
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSE-TO-SPARSE TRAINING OF DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models (DMs) are a powerful type of generative models that have
achieved state-of-the-art results in various image synthesis tasks and have shown
potential in other domains, such as natural language processing and temporal data
modeling. Despite their stable training dynamics and ability to produce diverse
high-quality samples, DMs are notorious for requiring significant computational
resources, both in the training and inference stages. Previous work has focused
mostly on increasing the efficiency of model inference. This paper introduces, for
the first time, the paradigm of sparse-to-sparse training to DMs, with the aim of
improving both training and inference efficiency. We focus on unconditional gener-
ation and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six
datasets using three different methods (Static-DM, RigL-DM, and MagRan-DM)
to study the effect of sparsity in model performance. Our experiments show that
sparse DMs are able to match and sometimes outperform their Dense counterparts,
while substantially reducing the number of trainable parameters and FLOPs. We
also identify safe and effective values to perform sparse-to-sparse training of DMs.

1 INTRODUCTION

Diffusion models (DMs) are a class of deep generative models that exhibit extraordinary performance
to produce diverse and high-quality data. DMs currently dominate the generative field in computer
vision, having been applied to a wide range of tasks such as (un)conditional image generation (Ho
et al., 2020b; Rombach et al., 2021; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Nichol
et al., 2022; Blattmann et al., 2022; Das et al., 2023), image super-resolution (Saharia et al., 2021;
Chung et al., 2022), and image inpainting (Nichol et al., 2022; Chung et al., 2022; Saharia et al.,
2022), among others. DMs have also shown incredible potential in other domains, including speech
generation (Liu et al., 2023a), text generation (Li et al., 2022; Gong et al., 2023), and time-series
prediction and imputation (Rasul et al., 2021; Tashiro et al., 2021).

Despite these advantages, DMs are notorious for their slow training, demanding significant computa-
tional resources and resulting in a considerable carbon footprint (Strubell et al., 2020). Due to the
extensive number of diffusion timesteps required to produce a single sample (e.g., Rombach et al.
(2021) mentioned up to 500 steps), DMs also suffer from slow sampling speed (Song et al., 2021).
Even though progress has been made in improving inference speed, DMs are still considerably slower
than other generative approaches such as GANs and VAEs (Rombach et al., 2021). This inefficiency
impacts not only end users, but also the research community, by hindering further developments due
to the time-consuming process of model training and evaluation.

Reducing the computational costs and memory requirements of DMs is a critical challenge for the
broad implementation and adoption of these models, and an active field of research. Much of the
existent literature has addressed this challenge through improvements to the inference stage (Song
et al., 2021; Nichol & Dhariwal, 2021; Fang et al., 2023; Shang et al., 2023; Li et al., 2023; Salimans
& Ho, 2022; Meng et al., 2023). Efforts have also been made in the direction of training efficiency,
exploring different architectures and training strategies (Wang et al., 2023; Ding et al., 2023; Rombach
et al., 2021; Phung et al., 2022), but training DMs is still an extensive and costly process.

In the last few years, sparse-to-sparse training has emerged as a promising approach to reduce the
computational cost of deep learning models, by training sparse networks from scratch (Mocanu et al.,
2018; Bellec et al., 2018; Dettmers & Zettlemoyer, 2019; Evci et al., 2021; Zhang et al., 2024b).
Interestingly, sparse neural networks have been shown to match, or even outperform, their Dense

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

counterparts in classification tasks (Mocanu et al., 2018; Liu et al., 2021a), generative modeling
using GANs (Liu et al., 2023b), and Reinforcement Learning (Sokar et al., 2022), all while requiring
less memory and reducing the number of floating-point operations (FLOPs). We should note that,
currently, most sparse neural networks require roughly the same amount of time to train as their dense
counterparts, since today’s hardware is optimized for dense matrix operations. However, growing
interest in sparse models is reshaping the landscape; see Appendix A for a discussion in this regard.

We propose to lower the computational cost of DMs by incorporating, for the first time, the paradigm
of sparse-to-sparse training for unconditional generation. As such, we introduce three different
methods, Static-DM (static strategy), RigL-DM, and MagRan-DM (both dynamic strategies), that
can be easily integrated with existing DMs. Since our goal is to study the effect of these techniques
on the performance of DMs, we experiment using two state-of-the-art DMs in two domains: Latent
Diffusion (Rombach et al., 2021) for image generation (continuous, pixel-level data) and ChiroD-
iff (Das et al., 2023) for sketch generation (discrete, spatiotemporal sequence data). In sum, we make
the following contributions:

• We introduce sparse-to-sparse training to DMs, with both static and dynamic strategies. We
consider various sparsity levels (from 10% to 90%), two state-of-the-art models (Latent
Diffusion and ChiroDiff), and six datasets in total.

• Our experiments show great promise of sparse-to-sparse training for DMs, as we were able
to train a sparse DM for each model/dataset case with comparable performance to their
respective Dense counterpart, while significantly reducing the parameters count and FLOPs.
In most cases, at least one sparse DM outperformed its Dense version.

• We identify safe and effective values to perform sparse-to-sparse training of DMs. Higher
performance is achieved using dynamic sparse training with 25–50% sparsity levels and a
conservative 0.05 pruning rate.

2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

DMs (Sohl-Dickstein et al., 2015; Ho et al., 2020a; Song et al., 2020) are probabilistic models
designed to learn a data distribution q(x) through two processes: a forward noising process and a
reverse denoising process. The forward process is defined as a Markov Chain of length T in which
Gaussian noise is added at each timestep t, producing a sequence of increasingly noisier samples:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (2)

where x0 is the original data point, xt is the data point at timestep t, and βt is the pre-defined amount
of noise added at timestep t.

The reverse denoising process q(xt−1|xt), attempts to recover the original data, but it is intractable
as it depends on the entire data distribution q(x). As such, we need to parameterize a neural network
pθ to approximate it. This network pθ can be optimized by training with the simplified objective:

L = Et∼[1,T],x0,ϵ∼N (0,1)||ϵ− ϵθ(xt, t)||2 (3)

where xT is a noisy version of input x at the final timestep T , and ϵθ the prediction of the neural
network pθ.

2.2 EFFICIENCY IN DIFFUSION MODELS

Increasing the efficiency of DMs has been primarily addressed through accelerating the sampling
process, by reducing the number of diffusion steps through faster sampling (Song et al., 2021; Karras
et al., 2022) and model distillation (Salimans & Ho, 2022; Meng et al., 2023; Yin et al., 2024).
As for training acceleration, some works have proposed shifting the diffusion process to the latent
space (Rombach et al., 2021; Vahdat et al., 2021). Interestingly, Phung et al. (2022) used discrete

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

wavelet transforms to decompose images into sub-bands, employing these sub-bands to perform the
diffusion more efficiently.

Previous studies have also presented refinements to the training process of DMs. For example, Wang
et al. (2023) introduced a plug-and-play training strategy that utilizes patches instead of the full
images, to improve training speed. Hang et al. (2024) proposed treating DMs as a multitask learning
problem and introduced a weighting strategy to balance the different timesteps, achieving a significant
improvement in training convergence speed.

