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Abstract

Large Vision-Language Models (LVLMs) answer visual questions by transferring1

information from images to text through a series of attention heads. While this2

image-to-text information flow is central to visual question answering, its underly-3

ing mechanism remains difficult to interpret due to the simultaneous operation of4

numerous attention heads. To address this challenge, we propose head attribution,5

a technique inspired by component attribution methods, to identify consistent pat-6

terns among attention heads that play a key role in information transfer. Using head7

attribution, we investigate how LVLMs rely on specific attention heads to identify8

and answer questions about the main object in an image. Our analysis reveals that9

a distinct subset of attention heads facilitates the image-to-text information flow.10

Remarkably, we find that the selection of these heads is governed by the semantic11

content of the input image rather than its visual appearance. We further examine12

the flow of information at the token level and discover that (1) text information13

first propagates to role-related tokens and the final token before receiving image14

information, and (2) image information is embedded in both object-related and15

background tokens. Our work provides evidence that image-to-text information16

flow follows a structured process, and that analysis at the attention-head level offers17

a promising direction toward understanding the mechanisms of LVLMs.18

1 Introduction19

Large Vision-Language Models (LVLMs) have demonstrated remarkable success in a wide range of20

vision and language tasks. As LVLMs have growing importance in various applications, understanding21

their inner workings has become increasingly crucial. Uncovering the mechanisms behind LVLMs22

can enhance transparency [1], identify potential biases [2], and facilitate the development of more23

efficient and robust models [3, 4], parallel to the recent progress in interpretability research for24

language models.25

However, interpreting LVLMs presents inherent challenges that go beyond those encountered with26

language-only models. Unlike discrete text tokens in LLMs, which carry well-defined semantic27

meanings, image tokens in LVLMs act as soft prompts without explicit semantic interpretation. This28

ambiguity complicates the analysis of internal representations. Moreover, while most mechanistic29

interpretability studies in language models rely on short textual inputs [5–8], LVLMs process hundreds30

of image tokens by design. As a result, the mechanisms underlying image-to-text information flow31

remain largely elusive.32

Previous work has primarily focused on the layer level [9–11], leaving the role of specific attention33

heads in facilitating this information transfer unexplored. Identifying such heads could reveal the34

precise locations where image information is injected and propagated within the model, enabling a35

more fine-grained understanding of the underlying process.36
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Figure 1: (A) Illustration of head ablation. To identify the attention heads responsible for the image-
to-text information flow, head ablation blocks the image-to-text information flow of an attention head
by replacing its image key/value pairs with the baseline representations. Ablating single head cannot
identify crucial heads, as the model utilizes multiple heads to process the information. (B) Illustration
of head attribution. This method estimates each attention head’s contribution to the information flow
using a linear model that predicts the logit based on which heads are intact or ablated. Through
this method, we can identify the pattern of attention heads that are crucial for the image-to-text
information flow. (C) Overview of the image-to-text information flow. We uncover the mechanism of
image-to-text information flow at the levels of attention heads (§4) and individual tokens (§5).

In light of these challenges, this paper conducts a series of experiments to uncover the fine-grained37

mechanisms underlying visual question answering in LVLMs. Specifically, we seek to identify the38

critical attention heads responsible for the image-to-text information flow. Once identified, we analyze39

how these attention heads mediate the transfer of image information by tracing the visual tokens40

where the information originates and the language tokens that receive it. To achieve this analysis, we41

focus on the visual object identification task, where the model is asked to identify the main object in42

a given image.43

First, we show that simply ablating single attention heads (Figure 1A), as done in LLMs [12], is44

insufficient to identify the key attention heads responsible for image-to-text information flow. This is45

because the information flow is distributed across multiple heads, making it challenging to isolate a46

single responsible component.47

Therefore, we utilize a systematic approach to quantify the contributions of multiple attention heads48

to the information flow: head attribution (Figure 1B), an adapted version of component attribution49

from [13]. In this method, we systematically ablate multiple attention heads and use linear regression50

to estimate each head’s contribution to the final logits. The resulting regression model provides a51

precise estimation of each head’s impact on the final logits. Furthermore, since LVLMs may rely on52

multiple attention heads for image-to-text information flow, head attribution offers a comprehensive53

explanation of which attention heads are crucial for visual object identification.54

Head attribution provides a unique lens into the behavior of LVLMs, revealing how they transfer55

image-to-text information. By analyzing the regression coefficients derived from head attribution, we56

investigate how attention heads are leveraged for this information flow. Our key findings are as follows.57

First, attention heads in mid-to-late layers play a pivotal role in transferring image information to58

text tokens, with a select few heads agonistically utilized across different samples. Second, the59

contribution of each head is not necessarily correlated with its image attention weights, challenging60

the common assumption that heads with high attention weights are inherently more important. Lastly,61

LVLMs employ a similar set of attention heads to process semantically similar objects, suggesting62

that the model systematically processes objects based on their semantic meanings.63

To gain finer-grained insight into the image-to-text information flow, we extend the approach described64

above to the individual token level. This token-level analysis reveals that the semantics of the question65

propagate to the role tokens (e.g., “ASSISTANT”) and the final token (“:”), after which image66

information is transferred to these tokens. We also observe that only a subset of tokens in the object67

region, along with a few background tokens, contribute to the final prediction. While attention weights68

correlate with token importance to some extent—explaining the success of recent token reduction69

methods [14, 15]—many high-attention tokens are not necessary for the information flow. This70
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finding suggests that further token reduction in LVLMs could be achieved by quantifying each token’s71

importance through methods that go beyond attention-based metrics.72

In summary, our main contributions are as follows: (1) We provide a holistic understanding of how73

the image-to-text information flow operates in LVLMs (Figure 1C), studied at the levels of attention74

heads (§4) and individual tokens (§5). We validate the generalizability of our findings across ten75

different LVLMs. (2) We demonstrate that head attribution serve as effective methods for explaining76

the information flow (§4.1, 4.2), offering a novel perspective to identify the mechanisms behind77

