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ABSTRACT

Sparse regularization techniques are well-established in machine learning, yet
their application in neural networks remains challenging due to the non-
differentiability of penalties like the L1 norm, which is incompatible with stochas-
tic gradient descent. A promising alternative is shallow weight factorization,
where weights are decomposed into two factors, allowing for smooth optimiza-
tion of L1-penalized neural networks by adding differentiable L2 regularization
to the factors. In this work, we introduce deep weight factorization, extending
previous shallow approaches to more than two factors. We theoretically estab-
lish equivalence of our deep factorization with non-convex sparse regularization
and analyze its impact on training dynamics and optimization. Due to the limi-
tations posed by standard training practices, we propose a tailored initialization
scheme and identify important learning rate requirements necessary for training
factorized networks. We demonstrate the effectiveness of our deep weight fac-
torization through experiments on various architectures and datasets, consistently
outperforming its shallow counterpart and widely used pruning methods.

1 INTRODUCTION

Making models sparse is a contemporary challenge in deep learning, currently attracting a lot
of attention. Among the more prominent methods to achieve sparsity are model pruning meth-
ods (Gale et al., 2019; Blalock et al., 2020) and regularization approaches sparsifying the model
during training (Hoefler et al., 2021). While in statistics and machine learning, sparse regular-
ization approaches are well-established (see, e.g., Tian & Zhang, 2022), the non-smoothness of
sparsity penalties such as the L1 norm impedes the optimization of neural networks when using
classical stochastic gradient descent (SGD) optimization. A possible solution that allows SGD-
based optimization while inducing L1 regularization is weight factorization. Originally proposed
in statistics for linear models (Hoff, 2017), the idea of factorizing the weights w = ω1 ⊙ ω2

to obtain a differentiable L1 penalty on the product ω1 ⊙ ω2 has recently been adopted also
in deep learning (see, e.g., Ziyin & Wang, 2023). This simple trick allows the integration of
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Figure 1: Sparsity-accuracy tradeoff using a vanilla L1 penaliza-
tion with SGD (blue) compared to (deep) weight factorization.
Means and std. deviations over 3 random seeds are shown.

convex L1-based sparsity into neural
network training while promising di-
rect applicability of familiar SGD. As
shown in Fig. 1, the obtained sparsity
of differentiable L1 remains superior to
vanilla L1 regularization. This holds
even after applying additional post-hoc
pruning, demonstrating that the infe-
rior sparsity performance of vanilla L1

is not just due to a suboptimal threshold
but also the incompatibility of SGD
and non-smooth penalties.

Given the success of (shallow) weight factorization, we study deep weight factorization in this work,
i.e., factorizing w = ω1 ⊙ · · · ⊙ ωD, D ≥ 2 (cf. Fig. 2). We investigate whether theoretical
guarantees support the use of a depth-D factorization, whether it is beneficial for sparsity, what
implications its usage has on training dynamics, and analyze other practices such as initialization.
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Vanilla Factorized

L(w) + λ∥w∥2/D2/D L(ω1 ⊙ . . .⊙ ωD) +
λ

D

∑D
d=1 ∥ωd∥22

SGD ✗ // SGD ✓

1 Deep Weight Factorization

w = ω1 ⊙ . . .⊙ ωD

5 Collapse factors

ω̂1 ⊙ . . .⊙ ω̂D = ŵ

Theorem 1

2 Initialize factors

3 Train with L2

4 Obtain ω̂1, . . . , ω̂D

Figure 2: Overview of the proposed method (cf. Algorithm 2). Our approach proceeds by factorizing the neural
network weights and running SGD on the factors ωd with weight decay. Post-training, the factors are collapsed
again, with the resulting sparse solutions being minimizers of the non-smooth L2/D-regularized objective.

Our contributions In this work, we address the aforementioned challenges and close an important
gap in the current literature. We first theoretically show the equivalence of factorized neural net-
works with sparse regularized optimization problems for depth D ≥ 2, allowing for differentiable
non-convex sparsity regularization in any neural network. We then discuss optimization strategies
for these factorized networks including their initialization and appropriate learning rate schedules.
We also analyze the training dynamics of such networks, showing a particularly interesting connec-
tion between the evolution of weight norms, compression, accuracy, and generalization. Conducting
experiments on a range of architectures and datasets, we further substantiate our theoretical findings
and demonstrate that our proposed factorized networks usually outperform the recently proposed
shallow factorization and yield competitive results to commonly used pruning methods.

2 BACKGROUND AND RELATED LITERATURE

2.1 NOTATION

Let {(xi, yi)}ni=1 be the training data of independent samples (xi, yi) ∈ X ×Rc, and n, c ∈ N. Let
f(w,x) : X → Rc denote a network realization for any w ∈ Rp. In general, we are interested in
minimizing ℓ(·, ·) : Rc×Rc → R+

0 denoting a continuous per-sample loss. The Lq norm of a vector
w ∈ Rp is defined as ∥w∥q = (

∑p
i=1 |wi|q)

1/q for q > 0. Note that Lq regularizers are defined
differently as ∥w∥qq and that for q < 1, only a non-convex quasi-norm is defined. For two vectors
ω1,ω2 ∈ Rp, we use ⊙ to denote their element-wise multiplication. For an optimization problem
minw L(w), we denote ŵ := argminw L(w). Finally, the compression ratio (CR) is defined as the
ratio of original to sparse model parameters.

2.2 DIFFERENTIABLE L1 REGULARIZATION

Weight factorizations were previously studied either to optimize regularized linear models or as toy
models for deep learning theory. We briefly illustrate this using the idea of a differentiable lasso.

Differentiable lasso The original lasso objective is defined as

min
w∈Rp

Lw,λ(w) :=

n∑
i=1

(
yi − x⊤

i w
)2

+ λ∥w∥1, (1)

where λ > 0 promotes sparsity via the L1 norm (Tibshirani, 1996). By factorizing w into ω1 and
ω2 such that w = ω1 ⊙ ω2, and replacing the non-differentiable L1 penalty with an L2 penalty on
ω = (ω1,ω2), we can obtain a differentiable formulation of the lasso (Hoff, 2017):

min
ω1,ω2∈Rp

Lω,λ(ω) :=

n∑
i=1

(
yi − x⊤

i (ω1 ⊙ ω2)
)2

+
λ

2

(
∥ω1∥22 + ∥ω2∥22

)
, (2)
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The formulation Eq. (2) is equivalent to Eq. (1) in the sense that all minima of the non-convex ob-
jective in Eq. (2) are global and related to the unique lasso solution of Eq. (1) as ω̂1⊙ ω̂2 = ŵ. Hoff
(2017) proposes solving Eq. (2) via alternating ridge regression. However, this relies on the bicon-
vexity of the problem and cannot be easily extended beyond linear models.ph[L1]Differentiable L1

regularization in general neural networks

Recently, Ziyin & Wang (2023) proposed applying a shallow factorization to arbitrary weights of
a neural network. Coupled with weight decay, this allows obtaining a differentiable formulation of
the sparsity-inducing L1 penalty that can be optimized with simple SGD. Specifically, by factorizing
the weights w of any neural network fw(w,x) as w = ω1 ⊙ ω2, and applying L2 regularization
to the factors, the resulting optimization problem has the same minima as the L1 regularized vanilla
network. The key insight for the equivalence with L1 regularization is that the factorization w =
ω1 ⊙ ω2 introduces a rescaling symmetry in the (unregularized) loss Lω,0.
Definition 1 (Rescaling Symmetry). Let the parameters of a loss function Lθ(θ) be partitioned as
θ = (ω1,ω2,θ0), with θ0 denoting the remaining parameters. Then Lθ(θ) possesses a rescaling
symmetry w.r.t. arbitrary parameters ω1,ω2 belonging to θ = (ω1,ω2,θ0) if for any c ̸= 0:

Lθ(ω1,ω2,θ0) = Lθ(c · ω1, c
−1 · ω2,θ0) ∀θ.

0.75 0.00 0.75
1

0.75

0.00

0.75

2

Rescaling symmetry
w = 1 2

0.25
0
min-norm

Figure 3: Scalar rescal-
ing symmetry and min-
norm factorizations.

While previous works mainly studied rescaling symmetries naturally aris-
ing in, e.g., homogeneous activation functions (Neyshabur et al., 2015;
Parhi & Nowak, 2023), weight factorization constitutes an artificial sym-
metry that is independent ofL, and by extension also of ℓ(·, ·) and fw(·,x).
This applicability to any parametric problem designates artificial symme-
tries as a powerful tool for constrained learning (Ziyin, 2023; Chen et al.,
2024). Intuitively, the additional L2 regularization enforces preference for
min-norm factorizations (ω∗

1 ,ω
∗
2) among all feasible factorizations of a

given w (Fig. 3). At such a min-norm factorization of w, the L2 penalty in
Eq. (2) reduces to ∥ω∗

1 ⊙ ω∗
2∥1 = ∥w∥1, effectively inducing L1 regular-

ization on the collapsed parameter. This approach allows for implementing
L1 regularization in general networks using GD without requiring special-
ized algorithms to handle non-differentiable regularization.

We refer to Appendix A for additional related methods and discussion. Appendix B provides some
intuition why weight factorization with L2 regularization promotes sparse solutions based on Fig. 3.

3 THEORETICAL RESULTS

Based on a given network specification of f(w,x), we study its depth-D factorization with D ≥ 2,
which we call Deep Weight Factorization (DWF) and is defined as follows:
Definition 2 (Deep Weight Factorization). A depth-D factorization with D ∈ N≥2 of an arbitrary
neural network fw(w,x), w ∈ Rp, is given by fw(ω1 ⊙ . . . ⊙ ωD,x) with ω = (ω1, . . . ,ωD)
and factors ωd = (ω1,d, . . . , ωp,d) ∈ Rp, d ∈ [D]. The original and factorized parameters are
related through w = ω1 ⊙ . . . ⊙ ωD =: ϖ, where ϖ denotes the collapsed parameter. Further, a
factorization depth is called shallow for D = 2 and otherwise deep.

In this work, we focus on unstructured sparsity. This means all weights and biases in fw are factor-
ized using DWF. In principle, however, the factorization can also be selectively applied to arbitrary
subsets of the parameters w. Importantly, while DWF does not alter the expressive capacity of the
underlying network fw, it drastically alters the optimization dynamics and enables sparse learning
in conjunction with L2 regularization or weight decay. Therefore, our focus lies on examining the
effects of L2 regularization and the behavior of SGD optimization in factorized networks.

The regularized training loss with DWF and regularization strength λ > 0 is defined to be

Lω,λ(ω) =
1

n

n∑
i=1

ℓ (yi, fw (ω1 ⊙ . . .⊙ ωD,xi)) +
λ

D

D∑
d=1

∥ωd∥22. (3)

For a given w, applying DWF to the training objective introduces an infinite set of feasible factoriza-
tions {(ω1, . . . ,ωD) : ϖ = w} that leave the network output fw(w,x) and loss invariant. Those

3
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factorizations, however, differ in their respective norms. While the norm of individual factors can
grow arbitrarily large, there exist factorizations that minimize the Euclidean norm, or equivalently,
the factor L2 penalty. L2 regularization thus biases the optimization toward min-norm factoriza-
tions. This regularization ensures that the parameter representation strives to be evenly distributed
across factors. The following result formalizes the necessary optimality conditions for the factorized
objective, identifying solution candidates as those that achieve minimal norm configuration.
Lemma 1 (Necessary condition for solution and minimum L2 penalty). Let ω = (ω1, . . . ,ωD) ∈
RDp be a local minimizer of Lω,λ(ω). Then i) |ωj,1| = . . . = |ωj,D| for all j ∈ [p], and ii) the
factor L2 penalty reduces to D−1

∑D
d=1 ∥ωd∥22 = ∥ϖ∥2/D2/D.

Using the result of Lemma 1, we introduce the concept of factor misalignment to quantify the
distance from balanced factorizations required for solutions. Specifically, the factor misalignment is
defined as M(ω) = D−1

∑D
d=1 ∥ωd∥22 − ∥ϖ∥

2/D
2/D and captures the difference between the factor

L2 penalty and that of a balanced minimum-norm factorization of the same collapsed ϖ. The
misalignment satisfies M(ω) ≥ 0, with equality if and only if the factorization is balanced. This
allows us to restrict the search for potential solutions to balanced factorizations M(ω) = 0, as
required by Lemma 1. Lemma 6 in Appendix C.4 describes the remarkable implications of reaching
zero misalignment for SGD dynamics, collapsing the dynamics to a constrained symmetry-induced
subspace in which the parameters remain for all future iterations (cf. Fig. 20 for dynamics of M(ω)).

The results from Lemmas 1 and 6 highlight the significance of factor misalignment for both the
landscape of loss functions under DWF and the trajectories of SGD optimization. For balanced
factorizations, the usual smooth L2 penalty remarkably takes the equivalent form of a sparsity-
inducing regularizer, with SGD dynamics being restricted to simpler symmetry-induced subspaces.
Notably, both L2 regularization and SGD noise naturally drive the dynamics towards balance (Chen
et al., 2024). These observations motivate the following key result:
Theorem 1 (Equivalence of optimization problems). The optimization problems

minw∈Rp Lw,λ(w) := 1
n

∑n
i=1 ℓ (yi, fw (w,xi)) + λ∥w∥2/D2/D (4)

minω∈RDp Lω,λ(ω) := 1
n

∑n
i=1 ℓ (yi, fw (ω1 ⊙ . . .⊙ ωD,xi)) +

λ
D

∑D
d=1 ∥ωd∥22 (5)

have the same global and local minima with the respective minimizers related as ŵ = ω̂1⊙. . .⊙ω̂D.

