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Abstract

Explainable AI (XAI) remains underdeveloped in bioacoustics, despite the growing1

reliance on high-performance black-box models. We evaluate the explainability of2

state-of-the-art models for capuchin monkey individual identification and introduce3

new methods to make bioacoustic classifiers more interpretable. Our approach com-4

bines participatory evaluation with domain experts through a web-based interface,5

with quantitative metrics that assess alignment between saliency maps and expert6

annotations. Specifically, we report metrics on ranking quality, spatial overlap and7

distributional similarity. Each metric is computed under complementary feature8

importance formulations. To facilitate annotation, we introduce a web interface9

for pixel-level spectrogram labeling with interactive, mask-exclusive audio play-10

back, allowing experts to listen separately to masked foreground or background11

regions and optional semi-automated segmentation. Together, these tools provide a12

reproducible framework for benchmarking explainability in bioacoustic models,13

advancing toward more transparent, collaborative, and biologically meaningful AI14

for animal communication.15

1 Introduction16

Motivation. There is no established toolbox for evaluating how bioacoustic models attend to17

meaningful spectro-temporal features at the pixel level, nor a participatory framework that allows18

domain experts to validate these models through time–frequency spectrogram annotations. This gap19

hinders scientific discovery and cross-disciplinary trust.20

In order to dig deeper into the unknown semantic spaces of other species, AI models need to be21

carefully designed with appropriate architectures that enable effective domain expert input. Never-22

theless, these two priorities conflict with each other as the trend is to develop increasingly complex23

models [15] for which internal representations are not interpretable by design but represent the state24

of the art in classification performance [19]. In bioacoustics, explainability has been addressed only25

sparingly; recent XAI studies have explored custom models [18], while most researchers continue to26

rely on black-box pretrained models [2] due to their powerful transfer learning capabilities. These27

models achieve high performance, but their learned representations are difficult to interpret, limiting28

biological insight, responsible use, and trust from cross-domain expertise.29

Capuchin monkeys produce over 27 distinct call types and exhibit cultural evolution and complex30

social cognition, making them an excellent model for studying animal communication [6]. Recent31

advances in joint cross-species embedding models have unlocked superior classification performance32

of caller identity for this species, offering new opportunities for remote monitoring and analysis [20].33

However, to uncover which features of their rich vocal repertoire convey individual identity, new34

methodological approaches are needed. XAI provides one such avenue, motivating this study and35

offering a strong test case for advancing interpretable methods in bioacoustics. While recent work has36
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emphasized system scalability [3] and the use of large language models for cross-modal representation37

learning [15], little attention has been given to model explainability. Our work addresses this gap by38

introducing an XAI toolbox and participatory framework to interpret black-box bioacoustic models39

in collaboration with domain experts.40

Our work contributes (1) an XAI toolbox for bioacoustic models, combining spectrogram feature41

importance maps with simple, interpretable saliency evaluation metrics adapted from computer vision42

to compare model attention against expert annotations, and (2) a web-based annotation platform that43

enables pixel-level, participatory validation of model attention.44

2 Background and Related Work45

Explainable AI. Explainability can play an invaluable goal in scientific exploration by identifying46

and refining target phenomena, motivating hypotheses and guiding inquiry [21]. On the other hand,47

explainability has become a central concern in AI as models grow in size and complexity, and society48

increasingly questions the consequences of their inner workings, with XAI techniques as a deciding49

factor for user trust and adoption [17]. In animal communication studies, ground-truth labels are50

usually tied to observed behavioral states and contexts hypothesized to motivate specific signals,51

and statistical models have long been used to test such hypotheses about semantics and linguistics52

phenomena. As the field shifts from using simple statistical descriptions to complex AI models,53

explainability becomes crucial for it to situate algorithmic insights within the rich ecological and54

evolutionary context of biological signals.55

Compared to language and vision, interpretability in audio models, and especially in bioacoustics,56

is far less developed. Most work in audio has focused on acoustic event detection [11, 14, 9].57