LVLMs. (3) We discuss the broader implications of our findings for mechanistic interpretability and78

the development of efficient LVLMs (§6).79

2 Related Works80

Mechanistic Interpretability. Mechanistic interpretability (MI) is an emerging research field dedi-81

cated to interpret the inner workings of neural networks by reverse-engineering their computations82

into human-interpretable mechanisms [16]. MI employs various techniques to analyze model internals83

and understand their decision-making processes [17]. In this section, we briefly review two techniques84

closely related to our work: causal intervention and component attribution.85

Causal Intervention. Causal intervention [18] treats the neural network as a causal model [19] and86

intervenes in the computation of a model component to observe its effect on the prediction. Attention87

knockout [12] can be considered a specialized causal intervention technique for attention mechanisms,88

where the attention weight from a source of interest to target is set to baseline representations (e.g.,89

zero ablation) to block the information flow.90

Component Attribution. Beyond estimating the effect of individual model components through91

individual ablation, component attribution [13] estimates the contributions of multiple components in92

a more systematic way. Specifically, component attribution ablates subsets of components repeatedly93

and estimates the contribution of each component via a linear model. We adapt this method for the94

attention heads of LVLMs, referred to as head attribution. Furthermore, while the original work95

focused on model editing, we repurpose this method to analyze the inner workings of LVLMs by96

examining the contribution of each head.97

Interpreting Large Vision-Language Models. Parallel to the growing interest in interpretability98

for language models [20], interpreting the inner workings of LVLMs has become a recent focus99

of research [21]. In particular, the image-to-text information flow, which enables the model to100

generate text from images, has been widely studied. [11] found that image tokens can be projected101

onto their language vocabulary, and [22] proposed visual information enrichment and semantic102

refinement as two stages of visual information processing. [9] showed that transferring information103

from object tokens to the final output in mid-to-late layers is necessary for generating text. [10]104

complemented this finding by revealing that image information is conveyed to the final output through105

the language context. On the other hand, although not directly focused on interpretability, studies106

on efficient inference also provide insights into the mechanisms of LVLMs. For example, [14] and107

[15] demonstrated that preserving only image tokens with high attention weights is sufficient for108

maintaining performance, which suggests that many tokens are redundant in generating outputs. By109

integrating and clarifying these findings with our experiments, we provide a holistic understanding of110

image-to-text information flow and its implications for the interpretability and efficiency of LVLMs.111

3 Experimental Setup112

To systematically examine the mechanism of image-to-text information flow in LVLMs, we introduce113

a minimal yet natural task, a carefully selected dataset, and a diverse set of models.114

Task. This paper seeks to understand the mechanism by which image information is transferred to115

text tokens and contributes to the final prediction in visual question answering. As a minimal yet116

natural task within visual question answering, we focus on the visual object identification task, in117

which the model is required to identify the main object in an image. We choose this task because118

it is a fundamental visual recognition task and is widely used to evaluate the visual capabilities119

of LVLMs [23, 24]. Specifically, the task is defined as follows: “USER: <image> What is the120

main object in the image? Please answer with a single word. ASSISTANT:”. After the role tokens121
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“ASSISTANT” and the final token “:”, the model is expected to generate a concise response (e.g.,122

“dog”) based solely on the image. For the ablation studies, we also consider alternative prompts that123

perform the same task, in order to examine whether LVLMs utilize attention heads based on the124

general meaning of the task or whether they are sensitive to the specific wording of the prompt. Please125

refer to §C for the alternative prompts we consider.126

This experimental design offers several advantages for analysis. First, the task is simple and straight-127

forward, allowing us to focus on the mechanism of image-to-text information flow without the128

distractions of complex elements such as multi-step reasoning. Second, because the prompt is open-129

ended and the answer cannot be inferred from it, the model is required to generate its response130

directly from the image. This minimizes potential biases introduced by the prompt and eliminates the131

possibility of random guessing [25]. Third, we can directly measure the logits due to the single-word132

answer constraint. Since logits are known to be the most direct indicator of model behavior [26], this133

design enables a detailed analysis of the model’s decision-making process.134

Dataset. For image data, we select images containing a single main object from the COCO dataset [27]135

to ensure the task is well-defined and unambiguous. The model is tasked with predicting the object136

in each image, and we collect 200 samples with correct predictions. For ablation studies, We also137

conduct experiments on the DomainNet dataset [28], which includes diverse images spanning multiple138

domains (styles). Specifically, we select 300 images from the real, sketch, and clipart domains.139

Models. To examine the universality and consistency of our findings across different models, we select140

ten widely used LVLMs from four families: LLaVA-1.5-7B/13B [29], LLaVA-NeXT-7B/13B [30],141

