
Masking the Gaps: An Imputation-Free Approach to
Time Series Modeling with Missing Data

Abhilash Neog1, Arka Daw2, Sepideh Fatemi Khorasgani1, Anuj Karpatne1
1 Virginia Tech, 2 Oak Ridge National Labs

Abstract

A significant challenge in time-series (TS) modelling is presence of missing values
in real-world TS datasets. Traditional two-stage frameworks, involving imputation
followed by modeling, suffer from two key drawbacks: (1) the propagation of
imputation errors into subsequent TS modeling, (2) the trade-offs between imputa-
tion efficacy and imputation complexity. While one-stage approaches attempt to
address these limitations, they often struggle with scalability or fully leveraging
partially observed features. To this end, we propose a novel imputation-free ap-
proach for handling missing values in time series termed Missing Feature-aware
Time Series Modeling (MissTSM) with two main innovations. First, we develop a
novel embedding scheme that treats every combination of time-step and feature (or
channel) as a distinct token. Second, we introduce a novel Missing Feature-Aware
Attention (MFAA) Layer to learn latent representations at every time-step based on
partially observed features. We evaluate the effectiveness of MissTSM in handling
missing values over multiple benchmark datasets.

1 Introduction

Multivariate time-series (TS) modeling is important in a number of real-world applications. However,
a persistent challenge is the presence of missing values on arbitrary sets of features at varying
time-steps, introducing “gaps” in the data that can impair the application of State-of-the-art (SOTA)
models unless specific adaptations are made. A common approach for handling missing data is to use
imputation methods [1, 2, 3]. Recent deep learning (DL)-based imputation techniques [4, 5, 6] can
learn complex, nonlinear temporal dynamics which are difficult for simple imputation techniques
(like interpolation). However all such frameworks rely on a two-stage process, imputation of missing
values, followed by feeding the imputed time-series to a TS model. This introduces two critical
challenges: first, the propagation of imputation errors into subsequent TS modeling performance, and
second, the inherent trade-offs between imputation efficacy and imputation complexity.

In this regard, several approaches have been proposed to model time-series with missing values, such
as [7] embed time intervals between observations as additional auxiliary features to handle irregular
sequences, but relies on recurrent networks which struggle with long-term dependencies. ODE-based
methods [8, 9] offer a continuous-time framework for irregular sampling but are computationally
demanding and difficult to scale. Recent methods, like [10] implicitly handle missing values via
attention mask, or use an additional mask channel ([11]), but in a univariate scenario.

To address the above limitations, we ask the question: “can we circumvent the need for imputation
by designing a DL framework that can directly model multivariate TS with missing values?” To
answer this question, we draw inspiration from the recent success of masked modeling approaches in
domains including vision [12] and language [13] where “masked-attention” operations embedded
in Transformer blocks are effectively utilized to reconstruct data from partial observations. Based
on this insight, we propose a novel Missing Feature-aware Time Series Modeling (MissTSM)
Framework, which capitalizes on the information contained in partially observed features to perform

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

downstream TS modeling tasks without explicitly imputing the missing values. It uses two main
innovations. First, we develop a novel embedding scheme, termed Time-Feature Independent (TFI)
Embedding, which treats every combination of time-step and feature (or channel) as a distinct token,
encoding them into a high-dimensional space. Second, we introduce a novel Missing Feature-Aware
Attention (MFAA) Layer to learn latent representations at every time-step based on partially observed
features. Additionally, we use the framework of Masked Auto-encoder (MAE) [12] to perform
self-supervised learning of latent representations, which can be re-used for downstream tasks such
as forecasting and classification. To evaluate the ability of MissTSM to model TS with missing
values, we consider two synthetic masking techniques: missing completely at random (MCAR), and
periodic masking, to simulate varying scenarios of missing values. We show that MissTSM achieves
consistently competitive performance as SOTA models on multiple benchmark datasets without using
any imputation techniques.

2 Missing Feature Time-Series Modeling (MissTSM)

2.1 Notations and Problem Formulations

Let us represent a multivariate TS as X ∈ RT×N , where T is the number of time-steps, and N is
the dimensionality (number of variates) of the TS. We assume a subset of variates (or features) to be
missing at some time-steps of X, represented in the form of a missing-value mask M ∈ [0, 1]T×N ,
where M(t,d) represents the value of the mask at t-th time-step and d-th dimension. Let us denote
X(t,:) ∈ RN as the multiple variates of the TS at a particular time-step t, and X(:,d) ∈ RT as the
uni-variate time-series for the variate d. In this paper, we consider two downstream tasks for TS
modeling: forecasting and classification. For forecasting, the goal is to predict the future S time-steps
of X represented as Y ∈ RS×N , and, for TS classification, the goal is to predict output labels
Y ∈ {1, 2, ..., C} given X, where C is the number of classes.

2.2 Learning Embeddings for Time-Series with Missing Features using TFI Embedding

Prior embedding techniques such as in Transformer or iTransfomer models cannot handle missing
values (See Appendix A.1 for more details) directly. To address this challenge, we propose a
novel Time-Feature Independent (TFI) Embedding scheme for TS with missing features, where
the value at each combination of time-step t and variate d is considered as a single token X(t,d),
and is independently mapped to an embedding using TFIEmbedding : R 7→ RD as: h(t,d) =

TFIEmbedding(X(t,d)) In other words, the TFIEmbedding Layer maps X ∈ RT×N into the TFI
embedding HTFI ∈ RT×N×D (see Figure 5(c) in the Appendix A.1). The TFIEmbedding is applied
only on tokens X(t,d) that are observed (for missing tokens, i.e., M(t,d) = 0, we generate a dummy
embedding that gets masked out in the MFAA layer). The advantage of such an approach is that even
if a particular value in the TS is missing, other observed values in TS can be embedded “independently”
without being affected by missing values. Later, we demonstrate how our Missing Feature-Aware
Attention Layer takes advantage of TFI embedding scheme to compute masked cross-attention among
observed features at a time-step to account for missing features.