Practically speaking, instead of attempting to optimize the non-smooth problem in Eq. (4), we can
alternatively optimize the smooth problem in Eq. (5) as every local or global solution of the DWF
model will yield a corresponding local or global solution in the original model space. Hence, this
allows inducing sparsity in typical deep learning applications with SGD-optimization by a simple L2

regularization using Eq. (5). In contrast, the non-differentiability in (4) will cause the optimization
to oscillate and not provide the desired sparsity (see Section 5.1 and Fig. 1). The L2/D penalty in
Eq. (4) becomes non-convex and increasingly closer to the L0 penalty for D > 2, permitting a more
aggressive penalization of small weights than L1 regularization (Frank & Friedman, 1993).

While the theoretical equivalence derived in Theorem 1 establishes correspondence of all minimizers
and suggests a simple way to induce sparsity in arbitrary neural networks, the optimization of a DWF
model is not straightforward and little is known about the learning dynamics of such a model. We
will hence study these two aspects in the following section.

4 OPTIMIZATION AND DYNAMICS OF DEEP FACTORIZED NETWORKS

Two crucial aspects of successfully training DWF models are their initialization and the learning
rate when optimizing with SGD.

4.1 INITIALIZATION

Applying DWF to a neural network factorizes each parameter into a product of D factors. However,
initializations for factorized neural networks are not straightforward since the product distribution
of random variables often drastically differs from the factor distribution, leading to pathological be-
havior, especially for deep factorizations. To retain the properties of standard initializations, defined

4
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Figure 4: DWF initialization strategies. Left: factor densities with variance matching and truncation. Middle:
product densities for D = 4 illustrating kurtosis explosion without truncation. Right: sparsity-accuracy curves
for different initializations and D, showing the failure of standard initialization.

in Appendix C, adjustments to the factor initializations need to be implemented.
Our exposition focuses on the simplest case w

(l)
j ∼ N (0, 1/n

(l)
in ), where n

(l)
in is the number of input

units to the l-th layer (LeCun et al., 2002), but similar arguments can be made for other approaches.
While Ziyin & Wang (2023) use standard initialization for shallow factorizations with good re-
sults, this consistently fails for D > 2 in our experiments and only works in few cases for D = 2
(cf. Figs. 4 and 13). The following result shows that initializing a factorized neural network using a
standard scheme leads to deteriorating initialization quality and vanishing activation variance:

Lemma 2 (Standard initializations in factorized networks). Consider a factorized neural network
with L layers and factorization depth D ≥ 2, where w(l) = ω

(l)
1 ⊙ . . .⊙ω

(l)
D and the scalar factors

ω
(l)
j,d are initialized using a standard scheme. Then i) the collapsed weights ϖ(l)

j =
∏D

d=1 ω
(l)
j,d

p−→ 0
as D grows, and ii) for any D ≥ 2, the variance of the activations vanishes in both nin and L.

Rectifying the failure of standard initializations in DWF Given a standard initialization w ∼
P(w) with variance σ2

w, the first step is to correct the variance of the product ϖ by initializing
the factors ωd so that the variance of their product matches that of P(w). This variance match-
ing of ϖ and w is achieved by setting Var(ωd) = Var(w)1/D and named VarMatch initialization
here. However, only considering the variance overlooks the importance of higher-order moments
for initialization in deep learning. For example, given a factor initialization ωd ∼ N (0, σ2), we
have E

[
(ϖ)2

]
= σ2D, E

[
(ϖ)4

]
= 3Dσ4D, implying the kurtosis of ϖ grows exponentially as

κϖ = 3D regardless of variance matching (cf. Fig. 4). In DWF with plain variance matching, we
observe a performance decline and the undesirable emergence of inactive weights (cf. Fig. 5a).1

Since variance matching alone does not yield satisfactory results for D > 2, we additionally propose
a tailored interval truncation of the factor initialization outside of a certain absolute value range and
name this approach DWF Initialization (see also Algorithm 1). This redistributes the accumulating
probability mass away from 0 and prevents catastrophic initialization of dead weights. The trun-
cation thresholds control the smallest and largest possible absolute values ϖmin and ϖmax of ϖ,
defining the support of the product distribution. Setting the upper truncation threshold to (2σw)1/D

to address large outliers and the lower threshold to ε1/D, for some ε > 0, successfully removes
pathological product initializations in our experiments.

Together, the crucial ingredients for DWF initialization are corrections for both the vanishing vari-
ance of the product distribution and its concentration around zero.

Remark 1. The factorized bias parameters should not be initialized to all zeros, as this corresponds
to a saddle point from which gradient descent cannot escape by symmetry (see Lemma 6).

4.2 LEARNING RATE

Another challenge in optimizing a depth-factorized model is the choice of learning rate (LR). As
shown in Fig. 5b, if the LR is chosen too small, the model cannot learn a sparse representation
despite achieving the same generalization as a 99.4% sparse model trained with large LR. This
closely follows previous analyses of large LRs in neural network training dynamics: Nacson et al.

1Inactive or dead weights are collapsed weights ϖ consisting of factors ωd with vanishingly small initial-
ization values, resulting in ϖ not changing during training.
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Figure 5: Failure modes when optimizing factorized neural networks.

(2022) show that large LRs help transition to a sparsity-inducing regime in diagonal linear net-
works. In more realistic scenarios, Andriushchenko et al. (2023) observe that a piece-wise constant
(step decay) LR schedule with large initial LR induces phased learning dynamics including a short
initial learning phase, followed by a period of sparse feature learning and loss stabilization, and sud-
den generalization upon reduction of the LR. Particular to symmetries and SGD, Chen et al. (2024)
demonstrate how large LRs help generalization by causing SGD to be attracted to symmetry-induced
structures through stochastic collapse. We conjecture that in DWF, the introduction of D-fold ar-
tificial symmetries (cf. Definition 1) accelerates this phenomenon and thus additionally aids sparse
learning. The first row of Fig. 6 shows the training dynamics of deep factorized ResNets and demon-
strates the requirement of large and small LR phases for DWF training. These training dynamics are
further discussed in the following section. Additionally, Appendix E includes an ablation study on
different LRs and factorization depths D, suggesting optimal sparsity-accuracy tradeoffs for initial
LRs slightly below a critical threshold where training becomes unstable (Fig. 11).
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Figure 6: Factorized ResNet-18 on CIFAR10 with D = 4. Dashed lines indicate phase transitions. Top:
Different LR schedules with same initial LR and λ. Left: cosine LR learns sparse and generalizing solutions.
Mid: a const. large LR causes sparsification but no generalization. Right: step-decay LR displays sharply
distinct sparsification and generalization phases in large and small LR phases. Bottom: For cosine LR, the
three distinct learning phases occur at all sparsity levels, with sharper contracted dynamics for high sparsity.

4.3 LEARNING DYNAMICS AND DELAYED GENERALIZATION

The learning dynamics of DWF with cosine annealing exhibit three distinct phases, characterized
by changes in accuracy, sparsity, and L2 norm of the collapsed weights (Fig. 6, second row): In an
initial phase, SGD learns easy-to-fit patterns without overfitting while the L2 norm decreases. The
reorganization phase is characterized by temporary drops in accuracy and an increase in weight
norm, hinting at a period of representational restructuring to accommodate sparsity constraints.
Sparsity emerges during or at the end of this phase. The final mixed sparsification and gener-
alization phase shows improvements in training and validation accuracy as sparsification continues
at a decreasing rate. The mixed nature of the final phase, contrasting the sharply separated sparsifi-
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cation and generalization with step decay, is owed to gradual reduction in cosine annealing. Notably,
with increasing regularization λ, the dynamics contract, and the phases occur in closer succession.
This phased behavior shows that the more contracted the reorganization phase is, the higher com-
pression and more severe the delayed generalization will be. This is reminiscent of the “grokking”
phenomenon (Power et al., 2022) shown to be tightly linked to L2 regularization (Liu et al., 2023).

4.4 IMPACT OF REGULARIZATION AND EVOLUTION OF LAYER-WISE METRICS

To investigate dynamics in more detail, we analyze the effect of D and λ on the sparsity and training
trajectories (Fig. 7). Similar results for different architectures/datasets are included in Appendix F.
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Figure 7: Impact of regularization λ on compression (top), training, and validation accuracy (bottom) for
factorized ResNet-18 and D ∈ {2, 3, 4}. For large λ severely delayed generalization and extreme compression
emerges simultaneously. Colors indicate the same λ in both rows.

As expected, increasing λ leads to higher compression ratios across all depths. Moreover, greater D
enables higher compression ratios for the same λ. During the initial phase, the regularized training
curves coincide with the unregularized trajectory until their departure at the onset of the reorgani-
zation phase. This departure occurs earlier the stronger the regularization. For greater factorization
depths, the same λ values induce higher sparsity at the cost of reduced generalization performance,
indicating a stronger regularizing effect2. The relationship between sparsity, λ, and the collapsed
weight norm is further discussed in Appendix E.3. Appendix F.3 presents the layer-wise evolution
of sparsity and weight norms, providing more detailed insights into the effects of DWF across the
network topology for different architectures (e.g., Fig. 18a). Two key observations can be made:
the first and last layers exhibit less sparsity, owed to their increased importance for the prediction.
For the intermediate layers, there is a general trend toward higher compression for later layers. Sec-
ondly, the non-monotonic dynamics of the collapsed weight norm seem to be almost entirely driven
by the first few and the last layer, while the intermediate layers behave homogeneously. Finally, the
evolution of factor misalignment and its relation to the onset of sparsity is discussed in Appendix F.4.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DWF. In Appendices F and G, we provide further
results and details on the experimental setup, including hyperparameters and training protocols.

5.1 FAILURE OF VANILLA L1 OPTIMIZATION WITH SGD

The failure of SGD with vanilla L1 regularization to achieve inherent sparsity has been previously
observed by Ziyin & Wang (2023); Kolb et al. (2023). It is natural to ask whether this limitation is
merely a benign optimization artifact or if it degrades the prunability of the regularized models. We,
therefore, train a LeNet-300-100 on Fashion-MNIST with vanilla L1 regularization as well as with
DWF and D = 2, 3, inducing differentiable L1 and non-convex L2/3 regularization.

2Note that this does not imply worse performance in general, but a different optimal λ for different D.
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Results The left plot in Fig. 1 (page 1) shows the tradeoff between performance and inherent spar-
sity (before pruning) for 100 logarithmically spaced λ values, confirming prior findings on the limi-
tations of vanilla L1 optimization. In contrast, differentiable L1 regularization using DWF achieves
a compression ratio of about 350 at 80% test accuracy. In addition, our DWF network with D = 3
is four times sparser than D = 2 at the same accuracy, underscoring the advantages of deeper fac-
torizations. In the right plot of Fig. 1, we subsequently apply post-hoc magnitude pruning to each
of the models at increasing compression ratios (without fine-tuning) until reaching random chance
performance and use the best-performing pruned model at each fixed compression ratio to obtain the
pruning curves. Results indicate that differentiable sparse training with factorized networks provides
better tradeoffs than vanilla L1 optimization, even after accounting for the numerical inaccuracies
of using SGD for vanilla L1. At 80% test accuracy, vanilla L1 plus pruning requires twice as many
parameters as its DWF counterpart, and three times as many as DWF (D = 3). This suggests SGD
with L1 struggles to find similarly well-prunable structures, while DWF yields much sparser models.

5.2 RUN TIMES

The perceptive reader might be concerned about the computational overhead induced by training
deep factorized networks. Our experiments show this concern to be unwarranted, as the effect of the
factorization depth is rather unimportant compared to batch size for both time per sample and mem-
ory cost. Appendix I.2 illustrates this for WRN-16-8 (Zagoruyko & Komodakis, 2016) and VGG-19
(Simonyan & Zisserman, 2014). For both models, the impact of factorization depth on computa-
tion time and memory usage becomes negligible as batch size increases. These findings suggest
that practitioners can leverage deeper factorized networks without incurring substantial additional
computational costs, particularly at typical batch sizes used in modern deep learning.

5.3 COMPRESSION BENCHMARK

We now evaluate DWF for factorization depths D ∈ {2, 3, 4} against various pruning methods con-
cerning test accuracy vs. compression, as well as the layer-wise allocation of the remaining weights.
Architectures and datasets: Our experiments cover commonly used computer vision benchmarks:
LeNet-300-100 and LeNet-5 (LeCun et al., 1998) on MNIST, Fashion-MNIST, and Kuzushiji-
MNIST, VGG-16 and VGG-19 (Simonyan & Zisserman, 2014) on CIFAR10 and CIFAR100, and
ResNet-18 (He et al., 2016) on CIFAR10 and Tiny ImageNet.
Methods: We compare our method against Global magnitude pruning (GMP) after training (Han
et al., 2015), a simple pruning method that removes the smallest weights across all layers and is sur-
prisingly competitive, especially at low sparsities (Gale et al., 2019; Frankle et al., 2020); Single-shot
Network Pruning (SNIP) (Lee et al., 2019), a pruning-at-initialization technique, showing competi-
tive performance against other recent pruning methods (Wang et al., 2020); SynFlow (Tanaka et al.,
2020), considered a state-of-the-art method for high sparsity regimes; Random pruning, serving as
a naive baseline that removes weights uniformly at random; a shallow factorized network (D = 2)
which is our variant of the spred algorithm (Ziyin & Wang, 2023) with improved initialization.
Tuning: For comparison methods, we use the established training configurations in Lee et al. (2019);
Wang et al. (2020); Frankle et al. (2020) when available, and otherwise ensure comparability by us-
ing the same configuration for all methods. All models are trained with SGD and cosine learning
rate annealing (Loshchilov & Hutter, 2016). For our method, no post-hoc pruning or fine-tuning is
required and all layers are regularized equally. Further details are given in Appendix G.