InternVL2.5-1B/2B/4B/8B [31], and Qwen2-VL-2B/7B [32]. These models differ in architecture,142

parameter size, and training scheme, enabling us to assess the generalizability of our findings. In the143

main paper, we visualize the results from LLaVA-1.5-7B for brevity, with additional results for other144

models in §D.145

4 Identifying Attention Heads Contributing to Image-to-Text Information146

Flow147

In this section, we identify the attention heads that play a crucial role in the image-to-text information148

flow within LVLMs. We begin by showing that single attention head ablation is insufficient to149

identify important attention heads. Then, we introduce head attribution as a method to measure the150

contributions of individual attention heads to the final logits (§4.1). We validate the head attribution151

method by assessing its faithfulness and completeness (§4.2). Finally, we analyze the results of152

head attribution to gain a deeper insight of how LVLMs leverage attention heads for the transfer of153

image-to-text information (§4.3).154

4.1 Measuring the Contributions of Attention Heads155

Image-to-text information flow can be interpreted as a retrieval process, where the text query retrieves156

image information from the image via the attention mechanism. At each attention head, the text query157

vector interacts with the key/value matrices of the image tokens to access image information.158

Attention Knockout (Single Head Ablation). To determine which attention heads are crucial for159

image-to-text information flow, we aim to measure the causal effect of each attention head on the160

final logits by ablating individual heads. Recent LVLM interpretability studies [9, 10, 33] commonly161

use attention knockout [12] to block the information flow. This method adds −∞ before softmax162

when calculating the attention weights, equivalent to setting the image attention weights and value163

matrices to zero. We follow this approach to disable the image-to-text information flow in individual164

heads. However, since zero is an arbitrary value that does not reflect the actual distribution of the165

image tokens, this approach risks introducing undesired out-of-distribution noise [5, 34]. Instead, we166

apply mean ablation to block the information flow from the image tokens to the text query. See §A167

for more details.168

Single Head Ablation is Insufficient. We ablate each attention head individually and evaluate the169

logit difference between the patched and original models. Given the evidence suggesting that attention170

heads have specialized roles [35], we anticipate the logit difference to be significant if an attention171

head plays an important role in image-to-text information flow. However, the results show that the172
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Figure 2: Example result of head attribution for LLaVA-1.5-7B. (Left) Scatter plot of the ground-truth
logit π(x) and the predicted logit π̂(x). The contribution of each attention head is well-captured by
head attribution. (Right) Attribution coefficients θ for each attention head. Each coefficient represents
the contribution of the corresponding head to the prediction.

logit difference is not substantial. For instance, in LLaVA-1.5-7B, no head accounts for more than173

5% of the logit difference in 80% of the cases (see §C for examples).174

Based on this observation, we hypothesize that image-to-text information flow is a distributed process175

involving multiple attention heads, similar to the retrieval process in LLMs [36]. In this context,176

quantifying the importance of each attention head by knocking out a single head, which is a common177

practice in language models [5, 7], may be unreliable, as other heads could compensate for the178

disabled head through self-repair mechanisms [37, 38].179

Method: Head Attribution. To capture the distributed nature of the image-to-text information flow,180

we apply head attribution to groups of heads simultaneously rather than isolating individual attention181

heads, mitigating the interactions between attention heads. After repeatedly collecting logits from the182

patched models, we leverage component attribution [13] to estimate each attention head’s contribution183

to the image-to-text information flow.184

Specifically, let x ∈ {0, 1}LH represent a binary vector where each element indicates whether the185

corresponding attention head is intact (1) or ablated (0), with L denoting the number of layers and H186

the number of heads per layer. The final logit, denoted as π(x), is adjusted by subtracting the average187

logits over all possible vocabularies [26] and is then normalized to the range [0, 1] by setting π(0) to188

0 and π(1) to 1. We estimate the logits by fitting a linear regression model:189

π̂(x) = x⊤θ + b, (1)
where θ ∈ RLH and b ∈ R are the learned parameters. The attribution coefficients θ are interpreted as190

the contributions of each attention head to the final logits. We refer to this method as head attribution.191

For more technical details, please refer to §A.192

Results. Surprisingly, head attribution can accurately predict the final logit based on which attention193

heads are intact. Figure 2 shows an example of the head attribution results and attribution coeffi-194

cients θ for each attention head. The linear model explains the final logit with high accuracy, and195

the coefficients θ reveal that multiple attention heads contribute to the image-to-text information196

flow. Quantitatively, the average explained variance (R2) exceeds 0.77, and the Pearson correlation197

coefficient (ρ) between π(x) and π̂(x) exceeds 0.88 for all models (see §D for detailed results).198

These results indicate that the contribution of each attention head is accurately estimated using head199

attribution.200

4.2 Validating Head Attribution201

Metrics. If the head attribution method is valid, the coefficients θ should not only fit well but also202

reflect the importance of each attention head in the image-to-text information flow. Following [3, 5],203

we validate its faithfulness and completeness by evaluating the causal effect. Starting with all heads204

ablated, we progressively activate the attention heads from the most to the least important based on205

the coefficients θ. Faithfulness, defined as π(x), measures the extent to which the selected heads206

explain the model’s actual performance. Completeness, defined as π(1− x), evaluates whether the207

selected heads capture all the essential heads. In other words, if other heads can compensate for the208

selected heads, the method’s completeness is compromised. The ideal faithfulness (i.e., the model’s209

actual performance) is π(1) = 1, and the ideal completeness is π(1− 1) = 0.210
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Figure 3: (A) The minimum number of heads required for faithfulness > 0.8 (Left) and completeness
< 0.2 (Right) for each criterion. Head attribution is abbreviated as HeAr. (B) The trend of the
minimum number of heads by head attribution across various models. (C) The portion of samples
requiring a given head for faithfulness > 0.8. (D) Scatter plot showing the relationship between
attribution coefficients θ and image attention weights. The color indicates relative layer depth. (E)
t-SNE visualization of attribution coefficients θ. Each point represents a sample. These plots are for
LLaVA-1.5-7B, and the results for other models can be found in §D.