2.3 Missing Feature-Aware Attention (MFAA) Layer

We propose a novel Missing Feature-Aware Attention (MFAA) Layer (see Figure 1) to leverage the
power of “masked-attention” for learning latent representations at every time-step using partially
observed features. MFAA works by computing attention scores based on the partially observed
features at a time-step t, which are then used to perform a weighted sum of observed features to
obtain the latent representation Lt. These latent representations are later fed into an encoder-decoder
based self-supervised learning framework to reconstruct the TS.

Mathematical Formulation: To obtain attention scores from partially-observed features at a time-
step, we apply a masked scaled-dot product operation followed by a softmax operation. We first
define a learnable query vector Q ∈ R1×D which is independent of the variates and time-steps.
The positionally-encoded embeddings at time-step t, Z(t,:), are used as key and value inputs in the
MFAA Layer. Specifically, the query, key, and value vectors are obtained using linear projections
as, Q̂ = QWQ, K̂t = Z(t,:)W

K, V̂t = Z(t,:)W
V. Here, Q̂ ∈ R1×dk and K̂t, V̂t ∈ RN×dk ,

where dk is the dimension of the vectors after linear projection. The linear projection matrices for

2

Missing Feature Aware
Attention (MFAA)

Time-Feature Independent
Embedding (TFI)

Va
ria

te
s

Time steps

ValueKey

Embed
ding

Time steps

Input Time-series

+
2D-Positional

Encoding

Variates (at time t)
Learnable

Query Vector

Query

Masked
Scaled-dot Product

Mask
(at time t)

MFA Attention Score

Softmax

Matrix Multiplication

Latent Representation
(at time t) Transformer

Encoder Block

Temporal
Masking

Encoder
Embeddings

Missing Feature-Aware Attention (MFAA) Encoder Decoder

Learnable
Mask tokens

Decoder Embedding
(time only)

Transformer
Decoder Blocks

+
1D-Positional

Encoding

Prediction Head

Reconstructed Time-series

Va
ria

te
s

Time steps

Figure 1: A schematic illustration of the overall MissTSM Framework with a zoomed-in view of the
Missing Feature-Aware Attention (MFAA) Layer on the left.

the query, key, and values are defined as: WQ,WK,WV ∈ RD×dk respectively. Note that the
key K̂t and value V̂t vectors depend on the time-step t, while the query vector is learnable and
doesn’t change with time. This separation of roles is inspired by similar architectures in multi-modal
grounding, for example, in [14], learnable object queries are kept independent of the image content
that is sent as keys and values. In our setting, the learnable queries capture the interactions among
variates independent of time, enabling the model to attend to the most informative aspects of observed
variates at any time-step fed through keys and values. We then define the MFAA Score at a given
time-step t as a masked scalar dot-product of query and key vector followed by normalization of the
scores, defined as follows:

At = MFAAScore(Q̂, K̂t,M(t,:)) = Softmax
(Q̂K̂⊤

t√
dk

+ ηM(t,:)

)
, (1)

where At ∈ RN is the MFAA Score vector of size N corresponding to the N variates, and η is
a large negative value. The negative bias term η forces the masked-elements that correspond to
the missing variates in TS to have an attention score of zero. Thus, by definition, the i-th element
of the MFAA Score A(t,i) ̸= 0 =⇒ M(t,:) ̸= 0. We then compute the latent representation
Lt using At and the Value vector V̂t as, Lt = MFAA(At, V̂t) = AtV̂t ∈ Rdk . Similar to MHA
used in transformers, we extend MFAA to multiple heads as: MultiHeadMFAA(Q,Z(t,:),M(t,:)) =

Concat(L0
t ,L

1
t , ...,L

h
t)W

O , where h is number of heads, W0 ∈ Rhdk×Do , Li
t is latent representa-

tion obtained from i-th MHAA Layer, and Do is output-dimension of MultiHeadMFAA Layer.

2.4 Putting Everything Together: Overall Framework of MissTSM

Figure 1 shows the MissTSM framework. We opted for a masked TS modeling approach (such
as Ti-MAE [15]) due to their recent success. MissTSM has two main stages: (1) Self-Supervised
Learning Stage: where multivariate TS (with missing values) is reconstructed using an encoder-
decoder architecture, with the goal of learning meaningful representations, (2) Fine-tuning Stage:
where latent representations learned by encoder are fed into a MLP to perform downstream tasks.

3 Experiments

Datasets and Baselines: We consider three popular TS forecasting datasets: ETTh2 [16], ETTm2
[16] and Weather [17]. For classification, we use three real-world datasets, namely, Epilepsy, EMG,
and Gesture. We follow the evaluation setup proposed in AutoFormer [18] for the forecasting datasets
and evaluation setup proposed in TF-C [19] for the classification ones. . For our experiments,
we consider five SOTA TS-modeling baselines, SimMTM [20], PatchTST [21], Autoformer [18],
iTransformer [22] and DLinear [23]. In order to apply these methods on data with missing values,

3

we consider four imputation techniques—a simple 2nd-order spline imputation, k-nearest neighbors
(kNN) and two state-of-the-art imputation techniques, SAITS [24] and BRITS [25]. For more
experimental details, refer to Appendix B.2

0
0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.3

0.4

0.5

0.6

0.7MissTSM
iTransformer-kNN
iTransformer-Spline
iTransformer-SAITS

iTransformer: weather, T=720, MCAR

(a) Weather, T=720

0

0

2

4

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0

2

4
MissTSM
iTransformer-kNN
iTransformer-Spline
iTransformer-SAITS

iTransformer: ETTh2, T=720, MCAR

(b) ETTh2, T=720

Figure 2: Multiple Imputation Baselines. Per-
formance comparison across multiple imputation
models. Imputation models considered: kNN,
Spline, SAITS. TS Baselines: iTransformer

00.25

0.50

0.75

1.00

1.25

1.50

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.25

0.50

0.75

1.00

1.25

1.50

ETTm2, T=720, MCAR
iTransformer
Autoformer
SimMTM

PatchTST
DLinear
MissTSM

(a) ETTm2, T=720

00.25

0.50

0.75

1.00

1.25

1.50

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.25

0.50

0.75

1.00

1.25

1.50

ETTm2, T=720, Periodic
iTransformer
Autoformer
SimMTM

PatchTST
DLinear
MissTSM

(b) ETTm2, T=720

Figure 3: Multiple TS Baselines. Performance
comparison with multiple TS Baselines imputed
with SAITS, under MCAR and Periodic setting

Forecasting Results: For comparing the forecasting performance we consider the Mean Squared
Error (MSE) metric. The performance of MissTSM is compared across an array of missing
data fractions (60%, 70%, 80%, 90%), along varying forecasting horizons (T=96,192,336,720)
and under different masking strategies. Figure 2 compares MissTSM with time-series baselines
imputed with multiple imputation techniques. The results shown are on Weather and ETTh2
dataset and along the longest forecasting horizon. We can see that MissTSM performs better
or similar in comparison to all the baselines considered. It is also interesting to note the sig-
nificant drop in performance of iTransformer trained on kNN imputed data, which demonstrates
the influence of imputation methods on the final performance of time-series baselines. We ob-
serve that BRITS results in significantly high MSE, and therefore not considered in result plots.