From the perspective of network compression, prior works have explored techniques such as structural
pruning (Fang et al., 2023), post-training quantization (Shang et al., 2023; Li et al., 2023), knowledge
distillation (Yang et al., 2023), and the lottery ticket hypothesis (Frankle & Carbin, 2019; Jiang et al.,
2023). Very recently, Wang et al. (2024) proposed the incorporation of sparse masks into pre-trained
DMs before fine-tuning, and achieved a 50% reduction in multiply-accumulate operations (MACs)
with only a slight average decrease of image quality (as measured by the FID score). Although
these techniques work in increasing efficiency, they still require pre-training of full DMs. Our work
proposes training sparse DMs from scratch, which has the potential to both accelerate training and
inference, and reduce the memory footprint.

2.3 SPARSE-TO-SPARSE TRAINING

Nowadays most computational models are what is referred to as Dense networks, comprising a
stack of layers containing multiple neurons, each connected to all neurons in the following layer.
Sparse-to-sparse training techniques aim to train sparse neural networks from scratch, thus reducing
the number of parameters and computations. If we define the connectivity graph of a Dense neural
network as G(V, E), where V represents the set of neurons (vertices), and E the set of connections
between them (edges), a sparse version of that neural network would be defined as G(V ′, E ′), with V ′

and E ′ being a subset of the neurons and connections of the Dense network. Sparse networks can be
obtained using structured methods, where V ̸= V ′, and unstructured methods, where V = V ′.

Overall, sparse-to-sparse training techniques can be divided into static sparse training (SST) and
dynamic sparse training (DST), according to whether or not the connections between neurons change
during training. In the following, we provide a comprehensive overview of these.

Static Sparse Training: In SST methods, the connectivity pattern between neurons is set at
initialization, and remains fixed during training. This concept was first introduced by Mocanu et al.
(2016), who proposed a non-uniform scale-free topology for Restricted Boltzmann machines, with
the sparse models achieving better results than their Dense counterparts. Later, Liu et al. (2022)
investigated the efficacy of random pruning at initialization, and found that, using appropriate layer-
wise sparsity ratios, a randomly pruned subnetwork of WideResNet-50 can outperform a dense
WideResNet-50 on ImageNet. Many other criteria have been proposed to set layer-wise sparsity ratios
before training, by trying to identify important connections using information such as connection
sensitivity, as in SNIP (Lee et al., 2019), gradient flow (Wang et al., 2020), as in GraSP. Very recently,
two new initialization criteria have been proposed that utilize concepts from network science theory:
Bipartite Scale-Free and Bipartite Small-World (Zhang et al., 2024a;b).

Dynamic Sparse Training: In DST methods, the network is initialized with a connectivity pattern
and dynamically explores different connections throughout training (Mocanu et al., 2018; Bellec
et al., 2018). This was first proposed by Mocanu et al. (2018) through Sparse Evolutionary Training
(SET), an algorithm that adjusts the connections using a prune-and-grow scheme every N training
steps. In SET, weights are dropped based on their magnitude (ensuring an equal amount of positive
and negative weights) and regrown randomly. RigL (Evci et al., 2021) proposes an alternative method
that prunes the weights based on the absolute magnitude, and regrows them based on the gradients
by calculating the dense gradients only at the update step. Although further pruning methods have
been proposed (Lee et al., 2019; Yuan et al., 2021), a study by Nowak et al. (2023) found only
minor differences between the tested criteria. The contrast was higher in lower density patterns, with
magnitude pruning giving the best performance. Other growing criteria have been proposed based on
randomness (Mostafa & Wang, 2019) and momentum (Dettmers & Zettlemoyer, 2019).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Recently, Zhang et al. (2024b) proposed Epitopological Sparse Meta-deep Learning (ESML), a brain-
inspired, gradient-free method to evolve the sparse network topology. ESML evolves the network
through magnitude pruning, network percolation, and weight regrowth through link prediction, and
aims to shift the focus from the weights to the network topology. By leveraging ESML, the authors
train a sparse network that using just 1% of the connections, is able to surpass dense networks, as
well as other DST methods, in several image classification tasks.

DST has also been applied to the field of generative modelling. For example, Liu et al. (2023b)
proposed STU-GAN, comprised of a generator with high sparsity and a denser discriminator. STU-
GAN was able to outperform a dense BigGAN on CIFAR-10 with a 80% sparse generator and 70%
sparse discriminator.

3 METHODOLOGY

Our study aims to understand the effect of sparse-to-sparse training techniques on DMs. We focus
on unstructured sparsity due to its ability to maintain high performance even at very high levels of
sparsity (Evci et al., 2021). Thus, our experiments cannot rely on current hardware to accelerate
sparse computations; for example, NVIDIA A100 and Ampere cards only support 2:4 structured
sparsity, which requires to enforce a fixed sparsity level of 50%. In the following sections, we
present three methods of introducing sparsity in DMs: one SST technique, Static-DM, and two DST
techniques, MagRan-DM and RigL-DM.

3.1 STATIC SPARSE TRAINING: STATIC-DM

Static-DM is a sparse DM trained from scratch, with fixed connectivity between neurons. The
pseudocode for Static-DM is shown in Algorithm 1. The training process closely resembles that of
a dense DM, with the addition of a sparse initialization step. In this step, the graph underlying the
neural network is sparsified by setting a fraction of the neuron connections to zero.

Algorithm 1 Static-DM
1: Input: Dataset D, Network fθ, Number of Epochs N , Diffusion steps Td, Sparsity ratio S
2: θ ← sparse initialization using S // Equations 4 and 5
3: for i = 1 to N do
4: x0 ∼ D
5: t ∼ U({1, 2, . . . , Td})
6: ϵ ∼ N (0, I)
7: θi = AdamW(▽θ, LDIF(fθ(x0, t), ϵ))
8: end for

Following the findings of Liu et al. (2022), we randomly prune the neurons at initialization using the
Erdõs–Rényi (ER) (Mocanu et al., 2018) strategy to allocate the non-zero weights to non-convolutional
layers. With this strategy, larger layers get assigned higher sparsity than smaller layers. The sparsity
of each layer scales with:

sl ∝ 1− nl + nl−1

nl · nl−1
(4)

where nl and nl−1 represent the number of neurons in layer l and l − 1 respectively.

For convolutional layers, we use a modification of ER, ERK (Evci et al., 2021), which takes into
account the size of the kernels:

sl ∝ 1− nl + nl−1 + wl + hl

nl · nl−1 · wl · hl
(5)

where nl and nl−1 represent the number of neurons in layer l and l − 1 respectively, and wl and hl

the width and height of the corresponding convolutional kernel.