Baselines. We compare the number of heads required to achieve the same level of faithfulness and211

completeness across three other methods: (1) Random: Heads are selected randomly. (2) Attention:212

The heads with the highest image attention weights1 are selected [22, 39], which are frequently213

presumed to transfer image information to the text query. (3) Causal: The heads with the highest logit214

difference between the head-ablated and original models are selected (§4.1). If the head attribution215

method requires fewer heads to achieve the same level of faithfulness and completeness, it suggests216

that the method more effectively explains the importance of each attention head. In practice, we217

measure the minimum number of heads required for faithfulness > 0.8 and completeness < 0.2 (refer218

to §B for the ablation study on the threshold).219

Results. Figure 3A shows the results of the validation. Head attribution (HeAr) requires the fewest220

heads to achieve the same faithfulness and completeness compared to other methods. Therefore, we221

conclude that the head attribution method is valid for measuring the importance of each attention222

head in image-to-text information flow.223

An intriguing finding from the validation is that the number of heads required to achieve the same224

level of completeness is significantly larger than that required for faithfulness. This trend becomes225

more pronounced as the model size increases (Figure 3B). Since completeness measures whether the226

selected heads capture all heads contributing to the final logits, this result suggests that the model227

may use redundant attention heads [40] to ensure robustness in the image-to-text information flow.228

Furthermore, as the model size increases, the number of redundant heads also increases, likely due to229

the growing complexity of the model.230

4.3 Interpreting the Behavior of LVLMs with Head Attribution231

In this section, we analyze the head attribution results to gain deeper insights into how LVLMs232

utilize attention heads for image-to-text information flow. First, we investigate the distribution of233

important attention heads within the model architecture. Second, we examine whether the importance234

of the attention heads correlates with the image attention weights to assess whether these weights are235

reliable indicators of head importance. Finally, we cluster attribution coefficients θ across different236

samples to identify common patterns in the attention heads.237

1To calculate image attention weights, the sum of the image attention weights for each text token is averaged
across all text tokens. See §A for more details.
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Distribution of Important Attention Heads. We visualize the importance of each attention head in238

the model architecture by counting how many samples rely on a given head to achieve a faithfulness239

score greater than 0.8 (Figure 3C). Although this varies across models, important heads are generally240

located in the middle to later layers, in line with the findings of [9, 22]. Additionally, some heads are241

consistently important across different samples, while others are only sparsely important, suggesting242

that LVLMs employ both sample-agnostic and sample-specific attention heads.243

Relation to Image Attention Weights. We examine the correlation between attribution coefficients244

θ and the image attention weights. As shown in Figure 3D, no significant correlation is observed,245

indicating that the importance of the attention heads is not directly related to the image attention246

weights. Therefore, we conclude that image attention weights may not be reliable indicators of the247

importance of attention heads in image-to-text information flow. We further discuss this in §6. In248

particular, in the LLaVA family, early-layer heads exhibit high attention weights but are not important.249

While early-layer heads are known to integrate syntactic information in text [41], we suspect that250

they are less meaningful in the context of images, where encoding is already effectively handled by251

the vision encoder.252

Systematic Patterns of Attention Heads. We apply t-SNE [42] to cluster attribution coefficients θ253

across different samples (Figure 3E). The clustering pattern reveals that LVLMs tend to utilize similar254

attention heads when processing the same object, even though the size and position of the object255

can vary significantly across samples. Moreover, objects with similar semantic meanings (classified256

by super-categories from COCO [27]) are typically clustered together. Additionally, We apply the257

logit lens [43] to the top attention heads ranked by attribution coefficients θ, and visualize the top258

vocabulary items (see §C for examples). We find that some heads are clearly associated with the final259

answer, indicating that attention heads transfer interpretable semantic information. Overall, These260

findings suggest that LVLMs systematically allocate attention heads to process objects based on their261

semantics.262

Ablation Studies. In LLaVA-1.5-7B, we further conduct two ablation studies to validate the gener-263

alizability of our findings. First, we reproduce head attribution using nine additional prompts that264

perform the visual object identification task, to verify that the observed attention head patterns are not265

prompt-specific. We find that the cosine similarity between attribution coefficients θ across different266

prompts is consistently high (averaging at least 0.91), indicating that the identified patterns are robust267

to changes in prompt wording. Second, we apply head attribution to images with diverse visual styles268

(e.g., real, sketch, and clipart) [28] and observe similarly consistent attention head patterns across269

styles. These results suggest that the systematic allocation of attention heads is not tied to particular270

prompts or image styles, but instead reflects a generalizable pattern in LVLMs.271

5 Tracing Image-to-Text Information Flow: Token-Level Analysis272

In §4, we identified attention heads that contribute to the image-to-text information flow by applying273

head attribution. However, this does not provide a complete picture of the information flow. Attention274

heads transfer information from the source token to the target token. While we know that the source275

tokens belong to the image and the target tokens belong to the text, the exact positions from which276

and to which the information flows remain uncertain. To address this, we perform token-level analysis277

to gain a deeper understanding of the role of these attention heads. Specifically, we identify the text278

tokens that receive image information (§5.1), and then examine the image tokens that contribute to279

the information flow (§5.2).280

5.1 Which Text Tokens Receive the Image Information?281

Method. Our text input, “What is the main object in the image? Please answer with a single word.282

ASSISTANT:” consists of approximately 20 tokens. Given that information transfer is known to occur283

only for specific tokens [5, 44], we hypothesize that a small number of text tokens play a critical role284

in this process. To identify the text tokens that receive image information, we measure the causal285

effect of blocking each text token on the image-to-text information flow through head ablation. A286

significant drop in the logit indicates that the blocked text token receives image information. Note287

that we retain only the minimum number of attention heads required for faithfulness π(x∗) > 0.8,288

which are the most important attention heads for the image-to-text information flow. We then measure289

the logit difference relative to π(x∗), as we are interested in the function of attention heads that290

significantly contribute to the image-to-text information flow.291
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Figure 4: (A) Logit difference relative to π(x∗) when blocking each text token. (B) Image, attribution
coefficients θ, and image attention weights. Red boxes highlight high-contribution tokens outside the
main object region. (C) Scatter plot of attribution coefficients and image attention weights. These
plots are for LLaVA-1.5-7B, and the results for other models can be found in §D.