0.2 0.4 0.6 0.8
Fractions

35

40

45

50

55

60

65

70

75

F1
 S

co
re

EMG
MissTSM
SimMTM_Spline
SimMTM_SAITS

0.2 0.4 0.6 0.8
Fractions

50

60

70

80

90

100

F1
 S

co
re

Epilepsy
MissTSM
SimMTM_Spline
SimMTM_SAITS

0.2 0.4 0.6 0.8
Fractions

30

40

50

60

70

F1
 S

co
re

Gesture
MissTSM
SimMTM_Spline
SimMTM_SAITS

Figure 4: Classification F1 scores across varying
masking fractions: {0.2, 0.4, 0.6, 0.8}.

We also compare MissTSM’s performance
against different SOTA time-series baselines (see
Figure 3) imputed with SAITS, and across differ-
ent masking strategies. MissTSM shows signif-
icant improvement over the baselines on ETTh2
and ETTm2, under both, MCAR and periodic
masking settings (Refer to additional results in
Appendix C.2). Overall, we observe that Mis-
sTSM is consistently better than the baselines
for ETTh2 dataset, while it shows competitive
performance on ETTm2 and Weather datasets.

Classification Results: For fine-tuning on the
classification tasks, we add a multi-layer percep-
tron to the encoder as the classification layer. The
same is done for the SimMTM baseline. The classification performance is reported with F1-score
metric and under randomly masked (MCAR) fractions of data (20%, 40%, 60%, 80%). Figure 4
compares MissTSM with two variants of SimMTM - one, trained on Spline imputed data, and the
other, trained on SAITS imputed data. As seen in the figure, MissTSM achieves roughly similar
or better performance as SimMTM on EMG (performance improvement is visible over increasing
masked fractions), and outperforms SimMTM on the Gesture Dataset (Refer to C.3 for results on all
three datasets). These results demonstrate the effectiveness of our proposed MissTSM framework
to circumvent the need for explicit imputation of missing values while achieving similar predictive
performance as state-of-the-art.

4 Conclusions and Future Work

We empirically demonstrate the effectiveness of the MissTSM framework across multiple benchmark
datasets and synthetic masking strategies. However, a limitation of MFAA layer is that it does not
explicitly learn the non-linear temporal dynamics, and relies on subsequent transformer encoder
blocks to learn the dynamics. Future work can explore modifications of MFAA layer to address this
limitation.

4

Acknowledgments

This work was supported in part by NSF awards IIS-2239328 and DEB-2213550. This manuscript has
been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-access-plan).

References
[1] Hyun Ahn, Kyunghee Sun, and Kwanghoon Pio Kim. Comparison of missing data imputation

methods in time series forecasting. Computers, Materials & Continua, 70(1):767–779, 2022.

[2] Gustavo EAPA Batista, Maria Carolina Monard, et al. A study of k-nearest neighbour as an
imputation method. His, 87(251-260):48, 2002.

[3] Edgar Acuna and Caroline Rodriguez. The treatment of missing values and its effect on classifier
accuracy. In Classification, Clustering, and Data Mining Applications: Proceedings of the
Meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of
Technology, Chicago, 15–18 July 2004, pages 639–647. Springer, 2004.

[4] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information
Processing Systems, 34:24804–24816, 2021.

[5] Andrea Cini, Ivan Marisca, and Cesare Alippi. Multivariate time series imputation by graph
neural networks. corr abs/2108.00298 (2021). arXiv preprint arXiv:2108.00298, 2021.

[6] Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive
multiresolution sequence imputation. Advances in neural information processing systems, 32,
2019.

[7] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

[8] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[9] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

[10] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024.

[11] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

[12] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[14] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

5

[15] Zhe Li, Zhongwen Rao, Lujia Pan, Pengyun Wang, and Zenglin Xu. Ti-mae: Self-supervised
masked time series autoencoders. arXiv preprint arXiv:2301.08871, 2023.

[16] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,
2021.

[17] https://www.bgc-jena.mpg.de/wetter/.

[18] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34, 2021.

[19] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised
contrastive pre-training for time series via time-frequency consistency. Advances in neural
information processing systems, 35, 2022.

[20] Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling. Advances in
Neural Information Processing Systems, 36, 2024.

[21] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference
on Learning Representations, 2022.

[22] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

[23] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121–11128, 2023.

[24] Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series.
Expert Systems with Applications, 219:119619, 2023.

[25] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[27] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and
Christian E Elger. Indications of nonlinear deterministic and finite-dimensional structures in
time series of brain electrical activity: Dependence on recording region and brain state. Physical
Review E, 64(6):061907, 2001.

[28] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-
based personalized gesture recognition and its applications. Pervasive and Mobile Computing,
5(6):657–675, 2009.

[29] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215–e220, 2000.

[30] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in
temporal data streams using multi-directional recurrent neural networks. IEEE Transactions on
Biomedical Engineering, 66(5):1477–1490, 2018.

6

[32] Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep
probabilistic time series imputation. In International conference on artificial intelligence and
statistics, pages 1651–1661. PMLR, 2020.

[33] Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-
hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In
2012 computing in cardiology, pages 245–248. IEEE, 2012.