3.2 DYNAMIC SPARSE TRAINING: MAGRAN-DM AND RIGL-DM

The key aspect of DST algorithms lies with the process of pruning and regrowing weights. We opted
to test the two most common regrowth methods, random growth and gradient growth, combined

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

with the magnitude pruning criteria. Magnitude pruning is a simple criteria, that has been shown to
perform well in high sparsity regimes for supervised classification, as well as in other generative
models (Nowak et al., 2023; Liu et al., 2023b)

RigL, proposed by Evci et al. (2021), combines gradient growth and magnitude pruning, thus the
name of our model RigL-DM. The combination of random growth and magnitude pruning closely
resembles the SET algorithm (Mocanu et al., 2018), and has been studied before for other types
of models (Nowak et al., 2023), although it has never been named. For simplicity, we refer to this
method as MagRan-DM.

Algorithm 2 RigL-DM and MagRan-DM
1: Input: Dataset D, Network fθ, Number of Epochs N , Diffusion steps Td, Sparsity ratio S,

exploration frequency ∆Te, Pruning rate p, Sparse method METHOD
2: θ ← sparse initialization using S // Equations 4 and 5
3: for i = 1 to N do
4: x0 ∼ D
5: t ∼ U ({1, 2, . . . , Td})
6: ϵ ∼ N (0, I)
7: θi = AdamW(▽θ, LDIF(fθ(x0, t), ϵ))
8: if i mod ∆Te then
9: θip = TopMag(|θi|, 1− p) // Magnitude pruning

10: if METHOD is RigL-DM then
11: θig = TopGrad(|▽θLDIF|, p) // Gradient growth
12: else if METHOD is MagRan-DM then
13: θig = Random(p) // Random growth
14: end if
15: θi ← update activated weights using θig and θip
16: end if
17: end for

The full pseudocode for the training process of MagRan-DM and RigL-DM can be found in Algo-
rithm 2. At the start of the training process, the network is sparsely initialized using the same strategy
as described for Static-DM. After every ∆Te training iterations, a cycle of connection pruning and
growth is performed. First, we drop (i.e. set to zero) a fraction of the activated weights with the
lowest magnitude from the network, determined using TopMag(|θi|, 1− p), which returns the indices
of the top 1 − p of weights by magnitude. After pruning, we regrow new weights in the same
proportion in order to maintain the sparsity level. For RigL-DM, the connections to regrow are given
by TopGrad(|▽θLDIF |, p), that returns the indices of the top p of weights with highest magnitude
gradients. For MagRan-DM the regrowth is determined by Random(p), which outputs the indices of
random p of connections.

3.3 EXPERIMENTAL SETUP

Note that our goal is not to directly compare performance between models or datasets, but to compare
the performance of Dense and sparse versions of the same models across different datasets, to gain
insights into the impact of sparsity in DM training.

3.3.1 MODELS AND BENCHMARKS

We test Static-DM, MagRan-DM, and RigL-DM against the Dense baseline, on two different DMs,
Latent Diffusion (Rombach et al., 2021) and ChiroDiff (Das et al., 2023), on the task of unconditional
image generation. Although image generation is the most common application and main direction of
current research in DMs, we seek to offer a more extensive look, and examined DMs for different
modalities, with different backbone architectures. More detailed information about the model
architectures and choice of datasets can be found in Appendix B.

Latent Diffusion: Latent Diffusion is a DM that creates high-quality images while reducing
computational requirements by training in a compressed lower-dimensional latent space. Although
we focus on unconditional generation tasks, Latent Diffusion also allows for conditional generation,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Latent Diffusion: Sparsity is applied to the U-Net, leaving the
autoencoder parts (E ,D) fully dense.

(b) ChiroDiff: Sparsity is applied throughout the
whole network.

Figure 1: Sparsification of Latent Diffusion (1a) and ChiroDiff (1b) models.

by using a general-purpose mechanism based on cross attention (Vaswani et al., 2017). Latent
Diffusion first employs pre-trained autoencoders to obtain a latent representation of the input, and
then performs the diffusion process on these representations, using a U-Net (Ronneberger et al., 2015).
Performing the denoising process in the latent space allows to the model to focus on relevant semantic-
wise information about the data. We sparsify only the U-Net model, as shown in Figure 1a, and utilize
off-the shelf autoencoders provided by Rombach et al. (2021), keeping them dense. We evaluate on
the LSUN-Bedrooms (Yu et al., 2015), CelebA-HQ (Karras et al., 2018) and Imagenette (Howard,
2019) datasets.

ChiroDiff: ChiroDiff is a DM specifically designed to model continuous-time chirographic data,
such as sketches or handwriting, in the form of a sequence of strokes containing both spatial and
temporal information. Each point in the sequence is represented by a tuple (x(j), p(j)), where
x(j) ∈ R2 is the coordinates vector and p(j) ∈ {−1, 1} is a binary bit representing the pen state
(not drawing or drawing, respectively). ChiroDiff can handle sequences of variable length and, as
a non-autoregressive model, is able to capture holistic concepts, leading to higher quality samples.
This model employs a Bidirectional GRU encoder as backbone architecture. The encoder is fed
the spatial coordinates, their point-wise velocities, as well as the entire sequence as context, which
provides full context of the sequence during the generation process. Sparsity is applied to the entire
network, as shown in Figure 1b. We evaluate it on KanjiVG, QuickDraw (Ha & Eck, 2018), and
VMNIST (Das et al., 2022). Following the original paper, we use a preprocessed version of KanjiVG.1
For QuickDraw we use the following categories: crab, cat, and mosquito; and all results are averaged.

3.3.2 EXPERIMENTAL DETAILS

We train the models on a set of sparsity rates S ∈ [0.1, 0.25, 0.5, 0.75, 0.9]. For DST methods, we
set the exploration frequency ∆Te = 1100 for all Latent Diffusion datasets, and ∆Te = 800 for all
ChiroDiff datasets. The weight pruning ratio was set to p = 0.5 for all main experiments. These
values of ∆Te and p were based on a small random search experiment.

Except CelebA-HQ and LSUN-Bedrooms, we considered the full available datasets, due to computing
limitations. We use 12500/500 training/validation images for CelebA-HQ and 10598/2500 images
for LSUN-Bedrooms. In Appendix C we conduct experiments using Static-DM, MagRan-DM, and
RigL-DM with S = 0.5, with the complete CelebA-HQ dataset to demonstrate that the utilization of
the full dataset does not greatly influence the results.

To be able to compare the performance of different methods and different sparsity levels, we train the
models for a predefined amount of epochs: 150 for Latent Diffusion datasets, and 600 for ChiroDiff
datasets. For a complete description of training details please refer to Appendix B.3. Training

1https://github.com/hardmaru/sketch-rnn-datasets/tree/master/kanji

6

https://github.com/hardmaru/sketch-rnn-datasets/tree/master/kanji

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Latent Diffusion models demands substantial computational power. Given the extensive number of
experiments we conducted, we opted for a shorter training regime.

For sampling, we use DDIM sampling (Song et al., 2021) with 100 steps for Latent Diffusion, and 50
steps for ChiroDiff, following the guidance provided in the original papers.