Results Fig. 8 shows results for the fully-connected and convolutional LeNet-300-100 and LeNet-
5 architectures on MNIST, F-MNIST, and K-MNIST. Across all datasets and models, our proposed
DWF consistently outperforms existing pruning techniques, particularly at higher compression ra-
tios. For LeNet-300-100 on MNIST, DWF with D = 3, 4 remains within 5% of the dense perfor-
mance even above a compression ratio of 500, significantly surpassing other methods. On F-MNIST
and K-MNIST, a similar performance gain is observed. LeNet-5 exhibits similar trends, with DWF
maintaining high accuracy at compression ratios where other techniques, especially random pruning
and SNIP, have collapsed. Notably, DWF sustains performance up to a compression ratio of 100
on K-MNIST, while competitors rapidly decline. SynFlow and GMP generally outperform random
pruning and SNIP, but still fall short of DWF. When comparing shallow and deep factorizations,
we see that D > 2 retains performance and delays model collapse much longer than D = 2. The
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Figure 8: Accuracy vs. sparsity tradeoffs for LeNet architectures on MNIST and replacements of varying
difficulty. Lines depict median test accuracies and shaded areas the minimum over three random initializations.

results demonstrate that DWF offers substantial gains in compression capability. Further, the clear
separation between DWF and other methods in the high-sparsity regime indicates that our approach
captures aspects of the model’s representational power that are missed by the other techniques.
These findings underscore the potential of DWF, particularly under severe parameter constraints.

For larger architectures and more complex datasets (Fig. 9), DWF continues to demonstrate superior
performance, albeit less pronounced. We observe that the D = 2 factorization excels in the medium
sparsity regime below a compression ratio of 100, while D > 2 shows enhanced resilience to
performance degradation and delayed model collapse at more extreme sparsity levels.
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Figure 9: Accuracy vs. sparsity for larger ResNet and VGG architectures on CIFAR and TinyImageNet.

Table 1 showcases the sparsest models achieved by each method while maintaining performance
within 5% or 10% of the dense model accuracy. These tolerance levels are suitable for testing
the medium to high sparsity regimes we focus on. Other levels can be read from Fig. 9. Of the 10
presented scenarios, DWF with D = 3, 4 achieves the highest compression in 9 cases, demonstrating
the robustness of DWF in preserving model performance under extreme sparsity requirements. The
best-ranked DWF model achieves 2 to 5 times the compression ratio of the best pruning method,
and surpasses shallow factorization in all but one setting, albeit with smaller improvements ranging
from 8% to 298%. For example, DWF with D = 3 reaches a compression ratio of 1014 (1456) for
VGG-19 on CIFAR100 (ResNet-18 on CIFAR10) at 10% tolerance, improving by 8% (25%) over
D = 2 and by 381% (102%) over the best pruning method SynFlow.

Allocation of layer-wise sparsity Finally, we investigate the reasons for model collapse in SNIP
and GMP in the high sparsity regime by plotting the layer-wise remaining ratio (1/CR) for ResNet-
18 and VGG-16 on CIFAR10 in the medium and extreme compression regimes, as shown in Fig. 10.
At high compression, for both ResNet-18 and VGG-16, we observe that GMP and SNIP catastroph-
ically prune entire layers. In contrast, SynFlow and DWF automatically learn adaptive layer-wise
sparsity budgets which helps in avoiding such issues. While SynFlow does prune some layers en-
tirely in ResNet-18, these correspond to skip connections that can be removed without interrupting

9
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Table 1: Compression ratios (sparsities) of sparsest model within εacc percentage points of the dense model
test accuracy. Random pruning is left out for clarity.

CR (↑) εacc LeNet-300-100 LeNet-5 ResNet-18 VGG-19 ResNet-18
F-MNIST K-MNIST CIFAR10 CIFAR100 Tiny ImageNet

Depth 2 5% 141 (99.29%) 52 (98.08%) 466 (99.79%) 484 (99.79%) 60 (98.34%)
10% 362 (99.72%) 78 (98.71%) 1169 (99.91%) 939 (99.89%) 99 (98.99%)

Depth 3 5% 506 (99.80%) 75 (98.67%) 573 (99.83%) 440 (99.77%) 67 (98.51%)
10% 1422 (99.93%) 134 (99.25%) 1456 (99.93%) 1014 (99.90%) 161 (99.38%)

Depth 4 5% 486 (99.79%) 75 (98.67%) 445 (99.78%) 215 (99.53%) 13 (92.39%)
10% 1442 (99.93%) 139 (99.28%) 1161 (99.91%) 675 (99.85%) 113 (99.12%)

GMP 5% 156 (99.36%) 22 (95.37%) 211 (99.53%) 37 (97.27%) 60 (98.33%)
10% 235 (99.58%) 32 (96.84%) 484 (99.79%) 68 (98.52%) 133 (99.25%)

SNIP 5% 76 (98.69%) 17 (94.10%) 140 (99.29%) 28 (96.47%) 18 (94.34%)
10% 146 (99.32%) 24 (95.91%) 339 (99.70%) 42 (97.59%) 41 (97.56%)

Synflow 5% 141 (99.29%) 21 (95.23%) 210 (99.52%) 46 (97.81%) 24 (95.84%)
10% 302 (99.67%) 37 (97.30%) 721 (99.86%) 218 (99.54%) 71 (98.60%)

the synaptic flow. Comparing SynFlow and DWF, we observe that DWF produces higher sparsity
in the first and last layers across all settings. This is a particularly desirable property, as it leads to
greater computational savings for a given overall sparsity level. Moreover, as opposed to remov-
ing the skip connections, DWF allocates less sparsity to these structures, suggesting a qualitatively
distinct underlying structure optimization mechanism.
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Figure 10: Allocation of layer-wise sparsity for different methods. SNIP and GMP show catastrophic pruning
of whole layers (collapse) for high sparsities, whereas DWF, like SynFlow, finds adaptive sparsity allocations.

6 CONCLUSION

This paper introduces deep weight factorization (DWF), an extension of a previously proposed dif-
ferentiable L1 regularization to induce sparsity in general neural networks. By factorizing weights
not only into two, but D ≥ 3 parts, our method provably induces differentiable L2/D regularization
that can be incorporated in any neural network. We analyze various properties and propose opti-
mization strategies such as an initialization avoiding “bad” starting values and a sparsity-promoting
learning rate scheme. We also identify three phases that describe the learning dynamics and (de-
layed) generalization behavior of DWF. Experiments demonstrate that DWF is usually superior to
shallow factorization and outperforms dominant pruning techniques.

Limitations and future work In this work, we primarily focused on D ∈ {2, 3, 4}. While not
incurring significant computational overhead (cf. Fig. 26), we found that increasing the factoriza-
tion depth beyond four did not yield further sparsity improvements and introduced optimization
challenges (cf. Fig. 15). Additionally, a limitation of our work is that we exclusively focused on
DWF approaches resulting in unstructured sparsity regularization. Hence, an interesting potential
direction for future research is to extend our factorization to structured sparsity problems.
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A FURTHER RELATED LITERATURE

Convex and Non-convex sparse regularization Convex and non-convex regularization for
sparsity-inducing effects has a long history as it is well-understood with strong theoretical underpin-
nings. Notable works in this direction include Tibshirani (1996); Fan & Li (2001); Meinshausen &
Bühlmann (2006); Zhang & Huang (2008) for convex norm-based sparse regularization and Fried-
man et al. (2010); Fan & Li (2001); Zhang (2010); Xu et al. (2010) studying its non-convex ex-
tensions. While mathematically rigorous, they see limited application in deep learning due to their
non-differentiability exactly where sparsity is achieved, requiring the implementation of non-smooth
optimization routines that are often inflexible and do not scale well. While some works exist on
proximal-type optimization routines in deep learning (Yang et al., 2020; Deleu & Bengio, 2021),
their popularity remains far behind pruning and other approaches, with these methods being rarely
applied, used as comparisons, or given much if any attention in surveys (Hoefler et al., 2021; Gale
et al., 2019). Nevertheless, the use of L1 or structured L2,1 regularization is ubiquitous in sparse
deep learning (Han et al., 2015; He et al., 2017; Liu et al., 2017; Li et al., 2022). These sparsity
regularization pruning methods (Cheng et al., 2024) use sparse regularization to shrink weights be-
fore applying a subsequent pruning step for actual sparsity. However, the conceptual framework
underlying these heuristic-based methods remains poorly understood.

Weight factorization without and with explicit regularization Weight factorizations, also stud-
ied under the names diagonal linear networks (Woodworth et al., 2020), redundant parameterization
(Ziyin & Wang, 2023), or Hadamard product parameterization (Hoff, 2017; Tibshirani, 2021; Kolb
et al., 2023) in various contexts, can be traced back to Grandvalet (1998) and was rediscovered both
in statistics (Hoff, 2017) and machine learning Neyshabur et al. (2015). Later, Tibshirani (2021);
Kolb et al. (2023) and Ziyin & Wang (2023) used this approach to induce sparsity via L2 regulariza-
tion. Further works using weight factorization from the field of optimization include Poon & Peyré
(2021; 2023). Ouyang et al. (2024) show that the Kurdyka-Łojasiewicz exponent at a second-order
stationary point of a factorized and L2 regularized objective can be inferred from its correspond-
ing L1 penalized counterpart. These works are closest to ours in spirit, namely, factorizing the
weights of existing problems to achieve sparsity in the original weight space under L2 regulariza-
tion. None of these works, however, studied deeper factorizations of neural network parameters.
A closely related approach to incorporate the induced non-convex Lq regularization (q < 1) into
DNN training was recently proposed by Outmezguine & Levi (2024), who base their method on the
η-trick (Bach et al., 2012) instead of the L2 regularized weight factorization we study. This method
re-parametrizes the regularization function instead of factorizing the network parameters, utilizing a
different variational formulation of the Lq quasi-norm. Despite having the same effective Lq regular-
ization, DWF incorporates additional symmetry-induced sparsity-promoting effects through weight
factorization and the stochastic collapse phenomenon (Ziyin, 2023; Chen et al., 2024). Another
branch of literature studies the representation cost of DNN architectures fw for a specific function
f , defined as R(f) = minw:fw=f ∥w∥22, showing that the L2 cost of representing a linear function
using a diagonal linear network yields the L2/D quasi-norm (Dai et al., 2021; Jacot, 2023).

Apart from the previous works using explicit regularization, the implicit regularization effect of
weight factorization was studied by various researchers, both in statistics and deep learning, includ-
ing Neyshabur et al. (2015); Gunasekar et al. (2018); Gissin et al. (2019); Vaskevicius et al. (2019);
Woodworth et al. (2020); Pesme et al. (2021); Zhao et al. (2022); Li et al. (2021). However, such
approaches are usually impractical for real applications, requiring vanishing initializations or spe-
cific loss functions. For example, the implicit bias of deep weight factorizations does not extend to
non-convex regularizers under the squared loss (Nacson et al., 2022). Powerpropagation is a dif-
ferent sparsity-inducing weight transformation with implicit regularization effect and proposed by
Schwarz et al. (2021) to also provide a tool for practical applications.

Various papers have also studied the factorization of weights without explicit regularization in the
context of implicit acceleration caused by the factors acting as adaptive learning rates. Notable
examples include Arora et al. (2019); Wang et al. (2022); Li & Lin (2024).

Pruning in neural networks The landscape of pruning and sparse training methods is confusing
due to the plethora of complex sparsification pipelines, incorporating numerous techniques at the
same time, and an enormous amount of hyperparameters like pruning schedules or learning rates at
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different stages. A fair comparison is further complicated by the lack of established, streamlined
evaluation processes and opposing objectives in some methods. Pruning, arguably the most popular
and widespread method, can be used in innumerable ways to sparsify neural networks, which makes
comparisons among these particularly difficult (Wang et al., 2023). Existing pruning techniques use
pruning at initialization (Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020), pruning after train-
ing by, e.g., magnitude pruning (Han et al., 2015; Gale et al., 2019), pruning during training, iterative
pruning (Frankle et al., 2020), or pruning and re-growth (Evci et al., 2020). Recent surveys can be
found in Blalock et al. (2020); Hoefler et al. (2021); Cheng et al. (2024). Prominent examples in-
clude the lottery ticket hypothesis (Frankle & Carbin, 2019), proposing that many networks contain
equally performant, but much smaller subnetworks that can be found at initialization. A Bayesian
pruning version is suggested in Dhahri et al. (2024). Another approach related to pruning is soft
thresholding reparameterization (Kusupati et al., 2020), a sparse training method incorporating a
soft-thresholding step into its network. Despite its success, however, it was shown to be outper-
formed by the differentiable L1 approach, i.e., DWF with D = 2 (Ziyin & Wang, 2023). Recently,
Zhang et al. (2024) establish theoretical bounds on network prunability using convex geometry,
showing that the fundamental one-shot pruning limit without sacrificing performance is determined
by weight magnitudes and the sharpness of the loss landscape, providing a unified framework to help
explain the effectiveness of magnitude-based pruning. They empirically show that L1 regularized
post-hoc magnitude pruning approximately matches the derived pruning limit before performance
degrades significantly.

Sparsity-inducing regularization in neural networks Apart from pruning, the application of
norm-based regularizers is also common on deep learning (Scardapane et al., 2017; Wen et al.,
2016; Han et al., 2015; Bui et al., 2021). This includes L0-type reguarlization methods (Louizos
et al., 2018; Zhou et al., 2021; Savarese et al., 2020). Some of these such as Louizos et al. (2018)
were however found to not work well due to the stochastic sampling in their training procedure.
Other approaches include adaptive regularization (Glandorf et al., 2023) or dynamic masking (Liu
et al., 2020).