7

A Additional Details: Methodology

A.1 Limitations of Existing Methods

The first step in time-series modeling using transformer-based architectures is to learn an embedding
of the time-series X, which is then fed into the transformer encoder. Traditionally, this is done
using an Embedding-layer (typically implemented using a multi-layered perceptron) as Embedding :
RN 7→ RD that maps X ∈ RT×N to the embedding H ∈ RT×D, where D is the embedding
dimension. The Embedding layer operates on every time-step independently such that the set of
variates observed at time-step t, X(t,:), is considered as a single token and mapped to the embedding
vector ht ∈ RD as ht = Embedding(X(t,:)) (see Figure 5(a)). An alternate embedding scheme was
recently introduced in the framework of inverted Transformer [22], where the uni-variate time-series
for the d-th variate, X(:,d), is considered as a single token and mapped to the embedding vector:
hd = Embedding(X(:,d)) (see Figure 5(b)). While both these embedding schemes have their unique
advantages, they are unsuitable to handle time-series with arbitrary sets of missing values at every
time-step. In particular, the input tokens to the Embedding layer of Transformer or iTransformer
requires all components of X(t,:) or X(:,d) to be observed, respectively. If any of the components
in these tokens are missing, we will not be able to compute their embeddings and thus will have to
discard either the time-step or the variate, leading to loss of information.

Figure 5: Schematic of the Time-Feature Independent (TFI) Embedding of MissTSM that learns
a different embedding for every combination of time-step and variate, in contrast to the time-only
embeddings of Transformer [26] and the variate-only embeddings of iTransformers [22].

A.2 2D Positional Encodings

We add Positional Encoding vectors PE to the TFI embedding HTFI to obtain positionally-encoded
embeddings, Z = PE +HTFI. Since TFI embeddings treat every time-feature combination as a
token, we use a 2D-positional encoding scheme defined as follows:

PE(t, d, 2i) = sin
(t

10000(4i/D)

)
; PE(t, d, 2i+ 1) = cos

(t

10000(4i/D)

)
, (2)

PE(t, d, 2j +D/2) = sin
(d

10000(4j/D)

)
; PE(t, d, 2j + 1 +D/2) = cos

(d

10000(4j/D)

)
, (3)

where t is the time-step, d is the feature, and i, j ∈ [0, D/4) are integers.

8

B Experimental Setup

B.1 Dataset Description

Forecasting Dataset Details

ETT. The ETT [16] dataset captures load and oil temperature data from electricity transformers.
ETTh2 includes 17,420 hourly observations, while ETTm2 comprises 69,680 15-minute observations.
Both datasets span two years and contain 7 variates each.

Weather. Weather [17] is a 10-minute frequency time-series dataset recorded throughout the year
2020 and consists of 21 meteorological indicators, like humidity, air temperature, etc.

Following previous works in this area, we use a train-validation-test split of 6:2:2 for the ETT datasets
and 7:1:2 for the Weather dataset. We standardized the input features by subtracting off the mean
and dividing by the standard deviation for every feature over the training set. Again, following
the approach used in previous works, we compute the MSE in the normalized space of all features
considering all features together.

Classification Dataset Details

Epilepsy. Epilepsy [27] contains univariate brainwaves (single-channel EEG) sampled from 500
subjects (with 11,500 samples in total), with each sample classified as having epilepsy or not (binary
classification).

Gesture. Gesture [28] dataset consists of 560 samples, each having 3 variates (corresponding to the
accelerometer data) and each sample corresponding to one of the 8 hand gestures (or classes)

EMG. EMG [29] dataset contains 163 EMG (Electromyography) samples corresponding to 3-classes
of muscular diseases.

We make use of the following readily available data splits (train, validation, test) for each of
the datasets: Epilepsy = 60 (30 samples per each class)/20 (10 samples per each class)/11420
(Train/Val/Test) Gesture = 320/20/120 (Train/Val/Test) EMG = 122/41/41 (Train/Val/Test)

B.2 Synthetic Masked Data Generation

Random Masking: We generated masks by randomly selecting data points across all variates and
time-steps, assigning them as missing with a likelihood determined by p (masking fraction). The
selected data points were then removed, effectively simulating missing values at random. For multiple
runs, we created multiple such versions of the synthetic datasets and compared all baseline methods
and MissTSM on the same datasets.

Periodic Masking: We use a sine curve to generate the masking periodicity with given phase and
frequency values for different features. Specifically, the time-dependent periodic probability of seeing
missing values is defined as p̂(t) = p+α(1−p)sin(2πνt+ ϕ), where, ϕ and ν are randomly chosen
across the feature space, α is a scale factor, and p is an offset term. We vary p from low to high values
to get different fractions of periodic missing values in the data. To implement this masking strategy,
each feature in the dataset was assigned a unique frequency, randomly selected from the range [0.2,
0.8]. This was done to reduce bias and increase randomness in periodicity across the feature space.
Additionally, the phase shift was chosen randomly from the range [0, 2]. This was applied to each
feature to offset the sinusoidal function over time. Like frequency, the phase value was different for
different features. This generated a periodic pattern for the likelihood of missing data.

B.3 Implementation Details

The experiments have been implemented in PyTorch using NVIDIA TITAN 24 GB GPU. The
baselines have been implemented following their official code and configurations. We consider Mean
Squared Error (MSE) as the metric for time-series forecasting and F1-score for the classification
tasks.

Forecasting experiments. MissTSM was trained with the MSE loss, using the Adam [30] optimizer
with a learning rate of 1e-3 during pre-training for 50 epochs and a learning rate of 1e-4 during
finetuning with an early stopping counter of 3 epochs. Batch size was set to 16. All the reported

9

missing data experiment results are obtained over 5 trials (5 different masked versions). During
fine-tuning for different Prediction lengths (96, 192, 336, 720), we used the same pre-trained encoder
and added a linear layer at the top of the encoder.

Classification experiments. MissTSM was trained using the Adam [30] optimizer, with MSE as the
loss function during pre-training and Cross-Entropy loss during fine-tuning. During fine-tuning, we
plugged a 64-D linear layer at the top of the pre-trained encoder. We pre-trained and fine-tuned for
100 epochs.