Results. As shown in Figure 4A, the logit difference is substantial when we block the role tokens292

“ASSISTANT” or the final token before generation “:”. The causal effect is highest when we block the293

final token, but the role tokens also have a significant effect. We validate this result by measuring294

how much of the logit is preserved when we retain only the role tokens and the final token2. In295

LLaVA-1.5-7B, 97.7 ± 1.8% of the logit is preserved relative to π(x∗), indicating that the role296

tokens and the final token are critical for maintaining the image-to-text information flow. This result297

clearly explains why blocking only the final token cannot perfectly restrict the information flow [9],298

and identifies which text tokens are precisely responsible for the image-to-text information flow,299

complementing the findings of [10].300

It is quite surprising that no significant information is transferred to the question tokens (“What is301

the main object in the image?”). Since the question tokens contain the most important semantics302

for completing the task, it is natural to expect the image information to flow to them preferentially.303

However, the image information only flows to the role tokens and the final token directly. This result304

suggests that the model first transfers the semantics of the question to the role tokens and the final305

token, and then certain attention heads direct the image information to these tokens in response to the306

question semantics embedded within them.307

5.2 Which Image Tokens Contribute to the Flow?308

Method. After identifying the text tokens that receive the image information, the next step is to309

determine which image tokens contribute to the information flow. Unlike text tokens, multiple image310

tokens may contribute, as object information is distributed across several image tokens [9, 11].311

Therefore, simply measuring the causal effect of blocking individual image tokens may not be312

sufficient to identify the key tokens. Instead, we apply component attribution [13] again, this time313

systematically ablating image tokens rather than attention heads to quantify each image token’s314

contribution to the image-to-text information flow. We focus on LLaVA models for this analysis, as315

their image encoders preserve the spatial information of the image.316

Results. We qualitatively visualize the attribution coefficients θ for the image tokens in the second317

column of Figure 4B. By comparing the coefficient with the image, we find that most important318

image tokens are located in the main object region, which aligns with the findings of [9]. However,319

the coefficient reveals two important insights not addressed in previous studies. First, the model320

does not utilize all tokens in the main object region; rather, only a sparse subset contributes to the321

information flow. Second, the model also uses tokens outside the main object region, such as those322

from the background, to transfer information (highlighted in red boxes in Figure 4B). This seemingly323

counterintuitive phenomenon may occur because the vision encoder [45] tends to capture global324

information in tokens unrelated to the main object [46, 47], or because LVLMs treat background325

tokens as anchor tokens, which language models use to store information [48]. A more detailed326

analysis of this phenomenon is left for future work.327

2More precisely, for example, in LLaVA-1.5-7B, “ASSISTANT:” is split into five tokens A / SS / IST / ANT /
:”. Since only the first, third, and final tokens have a high causal effect, we retain only these three tokens.
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We then compare the attribution coefficients θ with the attention weights of the image tokens3 (the328

3rd column of Figure 4B) to validate whether attention weights can serve as surrogate indicators of329

the importance of image tokens. In many cases, the attention weights include image tokens with high330

attribution coefficients. We also visualize the relationship between the attribution coefficients and331

the attention weights in Figure 4C. Though the trend is not perfect, the attention weights correlate332

with the attribution coefficients to some extent (Pearson correlation (ρ) is 0.70 for LLaVA-1.5-7B).333

This result explains why recent token reduction methods based on attention weights [14, 15] can be334

effective.335

However, as shown in Figure 4B, many image tokens with high attention weights are not important336

for the information flow. This result can be explained by (1) attention sink tokens [49, 50], which are337

tokens that receive high attention weights but are uninformative, and (2) the fact that some visual338

tokens contain information but are not useful for predicting the object’s name [51, 52]. Thus, while339

retaining tokens with high attention weights could be enough to maintain the information flow, it is340

essential to be mindful that not all high-attention tokens are necessarily significant.341

6 Conclusion and Discussion342

Through §4, 5, we have shown that head attribution can effectively identify the important heads343

and tokens for image-to-text information flow. As a result, we now have a holistic understanding344

of how LVLMs achieve visual object identification task (Figure 1C). The process of understanding345

this simple task provides several insights, including the implications for mechanistic interpretability346

(MI) and efficient LVLMs. In this section, we discuss these implications and conclude the paper with347

limitation and future work.348

Implications for MI. Interpreting individual attention heads relies on the assumption that some349

attention heads are monosemantic [53] (or that the function we aim to understand is localized in a350

few heads). However, as demonstrated in this work, many attention heads systematically collaborate351

to process information. This observation aligns with the concept of attention head superposition [54],352

where the model leverages multiple heads, rather than a single head, as an adaptive mechanism for353

utilizing its limited parameter capacity. In such cases, head attribution offers a promising approach354

for interpreting distributed mechanisms, as intervening in a single head alone may not fully capture355

the underlying dynamics.356

Especially for interpretability research in LVLMs, our work provides, to the best of our knowledge,357

the first example of interpretability in individual component-level and pixel-level analysis beyond358

merely investigating attention weights. Our findings demonstrate that image attention weight is not a359

reliable indicator of head importance (§4.3), despite its widespread use in prior works [22, 39, 55].360