Sparsity based on structural constraints While we focus on unstructured pruning in this paper,
there exist various approaches for structured pruning including Wen et al. (2016); Li et al. (2022);
Bui et al. (2021); Liu et al. (2017). For a recent survey, see He & Xiao (2023). A link also made in
our paper is the connection between sparsity and symmetries. Using structures of symmetries can
guide the sparsification of neural networks. Papers studying this link include the works of Kunin
et al. (2020); Simsek et al. (2021); Le & Jegelka (2022), but also some various recent work such
Ziyin (2023); Ziyin et al. (2023); Chen et al. (2024).

Matrix factorization related induced regularization In Srebro et al. (2004); Mazumder et al.
(2010); Shang et al. (2020); Hastie et al. (2015) different matrix factorization regularization schemes
are proposed to, e.g., learn incomplete matrices (Mazumder et al., 2010; Hastie et al., 2015) or for
better generalization (Srebro et al., 2004). There are also neural architectures implementing some
sort of matrix factorization to achieve better performance or acceleration (Guo et al., 2020; Jing
et al., 2020; Bhardwaj et al., 2022). Although not directly related to our factorization, we will briefly
explain their idea to contrast it with our approach. For example, Guo et al. (2020) note a beneficial
effect of applying L2 regularization on the (matrix) factors in the form of ∥W1∥22 + ∥W2∥22 as
opposed to the L2 regularizer ∥W1W2∥22 proposed in Arora et al. (2019). This observation can
be explained by the low-rank bias induced on the product matrix, whereas the second approach is
simple L2 regularization on the product.

B INTUITION FOR SPARSITY VIA L2 REGULARIZED WEIGHT FACTORIZATION

Deep Weight Factorization introduces overparameterization by decomposing each original weight w
multiplicatively into D ≥ 2 factors ω1, . . . , ωD. Without additional L2 regularization, this induces
artificial rescaling symmetries (Definition 1), resulting in infinitely many possible factorizations for
each weight, all producing the same collapsed network and thus leaving the loss function unchanged.
However, when L2 regularization is applied, it influences the choice among these factorizations by
preferring those with minimal Euclidean norm. With L2 regularization, only minimum-norm (bal-
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anced) factorizations can be optimal, as otherwise, we could always decrease the L2 penalty by pick-
ing a more balanced factorization while leaving the unregularized loss unchanged (cf. Lemma 1).

To provide some geometric intuition using a more concrete example, consider the simplest case
of factorizing a scalar weight w ∈ R into two factors, w = ω1 · ω2, as illustrated in Fig. 3 for
w ∈ {0, 0.25}. The set of all possible factorizations {(ω1, ω2) ∈ R2 : ω1ω2 = w} is given by
the points on the coordinate axes for w = 0 and forms a rectangular hyperbola in the (ω1, ω2)
plane for non-zero w (cf. Fig. 3). Among these, the factorizations with minimal L2 norm (i.e.,
minimal distance to the origin) are located at the vertices of the hyperbola. These minimum-norm
factorizations are balanced, meaning the factors are equal in magnitude, as the vertices of a rect-
angular hyperbola always lie either on the diagonal ω2 = ω1 or ω2 = −ω1. Specifically, the two
vertices of the resulting hyperbola are given by (

√
|w|,

√
|w|) and (−

√
|w|,−

√
|w|) for positive

w, and (
√
|w|,−

√
|w|) and (−

√
|w|,

√
|w|) for negative w. Combined with the case w = 0, the

minimum-norm factorizations (ω∗
1 , ω

∗
2) for any w are obtained as

(ω∗
1 , ω

∗
2) =


(√
|w|,

√
|w|
)

or
(
−
√
|w|,−

√
|w|
)

, w > 0

(0, 0) , w = 0(√
|w|,−

√
|w|
)

or
(
−
√
|w|,

√
|w|
)

, w < 0.

(6)

At these points, the L2 penalty evaluates to 2|w|, effectively turning into an L1 penalty on the
collapsed weight w scaled by a factor of 2.

For deeper factorizations involving more than two factors the same line of reasoning applies, but
visualizing the set of possible factorizations as in Fig. 3 for D = 2 becomes challenging. The
minimum L2 penalty at balanced factorizations reduces to a non-convex sparsity-inducing L2/D

penalty on the collapsed weight. This serves as a lower bound of the L2 penalty for every fixed value
of w. Once the factors reach this balanced state, which is an ”absorbing state” under (S)GD, the
optimization process locks in this configuration for all future iterations by symmetry (cf. Lemma 6).
Thus, the combination of DWF and L2 regularization induces sparsity in the collapsed weights by
promoting balanced factorizations, at which the L2 penalty reduces to a lower-degree quasi-norm
penalty on w.
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C FURTHER RESULTS AND MISSING PROOFS

C.1 PROOF OF LEMMA 1

Proof. Let ω = (ω1, . . . ,ωD) ∈ RDp be a local minimizer of Lω,λ(ω). As the factorization
is applied independently to each parameter, it suffices to treat the scalar case: We will prove that
|ωj,1| = . . . = |ωj,D| for all j ∈ [p].

The rescaling symmetries of DWF ensures that Lω,0 (the factorized loss without regularization) is
constant over all possible factorizations of a collapsed parameter ϖ. However, the L2 regularization
term λD−1

∑D
d=1 ∥ωd∥22 enforces a preference for min-norm factorization. For each scalar weight

indexed by j ∈ [p], consider its factors ωj,1, . . . , ωj,D. Applying the AM-GM inequality to the L2

penalty of the DWF loss yields

D−1∑D
d=1 ω

2
j,d ≥

(∏D
d=1(ωj,d)

2
)1/D

= |ωj,1 · · ·ωj,D|2/D = |ϖj |2/D ∀ j ∈ [p] (7)

This shows the balancedness requirement for the minimizers of Lω,λ(ω), as the AM-GM inequality
holds tight if and only if all terms are equal, i.e., |ωj,1| = . . . = |ωj,D|.

Summing over the factorizations of all weights yields the non-convex L2/D regularizer ∥ϖ∥2/D2/D as
the minimum L2 penalty for a given collapsed weight ϖ ∈ Rp.

C.2 PROOF OF LEMMA 2

Definition 3 (Standard Weight Initialization). A standard weight initialization scheme for a neural
network layer with nin input units and nout output units is a probability distribution with mean 0
and variance σ2, where σ2 = cg2

nmode
. Here, g is a gain factor depending on the activation function,

c is a constant, and nmode is either nin, nout or their sum. Common examples include the Kaiming
(σ2 = 2

nin
) (He et al., 2015), Glorot (σ2 = 2

nin+nout
) (Glorot & Bengio, 2010), or LeCun initialization

(σ2 = 1
nin

) (LeCun et al., 2002).

Proof. Recall that using a standard initialization (cf. Definition 3), each factor is initialized as ω(l)
j,d ∼

N (0, σ2
l ), where σ2

l = 1/n
(l)
in < 1 in the case of LeCun initialization (LeCun et al., 2002). For

clarity, we assume the width n
(l)
in to be constant across layers l ∈ [L].

To prove the first statement, we note that E[ϖ(l)
j ] = 0 and Var

(
ϖ

(l)
j

)
=
∏D

d=1 Var
(
ω
(l)
j,d

)
= σ2D.

Applying Chebyshev’s inequality, we get for any ε > 0

P
(∣∣ϖ(l)

j − E
[
ϖ

(l)
j

]∣∣ ≥ ε
)
= P(|ϖ(l)

j | ≥ ε) ≤
Var
(
ϖ

(l)
j

)
ε2

=
σ2D

ε2
. (8)

Finally, we have 0 ≤ limD→∞ P(|ϖ(l)
j | ≥ ε) ≤ limD→∞

σ2D

ε2 = 0, and thus, by the squeeze

theorem: limD→∞ P(|ϖ(l)
j | ≥ ε) = 0. This shows that ϖ(l)

j

p−→ 0 as D →∞.

For the second point, we denote the pre-activation of neuron k in layer l as

y
(l)
k =

nin∑
i=1

w
(l)
ki
ϕ
(
y
(l−1)
i

)
=

nin∑
i=1

(
D∏

d=1

ω
(l)
ki,d

)
ϕ
(
y
(l−1)
i

)
, (9)

where ω
(l)
ki,d

is the d-th scalar factor of the weight w(l)
ki

associated with input i of neuron k in layer

l. The activation ϕ
(
y
(l−1)
i

)
is the activation function ϕ applied to the pre-activations from layer

l − 1. To simplify calculations, we assume that the activation function is approximately linear
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around the origin, implying Var
(
ϕ
(
y
(l−1)
i

))
≈ Var

(
y
(l−1)
i

)
and allowing us to ignore the gain

factor, as valid for, e.g., tanh activation. Using that the factors ω(l)
ki,d

and activations ϕ
(
y
(l−1)
i

)
are

independent and identically distributed, respectively, the variance of y(l)k is given by:

Var
(
y
(l)
k

)
=

nin∑
i=1

Var

(
D∏

d=1

ω
(l)
ki,d
· ϕ
(
y
(l−1)
i

))
=

nin∑
i=1

Var
(
ϕ
(
y
(l−1)
i

))
·

D∏
d=1

Var
(
ω
(l)
ki,d

)
. (10)

Since the factors are initialized with Var
(
ω
(l)
ki,d

)
= σ2

l = 1
nin

, the variance of y(l)k is:

Var
(
y
(l)
k

)
=

nin∑
i=1

Var
(
y
(l−1)
i

)( 1

nin

)D

= nin ·
Var
(
y(l−1)

)
nD

in
=

Var
(
y(l−1)

)
nD−1

in

(11)

In non-factorized layers, the nin in Eq. (11) cancel out, resulting in equal activation variances across
layers. In contrast, standard initializations in factorized layers do not account for the exponent D
appearing in the variance of the collapsed weight ϖ(l)

ki
, and thus result in a variance reduction in

each subsequent layer as a function of input units and factorization depth D. Applying the above
relationship recursively, we see that the variance at layer L is

Var(y(L)
k ) = Var(y(1)) ·

(
1

nin

)(D−1)(L−1)

(12)

To avoid reducing or amplifying the magnitudes of input signals exponentially, a proper initialization
requires Var(y(L)

k ) to equal some constant, typically set to unity (He et al., 2015). In factorized
networks with D ≥ 2, however, standard initialization causes strong dependence on nin, D, and L.

C.3 PROOF OF THEOREM 1

Before proving the theorem, we introduce some required notations and auxiliary results. Our
strategy is to first show equivalence between the the L2/D-regularized objective Lw,λ(w) and
an intermediate objective L̃w,λ(ω) := Lw,λ(ω1 ⊙ . . . ⊙ ωD) that still contains the regularizer
∥ω1 ⊙ . . . ⊙ ωD∥2/D2/D instead of the L2 regularization in the DWF loss. In a second step, we show

the equivalence of L̃ω,λ(ω) and the DWF objective Lω,λ(ω). We define the inverse factorization
function asK : RDp → Rp, ω 7→ ω1⊙ . . .⊙ωD = ϖ, and remark that it is a smooth surjection. To
show the correspondence of minimizers between both objectives, we require K to be locally open at
each minimizer (Levin et al., 2024).
Definition 4 (Local openness). A mapping K : RDp → Rp,ω 7→ K(ω) is locally open at ω if for
every ε > 0 we can find δ > 0 such that B(K(ω), δ) ⊆ K(B(ω, ε)), where B(ω, ε) denotes an
ε-ball around ω. Further K is called globally open if it is locally open at all ω ∈ RDp.

Using the same notation, continuity can be defined as ∀ ε > 0 ∃ δ > 0 : K(B(ω, δ)) ⊆ B(K(ω), ε).
For DWF, global openness can be established using the following result extending a result for scalar-
valued factorizations in Balcerzak et al. (2016):
Proposition 1 (Kolb et al. (2023), Lemma 5.3). The inverse weight factorization K : RDp →
Rp, (ω1, . . . ,ωD) 7→ ω1 ⊙ . . .⊙ ωD is globally open.

With this context we can now state the proof of Theorem 1:

Proof. Let Lw,λ(w) be the penalized objective function using w ∈ Rp, and L̃w,λ(ω) =
Lw,λ(K(ω)) be the intermediary objective defined on ω ∈ RDp. For the first step, we establish
the following results:
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Lemma 3. If ŵ is a local minimizer of Lw,λ(w), then any ω̂ such that ω̂ ∈ K−1(ŵ) = {ω :

K(ω) = ŵ} is a local minimizer of L̃w,λ(ω) with Lw,λ(ŵ) = L̃w,λ(ω̂).

Proof. Assume ŵ is a local minimizer of Lw,λ(w), then ∃ε > 0 : ∀w′ ∈ B(ŵ, ε) : Lw,λ(ŵ) ≤
Lw,λ(w

′). Since K(ω) is surjective, choose any ω̂ ∈ K−1(ŵ) = {ω : K(ω) = ŵ}. By continuity
of K, there ∃δ > 0 : K(B(ω̂, δ)) ⊆ B(K(ω̂), ε) = B(ŵ, ε). This means ∀ω′ ∈ B(ω̂, δ) :
K(ω′) = w′ ∈ B(ŵ, ε). Since by assumption, Lw,λ(ŵ) ≤ Lw,λ(w

′) for all w′ ∈ B(ŵ, ε), and by
continuity all ω′ ∈ B(ω̂, δ) map to some w′ in B(ŵ, ε) under K, we conclude that

∀ω′ ∈ B(ω̂, δ) : Lw,λ(K(ω̂)) = Lw,λ(ŵ) ≤ Lw,λ(w
′) = Lw,λ(K(ω′)) = L̃w,λ(ω̂).