B.4 Hyper-parameter Details

For MissTSM, we start with the same set of hyper-parameters as reported in the SimMTM paper
as initialization (see Table 1), and then search for the best learning rate in factors of 10, and
encoder/decoder layers in the range [2, 4]. Note that we only perform hyper-parameter tuning on 100%
data, and use the same hyper-parameters for all experiments involving the dataset, such as different
missing value probabilities. Our goal is to show the generic effectiveness of our MissTSM framework
even without any rigorous hyper-parameter optimization. Additionally, we would also like to note
that our model sizes are relatively very small (number of parameters for ETTh2=28,080, Weather=
149,824, and ETTm2= 28,952), compared to other baselines such as SimMTM (ETTh2=4,694,186),
iTransformer (ETTh2=254,944), and PatchTST (ETTh2=81,728).

Table 1: Hyperparameters for Forecasting and Classification Tasks

Task Enc. Layers Dec. Layers Enc. Heads Dec. Heads Enc. Embed Dim Dec. Embed Dim

Forecasting
ETTh2 2 2 8 4 8 32
ETTm2 3 2 8 4 8 32
Weather 2 2 8 4 64 32

Classification
All Datasets 3 2 16 16 32 32

Table 2: Hyper-parameter sensitivity of MissTSM on ETTh2 with 70% Masking Fraction, MCAR.
Best results shown in bold, second best underlined. Hyper-parameter settings used in the remainder
of experiments in the paper are italicized.

Enc. Heads Enc. Layers Enc. Embed Dim
1 4 8 1 2 3 8 16 32

96 0.246 0.245 0.246 0.249 0.243 0.244 0.243 0.248 0.285
192 0.261 0.273 0.266 0.287 0.267 0.271 0.267 0.266 0.340
336 0.312 0.279 0.310 0.294 0.392 0.307 0.392 0.316 0.369
720 0.326 0.346 0.333 0.351 0.323 0.355 0.323 0.338 0.446

Dec. Heads Dec. Layers Dec. Embed Dim
1 4 8 1 2 3 8 16 32

96 0.261 0.243 0.252 0.276 0.242 0.248 0.250 0.259 0.243
192 0.276 0.267 0.272 0.266 0.268 0.268 0.257 0.272 0.267
336 0.319 0.392 0.301 0.262 0.352 0.271 0.289 0.266 0.392
720 0.324 0.323 0.330 0.323 0.364 0.341 0.353 0.384 0.323

C Additional Results

C.1 Embedding of 1D data

To understand the usefulness of mapping 1D data to multi-dimensional data in TFI embedding,
we present (in Table 3) an ablation comparing performances on ETTh2 with and without using
high-dimensional projections in TFI Embedding under the no missing value scenario. Projecting 1D
scalars independently to higher-dimensional vectors may look wasteful at the time of initialization of
TFI Embedding, when the context of time and variates are not incorporated. However, it is during the
cross-attention stage (using MFAA layer or later using the Transformer encoder block) that we can

10

leverage the high-dimensional embeddings to store richer representations bringing in the context of
time and variate in which every data point resides.

From Table 3, we can see that TFI embedding with 8-dimensional vectors consistently outperform
the ablation with 1D representations, empirically demonstrating the importance of high-dimensional
projections in our proposed framework.

Table 3: Effect of TFI Embedding with embedding size=1 and embedding size=8 under no masking
scenario. Dataset=ETTh2

Time Horizon TFI Embedding with
embedding size = 1

TFI Embedding with
embedding size = 8

96 0.283 ± 0.048 0.245 ± 0.011
192 0.285 ± 0.078 0.260 ± 0.023
336 0.319 ± 0.023 0.300 ± 0.016
720 0.378 ± 0.022 0.334 ± 0.032

C.2 Forecasting

Table 4 compares the forecasting performance of MissTSM with five SOTA baseline methods in
terms of the Mean Squared Error (MSE) metric on three datasets (ETTh2, ETTm2 and Weather) with
varying forecasting horizons, imputation techniques (Spline and SAITS), and masking schemes. We
provide the mean and standard deviations over 5 different samples of the masking schemes. We choose
a missing value probability of 60% for MCAR masking and 70% for periodic masking to simulate
scenarios with varying (and often extreme) amounts of missing information. We can see that in the no
masking experiment, the performance of all methods (with the exception of AutoFormer) are mostly
comparable to each other across all three datasets, with MissTSM and PatchTST having a slight edge
on the ETTh2/ETTm2 and Weather datasets, respectively. For the MCAR masking experiments, we
observe a trend across all the datasets that the MissTSM framework performs slightly better than
the baselines for longer-term forecasting (such as forecasting horizon of 720), and comparable to
the best-performing baselines on other forecasting horizons. For the Periodic masking experiment,
we can see that MissTSM is consistently better than the baselines for ETTh2 dataset, while for the
ETTm2 and Weather datasets, the forecasting performance is comparable to the other baselines.
These results demonstrate the effectiveness of our proposed MissTSM framework to circumvent the
need for explicit imputation of missing values while achieving comparable performance as SOTA.

By being imputation-free, MissTSM does not suffer from the propagation of imputation errors (from
the imputation scheme) to forecasting errors (from the time-series models). In Appendix Figure 13,
we provide empirical evidence of this error propagation, where we see a positive correlation between
imputation errors and forecasting errors of baseline methods, indicating that reducing imputation
errors is crucial for improving forecasting accuracy. This finding underscores the limitations of
traditional two-stage approaches and suggests that using more sophisticated imputation models is
necessary to achieve lower forecasting errors. We also report the computation time of SimMTM
(with Spline and SAITS) and MissTSM in Appendix Table 5, where we demonstrate that MissTSM
is significantly faster as it does not involve any expensive interpolations as an additional advantage.