However, for bioacoustic applications explainability remains scarce. Models often operate as black-58

box classifiers, offering little insight into what acoustic features drive decisions. This lack of59

interpretability not only limits scientific understanding of animal communication but also hampers60

trust in deployed systems for conservation and ecological monitoring. Addressing this gap requires61

adapting or developing interpretability frameworks that are sensitive to the unique structure and62

semantics of acoustic signals in biological contexts63

More recently, interpretability has started to gain traction. Heinrich et al. [7] proposed incorporating64

interpretability directly into the model architecture, demonstrating how a network can learn proto-65

typical patterns for bird species. In contrast, Silva et al. [18] focus on post-hoc analysis of trained66

models, using SHAP to interpret learned features. Our work follows this post-hoc perspective, as we67

find it more practical to study interpretability after the model has already been trained.68

Participatory Design and Human–AI Collaboration. Explainability is not only a technical69

concern but also a design principle for effective human–AI collaboration. According to established70

guidelines [1], systems should support transparency, provide rationales, and enable meaningful71

human control. In wildlife monitoring, where technologies often interact with communities in72

overseas territories, justice-oriented design principles are equally important to strengthen governance,73

community agency, and cultural appropriateness [12, 13].74

3 Approach75

Multi-Grid Spectrogram Occlusion. We generate explanations using a multi-grid spectrogram76

occlusion procedure.177

The method systematically masks local spectro-temporal regions of the input and measures the change78

in model confidence. For a waveform x sampled at 48 kHz, we compute its spectrogram and partition79

it into grids with fixed cell sizes of 75 ms in time (tw) and 3 kHz in frequency (fw). To avoid aliasing80

explanations to a single grid alignment, we generate multiple translated grids by shifting the partition81

1We use the term saliency map to refer to explanations that highlight influential input regions [16, 10, 5]. In
our case, saliency maps are obtained through occlusion and visualized as spectrogram heatmaps. Regions of
high saliency are interpreted as feature importance, i.e., spectro–temporal components most critical for model
predictions.
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along time and frequency (by ∆t, ∆f ). This increases effective resolution when aggregating results,82

similar to adaptive strategies in other domains [4].83

Each perturbed input x̃i is produced by occluding a single cell. In our implementation, occlusion84

is applied directly in the time domain: the band-limited signal corresponding to the selected time-85

frequency window is extracted with zero-phase filtering, tapered with short Tukey ramps, and set86

to silence. This approach ensures that only the target region is modified while the remainder of the87

waveform remains undistorted.88

The trained classifier for acoustic individual identification is then applied to perturbed inputs. For89

each occlusion we obtain class probabilities p(y | x̃i), to be compared with the unperturbed prediction90

p(y | x). Feature importance is quantified in two complementary ways: (i) distributional change via91

Jensen–Shannon divergence (JS Div) between the two predictive distributions, and (ii) label-specific92

change via the difference in cross-entropy with respect to the true label (∆CE). Aggregating these93

values across all grids yields a prediction-drop heatmap aligned to the original spectrogram, providing94

a saliency map with higher resolution.95

While our experiments employ silence-based occlusion, the procedure is fully parameterizable.96

Window sizes, translation steps, and masking strategies (e.g., pink noise or band-limited noise) can97

be adapted to the requirements of other tasks or domains.98

Web-Based Annotation Toolbox. Pixel-level annotation is well established in computer vision,99

but the analogous task of segmenting spectrograms into time and frequency bins remains largely100

absent in bioacoustics. Our lightweight web interface, built on Flutter and Firebase, sequentially101

serves spectrogram–audio pairs to annotators. Users can draw masks manually or provide foreground102

and background points that trigger AI-assisted segmentation with Meta’s Segment Anything (SAM)103

[8], refining suggestions with tools such as eraser, brush, and opacity controls. To aid validation,104

the interface also supports playback of masked foreground and background audio at variable speeds105

(e.g., 0.3× for capuchin calls). Each completed mask is stored as a binary map with metadata for106

subsequent evaluation. The design prioritizes ease of use and remote collaboration, consistent with107

principles of human–AI interaction and participatory bioacoustics [1, 13]. The source code will be108

released upon publication.109

Evaluation Metrics. We evaluate the alignment between saliency maps and expert annotations110

using overlap-, ranking-, and correlation-based metrics. First, we report the Area Under the Precision-111

Recall Curve (AUPRC), which measures how well saliency values discriminate between annotated112

and non-annotated pixels. To quantify spatial overlap, we compute the Intersection-over-Union (IoU)113

and Coverage at a fixed threshold of 0.2, capturing how much of the annotated region is recovered114

and how precisely it is localized. In addition, we measure distributional similarity with Pearson115

correlation between continuous saliency maps and binary annotation masks [10]. Each of these116

metrics is computed under the two complementary importance formulations mentioned above: JS117