Therefore, if ŵ is a local minimizer of Lw,λ(w), then any ω̂ ∈ K−1(ŵ) is a local minimizer of
L̃w,λ(ω) = Lw,λ(K(ω)) with equivalent local minima Lw,λ(ŵ) = Lw,λ(K(ω̂)).

Lemma 4. If ω̂ is a local minimizer of L̃w,λ(ω) = Lw,λ(K(ω)), then K(ω̂) = ŵ is a local
minimizer of Lw,λ(w) with Lw,λ(ŵ) = L̃w,λ(ω̂).

Proof. Assume ω̂ is a local minimizer of L̃w,λ(ω), then ∃ ε > 0 : ∀ω′ ∈ B(ω̂, ε) : Lw,λ(K(ω̂)) ≤
Lw,λ(K(ω′)). Since K(ω) is open at ω̂ (Proposition 1), there is δ > 0 such that B(K(ω̂), δ) ⊆
K(B(ω̂, ε)). Thus, ∀w′ ∈ B(K(ω̂), δ) : ∃ω′ ∈ B(ω̂, ε) such that K(ω′) = w′. But since
we have by assumption that ∀ω′ ∈ B(ω̂, ε) : Lw,λ(K(ω̂)) ≤ Lw,λ(K(ω′)), and we established
∀w′ ∈ B(ŵ, δ)∃ω′ ∈ B(ω̂, ε) : w′ = K(ω′), we obtain

∀w′ ∈ B(ŵ, δ) : Lw,λ(ŵ) = Lw,λ(K(ω̂)) ≤ Lw,λ(K(ω′)) = Lw,λ(w
′).

Thus, ŵ = K(ω̂) is a local minimizer of Lw,λ(w) with corresponding local minimum Lw,λ(ŵ) =
Lw,λ(K(ω̂)).

Together, Lemma 3 and Lemma 4 establish the equivalence of all minima between Lw,λ(w) and the
factorized intermediate objective L̃w,λ(ω) = Lw,λ(K(ω)), both of which are non-differentiable.
The following result extends the equivalence to the differentiable factorized objective with L2 regu-
larization.

Lemma 5. Let Lω,λ(ω) be the factorized objective Eq. (2) with L2 regularization and L̃w,λ(ω) =
Lw,λ(K(ω)) be the intermediate objective defined above. Then i) if ω̂ is a local minimizer of
Lω,λ(ω), then ω̂ is also a local minimizer of L̃w,λ(ω) with Lω,λ(ω̂) = L̃w,λ(ω̂). Further, ii) if
ω̃ is a local minimizer of L̃w,λ(ω), then there exists ω̂ such that K(ω̂) = K(ω̃), and ω̂ is a local
minimizer of Lω,λ(ω) with Lω,λ(ω̂) = L̃w,λ(ω̃).

Proof. We start by relating both objectives using the factor misalignment M(ω) =

D−1
∑D

d=1 ∥ωd∥22 − ∥ϖ∥
2/D
2/D. The DWF objective is then Lω,λ(ω) = L̃w,λ(ω) + λM(ω), where

M(ω) ≥ 0 attains zero if an only if ω represents a balanced factorization (Lemma 1).

To prove the first point, we assume that ω̂ is a local minimizer of Lω,λ(ω), so that ∃ ε > 0 : ∀ω′ ∈
B(ω̂, ε) : Lω,λ(ω̂) < Lω,λ(ω

′). By Lemma 1, only balanced factors can be solutions to Lω,λ(ω),
implying M(ω̂) = 0 and Lω,λ(ω̂) = L̃w,λ(ω̂). To evoke a contradiction, assume that ω̂ is not a
local minimizer of L̃w,λ(ω), so that ∀ ε > 0 : ∃ω′ ∈ B(ω̂, ε) with L̃w,λ(ω

′) < L̃w,λ(ω̂).

First, note that ω′ can not result in the same collapsed weight K(ω′) as ω̂, since ω̂ already is a
balanced min-norm factorization. Hence, K(ω′) ̸= K(ω̂).
To reduce notational overload, we abbreviate K(ω) = ϖ again. Observing that points in the neigh-
borhood of the product ϖ̂ of a balanced factorization ω̂ can be attained by simple rescaling of ω̂j,d

to conserve balancedness, each balanced factor is a continuous function of the resulting ϖ. Select-
ing an arbitrary index from the set of feasible balanced factorizations lets us define a continuous
function F : Rp → RDp,ϖ 7→ (ω1, . . . ,ωD), that maps products to a specific balanced factor-
ization. By continuity, ∀ ε > 0 ∃ δ > 0 : F(B(ϖ, δ)) ⊆ B(F(ϖ), ε). This means for every
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ϖ′ ∈ B(ϖ̂, δ) there is is a corresponding balanced factorization ω̃ ∈ B(ω̂, ε) that also maps to ϖ′

and thereby implies L̃w,λ(ω̃) = L̃w,λ(ω
′) since M(ω̃) = 0. Together, we get the following chain

of inequalities:

Lω,λ(ω̃) = L̃w,λ(ω̃) = L̃w,λ(ω
′) < L̃w,λ(ω̂) = Lω,λ(ω̂).

The first and last equalities hold because M(ω̃) = M(ω̂) = 0, and the second because ω̃ and ω′ are
different factorizations of ϖ′ and L̃w,λ(ω) is constant over factorizations the product ϖ′. Then we
have found ω̃ ∈ B(ω̂, ε) so that Lω,λ(ω̃) < Lω,λ(ω̂) leading to a contradiction. Therefore, if ω̂ is
a local minimizer of Lω,λ(ω), then ω̂ is also a local minimizer of L̃w,λ(ω) with equivalent minima.

For the second step, we proceed by assuming ω̃ is a local minimizer of L̃w,λ(ω), so ∃ ε > 0 : ∀ω′ ∈
B(ω̃, ε) : L̃w,λ(ω̃) ≤ L̃w,λ(ω

′). Let ω̂ be a balanced factorization of K(ω̃). Then M(ω̂) = 0 and
K(ω̂) = K(ω̃), implying L̃w,λ(ω̃) = L̃w,λ(ω̂) = Lω,λ(ω̂).
By continuity of K, ∃ δ > 0 : ∀ω′ ∈ B(ω̂, δ) : K(ω′) ∈ B(K(ω̂), ε). For any ω′ ∈ B(ω̂, δ), we
have L̃w,λ(ω

′) ≥ L̃w,λ(ω̃), as K(ω′) ∈ B(K(ω̃), ε) and L̃w,λ(ω) depends only on K(ω).
Therefore, ∀ω′ ∈ B(ω̂, δ) : Lω,λ(ω

′) = L̃w,λ(ω
′) + λM(ω′) ≥ L̃w,λ(ω̃) = Lω,λ(ω̂), where the

inequality holds as M(ω′) ≥ 0. Thus, ω̂ is a local minimizer ofLω,λ(ω) withLω,λ(ω̂) = L̃w,λ(ω̃).

The previous results transitively establish that if ω̂ is a local minimizer of Lω,λ(ω), then ϖ̂ =
ω̂1 ⊙ . . .⊙ ω̂D is a local minimizer of Lw,λ(w). Conversely, if ŵ is a minimizer of Lw,λ(w), then
there exists a local minimizer ω̂ of Lω,λ(ω) such that ϖ̂ = ŵ. This finishes the proof.

C.4 BALANCED FACTORS AND ABSORBING STATES IN SGD OPTIMIZATION (LEMMA 6)

Lemma 6 (Balanced factors are absorbing states in SGD). Consider the SGD iterates of a depth-D
factorized network with parameters ω(t) = (ω

(t)
1 , . . . ,ω

(t)
D ) at iteration t ∈ N, where the j-th entry

of the collapsed weight vector ϖ(t) is ϖ(t)
j = ω

(t)
j,1 ·. . .·ω

(t)
j,D. Then, i) if ϖ(t)

j = 0 and M
(
ω

(t)
j

)
= 0,

then ω
(t′)
j,d = 0 for all d ∈ [D] and t′ > t. Further, ii) M

(
ω

(t)
j

)
= 0 implies M

(
ω

(t′)
j

)
= 0 for all

t′ > t.

In other words, a balanced factorization at 0 causes the SGD dynamics to “collapse” and the factors
remain zero for all subsequent iterations, effectively reducing the expressiveness of the model.

Proof. Consider the SGD updates for the factors ωd ∈ Rp, d ∈ [D], in a factorized network with L2

regularization. Let Lω,0(ω) denote the part of the loss function without regularization and assume
a batch size of n without loss of generality:

ω
(t+1)
d = ω

(t)
d − η(t)

(
∇ωd
Lω,0(ω

(t)) + 2D−1λω
(t)
d

)
(13)

Using the chain rule, the SGD updates are given by:

ω
(t+1)
d = ω

(t)
d − η(t)

(
∇ϖLω,0(ω

(t))⊙
(⊙

k ̸=d ω
(t)
k

)
+ 2D−1λω

(t)
d

)
(14)

To show the collapse in the dynamics for a balanced zero factorization, consider the scalar case
ϖ

(t)
j = 0 with factorization ω

(t)
j = {ω(t)

j,d}Dd=1 such that M
(
ω

(t)
j

)
= 0. Then ω

(t)
j,d = 0 for all

d ∈ [D], as the update becomes:

ω
(t+1)
j,d = 0− η(t)

(
[∇ϖLω,0(ω

(t))]j · 0 + 2D−1λ · 0
)
= 0 (15)
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This holds for all subsequent iterations, proving ω
(t′)
j,d = 0 for all d ∈ [D] and t′ > t. Next we

show the more general case of SGD dynamics conserving balancedness, i.e., M
(
ω

(t)
j

)
= 0, or

equivalently, |ω(t)
j,1| = · · · = |ω

(t)
j,D| = m

(t)
j . Let ωj,d = s

(t)
j,dm

(t)
j , where s

(t)
j,d = sign

(
ω
(t)
j,d

)
and

s
(t)
ϖj = sign(

∏D
d=1 s

(t)
j,d). We investigate the scalar updates:

ω
(t+1)
j,d = s

(t)
j,dm

(t)
j − η(t)

(
[∇ϖLω,0(ω

(t))]j · (m(t)
j )D−1 ·

s
(t)
ϖj

s
(t)
j,d

+ 2D−1λs
(t)
j,dm

(t)
j

)
(16)

Because 1/s
(t)
j,d = s

(t)
j,d, we can factor out s(t)j,d from all terms in the update. Hence, the resulting

magnitude at iteration t+ 1 is:

|ω(t+1)
j,d | =

∣∣m(t)
j − η(t)

(
[∇ϖLω,0(ω

(t))]j · (m(t)
j )D−1 · s(t)ϖj

+ 2D−1λm
(t)
j

)∣∣ (17)

Since the magnitude is constant over d, it is shown that M
(
ω

(t′)
j

)
= 0 for all t′ > t.

This “stochastic collapse” (Chen et al., 2024) is a recently investigated phenomenon where the noise
in SGD dynamics drives iterates toward simpler invariant sets of the weight space that remain un-
changed under SGD. However, the dynamics that cause this collapse are poorly understood, includ-
ing how it is determined to which simpler structure the model collapses, with unclear implications
for generalization in broad settings. The attractivity of these simpler structures is associated with
high noise levels (Ziyin et al., 2023), providing an explanation for the generalization benefits of
large initial LRs, induced by regularizing overly expressive networks via stochastic collapse. While
potentially positive effects on generalization were shown, the research community is not yet certain
about the broader consequences of this phenomenon.
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D ALGORITHMS

In the following, we provide the algorithms for the proposed initialization (Section 4.1) of DWF
networks Appendix D.1 and how to train these networks Appendix D.2.

D.1 DWF INITIALIZATION

Algorithm 1 DWF Initialization with Variance-Matching and Absolute Value Truncation

1: Input:
2: Number L and parameter size nl of layers, factorization depth D, minimum absolute value ε

3: Standard initializations {P(w(l)
j ) ∼ N (0, σ2

w,l)}Ll=1

4: for l = 1 to L do
5: σl ← (σw,l)

1/D

6: ω
(l)
min ← ε1/D

7: ω
(l)
max ← min

{
1, (2σw,l)

1/D
}

8: for each weight w(l)
j in nl do

9: for d = 1 to D do
10: repeat
11: ω

(l)
j,d ∼ N (0, σ2

l )

12: until ω(l)
min < |ω(l)

j,d| < ω
(l)
max

13: end for
14: end for
15: end for
16: Output:
17: Initialized factors {ω(l)

j,d}
D
d=1 for all weights j ∈ [nl] per layer and all layers l ∈ [L].

