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(a) Comparison of navigation performance of
different reasoning strategies, which are only
trained on R2R-CoT-320k without receding-
horizon action planning. The proposed Aux-
Think (Ours) method consistently outper-
forms other reasoning strategies.

(b) Aux-Think (Ours) is Pareto-optimal in
data efficiency and success rate. Variants:
Aux-Think*: only trained on R2R-CoT-320k.
Navid® : no DAgger [1]] and instruction data.
Uni-Navidf: no VQA data. NaVILA%: no
Internet data.

Figure 1: Aux-Think outperforms alternative reasoning approaches in navigation tasks (a) and
achieves a favorable trade-off between data usage and success rate (b).

Abstract

Vision-Language Navigation (VLN) is a critical task for developing embodied
agents that can follow natural language instructions to navigate in complex real-
world environments. Recent advances driven by large pretrained models have
significantly improved generalization and instruction grounding compared to tradi-
tional approaches. However, reasoning strategies in this task remain underexplored.
Navigation is action-centric and long-horizon, while Chain-of-Thought (CoT) rea-
soning has mainly shown success in static tasks such as visual question answering.
To address this gap, we conduct the first systematic evaluation of reasoning strate-
gies, including No-Think (direct action prediction), Pre-Think (reasoning before
action), and Post-Think (reasoning after action). Surprisingly, our findings reveal
a Test-time Reasoning Collapse issue, where reasoning during testing degrades
navigation accuracy, highlighting the challenges of integrating reasoning into em-
bodied navigation. Based on this insight, we propose Aux-Think, a framework
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that trains models to internalize structured reasoning patterns via CoT supervision,
while predicting actions directly without explicit reasoning at test time. To support
this framework, we release R2R-CoT-320k, the first Chain-of-Thought annotated
dataset for VLN. Extensive experiments show that Aux-Think substantially reduces
training effort and achieves state-of-the-art performance on success rate.

1 Introduction

Vision-and-Language Navigation (VLN) [2} 3} 4] represents a groundbreaking step towards enabling
robots to understand natural language instructions and navigate complex, unfamiliar environments.
As a foundational capability for embodied Al systems, VLN bridges the gap between perception and
action, empowering robots to seamlessly interact with the real world. In particular, Vision-Language
Navigation in continuous environments (VLN-CE) [5. 6} [7] has emerged as a critical research focus,
pushing the boundaries of autonomy and adaptability in dynamic, real-world scenarios.

Traditional Vision-and-Language Navigation methods often rely on waypoint predictors [8| 15, 9] or
topology maps [10} [L1}, [12} [13]] but struggle with generalization and the sim-to-real gap. With the
advancements in Large Language Models (LLMs) [[14} [15] and Vision-Language Models (VLMs)
[L6l 17, 18], recent studies [[19, |20} 21]] shift toward action prediction via supervised fine-tuning
on paired videos and instructions. Despite these advancements, most efforts emphasize training
strategies [22, 23], data organization [24]], or model architecture [25] for VLN. Chain-of-Thought
(CoT), which explicitly generates intermediate reasoning before producing final answers [26], has
shown success in enhancing reasoning capabilities across various LLM- and VLM-driven tasks, like
video understanding [27]] and tool usage [28]]. However, its application to VLN remains unexplored.

Motivated by this gap, we present the first systematic study of reasoning strategies in VLN, comparing
three paradigms: (1) No-Think, which predicts actions without explicit reasoning; (2) Pre-Think [29],
which performs CoT before action selection; and (3) Post-Think [30], which reasons after action
prediction. Our key findings reveal a phenomenon we term ‘“Test-time Reasoning Collapse”
(TRC): Introducing CoT via Pre-Think or Post-Think consistently harms navigation performance
(Fig. [Ta). CoT errors or hallucinations during testing result in incorrect actions, as shown in Fig. [3]
We attribute this to a training—testing mismatch: CoT is only trained on optimal (oracle) trajectories,
but for testing, agents often enter unfamiliar, off-distribution states where reasoning fails, leading
to error accumulation along the trajectory and cascading navigation failures. Even with DAgger,
coverage of off-distribution states is limited and CoT supervision remains biased toward the optimal
region. This phenomenon highlights a fundamental limitation of multi-turn explicit reasoning in
dynamic, partially observable environments, unlike the single-turn static tasks such as VQA or image
captioning [31}[32].

To address the TRC issue, we propose Aux-Think, inspired by the dual-process theory of human
learning [33]]: during training, humans often rely on explicit reasoning to understand principles, but
during execution, they focus on actions without consciously recalling those principles, much like
a driver who no longer recites traffic rules while driving. Similarly, Aux-Think uses CoT as an
auxiliary signal during training to guide the model in internalizing reasoning patterns. At testing
time, the model no longer generates explicit reasoning, but instead directly predicts actions based on
the internalized reasoning learned during training. This separation between learning and execution
improves decision focus, reduces testing overhead and hallucinations, and leads to more accurate and
stable navigation.