For our experiments, we performed approximately 620 training runs of Dense, Static-DM, RigL-
DM, and MagRan-DM models, using two high-performance computer (HPC) clusters equipped
with NVIDIA Tesla V100 SXM2 and A100 GPUs. Each DM was trained on only one GPU. All
experiments consumed around 6900 GPU hours.

3.3.3 EVALUATION METRICS

We follow common practice and calculate the FID score (Heusel et al., 2017) to assess the performance
of all models. For Latent Diffusion, we use the torch-fidelity Python package, and estimate
the FID based on 10k samples and the entire training set, as in the original work. For ChiroDiff,
following the original paper, we plot and save the chirographic sequences as images, and calculate the
FID using the inception model provided by Ge et al. (2020), pre-trained on the QuickDraw dataset,
using 10k generated samples and 20k real samples.

To evaluate the computational savings of the sparse methods, we report the network size (number
of parameters) as a proxy for memory requirement, and the FLOPs, to estimate the computational
cost of training and inference. We follow the method of FLOPs calculation described by Evci et al.
(2021).

4 EXPERIMENTAL RESULTS

We analyze the performance of Static-DM, MagRan-DM, and RigL-DM across various sparsity levels,
and compare the results against the original Dense baseline. Later on, in Section 4.3 we present
experiments comparing a selection of DST vs. Dense models across various diffusion timesteps.
Examples of the generated samples can be found in Appendix F.

4.1 LATENT DIFFUSION

The results of the studied sparse methods for Latent Diffusion are shown in Figure 2. For CelebA-HQ,
50% of the connections can be removed with minimal to no loss in image quality. With a higher
sparsity level of 75%, the three methods still perform comparably to the Dense model, especially
Static-DM. However, when the network is very sparse, S = 0.9, all models fail to generate high-
quality data.

Figure 2: FID score comparisons between Dense, and Static-DM, MagRan-DM and RigL-DM with
various sparsity levels, for Latent Diffusion. Values are averaged over 3 runs.

On LSUN-Bedrooms, a similar overall trend can be observed: performance steadily increases
with decrease in sparsity level until 25%. Interestingly, MagRan-DM with S = 0.1 shows worse
performance than the Dense model, and also a significant decrease compared to MagRan-DM with
S = 0.25. While this goes against the general expectation that more sparsity leads to increasingly
worse performance, our intuition is that this might be related to the balance between regularization
and expressivenes of the model. When the sparsity is low, the regularization benefits are not very

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

strong, and the model might suffer from a loss of expressiveness due to reduction in parameters, thus
obtaining worse results. As such, MagRan-DM with S = 0.25 is likely striking a better balance
between these two factors. This behaviour can be observed in all three datasets, although less
pronounced in CelebA-HQ. However, exploring this topic in depth is beyond the scope of this paper.

Imagenette experiments exhibit the same overall tradeoff between sparsity and performance, with the
best results being found in 10% and 25% sparse models.

In all datasets, Static-DM has better performance than the dynamic methods in higher sparsity setups,
S > 0.5. This is interesting, as it departs from the usual patterns found in sparse-to-sparse training
for supervised learning applications and even other generative models such as GANs, where DST
usually outperforms SST (Mocanu et al., 2018; Liu et al., 2023b). Liu et al. (2021c) found that,
in image classification tasks, DST models consistently achieve better performance over SST with
appropriate parameter exploration, i.e., exploration frequency ∆Te and pruning ratio p.

In all datasets, we successfully trained at least one sparse DM that outperforms the original Dense
version. Table 1 presents the metrics for the best sparse models for each method, as well as the overall
best sparse model. In CelebA-HQ, only RigL-DM at S = 0.25 surpasses Dense performance. In
LSUN-Bedrooms, both Static-DM and MagRan-DM were able to outperform it. In Imagenette, all
methods were able to achieve superior performance, albeit at different sparsity levels. We note that
the variance observed in the models is similar when comparing dense and sparse versions in all cases.

Table 1: Performance and cost of training and testing of Dense and best Static-DM, RigL-DM, and
MagRan-DM versions for Latent Diffusion. Values are averaged over 3 runs. The FLOPs of sparse
DMs are normalized with the FLOPs of their Dense versions. Test FLOPS were calculated for one
sample. Sparse models that outperform the Dense version are marked in bold. The top-performing
sparse model is underlined.
Dataset Approach FID ± SD (↓) Params Train FLOPs Test FLOPs

CelebA-HQ

Dense 32.74 ± 3.68 274.1M 9.00e16 1.92e13
Static-DM, S = 0.5 33.19 ± 2.39 0.50× 0.68× 0.68×
RigL-DM, S = 0.25 32.12 ± 3.10 0.75× 0.91× 0.91×
MagRan-DM, S = 0.5 32.83 ± 1.68 0.50× 0.67× 0.67×

Bedrooms

Dense 31.09 ± 12.42 274.1M 7.64e16 1.92e13
Static-DM, S = 0.25 28.79 ± 12.65 0.75× 0.91× 0.91×
RigL-DM, S = 0.10 37.80 ± 13.55 0.90× 0.97× 0.97×
MagRan-DM, S = 0.25 28.20 ± 7.64 0.75× 0.91× 0.91×

Imagenette

Dense 123.42 ± 4.25 274.1M 6.83e16 1.92e13
Static-DM, S = 0.10 119.92 ± 5.94 0.90× 0.97× 0.97×
RigL-DM, S = 0.10 121.59 ± 6.91 0.90× 0.97× 0.97×
MagRan-DM, S = 0.25 117.32 ± 8.52 0.75× 0.91× 0.91×

Memory and computational savings: In Table 1, we can observe that the top-performing sparse
DM on CelebA-HQ, RigL-DM with S = 0.25, is able to outperform Dense performance, while
reducing by 25% the number of parameters and 10% the number of FLOPs. Although Static-DM
S = 0.5 and MagRan-DM S = 0.5 achieve slightly inferior performance, they are able reduce
FLOPS and number of parameters more significantly, by 30% and 50%, respectively. On LSUN-
Bedrooms and Imagenette, the top-performing sparse DM reduces number of FLOPs by 10%, and
number of parameters by 25%.

Pruning rate experiments: To provide insights on the importance of the pruning ratio for DST
experiments, we conducted an experiment using a pruning ratio p ∈ {0.05, 0.1, 0.2, 0.3, 0.5}. The
results are provided in Figure 5 in Appendix E. The best results were obtained with a pruning ratio of
0.05.

Following this experiment, we repeated all experiments for DST methods presented in Figure 2, using
p = 0.05, and show the results in Figure 6 and Appendix E. One particularly interesting finding is
that, in high sparsity regimes, such as S = 0.9, DST methods are able to consistently outperform

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Static-DM. In addition, in low sparsity regimes, such as S = 0.1, DST methods also greatly benefit
from a decreased pruning ratio, improving their results. Please refer to Appendix E for a more
in-depth analysis.

