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Abstract

Explainable Al (XAI) remains underdeveloped in bioacoustics, despite the growing
reliance on high-performance black-box models. We evaluate the explainability of
state-of-the-art models for capuchin monkey individual identification and introduce
new methods to make bioacoustic classifiers more interpretable. Our approach
combines participatory evaluation with domain experts through a web-based inter-
face, with quantitative metrics that assess correspondence between saliency maps
and expert annotations. Specifically, we report metrics on ranking quality, spatial
overlap and distributional similarity. Each metric is computed under two comple-
mentary formulations of feature importance. To facilitate annotation, we introduce
a web interface for pixel-level spectrogram labeling that provides interactive fore-
ground and background audio playback, allowing experts to listen separately to
masked regions, along with optional Al-assisted segmentation. These tools provide
a reproducible framework for benchmarking explainability in bioacoustic models,
advancing toward more transparent, collaborative, and biologically meaningful Al
for animal communication.

1 Introduction

Motivation. There is no established toolbox for evaluating how bioacoustic models attend to
meaningful spectro-temporal features at the pixel level, nor a participatory framework that allows
domain experts to validate these models through time—frequency spectrogram annotations. This gap
hinders scientific discovery and cross-disciplinary trust.

In order to dig deeper into the unknown semantic spaces of other species, Al models need to be
carefully designed with appropriate architectures that enable effective domain expert input. Never-
theless, these two priorities conflict with each other as the trend is to develop increasingly complex
models [18] for which internal representations are not interpretable by design but represent the state
of the art in classification performance [22]. In bioacoustics, explainability has been addressed only
sparingly; recent XAl studies have explored custom models [21]], while most researchers continue to
rely on black-box pretrained models [3] due to their powerful transfer learning capabilities. These
models achieve high performance, but their learned representations are difficult to interpret, limiting
biological insight, responsible use, and trust from cross-domain expertise.

Capuchin monkeys produce over 27 distinct call types and exhibit cultural evolution and complex
social cognition, making them an excellent model for studying animal communication [7]. Recent
advances in joint cross-species embedding models have unlocked superior classification performance
of caller identity for this species, offering new opportunities for remote monitoring and analysis [23]].
However, to uncover which features of their rich vocal repertoire convey individual identity, new
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methodological approaches are needed. XAl provides one such avenue, motivating this study and
offering a strong test case for advancing interpretable methods in bioacoustics. While recent work has
emphasized system scalability [4] and the use of large language models for cross-modal representation
learning [[18]], little attention has been given to model explainability. Our work addresses this gap by
introducing an XAI toolbox and participatory framework to interpret black-box bioacoustic models
in collaboration with domain experts.

Our work contributes (1) an XAl toolbox for bioacoustic models, combining spectrogram feature
importance maps with simple, interpretable saliency evaluation metrics adapted from computer vision
to compare model attention against expert annotations, and (2) a web-based annotation platform that
enables pixel-level denoising and participatory validation of model attention.

2 Background and Related Work

Explainable AI. Explainability can play an invaluable role in scientific exploration by identifying
and refining target phenomena, motivating hypotheses and guiding inquiry [24]. On the other hand,
explainability has become a central concern in Al as models grow in size and complexity, and society
increasingly questions the consequences of their inner workings, with XAl techniques as a deciding
factor for user trust and adoption [20]. In animal communication studies, ground-truth labels are
usually tied to observed behavioral states and contexts hypothesized to motivate specific signals,
and statistical models have long been used to test such hypotheses about semantics and linguistics
phenomena. As the field shifts from using simple statistical descriptions to complex Al models,
explainability becomes crucial for it to situate algorithmic insights within the rich ecological and
evolutionary context of biological signals.

Compared to language and vision, interpretability in audio models, and especially in bioacoustics,
is far less developed. Most work in audio has focused on acoustic event detection [[13} [17, [10].
However, for bioacoustic applications explainability remains scarce. Models often operate as black-
box classifiers, offering little insight into what acoustic features drive decisions. This lack of
interpretability not only limits scientific understanding of animal communication but also hampers
trust in deployed systems for conservation and ecological monitoring. Addressing this gap requires
adapting or developing interpretability frameworks that are sensitive to the unique structure and
semantics of acoustic signals in biological contexts.

More recently, interpretability has started to gain traction. Heinrich et al. [9]] proposed incorporating
interpretability directly into the model architecture, demonstrating how a network can learn proto-
typical patterns for bird species. In contrast, Silva et al. [21] focus on post-hoc analysis of trained
models, using SHAP to interpret learned features. Our work follows this post-hoc perspective, as we
find it more practical to study interpretability after the model has already been trained.