D.2 DWF TRAINING

Algorithm 2 Training Factorized Neural Networks

1: Input:
2: Dataset D = {(xi, yi)}ni=1, network architecture A with L layers and weights w ∈ Rp

3: Factorization depth D ≥ 2, factor initialization scheme DWF-Init (Alg. 1)
4: Training hyperparameters {T, |B|,LRSchedule {η(t)}Tt=1, λ}
5: εtiny (e.g., float32 machine epsilon ≈ 1.19× 10−7)
6: Deep Weight Factorization:
7: Factorize the weights w of A as:
8: w← ω1 ⊙ . . .⊙ ωD and obtain fω(ω) from fw(w)
9: Initialize weights ω of fω(ω):

10: ω ← DWF-Init(A, D, ε, standard initP)
11: for each training step t ∈ {0, . . . , T − 1} do
12: Sample a mini-batch {(xi, yi)}|B|

i=1 from the D
13: Update ωd using SGD:
14: ω

(t+1)
d ← ω

(t)
d − η(t)∇ωd

(
Lω,0(ω

(t)) + λD−1 ∑D
d=1 ∥ω

(t)
d ∥

2
2

)
∀ d ∈ [D]

15: Update LR:
16: η(t+1) ← LRSchedule(t+ 1)
17: end for
18: Post-training factor collapse:
19: Collapse factors to obtain weights for A:
20: ϖ̂ = ω

(T )
1 ⊙ . . .⊙ ω

(T )
D

21: Apply numerical mach. epsilon threshold εtiny to remove approx. 0 weights:
22: ϖ̂j ← 0 if |ϖ̂j | < εtiny ∀ j ∈ [p]
23: Transfer sparse weights ϖ̂ back to A
24: Output:
25: Sparse collapsed network parameters ϖ̂ = ŵ
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E DETAILS ON OPTIMIZATION

E.1 LEARNING RATES IN FACTORIZED NETWORKS

Ablation study on overall learning rate Our goal is to determine suitable LR ranges for achieving
high sparsity with good generalization in factorized networks. Additionally, we investigate how
deeper factorization affects LR requirements. We train factorized LeNet-300-100 with D ∈ {2, 3, 4}
and our DWF on MNIST, using initial LRs ranging from 10−3 to 2. All models are trained using
SGD with a cosine LR schedule. The results, displayed in Fig. 11, show excessively high LRs
lead to highly variable results, especially at higher compression ratios. Similarly, too small LRs
result in poor or even no sparsification. Notably, models with greater D exhibit more robustness
to LR variations, maintaining performance over a wider range of compression ratios compared to
shallower factorizations. Across all depths, selecting a large initial LR slightly below the edge where
training becomes unstable yields the best overall results, balancing both effective training with high
compression ratios. and providing evidence for the importance of a large LR phase in successfully
training with DWF.
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Figure 11: Sparsity-accuracy tradeoffs for a grid of learning rates, demonstrating the importance of appropri-
ately large LRs for DWF. Left to right shows factorization depths D ∈ {2, 3, 4}.

Ablation on the stability of optimal LRs across the sparsity range In another ablation study,
we investigate the impact of different sparsity requirements on the optimal initial LR. To do this, we
train a LeNet-300-100 on MNIST for D ∈ {2, 3, 4} on a large number of LR and λ combinations.
For each D, we train all combinations of the learning rate η and the regularization λ, comprising 8
different LRs between 10−3 and 1, and a grid of 20 λ values logarithmically spaced between 10−6

and 10−1. We obtain the Pareto frontier for each D by removing all runs that are dominated by other
runs in either test accuracy or compression ratio. Fig. 12 shows the corresponding tradeoffs, with
the color of the points indicating the optimal learning rate for the corresponding λ. Confirming the
importance of large LRs, the result further demonstrates that the range of optimal LRs remains at
a high level across sparsity requirements, except for a slight trend toward distinctly larger LRs for
models with little regularization. This can be explained by the intricate relationship between LR and
λ, together forming the intrinsic LR. When λ is reduced, this is compensated using a larger LR to
recover optimal performance (Li et al., 2020).
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Figure 12: Ablation on optimal LRs at different amounts of sparsity using LeNet-300-100 on MNIST. Note
that none of the smaller LRs are selected as optimal.
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E.2 ABLATION STUDY ON INITIALIZATIONS

In Fig. 13, we extend the experimental analysis of standard initialization and our proposed cor-
rections on performance and sparsity in factorized networks, complementing the experiment on a
fully-connected architecture (right plot of Fig. 4) by a convolutional LeNet-5 architecture. Similar
to the results in Fig. 4, we observe a failure of standard initialization for D > 2. For D = 2,
contrasting results for LeNet-300-100, some sparsity is indeed achieved using LeNet-5. The attain-
able tradeoff, however, is vastly outperformed by using the two corrections in the DWF initialization
(Algorithm 1).
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Figure 13: Comparison of different factor initializations and depths D. For D = 2, training with standard
initialization does not completely fail, but is strongly inferior to our adjusted factor initializations. Those also
retain trainability with even better tradeoffs for D > 2, while standard initialization causes the model to become
untrainable using SGD.

E.3 RELATIONSHIP BETWEEN SPARSITY, REGULARIZATION AND WEIGHT NORMS

In Fig. 14, we present results on the relationship between sparsity (measured via the CR), regular-
ization induced by different λ values, and L2 weight norms of the collapsed parameter ϖ. From
the first row, we see that increases in compression ratio for increasing λ values have a similar trend
with all depths starting at the same regularization strength to induce sparsity. For all datasets and
regularization strengths except for very large λ values for ResNet-18, the D = 4 model always
yields a more compressed model than the D = 3 model, which in turn is sparser than the D = 2
model for given λ. In the second row and smaller models, we see a short increase in L2 norm when
increasing the regularization, followed by a drop in L2 norm that finally goes to zero at the point
where the compression ratio for the same λ stagnates. A slightly different behavior can be seen for
ResNet, where the collapsed norm seems to monotonically decrease for increasing λ values (i.e.,
norms do not increase first and then decrease). Finally, the third row indicates smaller L2 norms the
more compressed models become, again with deeper factorizations achieving a higher compression
ratios at the same L2 norm just before model collapse.
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Figure 14: Relationship between different regularization strengths and compression ratio (first row), regular-
ization strength and L2 norm (second row), as well as compression ratio and L2 norm (third row) for different
datasets (columns) and different factorization depths D (colors).
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F ADDITIONAL RESULTS AND ABLATION STUDIES

F.1 ABLATION STUDY ON THE FACTORIZATION DEPTH D

In our experiments, we considered deeper factorizations up to a level of D = 4. This cut-off is
not chosen arbitrarily but follows empirical observations that non-convex Lq regularization achieves
an optimal tradeoff between superior sparsity performance and difficulty of numerical optimization
roughly at q = 0.5 (Hu et al., 2017). In an ablation study, we investigate if this also holds for
the DWF approach. Fig. 15 displays the sparsity-accuracy curves attained by factorizations depths
up to D = 8 and three different LRs in the range that performed well for D = 4. We use the
same hyperparameter configuration as described in Appendix G. Results show that in all settings,
deeper factorizations beyond D = 4 offer no improvements in generalization or sparsity, while their
training becomes increasingly unstable.
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Figure 15: Factorization depths D > 4 empirically do not improve performance but become unstable to train.
Sparsity-accuracy curves for LeNet-300-100 on MNIST with increasing LRs shown from left to right. The
results demonstrate the benefits of large LRs, particularly for little additional regularization.

F.2 COMBINED TRAINING AND VALIDATION ACCURACY

Fig. 17 contains the deferred training and compression trajectories over a range of λ values, as shown
exemplary for ResNet-18 on CIFAR10 in the main text (Fig. 7). For improved clarity, we display
the running mean of the validation accuracy over three iterations. In addition, Fig. 16 illustrates the
change in training learning dynamics for an extended grid of λ values in the top row. Validation
accuracies without moving average smoothing are displayed in the bottom row.
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Figure 16: Impact of regularization λ on training (top) and validation accuracy (bottom) for VGG-19 on
CIFAR100 and D ∈ {2, 3, 4}. The top row shows the training curves for the whole grid of λ values. Bottom
row shows validation accuracies without running mean for selected λ.

F.3 EVOLUTION OF LAYER-WISE COMPRESSION AND WEIGHT NORMS

This section provides a detailed examination of the layer-wise dynamics regarding the evolution of
sparsity, complementing the analysis in Section 4.4. Figure 18 illustrates the layer-wise evolution
of sparsity (top) and collapsed weight norm (bottom) for different architectures and datasets, using
a factorization depth D = 3 and increasing regularization strength λ.
The plots reveal broadly consistent patterns across different architectures. For stronger regulariza-
tion, we observe a more rapid and pronounced onset of sparsity across all layers. Different layers
exhibit varying rates of sparsification, with deeper layers generally achieving higher compression
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(d) ResNet-34 on TinyImageNet
Figure 17: Impact of regularization λ on compression (top), training, and validation accuracy (bottom) for
various architectures and datasets, using D ∈ {2, 3, 4}.

ratios more quickly than earlier layers. The layer-wise norm trajectories show a characteristic pat-
tern of initial increase, for the first layer, followed by a peak and gradual decrease. The deeper levels
exhibit a simpler dynamic, showing an initial short decrease followed by a low plateau. Stronger
regularization leads to earlier peaking and faster decay of weight norms, corresponding to faster
sparsification. Notably, the first layer exhibits distinct behavior (see also Fig. 19a), often showing
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the lowest compression ratio and the highest peak in weight norm. These more complex dynamics
indicate stronger feature learning in earlier layers closer to the input data. Combined, these observa-
tions provide insights into how DWF affects different parts of the network during training and how
this process is mediated by regularization.
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Figure 18: Layer-wise evolution of sparsity (top) and collapsed weight norm (bottom) using D = 3 and
increasing regularization λ (left to right) for different architectures and datasets.

F.4 EVOLUTION OF MISALIGNMENT AND ONSET OF SPARSITY

We investigate the empirical dynamics of the factor misalignment M(ω) and demonstrate that DWF
ensures balanced factorizations for sufficiently large λ. Our analysis reveals an interesting connec-
tion between the reduction of misalignment and the onset of sparsity in the learning dynamics, both
at the layer-wise and overall model levels.
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(a) ResNet-18 on CIFAR10 (D = 2)
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Figure 19: Evolution of the average layer-wise factor misalignment (dashed) together with layer-wise sparsity
(solid) for ResNet-18 and VGG-16 on CIFAR10 and D = 2. Increasing values of λ shown from left to right.

Figures 19a and 19b illustrate the layer-wise evolution of sparsity and the average misalignment per
layer for depth-2 factorized ResNet-18 and VGG-16 trained on CIFAR-10. The factor misalign-
ment M(ω) is calculated at the layer level and normalized by the number of weights in each layer,
providing a granular view of misalignment evolution across the network.
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Figure 20: Evolution of factor misalignment M(ω) for VGG-19 on CIFAR100 with increasing λ and factor-
ization depths D ∈ {2, 3, 4} (left to right).

The results reveal a clear relationship between the elimination of misalignment and sparsity emer-
gence. The onset of sparsity coincides almost exactly with the elimination of average misalignment
per layer, providing empirical evidence for the theoretical connection discussed in Section 3. Larger
values of λ lead to faster reduction in misalignment and earlier onset of sparsity, demonstrating
stronger regularization favors more balanced factorizations.

Two important observations emerge from these results. First, earlier layers broadly exhibit higher
initial layer-wise misalignment but decrease at a higher rate than later layers. Surprisingly, a larger
initial misalignment coincides with the most rapid and pronounced onset of sparsity as the aver-
age misalignment approaches zero. Second, the final layer (yellow) displays distinctly decoupled
dynamics, with sparsity emerging within the first few epochs, as opposed to the approximately si-
multaneous onset for the remaining layers.

We also explore if the onset of sparsity relates to the dynamics of different components of the
regularized loss. Figure 21 shows the overall training loss Lω,λ(ω

(t)), the data fit part Lω,0(ω
(t)),

and the (non-collapsed) factor L2 penalty D−1λ∥ω(t)∥22. The L2 penalty is further decomposed into
its minimal penalty and the excess penalty or misalignment λ ·M(ω(t)), as described in Lemma 1.
Early in training, the L2 component strongly exceeds the data component. Since the data fit levels
out much earlier than the L2 penalty, they intersect at some point during training that both LR and λ
influence. Notably, this point where the loss components are balanced coincides precisely with the
onset of sparsity and the overall misalignment approaching zero.
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Figure 21: Decomposition of loss components and sparsity evolution for ResNet-18 on CIFAR-10 with depth
D = 3 and λ = 9× 10−5.

F.5 POST-HOC PRUNING AND FINE-TUNING

Since DWF operates distinctly from most sparsification methods, this offers potential for integration
with other pruning techniques. To demonstrate this, we combined DWF with post-hoc pruning on
a ResNet-18 with D = 2 factorization trained on CIFAR10. The setup used an initial learning rate
of 0.27 and a batch size of 256. Each model was trained across a range of λ values to obtain a
raw sparsity-accuracy tradeoff curve. These models were then further pruned along a sequence of
compression ratios and fine-tuned for 50 epochs using SGD with an LR of 0.11. Fig. 22 presents
the results of this experiment. Combining DWF with post-hoc pruning led to increased sparsity at
certain accuracy levels up to three times while maintaining comparable accuracy. This demonstrates
the potential for integrating DWF with existing pruning techniques.
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Figure 22: Additional post-hoc pruning and fine-tuning. ResNet-18 ist first trained with DWF and D = 2. The
models are post-hoc magnitude pruned and re-trained for another 50 epochs.

F.6 ADDITIONAL SPARSITY-ACCURACY TRADEOFFS

Figure 23 presents sparsity-accuracy tradeoffs for WRN-16-8, ResNet-18, and ResNet-34 on CI-
FAR100 and Tiny ImageNet datasets, using factorization depths D ∈ {2, 3, 4}. Contrasting our
training protocol for section Section 5.3, we do not tune the LRs here and set them to fixed val-
ues across datasets and architectures. The results show that DWF consistently produces a range
of sparsity-accuracy tradeoffs across different architectures and datasets without incurring model
collapse. Deeper factorizations generally achieve higher accuracies at extreme sparsity levels.