4.2 CHIRODIFF

Figure 3 shows the FID scores of the studied sparse methods for ChiroDiff. For QuickDraw, we
observe that both Static-DM and RigL-DM exhibit variations around the performance of the Dense
model, with only a subtle tendency to deteriorate as sparsity increases. MagRan-DM consistently
matches the FID of the Dense model, and is able to outperform it at 90% sparsity. These results
suggest that this model is overparameterized, which would explain why it benefits significantly from
sparsity, even when removing 90% of the weights.

Figure 3: FID score comparisons between Dense, and Static-DM, MagRan-DM and RigL-DM with
various sparsity levels, for ChiroDiff. Values averaged over 3 runs.

On KanjiVG, the impact of sparsity is more pronounced, as all three methods demonstrate a downward
trend in performance as sparsity increases. Dynamic methods have consistently better performance
than Static-DM, and RigL-DM exhibits top performance in all sparsity levels except for S = 0.75.

In VMNIST experiments, there is, again, a pattern of better performance as sparsity decreases.
Similarly to Latent Diffusion experiments, SST has better performance in higher sparsity settings,
S > 0.5. In this dataset, there is a slighter larger gap in performance between the sparse and dense
models.

We successfully trained at least one sparse DM from each method that demonstrates a comparable
performance to the Dense counterpart, and show the results on Table 2. RigL-DM was the top-
performing method on QuickDraw, with S = 0.1, and on KanjiVG, with S = 0.25, while in
VMNIST, the top method was MagRan-DM, with S = 0.10. For QuickDraw, the top sparse DM was
able to outperform the Dense network.

Memory and computational savings: Table 2 shows that the top-performing sparse DM on
KanjiVG achieves a reduction in the number of parameters and FLOPs of about 30%, while achieving
a similar FID score. On Quickdraw, MagRan-DM with 90% sparsity achieves an considerable
reduction of 88%, and even though it is not the top-performing sparse model, it also outperforms the
Dense model. The top sparse model on VMNIST, provides a reduction in FLOPs of about 89%.

Pruning rate experiments: Similar to Latent Diffusion, we also repeated the DST experiments
using the more conservative pruning rate of 0.05. The biggest improvement was seen in the Quickdraw
dataset, where DST methods obtained considerably higher performances, as compared with Figure 3.
In addition, akin to the Latent Diffusion results, in high sparsity regimes we can find more DST
models that outperform Static-DM. Please refer to Appendix E for a more in-depth analysis.

4.3 IMPACT OF DIFFUSION STEPS

The number of timesteps is an important parameter in DMs, as too few can lead to insufficient
denoising, and low quality images, while too many might increase computational complexity without
improving output quality. We explored the relationship between the number of timesteps and model
sparsity, aiming to determine whether a very sparse model (S = 0.75) with an increased number of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Performance and cost of training and testing of the Dense and best Static-DM, RigL-DM, and
MagRan-DM for ChiroDiff. Values averaged over 3 runs. The FLOPs of sparse DMs are normalized
with the FLOPs of the dense versions, and test FLOPS were calculated for one sample. Sparse
models that outperform the Dense version are marked in bold. The top-performing sparse model is
underlined.

Dataset Approach FID ± SD (↓) Params Train FLOPs Test FLOPs

QuickDraw

Dense 29.78 ± 0.59 736027 5.12 e14 1.29 e10
Static-DM, S = 0.25 29.39 ± 0.24 0.75× 0.75× 0.75×
RigL-DM, S = 0.10 29.38 ± 0.27 0.89× 0.89× 0.89×
MagRan-DM, S = 0.90 29.45 ± 0.39 0.10× 0.10× 0.10×

KanjiVG

Dense 21.10 ± 0.25 416859 1.80e13 7.35 e9
Static-DM, S = 0.5 22.36 ± 0.87 0.50× 0.51× 0.51×
RigL-DM, S = 0.25 21.14 ± 0.71 0.70× 0.70× 0.70×
MagRan-DM, S = 0.25 21.73 ± 1.18 0.39× 0.39× 0.39×

VMNIST

Dense 44.21 ± 0.62 65019 1.69e12 7.11 e8
Static-DM, S = 0.25 47.29 ± 1.96 0.75× 0.74× 0.74×
RigL-DM, S = 0.10 46.81 ± 1.98 0.90× 0.90× 0.89×
MagRan-DM, S = 0.10 46.00 ±1.71 0.90× 0.89× 0.89×

sampling steps can achieve performance comparable to that of a dense model, with less sampling
steps. We perform experiments using CelebA-HQ for Latent Diffusion, and KanjiVG for ChiroDiff,
the results of which are presented in Figure 4.

Figure 4: FID score comparisons between Dense, and Static-DM, MagRan-DM and RigL-DM
with S = 0.75, using varied diffusion timesteps for Latent Diffusion (CelebA-HQ), and ChiroDiff
(KanjiVG). Values averaged over 3 runs.

In general, the number of sampling steps does not affect when comparing sparse and dense versions
within the same number of timesteps. More experiments are presented in Appendix D. In KanjiVG,
no sparse model is able to match any version of the dense model, and varying the number of timesteps
appears to have little influence on the quality of the output. In CelebA-HQ, when comparing different
numbers of timesteps, we observe that MagRan-DM and Static-DM with both 100 and 150 timesteps
are able to outperform the Dense model using 50 timesteps. As an example, in Static-DM, S = 0.75
with 100 timesteps vs. the dense model with 50 timesteps, Static-DM offers a theoretical speedup
of 0.29× over the dense model’s Training FLOPs, and 0.57× of the Testing FLOPs, while creating
better quality samples.

4.4 LIMITATIONS AND FUTURE WORK

Apart from the previously mentioned computational limitations of the Latent Diffusion datasets,
our findings demonstrate systematic trends that prompt for further investigation. Training on larger
datasets could provide deeper insights into the capabilities of sparse models. Additionally, there is
potential in exploring other pruning strategies and other DST hyperparameters such as ∆Te.

Open Science: Our code and trained models will be made publicly available upon publication.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abhinav Agarwalla, Abhay Gupta, Alexandre Marques, Shubhra Pandit, Michael Goin, Eldar
Kurtic, Kevin Leong, Tuan Nguyen, Mahmoud Salem, Dan Alistarh, Sean Lie, and Mark Kurtz.
Enabling high-sparsity foundational llama models with efficient pretraining and deployment. arXiv,
abs/2405.03594, 2024.

Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu,
Raymond N. J. Veldhuis, and Mykola Pechenizkiy. Quick and robust feature selection: the strength
of energy-efficient sparse training for autoencoders. Machine Learning, 2020.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. In Proc. International Conference on Learning Representations (ICLR),
2018.

Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Müller, and Björn Ommer. Semi-parametric
neural image synthesis. In Proc. Advances in Neural Information Processing Systems (NeurIPS),
2022.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating condi-
tional diffusion models for inverse problems through stochastic contraction. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Selima Curci, Decebal Constantin Mocanu, and Mykola Pechenizkiyi. Truly sparse neural networks
at scale. arXiv, abs/2102.01732, 2022.

Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Yi-Zhe Song. SketchODE: Learning
neural sketch representation in continuous time. In Proc. International Conference on Learning
Representations (ICLR), 2022.

Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Yi-Zhe Song. ChiroDiff: Mod-
elling chirographic data with diffusion models. In Proc. International Conference on Learning
Representations (ICLR), 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv, abs/1907.04840, 2019.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zheng Ding, Mengqi Zhang, Jiajun Wu, and Zhuowen Tu. Patched denoising diffusion models for
high-resolution image synthesis. arXiv, abs/2308.01316, 2023.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. arXiv, abs/1911.11134, 2021.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In Proc. International Conference on Learning Representations (ICLR), 2019.

Songwei Ge, Vedanuj Goswami, C. Lawrence Zitnick, and Devi Parikh. Creative sketch generation.
arXiv, abs/2011.10039, 2020.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. In Proc. International Conference on Learning
Representations (ICLR), 2023.

David Ha and Douglas Eck. A neural representation of sketch drawings. In Proc. International
Conference on Learning Representations (ICLR), 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Efficient diffusion training via min-snr weighting strategy. arXiv, abs/2303.09556, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv,
abs/2006.11239, 2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2020b.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, 2019.
URL https://github.com/fastai/imagenette.

Chao Jiang, Bo Hui, Bohan Liu, and Da Yan. Successfully applying lottery ticket hypothesis to
diffusion model. arXiv, abs/2310.18823, 2023.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In Proc. International Conference on Learning Repre-
sentations (ICLR), 2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. Advances in Neural Information Processing Systems (NeurIPS),
2022.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning based
on connection sensitivity. In Proc. International Conference on Learning Representations (ICLR),
2019.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proc. IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

Sean Lie. Cerebras architecture deep dive: First look inside the hw/sw co-design for deep learning:
Cerebras systems. In Proc. IEEE Hot Chips 34 Symposium (HCS), 2022.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In Proc.
International Conference on Machine Learning (ICML), 2023a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2021a.

Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei, and
Mykola Pechenizkiy. Sparse evolutionary deep learning with over one million artificial neurons on
commodity hardware. arXiv, abs/1901.09181, 2021b.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need dense
over-parameterization? in-time over-parameterization in sparse training. arXiv, abs/2102.02887,
2021c.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. In Proc. International Conference on Learning Representations
(ICLR), 2022.

12

https://github.com/fastai/imagenette

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shiwei Liu, Yuesong Tian, Tianlong Chen, and Li Shen. Don’t be so dense: Sparse-to-sparse gan
training without sacrificing performance. International Journal of Computer Vision, 2023b.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

Decebal Mocanu, Elena Mocanu, Phuong Nguyen, Madeleine Gibescu, and Antonio Liotta. A
topological insight into restricted boltzmann machines. Machine Learning, 2016.

Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by
network science. Nature Communications, 2018.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. arXiv, abs/1902.05967, 2019.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Proc. International Conference on Machine Learning (ICML), 2021.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
editing with text-guided diffusion models. In Proc. International Conference on Machine Learning
(ICML), 2022.

Aleksandra Nowak, Bram Grooten, Decebal Constantin Mocanu, and Jacek Tabor. Fantastic weights
and how to find them: Where to prune in dynamic sparse training. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Hao Phung, Quan Dao, and A. Tran. Wavelet diffusion models are fast and scalable image generators.
In Pro. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In Proc. International
Conference on Machine Learning (ICML), 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. arXiv, abs/2112.10752, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention
(MICCAI), 2015.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. arXiv, abs/2104.07636, 2021.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In Proc. ACM SIGGRAPH,
2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
Proc. International Conference on Learning Representations (ICLR), 2022.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. arXiv, abs/1503.03585, 2015.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning. In Proc. International Joint Conference
on Artificial Intelligence (IJCAI), 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Proc.
International Conference on Learning Representations (ICLR), 2021.

Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations. ArXiv,
abs/2011.13456, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. Proc. AAAI Conference on Artificial Intelligence, 2020.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In Proc. International Conference on Learning Representations (ICLR),
2020.

Kafeng Wang, Jianfei Chen, He Li, Zhenpeng Mi, and Jun Zhu. Sparsedm: Toward sparse efficient
diffusion models. ArXiv, abs/2404.10445, 2024.

Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang,
Weizhu Chen, and Mingyuan Zhou. Patch diffusion: Faster and more data-efficient training of
diffusion models. In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made
slim. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop. ArXiv, abs/1506.03365,
2015.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, and
Xue Lin. Mest: Accurate and fast memory-economic sparse training framework on the edge. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Yingtao Zhang, Jialin Zhao, Ziheng Liao, Wenjing Wu, Umberto Michieli, and Carlo Vittorio
Cannistraci. Brain-inspired sparse training in mlp and transformers with network science modeling
via cannistraci-hebb soft rule. Preprints, 2024a.

Yingtao Zhang, Jialin Zhao, Wenjing Wu, Alessandro Muscoloni, and Carlo Vittorio Cannistraci.
Epitopological learning and cannistraci-hebb network shape intelligence brain-inspired theory
for ultra-sparse advantage in deep learning. In Proc. International Conference on Learning
Representations (ICLR), 2024b.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. ArXiv,
abs/2102.04010, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A HARDWARE AND SOFTWARE SUPPORT

One of the main challenges in sparse neural networks research is that most hardware optimized for
deep learning is designed for dense matrix operations. As a result, most of current research attempts
to mimic sparsity by using a binary mask over weights, which results in sparse networks offering, in
practice, no better training efficiency than dense networks. However, industry is catching up and so it
is a matter of time for hardware to truly leverage sparse operations.

There is a growing trend towards developing hardware that better supports sparse operations. In
2021, NVIDIA released the A100 GPU, which supports accelerating operations in a 2:4 sparsity
pattern. Several works have already leveraged this feature (Zhou et al., 2021; Wang et al., 2024). In
order to use this capability, the sparse matrices must follow a specific structure: among each group
of four contiguous values, two values must be zero, thereby fixing the sparsity level at 50%. While
this structure enables significant acceleration, it supports only one static sparsity level, and makes it
impossible to vary the sparsity ratio between layers.

More recently, Cerebras introduced the CS-3 AI accelerator (Lie, 2022), capable of accelerating sparse
training and supporting unstructured sparsity. Using Cerebras’ CS-3 AI to accelerate training, and
Neural Magic’s inference server to accelerate inference, Agarwalla et al. (2024) trained an accurate
sparse Llama-2 7B model. Its accelerated training closely matched the theoretical speedup, while
achieving 91.8% accuracy recovery of Llama Evaluation metrics, with 70% sparsity. This significant
finding underscores the potential of sparse training to produce more efficient neural networks in
practice, not just in theory.

In parallel, there have also been advancements in creating software implementations that support truly
sparse-to-sparse neural network training, mostly for supervised learning tasks (Liu et al., 2021b; Curci
et al., 2022). In addition, a sparse-to-sparse denoising autoencoder has been developed by Atashgahi
et al. (2020), to perform fast and robust feature selection.