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ETTh2, T=720, MCAR

iTransformer
Autoformer
SimMTM

PatchTST
DLinear
MissTSM

(a) ETTh2, MCAR

00.25

0.50

0.75

1.00

1.25

1.50

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.25

0.50

0.75

1.00

1.25

1.50

ETTm2, T=720, MCAR
iTransformer
Autoformer
SimMTM

PatchTST
DLinear
MissTSM

(b) ETTm2, MCAR

0

0.5

1.0

1.5

2.0

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.5

1.0

1.5

2.0
ETTh2, T=720, Periodic

iTransformer
Autoformer
SimMTM

PatchTST
DLinear
MissTSM

(c) ETTh2, Periodic

00.25

0.50

0.75

1.00

1.25

1.50

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.25

0.50

0.75

1.00

1.25

1.50

ETTm2, T=720, Periodic
iTransformer
Autoformer
SimMTM

PatchTST
DLinear
MissTSM

(d) ETTm2, Periodic

Figure 6: Multiple Time-series Baselines. Performance comparison between MCAR and Periodic
masking with multiple TS Baselines imputed with SAITS. TS Baselines considered: Autoformer
[18], PatchTST [21], iTransformer [22], DLinear [23], SimMTM [20]

11

Table 4: Comparing forecasting performance of baseline methods using mean squared error (MSE)
as the evaluation metric under no masking, MCAR masking, and periodic masking. For every dataset,
we consider multiple forecasting horizons, T ∈ {96, 192, 336, 720}. Results are color-coded as
Best , Second best . We report the mean and standard deviations (in brackets) across 5 random

sampling of the masking schemes. Subscript SP refer to Spline and SA refer to SAITS
ETTh2 ETTm2 Weather Avg

Rank96 192 336 720 96 192 336 720 96 192 336 720

N
o

M
as

ki
ng

MissTSM 0.255 0.234 0.316 0.305 0.183 0.209 0.261 0.311 0.164 0.210 0.254 0.324 1.9

SimMTM 0.295 0.356 0.375 0.404 0.172 0.223 0.282 0.374 0.163 0.203 0.255 0.326 2.9

PatchTST 0.274 0.338 0.330 0.378 0.164 0.220 0.277 0.367 0.151 0.196 0.249 0.319 1.7

AutoFormer 0.501 0.516 0.565 0.462 0.352 0.337 0.494 0.474 0.306 0.434 0.437 0.414 5.9

DLinear 0.288 0.383 0.447 0.605 0.168 0.224 0.299 0.414 0.175 0.219 0.265 0.323 4.1

iTransformer 0.304 0.392 0.425 0.415 0.176 0.246 0.289 0.379 0.163 0.203 0.256 0.326 4.5

M
C

A
R

M
as

ki
ng

MissTSM 0.2430.006 0.2590.002 0.2830.009 0.3290.011 0.2240.005 0.2530.009 0.2930.019 0.3160.014 0.1910.003 0.2340.006 0.2810.004 0.3220.008 2.7

SimMTMSP 0.3090.001 0.3720.005 0.3960.01 0.4180.008 0.1850.001 0.2430.002 0.2980.001 0.3880.005 0.2030.009 0.2420.010 0.2840.008 0.3860.008 5.0

SimMTMSA 0.4570.06 0.5100.061 0.5030.055 0.4720.066 0.2870.037 0.3200.035 0.3420.017 0.4130.014 0.1870.002 0.2400.001 0.2800.001 0.3850.004 6.2

PatchTSTSP 0.2900.003 0.3550.003 0.3450.003 0.3900.003 0.1690.001 0.2280.001 0.2860.001 0.3780.001 0.1830.009 0.2260.009 0.2770.009 0.3390.008 2.1

PatchTSTSA 0.4400.059 0.4840.057 0.4340.059 0.4360.075 0.3240.05 0.3620.045 0.4100.049 0.4620.047 0.1750.002 0.2110.000 0.2640.002 0.3350.001 4.6

AutoFormerSP 0.5590.05 0.6280.101 0.5250.037 0.5500.143 0.2800.006 0.3900.158 0.3600.018 0.4750.033 0.3210.008 0.4130.013 0.5080.036 0.4670.032 8.9

AutoFormerSA 0.7670.126 0.5260.06 0.5500.019 0.4490.010 0.6100.312 0.8500.365 0.6150.151 1.0450.262 0.3530.013 0.4130.006 0.4740.028 0.5040.049 10.2

DLinearSP 0.2960.003 0.4010.018 0.4450.006 0.6070.013 0.4580.169 0.2280.001 0.3020.000 0.5310.144 0.2050.007 0.2410.007 0.2820.008 0.3730.009 6.5

DLinearSA 0.4540.053 0.5140.053 0.5420.064 0.6800.084 0.3300.065 0.3650.062 0.4270.058 0.5380.063 0.1900.001 0.2330.000 0.2760.000 0.3330.001 6.8

iTransformerSP 0.3130.004 0.3940.014 0.4360.005 0.4290.005 0.1780.001 0.2430.0004 0.2930.001 0.3840.008 0.1970.006 0.2600.007 0.3150.008 0.3490.006 4.9

iTransformerSA 0.4920.058 0.5450.048 0.5790.049 0.5400.094 0.3690.080 0.4320.083 0.4820.083 0.5410.075 0.1910.002 0.2280.002 0.2730.002 0.3480.003 7.7

Pe
ri

od
ic

M
as

ki
ng

MissTSM 0.2460.018 0.2630.017 0.3010.042 0.3530.015 0.2270.006 0.2490.006 0.2820.011 0.3370.036 0.2120.007 0.2560.008 0.3130.009 0.3790.019 4.1

SimMTMSP 0.3720.122 0.4690.198 0.4960.198 0.5100.200 0.1920.010 0.2470.009 0.3010.008 0.3910.008 0.1820.004 0.2480.003 0.2910.009 0.3440.005 4.7

SimMTMSA 0.5910.132 0.6660.152 0.6810.182 0.6670.222 0.3890.071 0.4090.054 0.4360.076 0.5050.055 0.1780.002 0.2140.001 0.2610.001 0.3540.003 6.0

PatchTSTSP 0.3280.047 0.3890.040 0.3810.050 0.4260.058 0.1740.004 0.2310.003 0.2890.004 0.3810.004 0.1810.004 0.2270.005 0.2670.005 0.3460.003 2.4

PatchTSTSA 0.5810.120 0.6200.132 0.5920.170 0.6440.230 0.4230.054 0.4570.042 0.4930.037 0.5270.027 0.1710.002 0.2120.001 0.2630.005 0.3340.001 5.2

AutoformerSP 0.4820.041 0.6850.165 0.6210.166 0.5460.035 0.3290.109 0.3150.010 0.3980.090 0.4560.021 0.3330.0176 0.3870.035 0.4060.025 0.4530.016 7.5