Participatory Design and Human-AI Collaboration. Explainability is not only a technical
concern but also a design principle for effective human-AlI collaboration. According to established
guidelines [2]], systems should support transparency, provide rationales, and enable meaningful
human control. In wildlife monitoring, where technologies often interact with communities in
overseas territories, justice-oriented design principles are equally important to strengthen governance,
community agency, and cultural appropriateness [15,|16].

3 Approach

Multi-Grid Spectrogram Occlusion. We generate saliency maps through a multi-grid spectrogram
occlusion procedure that systematically perturbs localized time-frequency regions to reveal the
spectro-temporal patterns most influential for model predictionsﬂ

'Throughout this paper, we use the term occlusion in the sense established by explainable Al research [23],
referring to the systematic perturbation of localized input regions to estimate their influence on model predictions.
In the audio domain, this operation is implemented as masking (e.g., silencing or replacing time—frequency
regions with noise), and both terms are used interchangeably. Saliency maps, introduced later in the paper,
are obtained through this occlusion process and visualized as spectrogram heatmaps [19, [12]16]. Regions of
high saliency are interpreted as feature importance, i.e., spectro-temporal components most critical for model
predictions.



The method systematically masks local spectro-temporal regions of the input and measures the change
in model confidence. For a waveform x sampled at 48 kHz, we compute its spectrogram and partition
it into grids with fixed cell sizes of 75 ms in time (¢,,) and 3 kHz in frequency (f,,). To avoid biasing
explanations to a single grid origin, we generate multiple translated grids by shifting the partition
along time and frequency (by At, A f). This increases effective resolution when aggregating results,
similar to adaptive strategies in other domains [J5].

Each perturbed input z; is produced by occluding a single cell. In our implementation, occlusion
is applied directly in the time domain: the band-limited signal corresponding to the selected time-
frequency window is extracted using zero-phase forward-reverse filtering to avoid phase distortion
[8]], tapered with short Tukey ramps to smooth boundaries and prevent spectral artifacts [1]], and set
to silence. This approach ensures that only the target region is modified while the remainder of the
waveform remains undistorted.

The trained classifier for acoustic individual identification is then applied to perturbed inputs. For
each occlusion we obtain class probabilities p(y | Z;), to be compared with the unperturbed prediction
p(y | z). Feature importance is quantified in two complementary ways: (i) distributional change via
Jensen—Shannon divergence (JS Div) [[14] between the two predictive distributions, and (ii) label-
specific change via the difference in cross-entropy with respect to the true label (ACE). Aggregating
these values across all grids yields a prediction-drop heatmap mapped to the original spectrogram,
providing a saliency map with higher resolution.

While our experiments employ silence-based occlusion, the procedure is fully parameterizable and
readily extensible to alternative masking strategies (e.g., pink or band-limited noise), as well as to
different window sizes and grid translation steps, depending on the requirements of other tasks or
domains.

Web-Based Annotation Toolbox. Pixel-level annotation is well established in computer vision,
but the analogous task of segmenting spectrograms into time and frequency bins remains largely
absent in bioacoustics. Our lightweight web interface, built on Flutter and Firebase, sequentially
serves spectrogram—audio pairs to annotators. Users can draw masks manually or provide foreground
and background points that trigger Al-assisted segmentation with Meta’s Segment Anything (SAM)
[[L1], refining suggestions with tools such as eraser, brush, and opacity controls. To aid validation,
the interface also supports playback of masked foreground and background audio at variable speeds
(e.g., 0.3 x for capuchin calls). Each completed mask is stored as a binary map with metadata for
subsequent evaluation. Although originally designed for explainability, the expert-drawn masks can
also serve as byproducts for audio denoising or source separation, providing an additional practical
benefit. The design prioritizes ease of use and remote collaboration, consistent with principles of
human—AlI interaction and participatory bioacoustics [2} [16]]. The source code will be released upon
publication.

Evaluation Metrics. We evaluate the correspondence between saliency maps and expert annotations
using three complementary metric families: ranking-based, overlap-based, and correlation-based
measures. For ranking quality, we report the Area Under the Precision—Recall Curve (AUPRC),
which assesses how well the saliency map ranks expert-annotated pixels above non-annotated ones.
For spatial overlap, we threshold saliency maps at 0.2 and compute Intersection-over-Union (IoU) and
Coverage, capturing how much of the annotated region is recovered and how precisely it is localized.
Finally, for distributional similarity, we compute Pearson correlation between the continuous saliency
map and the binary expert mask [[12]. All metrics are evaluated under both importance formulations:
JS Div and ACE.