Specifically, in Aux-Think, the generation of CoT reasoning and navigation actions is decoupled into
two distinct tasks during training: (1) generating navigation actions based on stepwise observations
and language instructions as the primary task, and (2) generating the reasoning process for each
step as an auxiliary task. By leveraging prompts to switch between these tasks, we independently
supervise navigation actions and reasoning processes, effectively avoiding the negative interference
caused by jointly training both tasks. During testing, Aux-Think directly predicts actions without
intermediate reasoning, thereby eliminating the risk of errors introduced by CoT hallucinations.

To validate the effectiveness of Aux-Think, we introduce R2R-CoT-320Kk, the first CoT dataset for
VLN, which is large-scale and specifically tailored for the R2R-CE benchmark [34]. As existing
datasets lack aligned CoT-style reasoning, we construct this dataset by generating reasoning traces
that can faithfully lead to the correct next action. R2R-CoT-320k consists of over 320,000 diverse



reasoning traces grounded in natural instructions and photo-realistic navigation trajectories. It covers
a wide range of scenarios and CoT content, making it a rich and challenging resource for training and
evaluation. We show that Aux-Think, when trained with R2R-CoT-320k, matches the performance of
state-of-the-art VLN methods, while using only a fraction of their training data (Fig. [TD).

Our contributions are as follows:

* New Finding: We conduct a systematic comparison of reasoning strategies in VLN and
reveal that test-time reasoning, including Pre-Think and Post-Think, consistently underper-
forms direct action prediction (No-Think), termed the TRC issue. To our knowledge, this is
the first exploration of CoT strategies on the VLN-CE task.

* New Method: We propose Aux-Think, a novel training paradigm that uses CoT as auxiliary
supervision while maintaining No-Think testing, achieving superior performance over other
reasoning methods. Aux-Think pioneers a new perspective on CoT utilization and achieves
the best performance on the navigation success rate.

* New Dataset: We introduce R2R-CoT-320k, a large-scale, diverse, and challenging Chain-
of-Thought dataset tailored for the R2R-CE benchmark, which enables more effective
training of reasoning-aware VLN agents.
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Figure 2: Tllustration of Aux-Think and other reasoning strategies. Unlike No-Think, Pre-Think, and
Post-Think, our Aux-Think introduces auxiliary CoT- and instruction-based reasoning during training
while maintaining efficient action planning at testing.

2 Related Work

2.1 Traditional VLN Methods

Before the emergence of large-scale pretrained models, VLN methods are primarily built on modular
pipelines trained via imitation [35} 36, |37]] or reinforcement learning 38 39], often with handcrafted
visual features and auxiliary objectives such as progress monitoring or instruction reweighting. These
models typically operate with panoramic observations and discretized actions, as in benchmarks like
Room-to-Room (R2R) [3]] and Room-Across-Room (RxR) [40]]. The traditional auxiliary reasoning
tasks have also been explored, which rely on specific network outputs to predict structured, low-level
reasoning results like task progress or trajectory alignment. More recent work has explored navigation
in continuous action spaces using egocentric visual inputs [34}!41]], which is the setting adopted in our



@ Cross the room and go through the brown doors, forward and step into the nearest archway on the right, step near the glass table and stop.
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Figure 3: Illustration of CoT and Action Prediction Results Using Different Reasoning Strategies.
Pre-Think generates incorrect actions (e.g., “move forward 75cm”) due to flawed CoT reasoning,
such as “we have not crossed the room,” leading to significant trajectory deviation. Post-Think, which
builds on Pre-Think’s output, inherits similar reasoning errors (e.g., “no obvious door or archway”)
and makes the same wrong prediction. In contrast, Aux-Think correctly predicts “turn right 15
degrees” and follows a trajectory aligned with the ground truth. While Aux-Think does not rely on
CoT during testing, it can optionally produce CoT via prompt switching—yet its action prediction
remains accurate even when the generated CoT is of moderate quality. This highlights Aux-Think’s
robustness to imperfect reasoning and its superior reliability in action prediction.

study. Our method replaces handcrafted pipelines with vision-language models that directly predict
agent actions, aiming to improve instruction following in realistic environments.

2.2 VLN with Large Pretrained Models

Recent advancements have seen the integration of large pre-trained models 142]), into VLN
tasks. Early explorations of LLM in the VLN field usually use off-the-shelf large language models to
select landmarks or waypoints in a zero-shot manner 41]). Recent works have focused on
fine-tuning the VLM to obtain the navigational Vision-Language-Action model. Notably, Poliformer
and NaVid [19] introduce a video-based monocular VLN, demonstrating navigation capabilities
using monocular RGB videos without maps or depth input. Uni-NaVid [20] unifies various navigation
tasks, including VLN, ObjectNav [46], Embodied Question Answering [47]], and Human-following
[48l [49], into a single model trained on a diverse dataset. NaVILA [21]] further extends this approach
by integrating VLN with legged robot locomotion skills in complex environments.