Div and ∆CE.118

4 Results119

Qualitative: spectrogram saliency heatmaps. Vocal production in primates arises from me-120

chanical and physiological processes that generate distinctive acoustic patterns, enabling individual121

recognition. AI explainability techniques should be capable of revealing this information by high-122

lighting salient spectro-temporal regions. As shown in Fig. 1, the Whisper–Perch MRMR joint123

embedding model isolates specific portions of the spectrogram that may be informative, even when124

their biological relevance is not yet established. Expert annotations on frequency–time bins (spectro-125

gram pixels) can highlight known salient features such as the call itself (manual source separation).126

While essential, these annotations capture only what humans can interpret from the calls, whereas127

models, either individually or through combinations such as MRMR joint embeddings [20], can128

surface complementary perspectives. In turn, these saliency maps can themselves become analyzable129

objects, supporting statistical methods to test hypotheses about which acoustic features may carry130

semantic or individual identity cues.131

Quantitative: expert annotation alignment. Across all metrics, Perch aligns most closely with132

expert annotations, achieving the highest scores in ranking, spatial overlap, and correlation (Table 1).133
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Figure 1: Qualitative evaluation of feature importance for acoustic individual identification in
capuchin monkeys using saliency maps (∆CE). Heatmaps (overlaid on spectrograms) highlight
spectro-temporal regions that most influence model decisions about caller identity. From left to
right: Annotated Mask, Whisper, Perch, and Whisper–Perch Joint Embedding. Note the variation
in saliency across models, and how the Whisper–Perch plot could motivate hypothesis testing if the
pattern is consistent.

Model Importance AUPRC IoU0.2 Coverage0.2 Pearson Corr.

Perch-Whisper MRMR JS Div. 0.576± 0.128 0.013± 0.011 0.014± 0.011 0.214± 0.082
∆CE 0.469± 0.145 0.028± 0.018 0.029± 0.019 0.203± 0.084

Google Perch 2 JS Div. 0.605 ± 0.140 0.103 ± 0.038 0.110 ± 0.045 0.397 ± 0.097
∆CE 0.571± 0.135 0.050± 0.025 0.052± 0.026 0.325± 0.101

Whisper Large V3 JS Div. 0.372± 0.172 0.033± 0.020 0.037± 0.022 0.055± 0.122
∆CE 0.386± 0.161 0.030± 0.020 0.032± 0.021 0.055± 0.102

Baseline JS Div 0.347± 0.148 0.026± 0.011 0.029± 0.011 0.001± 0.047
∆CE 0.352± 0.148 0.017± 0.010 0.018± 0.011 0.000± 0.047

Table 1: Performance comparison of model architectures across expert alignment evaluation metrics
using different feature importance methods.

Compared to Whisper, it improves overlap by about threefold and correlation by about sevenfold.134

Between importance formulations, JS Div generally outperforms ∆CE, with Perch showing the135

clearest advantage. Although the Perch–Whisper MRMR achieves the best individual classification136

accuracy [20], it lags behind Perch in explainability. These results suggest that models can excel at137

classification while still diverging from human-recognizable cues, highlighting the importance of138

explainability as a complementary evaluation dimension.139

5 Conclusion.140

Human annotators can reliably identify the presence of calls on spectrograms, but we lack precise141

knowledge of which acoustic features are truly decisive for individual identity. As a result, the142

reported metrics measure alignment with human intuition rather than absolute ground truth, and143

should be interpreted with caution. This limitation reinforces the need for combining qualitative144

and quantitative XAI: saliency maps not only benchmark model interpretability but also serve as145

scientific tools, enabling researchers to ask new questions and generate hypotheses (Fig. 1) about146

animal communication.147

Limitations and Future Work. The present work focuses on post-hoc saliency evaluation; integrat-148

ing interpretability directly into model architectures remains an open challenge. Broader validation149

across species and ecological contexts is also needed. Future work should explore statistical analyses150

on saliency maps themselves to test hypotheses on signals conveying meaning, and extend partic-151

ipatory platforms to more diverse user groups, and examine how explainable models can support152

decision-making in conservation practice.153
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