4 Results

Qualitative: spectrogram saliency heatmaps. Vocal production in primates arises from me-
chanical and physiological processes that generate distinctive acoustic patterns, enabling individual
recognition. Al explainability techniques should be capable of revealing this information by high-
lighting salient spectro-temporal regions. As shown in Fig.[T] the Whisper—Perch MRMR joint
embedding model isolates specific portions of the spectrogram that may be informative, even when
their biological relevance is not yet established. Expert annotations on frequency-time bins (spectro-
gram pixels) can highlight known salient features such as the call itself (manual source separation).



While essential, these annotations capture only what humans can interpret from the calls, whereas
models, either individually or through combinations such as MRMR joint embeddings [23]], can
surface complementary perspectives. In turn, these saliency maps can themselves become analyzable
objects, supporting statistical methods to test hypotheses about which acoustic features may carry
semantic or individual identity cues.
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Figure 1: Qualitative evaluation of feature importance for acoustic individual identification in
capuchin monkeys using saliency maps (ACE). Heatmaps (overlaid on spectrograms) highlight
spectro-temporal regions that most influence model decisions about caller identity. From left to right:
Annotated Mask, Whisper, Perch, and Whisper—Perch MRMR joint embedding. Note the variation in
saliency across models, and how the Whisper—Perch MRMR joint embedding plot could motivate
hypothesis testing if the pattern is consistent.

Model Importance AUPRC IoUo .2 Coveragey 2 Pearson Corr.
. . . JSDiv 0.576 + 0.128 0.013+0.011 0.014 +0.011 0.214 + 0.082
Whisper-Perch MRMR joint embedding 0.469 4+ 0.145 0.028 & 0.018 0.029 + 0.019 0.203 4 0.084
Goosle Perch 2 JS Div 0.605+0.140 0.103 + 0.038 0.110 = 0.045 0.397 = 0.097
& ACE 0.571 4 0.135 0.050 & 0.025 0.052 +0.026 0.325 + 0.101
Whisoer Larec V3 JS Div 0.3724 0.172 0.033+0.020 0.037 +0.022 0.055 & 0.122
per Larg ACE 0.386 4 0.161 0.030 = 0.020 0.032 + 0.021 0.055 4 0.102
Bascline JS Div 0.347 + 0.148  0.026 = 0.011 0.029 + 0.011 0.001 4 0.047
ACE 0.352 4+ 0.148 0.017 £ 0.010 0.018 + 0.011 0.000 4 0.047

Table 1: Performance comparison of model architectures across expert correspondence evaluation
metrics using different feature importance methods.

Quantitative: expert annotation correspondence. Across all metrics, Perch corresponds most
closely with expert annotations, achieving the highest scores in ranking, spatial overlap, and corre-
lation (Table[I)). Compared to Whisper, it improves overlap by about threefold and correlation by
about sevenfold. Between importance formulations, JS Div generally outperforms ACE, with Perch
showing the clearest advantage. Although the Whisper—-Perch MRMR joint embedding achieves
the best individual classification accuracy [23]], it lags behind Perch in explainability. These results
suggest that models can excel at classification while still diverging from human-recognizable cues,
highlighting the importance of explainability as a complementary evaluation dimension.

5 Conclusion

This work introduces a comprehensive framework for evaluating and visualizing model interpretability
in animal communication, combining expert—in—the—loop validation with quantitative XAI metrics.
By linking saliency maps to expert annotations, our approach transforms explainability tools into
instruments for scientific discovery of biologically meaningful cues. Beyond benchmarking model
transparency, this framework enables new forms of collaboration between Al researchers and field
experts, advancing toward interpretable and ethically grounded bioacoustics. Although originally
designed for explainability, the expert-drawn masks produced through this process can also serve as
byproducts for audio denoising or source separation, providing an additional practical benefit.



Limitations and Future Work. While the reported metrics currently measure agreement with
human intuition rather than absolute ground truth, they provide a valuable bridge between model
behavior and expert interpretation. Future work will integrate interpretability directly into model
architectures, broaden validation across species and ecological contexts, and apply statistical analyses
of saliency maps to test hypotheses about signal meaning. Expanding participatory annotation to more
diverse user communities, exploring the role of explainable models in conservation decision-making,
and conducting human—computer interaction studies to understand how users envision and engage
with XAl tools remain exciting next steps.
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