These developments in both hardware and software point towards a future where sparse-to-sparse
training may become the de facto approach for developing neural networks, enabling faster, more
memory-efficient, and energy-efficient deep learning models.

B EXPERIMENTS SETUP

B.1 MODEL ARCHITECTURES

In Latent Diffusion experiments, the model architecture is the same for LSUN-Bedrooms, CelebA-
HQ and Imagenette datasets. The DM follows the architecture proposed by Rombach et al. (2021).
For the autoconder, we utilize a pre-trained model released by the Latent Diffusion authors on the
project’s GitHub,2 with spatial size 64x64x3, VQ-reg regularization, and downsampling factor f = 4.

In ChiroDiff experiments, we adopt the architecture proposed by Das et al. (2023). The backbone
network is a bidirectional GRU encoder with 3 layers, with 96 hidden units for KanjiVG, and 128
hidden units for QuickDraw. For VMNIST, the backbone network is a 2-layer bidirectional GRU
encoder with 48 hidden units. We also use the code available on the project’s GitHub repository.3

B.2 CHOICE OF DATASETS

We evaluated Latent Diffusion on LSUN-Bedrooms and CelebA-HQ, following their use in the
original paper. Additionally, we included Imagenette, a subset of the popular ImageNet (Deng et al.,
2009) dataset. For ChiroDiff, we used the same datasets evaluated as the original study: QuickDraw,
KanjiVG and VMNIST. While the authors of ChiroDiff analysed seven categories of QuickDraw,
namely {cat, crab, mosquito, bus, fish, yoga, flower}, we opted to reduce the number of categories
to {cat, crab, mosquito} given the large number of experiments involved in our investigation. In
Appendix C below we demonstrate that dataset size does not change the main outcomes. Ultimately,
our goal is to compare and contrast sparse and dense models, independent of dataset size.

2https://github.com/CompVis/latent-diffusion
3https://github.com/dasayan05/chirodiff

15

https://github.com/CompVis/latent-diffusion
https://github.com/dasayan05/chirodiff

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 TRAINING REGIME

We follow the configurations provided in the GitHub repositories of the original papers and present
the main aspects below. The only alterations made were in the batch size and learning rate. The only
exception is Imagenette, which was not included in the original paper; for this dataset, we applied the
same configuration settings as those used for LSUN-Bedrooms.

Latent Diffusion on LSUN-Bedrooms: We use a batch size of 12, AdamW optimizer with weight
decay 1e-2 and static learning rate 2.4e-5. We train for 150 epochs. We use 1000 Denoising steps (T),
linear noise schedule from 0.0015 to 0.0195, and sinusoidal embeddings for the timestep.

Latent Diffusion on CelebA-HQ: We use a batch size of 12, AdamW optimizer with weight decay
1e-2 and static learning rate 2.0e-06. We train for 150 epochs. We use 1000 Denoising steps (T),
linear noise schedule from 0.0015 to 0.0195, and sinusoidal embeddings for the timestep.

Latent Diffusion on Imagenette: We use a batch size of 12, AdamW optimizer with weight decay
1e-2 and static learning rate 2.4e-5. We train for 150 epochs. We use 1000 Denoising steps (T), linear
noise schedule from 0.0015 to 0.0195, and sinusoidal embeddings for the timestep.

ChiroDiff on QuickDraw: We use a batch size of 128, AdamW optimizer with weight decay 1e-2
and static learning rate 1e-3. We train for 600 epochs. We use 1000 Denoising steps (T), linear noise
schedule from 1e-4 to 2e-2, and random Fourier features for the timestep embedding.

ChiroDiff on KanjiVG: We use a batch size of 128, AdamW optimizer with weight decay 1e-2 and
static learning rate 1e-3. We train for 600 epochs. We use 1000 Denoising steps (T), linear noise
schedule from 1e-4 to 2e-2, and random Fourier features for the timestep embedding.

ChiroDiff on VMNIST: We use a batch size of 128, AdamW optimizer with weight decay 1e-2 and
static learning rate 1e-3. We train for 600 epochs. We use 1000 Denoising steps (T), linear noise
schedule from 1e-4 to 2e-2, and random Fourier features for the timestep embedding.

Each setup was trained for 5 sparsity values [0.1, 0.25, 0.5, 0.75, 0.9], and we perform 3 runs for each
model/dataset/sparsity combination. For ChiroDiff on QuickDraw, we trained each category {cat,
crab, mosquito} for 3 runs, resulting in a total of 9 runs per sparsity level.

C EXPERIMENTS USING THE FULL CELEBA-HQ DATASET

We conducted experiments using Static-DM, MagRan-DM, and RigL-DM with S = 0.5 on the full
CelebA-HQ dataset, for 150 epochs, and compare the results with the previous models trained on 50%
of the dataset. As shown in Table 3, the FID scores are similar across both datasets for each respective
method. This supports our decision to focus on a subset of the dataset for our main experiments, to
save valuable computational resources. Interestingly, all sparse models are able to outperform their
dense version when trained on the full dataset.

Table 3: Comparison of FID scores for Latent Diffusion on CelebA-HQ using full dataset vs. reduced
dataset. Results are based on the first run. Sparse models that outperform their Dense version are
marked in bold. The top-performing sparse model is underlined.

Methods FID (↓)
Full dataset Reduced dataset

Dense 32.20 29.68
Static-DM, S = 0.50 29.71 29.91
RigL-DM, S = 0.50 30.98 30.82
MagRan-DM, S = 0.50 26.70 30.71

D EXPERIMENTS USING VARIOUS DIFFUSION TIMESTEPS

In Table 4, we report the results of the models listed in Table 1 using 50, 100 and 200 sampling steps.
These experiments confirm that the number of sampling steps typically does not affect whether a

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

sparse model outperforms a dense model. In other words, a sparse model that performs better than a
dense model at 100 timesteps also outperforms it at 50 and 200 timesteps.

For CelebA-HQ, the variation in timesteps does not change the top-performing model, which is
consistently RigL-DM with S = 0.25. However, in LSUN-Bedrooms, the top-performing method
varies with different timesteps.

Table 4: Comparison of FID scores for models listed in Table 1 using various DDIM sampling steps.
Results based on the first run. Sparse models that outperform the Dense version, in the respective
sampling steps, are marked in bold. The top-performing sparse model for each sampling step is
underlined.