Hence, we encourage the LVLM interpretability community to critically assess the limitations of361

attention weight-based analyses and to explore alternative approaches for understanding information362

flow in LVLMs.363

Implications for Efficient LVLMs. The computational cost of LVLMs is considerably high due to364

the large number of image tokens, emphasizing the need for more efficient models. Recent works365

have introduced strategies to reduce the number of image tokens based on attention weights [56, 57].366

We provide empirical evidence for why these approaches succeed in reducing token count without367

sacrificing performance, demonstrating a correlation between attention weights and attribution368

coefficients (§5.2). However, we also show that not all tokens with high attention weights are369

important. Therefore, we argue that attention-based token selection alone is insufficient, and greater370

efficiency can be achieved by assessing token importance beyond simple attention weights.371

Limitation and Future Work. While our work provides a holistic understanding of image-to-372

text information flow in LVLMs, several limitations remain. First, our focus is on visual object373

identification, and the generalization of our findings to other tasks, such as reasoning and localization,374

is uncertain. A comparative analysis across tasks would deepen our understanding of how LVLMs375

handle different multimodal tasks. Seconds, head attribution requires multiple forward passes, making376

it computationally expensive. Developing scalable methods for head attribution is an important377

direction for efficient and practical interpretability [58, 59].378

3We calculate the weighted attention map for each sample. See §A for more details.
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A Method Details564

Through §4 and 5, we have introduced head attribution to analyze the information flow in LVLMs.565

We offer additional details on the background of LVLMs (§A.1), the methods (§A.2, A.3), and566

miscellaneous details of the experiments (§A.4).567

A.1 Background568

In this section, we provide a brief overview of the architecture of Large Vision-Language Models569

(LVLMs) and the attention mechanism employed in these models to contextualize the proposed570

method.571

LVLMs typically process an input image and a text prompt to generate a sequence of text tokens572

as output. The input image is initially passed through a vision encoder, such as those described573

in [45, 60], to produce a visual representation. This representation is then projected into a shared574

embedding space aligned with the text input. Concurrently, the text input is tokenized and embedded575

to generate a sequence of text embeddings. Both the visual and text embeddings are fed into a large576

language model, which is generally implemented as a decoder-only transformer [61].577

Let Z0
img ∈ RPimg×d denote the visual embeddings and Z0

txt ∈ RPtxt×d denote the text embeddings,578

where Pimg and Ptxt represent the number of visual and text embeddings, respectively, and d is579

the embedding dimension. These embeddings are concatenated as Z0 = [Z0
img;Z

0
txt] and passed580

through a decoder-only transformer to generate the output sequence of text tokens. The decoder-581

only transformer consists of L layers, each comprising a multi-head attention (MHA) mechanism582

followed by a feed-forward neural network (FFN). For intermediate representations, we define583

Zℓ−1 = [Zℓ−1
img ;Zℓ−1

txt ] as the input to the ℓ-th layer.584

Following the framework proposed by [62], we adopt the residual stream perspective to interpret585

computations within the transformer. This perspective treats the transformer’s computation as a586

sequence of residual updates, where intermediate representations are iteratively refined by adding the587

outputs of the MHA and FFN layers to their inputs:588

Ẑ
ℓ
= Zℓ−1 +

H∑
h=1

MHAℓ,h(Zℓ−1), Zℓ = Ẑ
ℓ
+ FFNℓ(Ẑ

ℓ
), (2)

where Ẑ
ℓ

represents the output of the MHA layer, Zℓ is the output of the FFN layer, and H denotes589

the number of attention heads per layer. For simplicity, layer normalization [63, 64] is omitted. Finally,590

the raw logits are computed via a linear projection of the output of the final layer’s text embeddings591

zL
txt using an unembedding matrix WU ∈ Rd×|V|, where |V| represents the vocabulary size:592

logits = zL
txtWU ∈ R|V|. (3)

We always measure the adjusted logits, obtained by subtracting the average logits across the vocabu-593

lary from the raw logits, as recommended by [26].594

We focus on the attention mechanism, which facilitates information flow within the model. The MHA595

mechanism calculates the attention weights Aℓ,h between the input embeddings Zℓ−1 as follows:596

Aℓ,h = softmax

(
Qℓ,h(Kℓ,h)⊤√

dk
+M

)
∈ R(Pimg+Ptxt)×(Pimg+Ptxt), (4)

where Qℓ,h = Zℓ−1W ℓ,h
Q ∈ R(Pimg+Ptxt)×dk and Kℓ,h = Zℓ−1W ℓ,h

K ∈ R(Pimg+Ptxt)×dk represent597

the query and key matrices, respectively. Here, dk denotes the dimension of the query and key vectors,598

and M is a mask matrix that prevents attention to future tokens in the sequence, typically by assigning599

−∞ to the upper triangular part of the matrix. The attention weights are then used to compute the600

MHA layer’s output:601

MHAℓ,h(Zℓ−1) = Aℓ,hV ℓ,hW ℓ,h
O ∈ R(Pimg+Ptxt)×d, (5)

where V ℓ,h = Zℓ−1W ℓ,h
V ∈ R(Pimg+Ptxt)×dk is the value matrix, and W ℓ,h

O ∈ Rdk×d is the output602

weight matrix.603
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As discussed in Section 4.1, image-to-text information flow can be understood as a retrieval process.604