While these models have improved the alignment among visual understanding, language instructions,
and navigation actions, they predominantly employ No-Think testing strategies, lacking reasoning
mechanisms. Moreover, their performance gains often stem from leveraging extensive datasets,
whereas our approach focuses on exploring reasoning strategies.

2.3 Reasoning Models

Recent advances like Chain-of-Thought (CoT) [26], ReAct [50], and Toolformer [51]] highlight the
potential of LLMs to perform explicit reasoning in static and multimodal tasks, including VQA
[52], visual grounding [53], and video understanding [27], where Pre-Think strategies have shown
success. Similar ideas have been explored in embodied tasks like manipulation and control
[53]. However, a recent study [30] argues that small models may benefit more from No-Think or
Post-Think strategies due to limited CoT quality.



In our work, we conduct the first systematic comparison of Pre-Think, Post-Think, and No-Think
reasoning strategies for VLN. Based on our findings, we propose Aux-Think, a novel framework that
leverages CoT reasoning as auxiliary supervision during training while maintaining No-Think testing,
thereby enhancing data efficiency and performance in VLN.

3 Method

3.1 Problem Setup

We study monocular Vision-and-Language Navigation in continuous environments (VLN-CE), where
an embodied agent navigates photo-realistic indoor environments by following natural language
instructions. VLN-CE emphasizes generalization to unseen environments and supports both forward
and reverse navigation, offering a comprehensive test of spatial reasoning and language grounding.

At each time step, the agent receives: (1) a natural language instruction, typically a short paragraph
specifying the navigation goal; (2) a RGB observation from the agent’s current viewpoint; and (3)
historical observations, including 8 frames uniformly sampled from all historical frames (always
including the first frame). The agent selects an action (e.g., move forward, turn left/right by a specific
degree, or stop). The objective is to generate an action sequence that follows the instruction as
accurately and efficiently as possible until the agent reaches the target position.

Within the Supervised Fine-Tuning (SFT) framework, our VLN model based on NVILA 8B [17], is
learned by imitating expert demonstrations from the dataset, where each trajectory provides sequences
of <navigation context, expert action> pairs, with navigation context denoting the combination of
historical observations, the current observation, and the instruction.

3.2 R2R-CoT-320k Dataset Construction

We present R2R-CoT-320k, the first VLN dataset annotated with CoT reasoning, tailored for the
R2R-CE benchmark. We reconstruct step-wise navigation trajectories in the Habitat simulator [56].
Each sample in the dataset comprises the current view, the historical visual context, the corresponding
instruction, and the ground-truth action. We employ Qwen-2.5-VL-72B [[16], one of the strongest
publicly available VLMs, to generate detailed CoT for each navigation sample (Fig. ). For Pre-Think
and Post-Think strategies, we format reasoning traces with <think></think> and <answer></answer>
tags, following recent reasoning models [57]]. See Appendix [A.2]for more details on our dataset.

Text Prompt

Imagine you are a robot for navigation tasks. You have been given the historical and current
observation. Your assigned task is:

Pass the fireplace and go straight out the door ahead. Wait by the chairs that have flowers
The final answer is: The next answer is turn right 15 degrees.

Please think about this question as if you were a human pondering deeply. Engage in an internal
dialogue using expressions such as ‘let me think’, 'wait', 'Hmm', 'oh, | see', 'let's break it down’, etc,
or other natural language thought expressions. It's encouraged to include self-reflection or
verification in the reasoning process. Provide your detailed reasoning.

==

[ Large-scale VLM Annotator }
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CoT Annotation
Let me think... the task at hand is to navigate through the observed environment to reach a specific goal: passing the fireplace, then going straight out the door
ahead, and finally waiting by the chairs with flowers. It's crucial to analyze each image and understand the layout, orientation, and movement necessary to
achieve the task.From the sequence, the first image shows a close-up view of the fireplace and a door. Next, the second image seems to give a broader view
where the fireplace and the door are seen in a larger context with a hallway leading further. The third through eighth images show progression through the
hallway with doors on both sides, criticizing a sense of moving forward towards a specific area. Finally, the ninth image shows a room with a fireplace and the
doorway leading out to the previous sequence implies that the chairs with flowers are in this room.\n\nWait, it seems the current observation is already in the
desired room according to the sequence and the description of the task. However, based on the task provided, the goal wasn't achieved until we reached the
chairs with the flowers which can be seen properly in the overhead view of the nineteenth image. \n\nHmm, let's break it down. The chairs with flowers are clearly
visible in the twelfth image. The current observation confirms the presence of the flowers on the chairs. Oh, | see... considering the final action should be \"turn
right 15 degrees\" to ensure that the robot is properly aligned towards the chairs and the specified goal.