Dataset FID (↓)
50 steps 100 steps 200 steps

CelebA-HQ

Dense 38.14 29.68 26.47
Static-DM, S = 0.5 38.16 29.91 26.44
RigL-DM, S = 0.25 36.55 28.00 25.25
MagRan-DM, S = 0.5 39.31 30.71 28.02

LSUN-Bedrooms

Dense 20.42 20.14 20.58
Static-DM, S = 0.25 20.01 18.96 19.26
RigL-DM, S = 0.10 19.01 17.96 20.49
MagRan-DM, S = 0.25 20.69 18.23 17.87

E PRUNING RATIO EXPERIMENTS

To provide insight on the importance of the pruning ratio for DST experiments, we conducted an
experiment using varying pruning ratio values, with the top MagRan-DM and RigL-DM models for
the CelebA-HQ dataset, listed in Table 1. We report the results of the experiments using varying
pruning ratio values in Figure 5. Although all FID values are extremely similar, the best performing
models for both algorithms use pruning ratio p = 0.05, and both outperform the Dense version. This
suggests that selecting an optimal pruning ratio can improve model performance, even if only slightly
in these lower-sparsity models tested.

Figure 5: FID scores comparison between Dense and DST models with various pruning ratios, for
Latent Diffusion on CelebA-HQ. Values averaged over 2 runs.

Informed by the results of Figure 5, we conducted repeated experiments for DST methods using the
same setup as in Figure 2 and Figure 3, but with pruning rate p = 0.05.

As can be observed in Figure 6 and Table 5, the general trend of diminishing performance when
sparsity increases still remains, with the exception of QuickDraw, in which all DST models had a
significant increase in performance. Overall, most DST models benefit from a smaller pruning rate,
with more models with pruning rate 0.05 being able to outperform the Dense version, when compared
to 0.5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: FID score comparisons between Dense and Sparse versions (Static-DM, MagRan-DM,
RigL-DM) considering various sparsity levels for Latent Diffusion. DST method use a pruning rate
of 0.05. Values averaged over 3 runs.

Figure 7: FID score comparisons between Dense and Sparse versions (Static-DM, MagRan-DM,
RigL-DM) considering various sparsity levels for ChiroDiff. DST method use a pruning rate of 0.05.
Values averaged over 3 runs.

When looking at high sparsity regimes, S = 0.9, we observe that most models continue to suffer from
significant performance drop when compared to the Dense version, except Quickdraw, where the new
pruning rate provides a remarkable improvement, and LSUN Bedrooms, where MagRan-DM has an
impressively high performance. When comparing DST methods to Static-DM, in Table 5, we observe
that at least one DST method is able to outperform Static-DM in CelebA-HQ and LSUN-Bedrooms,
or closely match it in Imagenette, which did not happen with pruning rate of 0.5. Similarly, for
ChiroDiff, in Table 6, almost all DST methods in all three datasets are able to outperform Static-DM.

Table 5: Comparison of FID scores for SST (Static-DM) and DST (RigL-DM, MagRan-DM) models,
with S = 0.9 using two different pruning rates (p = 0.5 and p = 0.05) for Latent Diffusion. DST
models that outperform SST are marked in bold.

Dataset Static-DM RigL-DM MagRan-DM
p = 0.5, p = 0.05 p = 0.5, p = 0.05

CelebA-HQ 52.48 ± 4.88 65.65 ± 4.32, 46.07 ± 11.08 60.77 ± 6.58, 48.39 ± 14.05
Bedrooms 46.18 ± 13.42 71.45 ± 18.84, 58.64 ± 22.88 46.22 ± 10.11, 33.80 ± 3.98
Imagenette 147.47 ± 7.74 168.48 ± 15.15, 148.93 ± 12.03 167.19 ± 8.20, 159.08 ± 14.68

Table 6: Comparison of FID scores for SST (Static-DM) and DST (RigL-DM, MagRan-DM) models,
with S = 0.9 using two different pruning rates (p = 0.5 and p = 0.05) for ChiroDiff. DST models
that outperform SST are marked in bold.

Dataset Static-DM RigL-DM MagRan-DM
p = 0.5, p = 0.05 p = 0.5, p = 0.05

QuickDraw 30.25 ± 0.43 30.26 ± 0.63, 28.84 ± 0.37 29.45 ± 0.39, 28.60 ± 0.37
KanjiVG 30.75 ± 2.16 28.54 ± 0.74, 29.12 ± 0.57 33.02 ± 3.28, 29.01 ± 1.48
VMNIST 52.35 ± 0.84 54.08 ± 1.57, 52.25 ± 0.20 53.65 ± 0.69, 51.94 ± 1.12

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In Latent Diffusion, in low sparsity regimes, S = 0.1, DST methods also greatly benefit from the
decreased pruning ratio, particularly in LSUN-Bedrooms and CelebA-HQ.

All in all, these findings suggest that a pruning ratio of 0.5 is too aggressive, and that a more
conservative choice of 0.05 is more appropriate for DMs. Previous work has mentioned that DST
methods are consistently superior to SST as long as there is appropriate parameter exploration (Liu
et al., 2021c), which aligns with these findings.

F EXAMPLES OF GENERATED SAMPLES

Figures 8 to 13 showcase examples of samples generated by Latent Diffusion and ChiroDiff across
the evaluated datasets. Examples are unconditionally sampled from the Dense and the top-performing
sparse model in each case.

(a) Dense

(b) Static-DM, S = 0.25

Figure 8: Samples from Latent Diffusion trained on LSUN-Bedrooms. The top row presents
samples generated by Dense models, whereas the bottom row presents samples generated by the
top-performing sparse model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Dense

(b) RigL-DM, S = 0.25

Figure 9: Samples from Latent Diffusion trained on CelebA-HQ. The top row presents samples gen-
erated by Dense models, whereas the bottom row presents samples generated by the top-performing
sparse model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Dense

(b) MagRan-DM, S = 0.25

Figure 10: Samples from Latent Diffusion trained on Imagenette. The top row presents samples gen-
erated by Dense models, whereas the bottom row presents samples generated by the top-performing
sparse model.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) RigL-DM, S = 0.10

Figure 11: Samples from ChiroDiff trained on Quickdraw. The top row presents samples generated
by Dense models, whereas the bottom row presents samples generated by the top-performing sparse
model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Dense

(b) RigL-DM, S = 0.25

Figure 12: Samples from ChiroDiff trained on Kanji. The top row presents samples generated by
Dense models, whereas the bottom row presents samples generated by the top-performing sparse
model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Dense

(b) RigL-DM, S = 0.25

Figure 13: Samples from ChiroDiff trained on VMNIST. The top row presents samples generated
by Dense models, whereas the bottom row presents samples generated by the top-performing sparse
model.

24

	Introduction
	Background and Related Work
	Diffusion Models
	Efficiency in Diffusion Models
	Sparse-to-Sparse Training

	Methodology
	Static Sparse Training: Static-DM
	Dynamic Sparse Training: MagRan-DM and RigL-DM
	Experimental Setup
	Models and Benchmarks
	Experimental Details
	Evaluation Metrics

	Experimental Results
	Latent Diffusion
	ChiroDiff
	Impact of Diffusion Steps
	Limitations and Future Work

	Hardware and Software Support
	Experiments setup
	Model Architectures
	Choice of Datasets
	Training Regime

	Experiments using the Full CelebA-HQ Dataset
	Experiments using Various Diffusion Timesteps
	Pruning Ratio Experiments
	Examples of Generated Samples