Consider an arbitrary text token zℓ−1
i ∈ Rd at the ℓ-th layer, which is a row vector from the text605

matrix Zℓ−1
txt ∈ RPtxt×d. This text token is converted into a query vector qℓ,h

i ∈ Rdk by multiplying it606

with the query weight matrix W ℓ,h
Q ∈ Rd×dk . The query vector qℓ,h

i interacts with the key and value607

matrices of the image tokens Kℓ,h
img and V ℓ,h

img to retrieve relevant information. Using Equation (4),608

(5), the attention weights and the MHA output for qℓ,h
i are computed as:609

aℓ,h
i = softmax

(
qℓ,h
i [Kℓ,h

img;K
ℓ,h
txt ]

⊤
√
dk

+m

)
∈ RPimg+Ptxt , (6)

610

MHAℓ,h(zℓ−1
i ) = aℓ,h

i [V ℓ,h
img;V

ℓ,h
txt ]W

ℓ,h
O ∈ Rd. (7)

Intuitively, the attention weights aℓ,h
i represent the relevance of other tokens to the text token zℓ−1

i ,611

and the MHA layer’s output is computed as a weighted sum of these tokens, with the attention weights612

serving as the coefficients.613

A.2 Head Ablation614

In this section, we formally explain the concept of head ablation utilized in §4.1.615

Attention knockout, or head ablation [12] is a widely used method for analyzing information flow in616

attention mechanisms. In the context of LVLMs, it is specifically employed to measure image-to-text617

information flow [9, 10, 33]. The method involves setting the attention weights between image and618

text tokens to baseline values and observing the resulting effect on the model’s performance. Head619

ablation replaces the image key and value matrices with averaged values from other images.620

Specifically, we collect the key and value matrices of image tokens from 100 images in the COCO [27]621

dataset and compute the average key matrices Kℓ,h
img, avg and value matrices V ℓ,h

img, avg. The image key622

and value matrices in the attention mechanism are then replaced as follows:623

Kℓ,h
img ←Kℓ,h

img, avg, V ℓ,h
img ← V ℓ,h

img, avg. (8)

Finally, the attention weights and the MHA layer’s output are recomputed using Equation (6), (7). By624

substituting the image key and value matrices with their average values, head ablation effectively625

eliminates information flow while preserving the natural attention distribution of the model.626

A.3 Head Attribution627

In this section, we provide more details on the head attribution method introduced in §4.1.628

Let x ∈ {0, 1}LH denote a binary vector, where L is the number of layers and H is the number of629

attention heads per layer. An element xn of x is set to 1 if the n-th attention head4 is intact, and 0 if630

it is ablated. For each sample, we ablate p = 75% of the attention heads in the model5 M = 10, 000631

times to obtain D = {(x(1), π(x(1))), . . . , (x(M), π(x(M)))}, where π(x) denotes the normalized632

logit as described in §4.1. The obtained dataset D is then split into two subsets: Dtrain and Dtest,633

containing 80% and 20% of the samples, respectively.634

We train a linear regression model π̂(x) = x⊤θ + b on Dtrain to predict the normalized logit π(x)635

from the binary vector x. The model is trained with elastic net regularization [65], implemented using636

Scikit-learn [66]. Specifically, our hyperparameters are set as follows:637

ElasticNet(alpha = 0.0005, l1_ratio = 0.5, max_iter = 1000). (9)

The result of linear regression is evaluated on Dtest using the explained variance (R2) and the Pearson638

correlation coefficient (ρ) between the predicted logits π̂(x) and the true logits π(x), following [13].639

4The attention heads are indexed in row-major order; that is, the first H elements correspond to the attention
heads of the first layer, the next H elements correspond to those of the second layer, and so on. In other
words, h-th attention head of the ℓ-th layer is indexed as n = ℓ ×H + h, where ℓ ∈ {0, 1, . . . , L − 1} and
h ∈ {0, 1, . . . , H − 1}.

5See §B.2 for the ablation study on the ablation ratio p.
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A.4 Miscellaneous Details640

To enhance reproducibility and clarity, we provide further details on the experiments described in §4641

and 5.642

Model Details on Head Ablation Applied to Individual Attention Heads (§4.1). Let x¬n denote a643

binary vector in which the n-th attention head is ablated (i.e., xn = 0, while all other elements of644

x¬n are set to 1). The logit difference is then computed as ∆πn = 1− π(x¬n).645

Image Attention Weights for Each Attention Head (§4.2 and 4.3). We calculate image attention646

weights for each attention head and use them as a criterion to select the most important attention647

heads in Figure 3A. These weights are then compared with attribution coefficients in Figure 3D. The648

image attention weights are determined by averaging the attention weights of image tokens across649

text tokens. Specifically, given the attention weights Aℓ,h ∈ R(Pimg+Ptxt)×(Pimg+Ptxt) from Equation (4),650

the image attention weight for each head is computed as follows:651

Image Attention Weight =

∑Pimg+Ptxt
i=Pimg+1

∑Pimg
j=1 a

ℓ,h
i,j

Ptxt
, (10)

where aℓ,hi,j represents the element of Aℓ,h at the i-th row and j-th column. Similar methods for652

calculating attention weights per head or per layer have been employed in various studies [10, 22, 33,653

39, 55, 67, 68].654

More Details on t-SNE Visualization (§4.3). For the t-SNE visualization in Figure 3E and 13, we655

collect additional samples from the COCO dataset to enhance the diversity of images for each object.656