Figure 4: The annotation pipeline of our R2R-CoT-320k dataset.



3.3 Systematic Investigation on Reasoning Strategies for VLN

To investigate the impact of reasoning on VLN, we study and evaluate three distinct
strategies for integrating Chain-of-Thought (CoT) reasoning during training and testing.
No-Think: The agent directly predicts the next action
based on the current observation and instruction, without

CoT Weight

any intermediate reasoning. 3 -
. 0.1
. .. . 30 0.01
Pre-Think: The agent first generates an explicit reasoning None

~N
¥

trace based on the instruction and current observation. The
following predicted actions are conditioned on the CoT
output.

Success Rate (SR)
= N
& S

Post-Think: The agent first predicts an action and then 1
retrospectively generates a reasoning trace that explains
the decision.

w

Pre-Think Post-Think No-Think

The training loss for the VLN model 7y with above three

strategies is: Figure 5: Comparision of success rate on
Pre-Think, Post-Think, and No-Think.
7 (logmy (af |Or, 04, I1) for No-Think
Z log mo(< ¢, af > |Oy,04,1;) for Pre-Think (1)

reD t=0 (logmp(< af,c; > |O, 04, 1) for Post-Think

where D is the training dataset; 7" is the total number of timesteps in a trajectory 7, and ¢ is the current
timestep. a; is the ground truth action and ¢} is the ground truth reasoning trace. O; represents the
history of observations up to timestep ¢, o; is the current visual observation at timestep ¢, and I is
the natural language instruction provided to the agent.

We isolate the impact of reasoning on overall navigation performance. In addition, we adjust the loss
weight of the CoT part (c; in Equation |I[) to make the model more focused on learning the action
(Fig. B). Our key findings include:

Finding 1: Pre-Think and Post-Think perform significantly worse than No-Think.
Despite involving explicit reasoning, both strategies lead to lower navigation success and
efficiency, highlighting the unreliability of test-time CoT in dynamic environments.

Finding 2: Careful Balancing of Explicit CoT Loss Weight Improves Performance.
By carefully tuning the explicit CoT weight for Pre-Think and Post-Think, we find that
balanced supervision yields slight gains, indicating that training emphasis on reasoning is a
key, strategy-dependent factor despite test-time unreliability.

We further analyze the severe performance degradation observed with Pre-Think and Post-Think
strategies. During training, the model is only exposed to optimal sequences of states and actions
in oracle trajectories. However, VLN environments are inherently complex, dynamic, and partially
observable, increasing the likelihood of agents deviating from optimal, oracle-guided training trajec-
tories. Consequently, when encountering non-oracle, out-of-distribution states during testing, the
CoT reasoning generated by these strategies is susceptible to drift, potentially yielding inaccurate or
hallucinated interpretations of the environment and instructions.

In Pre-Think, the model’s actions rely heavily on the preceding reasoning chain, making decisions
fragile. Any hallucination or misstep in reasoning directly leads to wrong actions. In Post-Think,
although actions are generated first, the need to produce follow-up explanations still alters the model’s
hidden states. This subtle interference, like reserving capacity or shifting attention, can compromise
the quality of the initial action decision. A detailed example is provided in Fig. [3]

Moreover, agents perform multi-step action prediction, where an error at any intermediate step further
pushes the agent away from the correct state distribution. This compounding effect leads to cascading
errors in both CoT reasoning and subsequent actions, ultimately resulting in trajectory-level failures.



3.4 Aux-Think: Reasoning-Aware Co-Training Strategy

To address the challenges from the explicit CoT training to VLN, we propose Aux-Think, a novel
reasoning strategy designed to enhance navigation performance without incurring test-time problems.
Aux-Think leverages reasoning exclusively during training through auxiliary tasks. We design two
reasoning-based auxiliary tasks and one action-based primary task during training.

CoT-based Reasoning. The model is trained to generate CoT traces conditioned on the given
instruction I, current observation o, and historical observations ;. This encourages the acquisition
of structured reasoning patterns and strengthens the connection between language, vision, and actions.
The loss of CoT-based reasoning for each trajectory 7 is:

T
LfOT(Q) = _Zlogﬂ-e(cﬂohotal‘r) (2)
t=0
where c; is the ground-truth reasoning trace at step ¢.

