled datasets, whereas
such labels are unavailable in our setting. Under these constraints, DREAM delivers competitive
performance with only scarce labels and relatively small-scale RL during test-time training. These
findings highlight both the efficiency and practicality of test-time adaptation, underscoring the broad
applicability of DREAM comprehensively.

Table 5: Pass@1 comparison on AIME 2024 and AMC against similar models trained on large-scale
labeled data. All results are based on greedy decoding, with baselines sourced from Dr. GRPO.

Model AIME 2024 AMC MATH-500 Avg.
Qwen2.5-Math-1.5B 20.0 32.5 36.2 29.6
w/ TTRL 16.7 48.2 72.4 45.8
w/ DREAM 20.0 50.6 73.8 48.1

Qwen2.5-Math-1.5B-Instruct 10.0 48.2 74.2 44.1
DeepSeek-R1-Distill-1.5B-@3k 2.5 21.7 52.2 25.5
DeepSeek-R1-Distill-1.5B-@8k 20.0 49.4 77.4 48.9
Oat-Zero-1.5B 20.0 53.0 74.2 49.1

5 CONCLUSION

In this work, we introduce DREAM, a novel reward calibration framework that decouples reward
estimation from reinforcement learning to address the challenge of unreliable rewards on unlabeled
data. To disentangle reward estimation from reinforcement learning, DREAM introduces an aux-
iliary judge model trained to assess the consistency between generated responses and ground-truth
answers. By incorporating the judge model to calibrate voting-based rewards, DREAM enables
more accurate policy optimization without explicit supervision. Extensive experiments on multiple
mathematical reasoning benchmarks and diverse LLM backbones demonstrate the generalizability
of our approach. We believe DREAM opens up promising directions for advancing test-time scaling
of LLMs, particularly in scenarios where labeled data is scarce or unavailable.
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A DETAILS OF JUDGE MODEL

A.1 TRAINING DATA CONSTRUCTION

The training data for our judge model was constructed using the training split of the MATH dataset as
the source of labeled data. Each sample in this dataset contains a mathematical problem (question)
and its corresponding golden answer. For each question, we employed our backbone model to
generate four diverse candidate responses. To encourage diversity, we used nucleus sampling with a
temperature of 0.6 and a top-p value of 0.9. Each of the generated responses was then automatically
evaluated for correctness by comparing its final answer to the golden answer from the MATH dataset.
A binary score was assigned: a score of 1 indicates a correct response, while a score of 0 indicates
an incorrect one. This procedure resulted in a dataset comprising ∼26,000 training samples and
∼3,000 test samples. Each sample is a triplet containing the original question, a model-generated
response, and its assigned binary correctness score.

A.2 MODEL ARCHITECTURE

Table 6: Hyperparameters for Judge Model Training.

Parameter Category Value
Model Configuration

Base Model Qwen2.5-Math-1.5B
Pooling Strategy Attention Pooling
Regression Head 2-layer MLP
Head Hidden Multiplier 2
Head Dropout 0.05

Data Configuration
Training Samples ∼26,000
Evaluation Samples ∼3,000
Max Sequence Length 4096

Optimizer & Scheduler
Optimizer AdamW
Learning Rate 2× 10−5

LR Scheduler Cosine Annealing
Warmup Ratio 0.03
Weight Decay 0.01

Training Strategy
Training Epochs 3
Per-Device Train Batch Size 4
Per-Device Eval Batch Size 8
Gradient Accumulation Steps 1
Loss Function BCE Loss

We fine-tune our backbone model it-
self to act as the judge model for
the subsequent test-time RL, pre-
dicting a scalar score for a given
question-response pair. In this pa-
per, we consistently use the judge
model built upon Qwen2.5-Math-
1.5B to reduce computational over-
head. Specifically, we initialized
the model from the pretrained back-
bone model. We then introduced
a new special token, <|judge|>,
into the tokenizer’s vocabulary. This
token is appended to the input se-
quence to signal the model to per-
form the evaluation task. To pro-
duce a fixed-size representation of the
entire input sequence, we employed
an attention pooling strategy, which
uses a learnable query vector to com-
pute an attention-weighted average of
the transformer’s final hidden states.
This allows the model to dynamically
determine which tokens are most rel-
evant for the final score prediction.
Finally, the pooled hidden represen-
tation is fed into a regression head to
predict the final score. This head is a
two-layer MLP with a SiLU activation function. The hidden dimension of the MLP is set to twice
the model’s hidden size, and a dropout rate of 0.05 is applied for regularization.