AutoformerSA 1.4150.807 0.8100.269 1.3640.760 0.8200.467 1.3031.278 0.9330.444 1.7880.538 0.8090.431 0.3350.009 0.3870.017 0.4350.035 0.4670.017 10.8

DLinearSP 0.3460.069 0.4750.108 0.4770.044 0.6490.068 0.3270.188 0.2300.002 0.3050.003 0.4730.038 0.2150.018 0.2440.013 0.2840.008 0.3390.007 5.0

DLinearSA 0.6050.109 0.6740.11 0.7280.138 0.9110.158 0.4470.049 0.4750.043 0.5230.042 0.6260.032 0.1900.001 0.2330.000 0.2760.001 0.3330.001 7.4

iTransformerSP 0.3580.070 0.4350.067 0.4880.096 0.4970.119 0.1800.005 0.2450.006 0.2960.007 0.3840.007 0.1970.009 0.2330.006 0.2880.01 0.3510.010 4.2

iTransformerSA 0.6910.143 0.7150.140 0.7630.153 0.7730.201 0.5120.055 0.5780.052 0.6620.05 0.6800.029 0.1940.001 0.2290.004 0.2740.002 0.3500.003 8.2

96 192 336 720
Forecast Horizons

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

ETTh2 60% MCAR
iTransformer
PatchTST
Autoformer
SimMTM
DLinear
MissTSM

(a) ETTh2 60% MCAR

96 192 336 720
Forecast Horizons

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

ETTm2 60% MCAR
iTransformer
PatchTST
Autoformer
SimMTM
DLinear
MissTSM

(b) ETTm2 60% MCAR

96 192 336 720
Forecast Horizons

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

M
SE

weather 60% MCAR
iTransformer
PatchTST
Autoformer
SimMTM
DLinear
MissTSM

(c) Weather 60% MCAR

Figure 7: Forecasting performance with the horizon length T ∈ 96, 192, 336, 720 and fixed lookback
length S = 336. Baseline models are imputed with SAITS

C.3 Classification

Full classification results (on all the datasets) are shown in Figure 9

Real-world results on Physio-Net: We compare the performance of the MissTSM framework with
six imputation baselines— M-RNN [31], GP-VAE [32], BRITS [25], Transformer [26], and SAITS
[24]—on the real-world PhysioNet classification dataset [33] that is highly sparse with 80% missing
values (see Appendix for additional details), as shown in Figure 10. We follow the same evaluation
setup as proposed in [24]. MissTSM achieves an F1-score of 57.84%, representing an approximately
15% improvement over SAITS, the best-performing imputation model, which scored 42.6%. This
substantial performance gain on a real-world dataset with missing values highlights the advantages

12

0

0

2

4

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0

2

4
MissTSM
iTransformer-kNN
iTransformer-Spline
iTransformer-SAITS

iTransformer: ETTh2, T=720, MCAR

(a) iTransformer, ETTh2

0
0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.3

0.4

0.5

0.6

0.7MissTSM
iTransformer-kNN
iTransformer-Spline
iTransformer-SAITS

iTransformer: weather, T=720, MCAR

(b) iTransformer, Weather

0

0

2

4

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0

2

4
MissTSM
PatchTST-kNN
PatchTST-Spline
PatchTST-SAITS

PatchTST: ETTh2, T=720, MCAR

(c) PatchTST, ETTh2

0
0.300

0.325

0.350

0.375

0.400

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

0.6 0.7 0.8 0.9
Fractions

0.300

0.325

0.350

0.375

0.400MissTSM
PatchTST-kNN
PatchTST-Spline
PatchTST-SAITS

PatchTST: weather, T=720, MCAR

(d) PatchTST, Weather

Figure 8: Multiple Imputation Baselines. Performance comparison across multiple imputation
models. Imputation models considered: kNN, Spline, SAITS [24]. TS Baselines: iTransformer [22]
and PatchTST [21]

0.2 0.4 0.6 0.8
Fractions

35

40

45

50

55

60

65

70

75

F1
 S

co
re

EMG
MissTSM
SimMTM_Spline
SimMTM_SAITS

0.2 0.4 0.6 0.8
Fractions

50

60

70

80

90

100

F1
 S

co
re

Epilepsy
MissTSM
SimMTM_Spline
SimMTM_SAITS

0.2 0.4 0.6 0.8
Fractions

30

40

50

60

70

F1
 S

co
re

Gesture
MissTSM
SimMTM_Spline
SimMTM_SAITS

Figure 9: Classification F1 scores on three datasets - EMG, Epilepsy, Gesture. Masking fractions
considered: 0.2, 0.4, 0.6, 0.8.

of MissTSM’s single-stage approach compared to traditional two-stage methods, beyond synthetic
masking schemes used to simulate missing values in other datasets.

C.4 Ablations on Forecasting and Classification task

In the ablation experiments, our goal is to quantify the effectiveness of the TFI-Embedding scheme
and the MFAA Layer on MissTSM. To achieve this, we compare MissTSM with Ti-MAE, which
can be viewed as an ablation of MissTSM without the TFI-Embedding and MFAA Layers. We
refer to this ablation of MissTSM as MAE. For both the forecasting (see Fig. 11) and classification
(see Fig. 12) tasks, we compare the MissTSM framework with MAE trained on spline and SAITS

M-RNN
GP-V

AE
BRITS

Tra
nsf

orm
er

SA
ITS

-ba
se

SA
ITS

Miss
TS

M

Method

35

40

45

50

55

60

F1
-s

co
re

Figure 10: Classification Performance of MissTSM and other imputation baselines on PhysioNet
Dataset [33].

13

0.6 0.7 0.8 0.9
Missing Value Probability

0.35

0.40

0.45

0.50

M
SE

ETTh2, T=720, Periodic

0.6 0.7 0.8 0.9
Missing Value Probability

0.4

0.5

0.6

M
SE

ETTh2, T=720, MCAR

MAE-Spline MAE-SAITS MissTSM

Figure 11: Ablations of MissTSM with and without MFAA layer on Forecasting datasets.