Instruction-based Reasoning. Given a sequence of visual observations Z;‘F:O 0y, the model is trained
to reconstruct the corresponding instruction I. This reverse reasoning task provides complementary
supervision beyond CoT-based signals, further enriching the model’s semantic grounding. The
training loss is:

T
LI"(0) = —logmo(I-| > o) 3)
t=0

Receding-Horizon Action Planning. We introduce Receding-Horizon Action Planning as our pri-
mary task. During training, the model predicts a sequence of the next n actions (a¢, G y1, .-y Gttn—1)
based on the instruction I, current observation o, and navigation history O; for the sample at time
step ¢ . This setup encourages short-term forecasting while retaining reactivity to new observations.
The training objective for each trajectory 7 is defined as:

T n

L2N0) = =Y Y logme(aii 4|0, 01, 1) 4

t=0 k=0
where a}, , denotes the ground-truth action at future step ¢ + k.

During training, we co-train the three tasks and switch between different tasks by changing the
prompt (Appendix [A.3). The final loss function is:
L= L#N0)+ LYT(0) + LI"*(6) ©)
T7€D
where D is the set of training trajectories.

For testing, we only activate the prediction of actions, and the model predicts the next n actions and
executes only the first one. This ensures fast, reactive navigation without reasoning overhead. We
demonstrate its stabilizing effect in long-horizon trajectories through ablation studies (Table 3).

4 Experimental Results

4.1 Experiment Setup

Simulated environments. We evaluate our method on the VLN-CE benchmarks R2R-CE [34] and
RxR-CE [40] following the standard VLN-CE settings. All the methods are evaluated on the R2R
val-unseen split and RxR val-unseen split.

Metrics. We follow the standard VLN evaluation protocol [34, |40] to evaluate the navigation
performance for all the methods, including success rate (SR), oracle success rate (OSR), success
weighted by path length (SPL), and navigation error from goal (NE).

4.2 Implementation Details

Model training. We use NVILA-lite 8B [17]] as the base pretrained model, which consists of a
vision encoder (SigLIP [58]]), a projector, and an LLM (Qwen 2 [16]). We use supervised finetuning



(SFT) to train our VLN model from stage 2 of NVILA-lite, as it has finished visual language corpus
pre-training. Our model is trained with 8 NVIDIA H20 GPUs for one epoch (around 60 hours), with
a learning rate of le-5.

Action design. The action space is designed into four categories: move forward, turn left, turn right,
and stop. The forward action includes step sizes of 25 cm, 50 cm, and 75 cm, while the turn actions
are parameterized by rotation angles of 15° , 30° , and 45° . This fine-grained design allows for more
precise and flexible control, which is critical in complex environments.

4.3 Comparison on VLN-CE Benchmarks

We evaluate our method on the VLN-CE benchmarks, which provide continuous environments for
navigational actions in reconstructed photorealistic indoor scenes. We first focus on the val-unseen
split in R2R-CE dataset in Table[I] To be fair, we distinguish between methods by marking those
based on waypoint predictors (x) and those that are not based on large models (}).

In large model-based methods, we additionally mark the amount of data used by the method in
addition to the R2R-CE training split (Extra Data). We further scale up by the RxR training split
(600K), DAgger data (500K) and web data (500K), and our performance achieves the SOTA Success
Rate (SR) to those using a much larger amount of training data.

Table 1: Comparison of different methods on the R2R Val-Unseen split. Observations used include
Monocular (Mono.) and Panoramic view (Pano.). * indicates methods based on the waypoint
predictor [3]]. T indicates methods without using LLMs. © indicates the models using the training data
only from R2R-CE training split, and we compare with the results reported in their paper for a fair
evaluation. The training data structures of traditional non-LLM-based methods are quite different, so
we do not compare them with their extra data.

Method Venue Observation R2R Val-Unseen Training

Mono. Pano. NE] OSR{1 SR?T SPL?T ExtraData
BEVBert*[7] ICCV2023 v 4.57 67.0 590 500 -
ETPNav*[59] TPAMI2024 v 4.71 65.0 57.0 49.0 -
ENP-ETPNav*t[60] Neurips2024 v 4.69 65 58 50 -
Seq2Seq’[34] ECCV2020 v 7.77 37.0 250 220 -
CMAT[34] ECCV2020 v 7.37 40.0 320 300 -
LAWT[6T] EMNLP2021 v 6.83 44.0 350 310 -
CM21[62] CVPR2022 v 7.02 410 340 270 -
WS-MGMap[12] Neurips2022 v 6.28 47.0 38.0 340 -
sim2real’ [63] CoRL2024 v 5.95 55.8 449 304 -
NaVid°[19] RSS2024 v 6.33 308 247 236 0K
Aux-Think (ours)® - v 6.01 52.2 46.0  40.5 0K
Uni-NaVid|[20] RSS2025 v 5.58 53.3 47.0 427 5570K
NaVILA[21] RSS2025 v 5.22 62.5 54.0  49.0 2770K
Aux-Think (ours) - v 6.08 60.0 548 469 1600K

As in Table[I] our proposed Aux-Think achieves strong performance with and without extra data. We
attribute these results to multilevel reasoning supervision. Our joint training on CoT-based reasoning,
instruction reconstruction, and receding-horizon action prediction enriches the model’s semantic
grounding and decision-making ability, allowing it to better generalize from limited data. Our method
benefits from reasoning-induced supervision signals that align more closely with the high-level
semantic structure of the instructions, making each training example more informative.