A.3 TRAINING HYPERPARAMETERS

The model was trained using the hyperparameters specified in Table 6. We use AdamW for opti-
mization with an initial learning rate of 2 × 10−5 that followed a cosine-annealing decay schedule
with a warm-up ratio of 0.03 and a weight decay coefficient of 0.01. The model was trained for 3
epochs with a per-device mini-batch of 4. Binary cross-entropy (BCE) loss was used as the training
objective.
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Sampled Predictions:  1 2 2 3 3 3 4 4 4 4 

Majority Voting Reward

0 0 0 0 0 0 1 1 1 1

Calibrated Reward

0.1 0.9 0.7 0.1 0.1 0.05 1.1 1.2 1.1 1.05

Reward Hit Rate: 40% Reward Hit Rate: 60%

Figure 3: A simple case study of reward calibration.

B A SIMPLE CASE STUDY

Figure 3 provides a simple case study illustrating the critical limitation of voting-based reward mech-
anisms and the subsequent benefit of our DREAM’s decoupled calibration. In this scenario, the pol-
icy model’s sampled predictions are systematically biased, with the incorrect answer ’4’ appearing
most frequently. A conventional majority voting approach, as employed in TTRL, would conse-
quently assign a positive reward exclusively to the erroneous majority answer while penalizing all
other candidates, including the correct answer ’2’. This creates a perverse incentive structure, ini-
tiating a vicious cycle of error accumulation where the policy is guided to reinforce its own most
frequent mistake. The resulting reward signal is highly misleading, as evidenced by a low “Reward
Hit Rate” of 40%, which provides a poor and often detrimental gradient for policy optimization.

In contrast, DREAM effectively mitigates this failure mode by decoupling reward estimation from
the policy model’s consensus. By incorporating an independent reliability score from the judge
model, the final calibrated reward corrects for the bias of majority voting. As shown, the correct but
infrequent answers ’2’ is able to receive significant reward scores (0.9 and 0.7) despite their zero
voting-based reward. This crucial step recovers the learning signal for the correct reasoning path,
which would have otherwise been lost. Consequently, the calibrated reward structure is far more
aligned with the ground truth, increasing the effective hit rate to 60% and guiding the reinforcement
learning process toward a more accurate policy, rather than merely a more confident one.

Furthermore, the strength of this decoupled approach is not over-rely on a perfectly omniscient
judge model. Even a moderately effective judge, one that is not flawless but is better at evaluation
than the policy model is at generation, provides substantial benefits. The key advantage lies in
introducing a source of evaluation whose errors are likely uncorrelated with the policy model’s
systemic biases. For instance, even if a moderately accurate judge assigned a slightly lower score
to the correct answer ’2’ (e.g., 0.6, even 0.4) and a small non-zero score to an incorrect answer ’3’
(e.g., 0.2 or 0.1), the final calibrated reward for ’2’ would still be substantially higher than that for
other incorrect, non-majority answers like ’1’ and ’3’. The judge’s primary role is thus to break the
“tyranny of the majority” and create a more nuanced relative reward landscape. This allows group-
wise optimization methods like GRPO to better distinguish between varying degrees of correctness
among the candidates, preventing the policy from collapsing into a confident but fundamentally
flawed state.

C THE USE OF LARGE LANGUAGE MODELS

In this manuscript, we use LLMs to help polish writing at the sentence level and check grammar.
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