F.7 ADDITIONAL BENCHMARK RESULTS

The following Table 2 shows test accuracies for different compression ratios on different LeNet
model specifications and different MNIST datasets. While GMP or SNIP sometimes perform best
for 90% or 95% sparsity, DWF models show the highest sparsity in all medium- and high-sparsity
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Figure 23: Additional experiments applying DWF to WRN-16-8 and ResNet-18. For these experiments, the
LRs were not tuned for each setting but set to {0.2, 0.5, 0.7} for D ∈ {2, 3, 4} across models and datasets.

cases. In total, Synflow and SNIP each work best in 1 case, GMP in 6 cases, D = 2 yields the
highest sparsity in 4 cases, D = 3 in 14 cases, and D = 4 in 21 cases.

Table 2: Test accuracy (%) for different compression ratios (columns), models (rows), and datasets (table
sections).

Sparsity 90% 95% 98% 99% 99.5% 99.75% 99.875% 99.9%
LeNet-5

MNIST
Dense 99.26 ± 0.03
Depth 2 99.26 ± 0.04 99.27 ± 0.06 99.02 ± 0.06 98.23 ± 0.09 66.88 ± 40.23 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 99.10 ± 0.06 99.09 ± 0.05 99.02 ± 0.01 98.79 ± 0.08 97.80 ± 0.10 81.22 ± 3.14 46.63 ± 26.19 40.52 ± 21.58
Depth 4 98.95 ± 0.04 98.94 ± 0.05 98.88 ± 0.02 98.66 ± 0.10 97.76 ± 0.12 85.57 ± 6.45 61.31 ± 4.48 25.35 ± 21.71
GMP 99.00 ± 0.07 98.75 ± 0.14 97.97 ± 0.10 83.69 ± 10.07 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
SNIP 98.92 ± 0.21 98.63 ± 0.24 97.29 ± 0.38 64.85 ± 8.81 21.73 ± 11.19 14.34 ± 5.18 11.35 ± 0.00 11.35 ± 0.00
Synflow 99.00 ± 0.04 98.68 ± 0.09 98.18 ± 0.23 96.71 ± 0.63 91.97 ± 2.82 74.37 ± 7.80 56.60 ± 2.68 43.68 ± 2.34
Random 98.28 ± 0.13 97.29 ± 0.27 59.70 ± 7.65 22.61 ± 4.38 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
F-MNIST
Dense 90.41 ± 0.20
Depth 2 91.30 ± 0.13 90.78 ± 0.26 89.78 ± 0.20 88.06 ± 0.18 34.68 ± 34.91 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 90.82 ± 0.22 90.67 ± 0.16 90.10 ± 0.18 88.75 ± 0.26 85.84 ± 0.72 79.15 ± 0.74 64.87 ± 2.78 60.53 ± 3.17
Depth 4 90.65 ± 0.03 90.28 ± 0.25 90.00 ± 0.19 88.77 ± 0.11 85.21 ± 0.36 77.76 ± 1.41 62.90 ± 0.94 56.29 ± 2.23
GMP 90.24 ± 0.14 89.71 ± 0.16 84.61 ± 0.83 25.57 ± 7.01 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
SNIP 90.21 ± 0.59 87.21 ± 3.00 68.27 ± 15.13 48.92 ± 16.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Synflow 89.77 ± 0.13 89.16 ± 0.31 87.21 ± 0.12 84.86 ± 0.37 78.68 ± 2.30 66.01 ± 9.94 45.45 ± 1.90 38.97 ± 1.97
Random 89.28 ± 0.26 86.29 ± 0.11 46.32 ± 9.87 15.60 ± 6.67 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
K-MNIST
Dense 95.58 ± 0.33
Depth 2 95.45 ± 0.24 94.56 ± 0.25 90.52 ± 0.30 81.88 ± 0.15 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 95.17 ± 0.19 94.91 ± 0.15 93.08 ± 0.10 88.68 ± 0.59 78.02 ± 0.58 61.69 ± 0.29 21.95 ± 16.90 10.00 ± 0.00
Depth 4 94.72 ± 0.19 94.41 ± 0.22 92.91 ± 0.21 87.91 ± 0.40 79.37 ± 0.19 61.75 ± 0.90 43.09 ± 1.87 27.10 ± 12.12
GMP 93.18 ± 0.42 90.92 ± 0.40 79.28 ± 0.71 50.75 ± 11.04 20.12 ± 9.81 10.95 ± 1.64 10.00 ± 0.00 10.00 ± 0.00
SNIP 91.86 ± 0.73 89.00 ± 0.18 71.32 ± 1.48 26.25 ± 0.37 12.64 ± 4.57 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Synflow 92.21 ± 0.31 90.59 ± 0.17 82.77 ± 1.28 72.95 ± 0.46 58.95 ± 1.42 44.67 ± 3.48 27.69 ± 6.51 26.96 ± 4.16
Random 89.52 ± 0.60 82.18 ± 0.79 32.65 ± 7.40 11.20 ± 2.92 9.47 ± 0.92 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00

LeNet-300-100
MNIST
Dense 98.29 ± 0.05
Depth 2 97.49 ± 0.10 97.30 ± 0.12 96.33 ± 0.02 94.54 ± 0.27 91.15 ± 0.13 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 97.30 ± 0.13 97.25 ± 0.15 97.11 ± 0.21 96.79 ± 0.19 95.83 ± 0.26 93.58 ± 0.34 90.29 ± 0.24 88.55 ± 0.63
Depth 4 97.31 ± 0.10 97.22 ± 0.12 97.08 ± 0.15 96.81 ± 0.15 96.05 ± 0.25 94.27 ± 0.26 90.62 ± 0.40 88.49 ± 1.00
GMP 98.34 ± 0.16 98.14 ± 0.32 97.39 ± 0.56 96.59 ± 0.03 93.30 ± 1.75 75.38 ± 15.13 25.97 ± 9.12 19.16 ± 6.95
SNIP 98.09 ± 0.13 97.67 ± 0.19 96.25 ± 0.66 94.51 ± 0.21 86.45 ± 4.37 59.67 ± 6.41 40.38 ± 7.88 14.52 ± 2.79
Synflow 97.83 ± 0.17 97.40 ± 0.30 96.26 ± 0.59 94.03 ± 0.19 88.86 ± 0.46 75.61 ± 2.02 48.75 ± 11.40 49.49 ± 5.19
Random 97.35 ± 0.09 95.83 ± 0.35 79.32 ± 7.61 38.01 ± 10.45 14.64 ± 2.90 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
F-MNIST
Dense 89.12 ± 0.40
Depth 2 87.95 ± 0.03 87.42 ± 0.12 86.16 ± 0.12 85.05 ± 0.09 82.80 ± 0.06 53.87 ± 31.02 41.90 ± 22.68 38.05 ± 20.10
Depth 3 87.84 ± 0.12 87.66 ± 0.10 87.34 ± 0.12 86.97 ± 0.11 86.02 ± 0.20 84.84 ± 0.35 82.35 ± 0.11 81.35 ± 0.16
Depth 4 87.68 ± 0.15 87.53 ± 0.21 87.35 ± 0.25 87.15 ± 0.09 86.52 ± 0.16 84.96 ± 0.26 82.32 ± 0.31 81.30 ± 0.40
GMP 88.22 ± 1.00 87.95 ± 1.07 87.10 ± 1.30 85.22 ± 2.15 79.77 ± 5.47 55.70 ± 25.45 26.55 ± 14.94 17.29 ± 6.42
SNIP 88.61 ± 1.08 87.68 ± 0.84 82.35 ± 5.34 83.76 ± 1.10 75.64 ± 5.02 21.69 ± 17.05 13.23 ± 5.59 10.00 ± 0.00
Synflow 88.16 ± 1.06 87.54 ± 0.74 86.57 ± 0.75 85.23 ± 0.41 82.04 ± 0.59 76.75 ± 0.33 68.29 ± 1.46 51.62 ± 13.97
Random 87.79 ± 0.12 87.14 ± 0.57 73.35 ± 8.92 29.92 ± 9.75 16.21 ± 4.80 10.16 ± 0.27 10.00 ± 0.00 10.00 ± 0.00
K-MNIST
Dense 91.44 ± 0.24
Depth 2 88.26 ± 0.09 86.61 ± 0.15 80.74 ± 0.24 73.23 ± 0.36 63.19 ± 0.63 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Depth 3 87.83 ± 0.20 87.49 ± 0.22 86.60 ± 0.06 83.92 ± 0.19 77.75 ± 0.22 66.56 ± 3.07 52.17 ± 1.94 48.71 ± 1.67
Depth 4 87.96 ± 0.16 87.63 ± 0.17 86.99 ± 0.24 84.49 ± 0.21 78.85 ± 0.66 70.16 ± 0.51 55.77 ± 1.78 51.13 ± 2.19
GMP 90.43 ± 0.37 88.09 ± 0.43 83.18 ± 0.34 75.34 ± 0.61 51.39 ± 0.57 21.50 ± 4.05 9.41 ± 1.02 10.00 ± 0.00
SNIP 88.51 ± 0.49 85.15 ± 0.20 79.96 ± 1.03 68.30 ± 0.79 47.25 ± 2.25 25.02 ± 3.44 10.00 ± 0.00 10.85 ± 1.47
Synflow 88.52 ± 0.32 86.05 ± 0.34 82.30 ± 0.45 77.29 ± 0.39 65.65 ± 1.26 52.01 ± 1.36 36.22 ± 1.61 37.92 ± 2.96
Random 87.02 ± 0.31 82.10 ± 0.15 57.30 ± 2.39 22.22 ± 3.61 11.96 ± 3.39 11.65 ± 2.35 10.00 ± 0.00 10.00 ± 0.00
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G EXPERIMENTAL DETAILS

G.1 DESCRIPTION OF COMPARISON METHODS

In the following, we briefly describe the comparison methods used in our study, covering different
approaches of network sparsification before or post-training.

SNIP (Single-shot Network Pruning): This method introduces the concept of connection sen-
sitivity to quantify the impact of individual weights on the network’s loss function, given by
z(l) =

∣∣g(l) ⊙w(l)
∣∣ for layer l ∈ [L], where g(l) is the loss gradient with respect to w(l). By

computing this score for each weight at initialization, SNIP identifies and preserves the most crucial
connections, enabling effective one-shot pruning prior to training. This approach has shown remark-
able efficacy in maintaining network performance even at high sparsity levels (Lee et al., 2019).
SynFlow: As a data-independent pruning approach, SynFlow addresses the important issue of layer
collapse in neural network pruning. It utilizes a layerwise conservation principle to ensure conser-
vation of synaptic flow across the network, thereby maintaining high model capacity even under
extreme compression ratios. SynFlow has demonstrated state-of-the-art performance at very high
sparsity levels, outperforming many data-driven approaches in scenarios where over 99% of param-
eters are pruned (Tanaka et al., 2020).
Global Magnitude Pruning (GMP): This method is based on the assumption that the weight mag-
nitudes are a good proxy for their importance in the network. Despite its heuristic nature, GMP
has proven remarkably effective, especially at low sparsity levels. Its success has led to numerous
refinements and adaptations of pruning schedules and criteria, with its lasting popularity in both
research and practice highlighting its robustness and efficacy (Han et al., 2015; Blalock et al., 2020;
Frankle et al., 2020).
Random Pruning: Serving as a baseline method, random pruning uniformly removes weights or
structures without considering their importance, thereby helping to evaluate the effectiveness of
more sophisticated pruning strategies.

G.2 DETAILS ON ARCHITECTURES, DATASETS, AND TRAINING HYPERPARAMETERS

Neural network architectures In the following, we briefly describe the neural architectures used
in our experiments.

• LeNet-300-100: This fully-connected network, designed for MNIST classification, con-
sists of an input layer (784 units), two hidden layers (300 and 100 units respectively), and
an output layer (10 units). All layers utilize ReLU activation functions. The architecture
closely follows the original version proposed by (LeCun et al., 1989), adapted to incorpo-
rate modern activations for improved performance.

• LeNet-5 (LeCun et al., 1998) is a small but effective convolutional network with two con-
volutional layers (6 and 16 filters, both 5x5), each followed by average pooling, and three
fully connected layers (120, 84, and 10 units). We use ReLU activations and add batch
normalization (Ioffe & Szegedy, 2015) and average pooling after each convolutional layer.

• VGG-16 for CIFAR-10/100 consists of 13 convolutional layers and 3 fully connected layers
(Simonyan & Zisserman, 2014). The convolutional part is described by 2x(64 filters),
2x(128 filters), 3x(256 filters), 3x(512 filters), 3x(512 filters), with max pooling inserted
after each group. All filter sizes are 3x3. Batch normalization is applied before each ReLU
activation as described by (Lee et al., 2019). VGG-19 extends VGG-16 by adding one more
convolutional layer to each of the last three convolutional blocks, resulting in 19 layers in
total. Following (Zagoruyko, 2015), the two fully-connected layers before the output are
reduced to a single layer layer with 512 units compared to the ImageNet version.

• ResNet-18 is a popular residual network with 18 layers (He et al., 2016). In our implemen-
tation, the architecture is adapted following common practice for smaller image datasets
(Tanaka et al., 2020). We modify the first convolutional layer to use 3x3 filters and remove
the initial max pooling layer. The network consists of an initial convolutional layer, fol-
lowed by 4 stages of basic blocks (2 blocks each), with filter sizes [64, 128, 256, 512].
Global average pooling is used before the fully connected output layer. Likewise, our
ResNet-34 implementation is also adapted for smaller datasets. The architecture follows a
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similar pattern to ResNet-18 with more layers in each stage. As with ResNet-18, we use
3x3 filters in the first layer and omit the initial max pooling, appropriate for the image size
of our experiments.