To further assess the ability of Aux-Think, we evaluate it on the RxR-CE [40] Val-Unseen split
(Table2). Compared to R2R-CE, RxR-CE includes more natural instructions and longer trajectories,
making it a more realistic and challenging benchmark. Aux-Think achieves strong overall perfor-
mance, particularly on the Success Rate (SR) metric, where it surpasses Uni-NaVid and NaVILA
while using much fewer training data (1920K vs. 5900K and 3100K). This demonstrates the ef-
fectiveness of reasoning supervision under limited data. It is noted that performance on NE and
SPL is relatively modest. This is likely due to the model’s internalized reasoning behavior, learned
during CoT training, which encourages broader exploration. Although this can lead to longer paths



and reduced efficiency, it improves SR and OSR by increasing the likelihood of reaching the goal,
especially in unfamiliar environments.

Table 2: Comparison of different methods on the RxR Val-Unseen split. { indicates methods without
using LLMs. The training data structures of traditional non-LLM-based methods are quite different,
so we do not include their training data in this table.

Method Venue Observation RxR Val-Unseen Training

Mono. Pano. NE| OSR1 SR{ SPL*t Data
ETPNav'[59] TPAMI2024 v 5.64 - 54.7 44.8 -
ENP-ETPNav'[60] Neurips2024 v 5.51 - 55.27 45.11 -
Seq2Seq’([34] ECCV2020 v 11.8 - 13.9 11.9 -
LAWT[61] EMNLP2021 v 10.87 21.0 8.0 8.0 -
CcM21[62] CVPR2022 v 1229 253 14.4 9.2 -
sim2real[63] CoRL2024 v 8.79 36.7 25.5 18.1 -
Uni-NaVid[20] RSS2025 v 6.24 55.5 487 409 5900K
NaVILA[21] RSS2025 v 6.77 - 49.3 44.0 3100K
Aux-Think (ours) - v 6.24 61.9 522 402 1920K

4.4 Comparison Between Different Reasoning Strategies

As shown in Table [3] we compare different reasoning strategies on R2R-CE, with only the R2R-
CoT-320K dataset as training data for fairness. We find that the SR performance of Pre-Think and
Post-Think is significantly lower than No-Think. In Pre-Think, the action prediction is conditioned
on the generated CoT; thus, low-quality or poorly learned CoT directly impairs action accuracy.
While Post-Think partially mitigates this issue by generating CoT after the action, suboptimal CoT
representations can still degrade overall performance. In contrast, the proposed Aux-Think decouples
CoT and action learning by implicitly internalizing CoT knowledge into feature representations.

Table 3: Comparison of different reasoning strategies on R2R-CE Val-Unseen split.
Reason Strategies | NE| OSRT SRt SPLT | Avg. time|

No-Think 778 437 351 302 1.25s
Pre-Think 923 193 114 86 30.62s
Post-Think 859 351 29.0 2338 28.97s
Aux-Think (ours) | 7.09 47.6 413 358 1.25s

In Fig. @ we evaluate the Success Rate (SR) per test step for Aux-Think (ours), Pre-Think, and
Post-Think, with results grouped by the number of steps required for task completion. Across
all step ranges, Aux-Think consistently outperforms both baselines. A key observation is that the
performance of Pre-Think and Post-Think degrades sharply as the required steps increase, with SR
approaching zero for tasks exceeding 70 steps. In contrast, Aux-Think maintains strong performance
even on longer-horizon tasks, exhibiting markedly higher robustness and generalization to complex,
multi-step navigation scenarios. These results highlight the superior scalability of Aux-Think in
handling extended reasoning and decision-making under increased task complexity.

4.5 Ablation Studies
4.5.1 Impact of Different Auxiliary Tasks and Receding-Horizon Action Planning

Table [] presents the ablation of three components: CoT-based Reasoning (A), Instruction-based
Reasoning (B), and Receding-Horizon Action Planning (C). Introducing CoT Reasoning (A) leads to
a noticeable improvement across all metrics, indicating its effectiveness in guiding action decisions.
Adding Non-CoT Reasoning (A+B) further enhances performance, suggesting that the two forms
of reasoning are complementary. The full model (A+B+C), which incorporates receding-horizon
planning, achieves the best results, particularly in terms of SPL and SR, demonstrating that long-term
planning grounded in implicit reasoning yields the most robust behavior. These results validate the
necessity of integrating both reasoning and planning for optimal performance.
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Figure 6: (a) Success Rate of reasoning strategies on different steps during testing. (b) The epsodes
number on different steps during testing. The steps indicate the actions required by the instruction.