0.2 0.4 0.6 0.8
Fractions

30

40

50

60

70

F1
 S

co
re

EMG
MissTSM
MAE_Spline
MAE_SAITS

0.2 0.4 0.6 0.8
Fractions

55

60

65

70

75

80

85

90

95

100

F1
 S

co
re

Epilepsy
MissTSM
MAE_Spline
MAE_SAITS

0.2 0.4 0.6 0.8
Fractions

35

40

45

50

55

60

65

70

F1
 S

co
re

Gesture
MissTSM
MAE_Spline
MAE_SAITS

Figure 12: Ablations of MissTSM with and without the TFI+MFAA layer on the classification tasks.

imputation techniques. For forecasting on ETTh2, we observe that our proposed MissTSM framework
consistently outperforms the MAE ablations without the MFAA Layer. On the other hand for the
classification, we show that for all the three datasets, we are either comparable or better than the MAE
ablations. This demonstrates the efficacy of the TFI-Embedding and MFAA Layer for time-series
modeling with missing values.

C.5 Experiment on Computational cost comparison

We consider a case study of a classification task on the Epilepsy dataset. Dataset is 80% masked
under MCAR. Spline and SAITS are the imputation techniques and SimMTM is the time-series
model used. We report the total modeling time as the sum of imputation time and the time-series
model training time.

In Table 5, we observe that, while SimMTM integrated with SAITS achieves the highest F1 score,
the total imputation time for SAITS is significantly higher than that of Spline. This additional
computational overhead substantially increases the overall modeling time. Moreover, SAITS has
approximately 1.3 million trainable parameters, further increasing the overall model complexity of
the time-series modeling task. This highlights the potential trade-off between imputation efficiency
and complexity (by imputation complexity we are referring to both model and time complexity).

In the case of our proposed method, we do not have the extra overhead of imputation complexity.
Simultaneously, MissTSM also achieves competitive performance.

Table 5: Comparison of total computational cost between MissTSM and SimMTM integrated with
Spline and SAITS

Time-Series Model Imp. Model Imp. Time (sec) TS Model Train Time (sec) Total Time (sec) F1 Score

SimMTM SAITS 949 ± 42.9 397.59 ± 2.64 1346.59 ± 45.54 61.0 ± 9.20

Spline 8.74 ± 0.38 397.59 ± 2.64 406.33 ± 3.02 59.16 ± 3.67

MissTSM N/A N/A 346.8 ± 7.32 346.8 ± 7.32 64.93 ± 4.57

14

C.6 Imputation error propagation

Figure 13 captures the propagation of imputation errors and forecasting errors for the weather dataset
(at 720 forecasting horizon). It demonstrates that there is an overall positive correlation between the
imputation error and forecasting errors, thereby demonstrating propagation of the imputation errors
into the downstream time-series models.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Forecasting Error for Horizon 720

0.0

0.5

1.0

1.5

2.0
Im

pu
ta

tio
n

Er
ro

r

Weather Error Plot

MissTSM
SAITS
Spline
BRITS
kNN

Figure 13: Imputation error vs Forecasting error across 5 trials for 4 missing fractions, 0.6, 0.7, 0.8, 0.9

C.7 Analysis of impact of frequency and phase parameters

In the following, we provide additional details regarding an ablation we conducted to understand the
impact of frequency and phase parameters. Given the varying frequency and phase for each feature,
we modify the intervals of both to assess their impact on the results. Dataset=ETTh2, Fraction=90%

Case 1. With the phase interval held constant, we lower the frequency range and examine two
intervals: one in the high frequency region ([0.6, 0.9]) and one in the low frequency region ([0.1,
0.3]). The performance comparison between these new strategies and the original configuration is
shown in Table 6.

Table 6: Effect of sampling from different frequency intervals. The best results are in bold and
second-best are italicized

Time Horizon Original Periodic
Masking MSE

High Frequency MSE Low Frequency MSE

96 0.268 ± 0.0151 0.281 ± 0.028 0.285 ± 0.023
192 0.295 ± 0.0298 0.301 ± 0.037 0.316 ± 0.049
336 0.319 ± 0.0185 0.308 ± 0.014 0.307 ± 0.011
720 0.356 ± 0.0310 0.339 ± 0.043 0.351 ± 0.058

We observe that with a reduced frequency range, for both high and low frequency intervals, the
performance improves as the prediction window increases.

Case 2. Following a similar approach as Case 1, we keep the frequency interval constant and lower
the range of phase values. We examine the following intervals: the positive half-cycle [0, π] and the
negative half-cycle [π, 2π]. Table 7 presents the results of this ablation

15

Table 7: Effect of sampling from different phase intervals. The best results are in bold and second-best
are italicized

Time Horizon Original Periodic
Masking MSE

(+) Half Cycle MSE (-) Half Cycle MSE

96 0.268 ± 0.0151 0.287 ± 0.037 0.293 ± 0.04
192 0.295 ± 0.0298 0.309 ± 0.05 0.313 ± 0.057
336 0.319 ± 0.0185 0.316 ± 0.022 0.311 ± 0.013
720 0.356 ± 0.0310 0.343 ± 0.035 0.340 ± 0.040

We observe a similar pattern here as well, with the performance improving as the prediction window
increases when we sample from either the positive or negative cycle.

As shown in the tables above, frequency and phase values clearly impact model performance. The new
strategies reduce frequency or phase-related randomness among the variates of the dataset, resulting
in more consistent values. This appears to enhance the model’s ability in long-term forecasting.

16

	Introduction
	Missing Feature Time-Series Modeling (MissTSM)
	Notations and Problem Formulations
	Learning Embeddings for Time-Series with Missing Features using TFI Embedding
	Missing Feature-Aware Attention (MFAA) Layer
	Putting Everything Together: Overall Framework of MissTSM

	Experiments
	Conclusions and Future Work
	Additional Details: Methodology
	Limitations of Existing Methods
	2D Positional Encodings

	Experimental Setup
	Dataset Description
	Synthetic Masked Data Generation
	Implementation Details
	Hyper-parameter Details

	Additional Results
	Embedding of 1D data
	Forecasting
	Classification
	Ablations on Forecasting and Classification task
	Experiment on Computational cost comparison
	Imputation error propagation
	Analysis of impact of frequency and phase parameters