• WideResNet is a ResNet variant whose increased width compared to plain ResNets allows
for better feature representations without the optimization difficulties that come with ex-
tremely deep networks. In our work, we implement the version with a depth of 16 and a
width factor of 8 (WRN-16-8), particularly specifically suited for CIFAR-like classification
tasks (Zagoruyko & Komodakis, 2016).

Table 3: Summary of datasets used in experiments.

Dataset Training Samples Test Samples Classes Input Features

MNIST 60,000 10,000 10 784 (28×28×1)
F-MNIST 60,000 10,000 10 784 (28×28×1)
K-MNIST 60,000 10,000 10 784 (28×28×1)
CIFAR-10 50,000 10,000 10 3,072 (32×32×3)
CIFAR-100 50,000 10,000 100 3,072 (32×32×3)
Tiny ImageNet 100,000 10,000 200 12,288 (64×64×3)

Datasets In our experimental evaluation, we use several standard image classification datasets of
varying size and complexity, summarized in Table 3.
MNIST, Fashion-MNIST (F-MNIST), and Kuzushiji-MNIST (K-MNIST) are grayscale image
datasets, each containing 10 classes with images of 28x28 pixels. The original MNIST comprises
handwritten digits, while F-MNIST contains images of clothing items, and K-MNIST has handwrit-
ten Japanese characters. These datasets combine a range of classification tasks with similar input
dimensions but varying levels of difficulty.
CIFAR10 and CIFAR100 contain 32x32x3 (color) images with 10 and 100 classes respectively.
These datasets present more challenging classification tasks due to their higher resolution, color in-
formation, and larger number of classes for CIFAR100.
Finally, Tiny ImageNet is a subset of the ImageNet dataset featuring 200 classes with 64x64x3 color
images. This dataset is significantly more challenging and computationally due to the more complex
task with larger and more images, as well as a larger number of classes. All datasets are split into
training (50,000 or 60,000 samples) and test (10,000 samples) sets. We further apply standard data
pre-processing and augmentation techniques: For the three MNIST variants, we use pixel rescaling
to [0, 1]. The CIFAR and Tiny ImageNet images are normalized. For larger networks, we addition-
ally employ data augmentation, including horizontal flips, width and height shifts (up to 12.5%), and
rotations (up to 15◦). Table 4 contains the combinations of architectures and datasets we conducted
experiments on.

Training hyperparameters In our experiments, we use training hyperparameter configurations
following broadly established standard settings (Simonyan & Zisserman, 2014; He et al., 2015;
Zagoruyko & Komodakis, 2016), as displayed in Table 4. For both LeNet-300-100 and LeNet-5
we set the initial LR to 0.15 and found it to perform well across datasets, with the exception of
LeNet-300-100 on K-MNIST. Because established LRs were found to be suboptimal for DWF, we
additionally select the best-performing LR (using small λ = 10−6) from a discrete grid between
0.05 and 1 for each factorization depth, architecture, and dataset. For DWF, the sparsity level is
controlled using a logarithmically spaced sequence of λ parameters between 10−6 and 10−1 on
which we train each model to obtain the sparsity-accuracy tradeoff curves.

For the comparison methods in Section 5.3, we follow the implementation details provided in Fran-
kle et al. (2020); Lee et al. (2019) if available. To make for a fair comparison, we also train the two
LeNet architectures using the same LR of 0.15 and cosine decay. For the larger networks, we only
adjust the LR schedule from step to cosine decay but use the prescribed initial LR. To obtain tradeoff
curves for the respective pruning methods, we train each method on a sequence of 15 compression
ratios between 101 and 105.

Further details for DWF Although our method requires no post-hoc pruning, it is sensible to
apply a sufficiently small threshold to the final collapsed weights to account for numerical inaccu-
racies which have no impact on performance. We set this threshold to float32.mach.eps ≈
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Table 4: Training hyperparameters for different architectures and datasets. The LRs for the larger models
correspond to factorization depths D = 2, 3, 4. The comparison methods use standard Kaiming initialization.
LRs for the supplementary results on WRN-16-8 and ResNet-34 were not tuned.

Architecture Dataset Epochs Batch size Optim. Mom. Init. LR Schedule

LeNet-300-100
MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine

F-MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine
K-MNIST 75 256 SGD 0.9 DWF-Init 0.4 Cosine

LeNet-5
MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine

F-MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine
K-MNIST 75 256 SGD 0.9 DWF-Init 0.15 Cosine

VGG-16 CIFAR-10 250 128 SGD 0.9 DWF-Init {0.5,0.6,0.6} Cosine
VGG-19 CIFAR-100 250 128 SGD 0.9 DWF-Init {0.3,0.6,0.6} Cosine

ResNet-18
CIFAR-10 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine
CIFAR-100 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

Tiny ImageNet 250 128 SGD 0.9 DWF-Init {0.5,0.8,1.1} Cosine

WRN-16-8
CIFAR-10 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine
CIFAR-100 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

Tiny ImageNet 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

ResNet-34 CIFAR-100 250 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine
Tiny ImageNet 150 128 SGD 0.9 DWF-Init {0.2,0.5,0.7} Cosine

1.19 × 10−7. Additionally, the DWF initialization (Algorithm 1) requires specification of the lower
truncation threshold for the factor initializations, which we set to ϖmin = 3 × 10−3 for all our
experiments (cf. left plot of Fig. 4).
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H OTHER APPROACHES TO FACTOR INITIALIZATION

H.1 ROOT INITIALIZATION AND RESULTS

An alternative option to obtain an initialization of factors ω that recovers the distribution of the
original weight w is given in the following.
Definition 5 (Root initialization). A root initialization of a depth-D factorized weight w = ω1 ⊙
. . . ⊙ ωD is given by first drawing a single standard weight initialization (Definition 3) for w and
assigning ω1 ← sign(w) · |w|1/D and ω2, . . . , ωD ← |w|1/D.

Fig. 24 compares the root initialization against the vanilla initialization and the proposed DWF ini-
tialization with and without truncation. While the root initialization yields satisfactory results im-
proving upon vanilla initialization for D = 2, we observe that it behaves similarly to the VarMatch
initialization for D = 3, both outperformed compared to our DWF initialization and yields the worst
results for D = 4.
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Figure 24: Comparison of different sparsity-accuracy tradeoffs for different depths (columns) and different
initialization strategies (colors).

In Fig. 25, we further analyze the learning dynamics of a DWF model with root initialization. The
results demonstrate qualitatively similar learning dynamics to our proposed DWF initialization, sug-
gesting them to be a general feature of DWF and SGD optimization.
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Figure 25: Learning dynamics for the root initialization for different learning rate schedules (columns).

H.2 DERIVATION OF EXACT GAUSSIAN FACTOR DISTRIBUTION IN DWF

We now present a theoretical approach to derive a distribution of the factors ωd in Deep Weight
Factorization, such that the product of D i.i.d. random variables from this distribution follows a
normal distributionN (0, σ2

w) with pre-specified variance σ2
w. This analysis provides insight into the

statistical properties of factorized weights and the challenges arising from of such a construction.
Consider a neural network fw(w,x) parameterized by weights w ∈ Rp. In DWF, these weights are
factorized into D factors w = ϖ = ω1 ⊙ ω2 ⊙ . . . ⊙ ωD, where ωd ∈ Rp for d ∈ [D]. Our goal
is to find a distribution P for the elements ωj,d of the factor weights ωd, such that the product of D
i.i.d. random variables from P follows a distribution N (0, σ2

w). Specifically, for each j ∈ [p], we
require (with layer-wise varying σ2

w):

wj =

D∏
d=1

ωj,d ∼ N (0, σ2
w). (18)

To find such a distributionP , we utilize the Mellin transform, which is used in statistics for analyzing
products of independent non-negative random variables, with extensions to cases with both positive

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

and negative values (Springer & Thompson, 1966). An important property of the Mellin transform is
that it converts the convolution of the densities of products into multiplication in the Mellin domain,
but only for non-negative random variables. Since the random variables ωj,d can take both positive
and negative values, we partition their density into positive and negative parts ρω(ω) = ρ+ω (ω) +
ρ−ω (ω) (Springer, 1979), where:

ρ+ω (ω) =

{
ρω(ω), ω ≥ 0,

0, elsewhere,
ρ−ω (ω) =

{
ρω(ω), ω ≤ 0,

0, elsewhere.
(19)

Similarly, we partition the density of the product wj into ρw(w) = ρ+w(w) + ρ−w(w). The Mellin
transform Mρ(s) of a function ρ(ω) defined on R+

0 is defined as:

Mρ(s) =

∫ ∞

0

ωs−1ρ(ω) dω. (20)

The Mellin transform of the positive part of the product of D i.i.d. and even (symmetric around 0)
random variables is given by (Springer & Thompson, 1966):

M+
w (s) = 2D−1

[
M+

ω (s)
]D

. (21)

Since we want the product distribution to be N (0, σ2
w), we require the Mellin transform of the

positive part of a zero-mean Gaussian density (Springer, 1979):

M+
N (s) =

∫ ∞

0

ws−1ρ+w(w) dw =
2(s−3)/2

√
π

(σw)
s−1 Γ

(s
2

)
, Re(s) > 0, (22)

where Γ(·) denotes the Gamma function. Setting M+
w (s) = M+

N (s), we have:

2D−1
[
M+

ω (s)
]D

=
2(s−3)/2

√
π

(σw)
s−1 Γ

(s
2

)
. (23)

Dividing both sides by 2D−1, taking the D-th root, and simplifying, we obtain the Mellin transform
of the positive part of the factor distribution P:

M+
ω (s) =

(
2s−2D−1

π

)1/(2D)

(σw)
(s−1)/D

[
Γ
(s
2

)]1/D
. (24)

To obtain ρ+ω (ω), computation of the inverse Mellin transform is required, with c a real constant
such that the integration path is in the region of convergence:

ρ+ω (ω) = 1{ω>0}
1

2πi

∫ c+i∞

c−i∞
ω−sM+

ω (s) ds . (25)

Finally, the full factor density is obtained by reflecting the positive part about the y-axis to get
ρ−ω (ω) = ρ+ω (−ω) and combined ρω(ω) = ρ+ω (ω) + ρ−ω (ω), defined on the whole real line.

Practical challenges While the theoretical approach provides a valid method to derive the factor
distribution, significant practical challenges arise because the factor density is obtained as the inverse
Mellin transform that involves integrating over an infinite contour in the complex plane. Numerical
methods for inverse Mellin transforms can further be unstable and sensitive to several parameter
choices, although high computational precision is required, especially for large D or varying σ2

w.
Lastly, the Mellin transform M+

ω (s) depends on both the D and σ2
w, altering the factor distribution

non-parametrically and complicating the practical applicability. Due to these challenges, deriving
the factor distribution via inverse Mellin transforms remains challenging and with unclear utility
in deep learning applications, given that preliminary experiments suggest it is unlikely that precise
approximations have a notable effect on trainability and performance in non-pathological cases.
Alternative methods, such as our proposed initialization using simple Gaussian distributions with
variance scaling and interval truncation, are sufficient to reach baseline performances and thus are
more suitable from a practical point of view.
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I COMPUTATIONAL ENVIRONMENT AND RUNTIME ANALYSIS

I.1 COMPUTATIONAL ENVIRONMENT

Large experiments on ResNet-18 and VGG-19 on datasets CIFAR10, CIFAR100, and Tiny Ima-
geNet were run on an A-100 GPU server with 32GB RAM and 16 CPU cores. Smaller experiments
were conducted on a single A-4000 GPU with 48GB RAM or CPU workstations.

I.2 RUNTIME ANALYSIS

Here, we investigate the computational overhead induced by DWF compared to vanilla training. We
conducted experiments with WRN-16-8 on CIFAR10 and VGG-19 on CIFAR100 across various
batch sizes. Each model was trained for 1000 iterations using SGD with a batch size of 128. We
measured the average wall-clock time per sample and peak GPU memory utilization during training.
All experiments were performed on a single A-4000 GPU with 48GB RAM, repeated five times to
report means and standard deviations. Our results, displayed in Fig. 26 and Fig. 27, show that the
factorization depth D in the DWF model only has a minor impact on computational costs during
training. For batch sizes of 256 or higher, both networks exhibit an indistinguishable time per
sample comparable to vanilla training across all levels of D. At smaller batch sizes, we observe
a slight monotonic increase in runtime with greater D. For example, WRN-16-8 with a batch size
of 128 runs approximately 10% longer than vanilla training, while VGG-19 with a batch size of
64 and D = 4 shows the largest increase of about 80%. These findings demonstrate that DWF
training under typical settings incurs only small additional cost compared to standard training. This
contrasts with many sparsification techniques like Iterative Magnitude Pruning (Frankle & Carbin,
2019), which can lead to several-fold increases in training time due to multiple cycles of pruning
and re-training.
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Figure 26: Comparison of wall-clock time per sample for WRN-16-8 (left) and VGG-19 (right) on CI-
FAR10/100 across factorization depths D. Results indicate insignificant runtime overhead for DWF compared
to vanilla training, particularly for larger batch sizes where runtime is identical.

GPU memory utilization is primarily dependent on batch size, with D having rather small effects
in total. In conclusion, besides factorizing the weights into D factors, DWF incurs only a minor
additional runtime and memory cost on commonly used convolutional architectures. The minimal
increase, especially for typical batch sizes, suggests DWF can be readily integrated into existing
training protocols without major changes in computational overhead.
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Figure 27: Peak GPU memory utilization for WRN-16-8 (left) and VGG-19 (right) across factorization depths
D. The results show that batch training is the dominant factor for memory usage, with only a small minimal
impact of D.
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