Table 4: Ablation study on different components. ~ Table 5: Ablation studies on the predicted steps
A: CoT Reasoning, B: Non-CoT Reasoning, C:  in our Receding-Horizon Action Planning. The

Receding-Horizon Action Planning. best one across all metrics is when the number
Configuration Metrics of steps is 3.
A B C | NE| OSRt SRT SPLt #Steps | NE| OSRf SRt SPLt

778 437 351 302
v 7.08 476 413 358
7.12 463 40.6 357
v | 714 473 371 322
692 49.1 442 389
v 1601 522 46.0 40.5

778 437 351 302
7.88 442 358 309
714 473 414 36.1
750 436 364 31.8
7.54 437 371 322

DN A W -

SENEEN

v
v

4.5.2 TImpact of Steps in Receding-Horizon Action Planning

Based on Table[5] the model achieves the best performance when the number of predicted steps is set
to 3. We disable the CoT auxiliary task to analyze the impact of actions more clearly. The results
highlight our Receding-Horizon Action Planning, which encourages the model to anticipate future
actions and enhances its planning capabilities. However, increasing the number of predicted steps
beyond this point leads to performance degradation. We attribute this to the limited perceptual field of
monocular observations without additional global knowledge, which makes long-horizon prediction
more challenging and can cause the model to generate suboptimal or collapsed navigation behaviors.

5 Limitation and Future Work

This work evaluates Aux-Think’s data efficiency under a controlled, widely adopted setup: SFT on
the R2R dataset with monocular RGB input. This enables fair comparison and isolates the effect of
reasoning-aware supervision. While constrained, this setting opens future directions, scaling to larger
navigation datasets and incorporating richer supervision (e.g., depth, panorama, localization) [42].

6 Conclusion

We conduct the first systematic investigation of reasoning strategies in Vision-and-Language Naviga-
tion, revealing a key limitation, 7est-time Reasoning Collapse, where errors in generated reasoning can
compound and degrade navigation performance. Motivated by this finding, we propose Aux-Think,
a reasoning-aware co-training framework that leverages Chain-of-Thought as auxiliary supervision
during training, while relying on efficient No-Think testing. Extensive experiments demonstrate that
Aux-Think achieves performance on par with state-of-the-art methods while using significantly less
training data, highlighting its robustness and data efficiency. We also release R2R-CoT-320k, the
first CoT dataset for VLN, to facilitate future research on reasoning models.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Refer to Section[3.2]and Appendix[A.7]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer to Section [
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Refer to Secton @l
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer to
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Refer to Appendix.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: VLN research typically focuses on specific technical aspects or objectives that
may not directly address broader societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: VLN poses no such risks
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the corresponding original papers.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Refer to Section and [l
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Qwen 2.5 VL 72B was used to assist with CoT data annotation. However, the
model was used strictly as a labeling aid under human supervision, and its outputs did not
constitute a core, original, or non-standard component of the method itself. The annotated
data was manually reviewed and curated, and the LLM’s role was limited to speeding up the
annotation process.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 More Experimental Results

We evaluate the cross-data performance on RxR-CE Val-Unseen split, as shown in Table [] Even
without using RxR-CE training data, our Aux-Think model achieves new state-of-the-art performance
on the RxR-CE Val-Unseen split. This confirms the strong generalization of our reasoning-augmented
co-training, enabling the model to transfer across datasets with different instructions and scenes.

Table 6: Cross-dataset performance on the RxR-CE Val-Unseen split. All results are obtained without
training on the RxR-CE training set.

Method Venue Observation RxR Val-Unseen

Mono. Pano. NE| OSR1 SR?T SPL?
Seq2Seq(34] ECCV2020 v 11.8 5.02  3.51 3.43
CMAJ34] ECCV2020 v 11.7 10.7 4.41 2.47
LAWJ[61] EMNLP2021 v 10.87 21.0 8.0 8.0
CM2[62] CVPR2022 v 8.98 253 144 9.2
WS-MGMapl[12]  Neurips2022 v 9.83 29.8 15.0 12.1
A2NAV[64] Arxiv2023 v - - 168 6.3
NaVid[19] RSS2024 v 8.41 345 238 21.2
Aux-Think (ours) - v 8.98 39.6 29.5 23.6

A.2 R2R-CoT-320k

The action labels in R2R-CoT-320k are derived from the original annotations in R2R-CE. To generate
the Chain-of-Thought (CoT) annotations, we employ Qwen-VL 2.5 (72B). Specifically, for each
navigation step, we provide the model with the agent’s historical observations, the current visual
input, and the next action. The model is then prompted to produce intermediate reasoning steps that
reflect human-like decision-making processes. The annoation prompt is:

Imagine you are a robot programmed for navigation tasks. You have been given a video of
historical observations: <image>,...,<image> and and current observation: <image>. Your
assigned task is: [Instruction]. Analyze this series of images to decide your next move, which
could involve turning left or right by a specific degree, moving forward a certain distance, or
stop if the task is completed. The final answer is [Action]. Please think about this question
as if you were a human pondering deeply. Engage in an internal dialogue using expressions
such as ’let me think’, wait’, ’"Hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection or verification in the
reasoning process.

To provide a deeper quantitative understanding of our proposed R2R-CoT-320k dataset, we present
statistics on CoT content and complexity. As shown in Fig. the word cloud reveals frequent
reasoning patterns grounded in spatial semantics, such as “doorway,” “current observation,” “hallway,”
“turning,” and “goal.” These tokens suggest that the dataset captures rich, step-by-step reasoning

tightly aligned with embodied navigation semantics.

Fig. [7b|shows the distribution of CoT lengths, where most reasoning chains fall within the 200-300
word range, but with a long tail reaching beyond 450 words. This indicates that the dataset covers both
concise and highly detailed reasoning processes, posing a greater challenge than typical short-form
CoT datasets used in static tasks.

Overall, R2R-CoT-320k represents the first large-scale reasoning-augmented dataset for VLN with
diverse, high-coverage CoT annotations. It offers a valuable benchmark to study the role of language-
based reasoning in long-horizon, partially observable navigation tasks.

A.3 Navigation Prompts

We use the following prompt to drive the model to predict navigation actions:
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Figure 7: (a) Word cloud of Chain-of-Thought in the R2R-CoT-320k dataset, highlighting frequent
visual and spatial reasoning patterns. (b) Distribution of CoT lengths (in word count), showing a
wide and diverse range of reasoning complexity.

table:

Number of Samples

Imagine you are a robot programmed for navigation tasks. You have been given a video of
historical observations: <image>.,...,<image> and and current observation: <image>. Your
assigned task is: [Instruction]. Analyze this series of images to decide your next move, which
could involve turning left or right by a specific degree, moving forward a certain distance, or
stop if the task is completed.

Among them, [Instruction] is the language instruction given for the current task. For the auxiliary
task of CoT-based reasoning, we add “Please provide your step-by-step reasoning process” after the
above prompt.

For the Non-CoT Instruction Reasoning, we set the prompt as:

Assume you are a robot designed for navigation. You are provided with captured image se-
quences: <image>,...,<image>. Based on this image sequence, please describe the navigation
trajectory of the robot.

A.4 More Details About Pre-Think and Post-Think

To further investigate Test-time Reasoning Collapse (TRC) phenomenon, we introduce special tokens
to delineate the reasoning and action prediction components. During training, we assign different loss
weights to the reasoning component, as shown in Table[7] We observe that moderately reducing the
CoT (Chain-of-Thought) loss weight improves the performance of both Pre-Think and Post-Think.
However, their performance still lags behind that of No-Think and Aux-Think.

Our results reveal a consistent trend: reducing the CoT loss weight moderately improves performance
for both Pre-Think and Post-Think. For example, in the Post-Think setting, decreasing the CoT
weight from 1 to 0.1 leads to a +1.8% SR improvement (from 29.0 to 30.8). This suggests that
over-reliance on CoT can introduce noise, potentially due to its misalignment with the suboptimal,
off-distribution states encountered during testing.

However, even with carefully tuned weights, both strategies still fall short of No-Think. For instance,
No-Think achieves 35.1% SR, significantly outperforming the best Post-Think variant (30.8%) and
Pre-Think (15.9%). This persistent gap underscores a deeper issue: while CoT can serve as useful
supervision during training, explicitly generating and relying on CoT during testing is inherently
brittle in VLN due to compounding errors and distribution shift. This reinforces our finding that
VLN agents suffer from reasoning collapse when required to generate structured thoughts in real time
within dynamic, partially observable environments.

In summary, despite our extensive efforts to optimize Pre-Think and Post-Think through CoT loss
reweighting and architectural adjustments, these strategies fail to match the robustness and effective-
ness of CoT-free testing (No-Think). These findings motivate our proposal of Aux-Think, which
leverages the strengths of CoT through auxiliary supervision while circumventing the vulnerabilities
of test-time reasoning.
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Table 7: Experiments on the impact of CoT Loss weight on Pre-Think and Post-Think strategies.

| Weight of CoT Loss | NE| OSRf SRt SPL?t

1 9.23 193 114 8.6

Pre-Think 0.1 9.42 28.3 159 128
0.01 8.84 206 122 93

1 8.59 351 29.0 238

Post-Think 0.1 8.50 37.7 30.8 247
0.01 8.25 36.6 293 249

No-Think ‘ - ‘ 7.78 437 351 30.2
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