Specifically, objects are included if LLaVA-1.5-7B generates at least 10 correct samples for them.657

From these, we randomly select up to 15 samples per object and repeat the head attribution process to658

compute attribution coefficients θ.659

More Details on Text Token Experiments (§5.1). The experiments described in §5 retain only660

the minimum number of attention heads required to maintain faithfulness above 0.8. This approach661

focuses on understanding the behavior of the most critical attention heads for image-to-text infor-662

mation flow. To formalize this, we define a binary vector x∗, where each element is set to 1 if the663

corresponding attention head is essential to ensure faithfulness > 0.8, and 0 otherwise.664

Since head ablation can be selectively applied to subsets of text or image tokens as explained in §A.2,665

we introduce binary vectors u ∈ {0, 1}Ptxt and v ∈ {0, 1}Pimg , where Ptxt and Pimg represent the total666

number of text and image tokens, respectively. Each element ui of u is set to 1 if the i-th text token667

remains intact, and 0 if it is ablated. Similarly, each element vj of v is set to 1 if the j-th image token668

remains intact, and 0 if it is ablated.669

The normalized logit, computed using only the attention heads required for faithfulness > 0.8670

(denoted as x∗), with intact text queries and image tokens, is denoted as π(x∗;u,v). When all text671

and image tokens are intact, π(x∗;1,1) simplifies to π(x∗), as defined in §4.672

In §5.1, we aim to measure the causal effect of blocking image information flow to individual text673

tokens. To achieve this, we define u¬i as a binary vector where the i-th text token is ablated (i.e.,674

only ui = 0, while all other elements of u¬i remain 1). The logit difference relative to π(x∗) is then675

computed as:676

∆πi = 1− π(x∗;u¬i,1)

π(x∗)
. (11)

If ∆πi > 0.05, we conclude that the i-th text token is important for image-to-text information flow.677

Once the important text tokens are identified, we further evaluate whether they alone are sufficient for678

recovering the information flow. To do this, we define a binary vector u∗, where u∗
i = 1 if ∆πi > 0.05679

and u∗
i = 0 otherwise. The corresponding logit relative to π(x∗), computed as π(x∗;u∗,1)/π(x∗),680

indicates the extent to which the important text tokens restore the information flow. If the logit is681

sufficiently high, we conclude that the identified important text tokens are adequate for preserving682

image-to-text information flow.683

More Details on Image Token Experiments (§5.2). In §5.2, we extend the head attribu-684

tion method to image tokens. Following a similar approach to §A.3, we ablate p = 75%685

of the image tokens in the model M = 10, 000 times to generate the dataset D =686
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Figure 5: The minimum number of heads required for each threshold of faithfulness (Top) and
completeness (Bottom) in LLaVA-1.5-7B. Related to Figure 3A.

{(v(1), π̃(x∗;u∗,v(1))), . . . , (v(M), π̃(x∗;u∗,v(M)))}, where π̃(x∗;u∗,v) denotes the normalized687

logit computed as:688

π̃(x∗;u∗,v) =
π(x∗;u∗,v)

π(x∗;u∗,1)
. (12)

We then train a linear regression model, π̂(x∗;u∗,v) = v⊤θ + b, to predict π(x∗;u∗,v) from the689

binary vector v. The model is trained using the same hyperparameters as described in §A.3.690

Weighted Image Attention Weights for Each Sample (§5.2). Since image attention weights691

are computed for each attention head, we calculate the weighted image attention weights as a692

representative value for each sample. Let An = Aℓ,h, where n = ℓ×H + h. The weighted image693

attention weights w ∈ RPimg are defined as:694

w =

LH−1∑
n=0

(x∗
n · θn)

Pimg+Ptxt∑
i=Pimg+1

{(u∗
i ·∆πi) · an

i [ : Pimg]}

 , (13)

where an
i represents the i-th row of An, θn is the n-th element of the attribution coefficients θ695

derived from head attribution, x∗
n is the n-th element of x∗, u∗

i is the i-th element of u∗, and ∆πi is696

the logit difference for the i-th text token (Equation (11)). Intuitively, the weighted image attention697

weights w consider the importance of each attention head and text token in determining the attention698

weights for image tokens. The weighted image attention weights w are reshaped into dimensions699 √
Pimg ×

√
Pimg to visualize the attention distribution in Figure 4B and to create joint distribution700

plots in Figure 4C.701

B Ablation Studies702

B.1 Ablation Study on Threshold for Validating Head Attribution703

In §4.2, we validate head attribution by counting the number of heads required to achieve faithfulness704

> 0.8 and completeness < 0.2. In this section, we conduct an ablation study to examine how705

different thresholds affect the number of heads needed to achieve various levels of faithfulness and706

completeness. Specifically, we vary the faithfulness threshold from 0.5 to 0.9 and the completeness707

threshold from 0.5 to 0.1.708

We present the number of heads required to achieve these faithfulness and completeness levels709

in Figure 5. As the faithfulness threshold increases and the completeness threshold decreases, the710
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Figure 6: The minimum number of heads for faithfulness > 0.8 (Left) and completeness < 0.2
(Right) for each ablation ratio p in LLaVA-1.5-7B. Related to Figure 3A.

number of required heads increases. Nevertheless, across all thresholds, the head attribution method711

consistently requires fewer heads to attain the same faithfulness and completeness levels.712

B.2 Ablation Study on Ablation Ratio of Head Attribution713

In the main paper, we set the ablation ratio p to 75% for the head attribution method. In this section,714

we conduct an ablation study to examine how different ablation ratios affect the results of the head715

attribution method. Specifically, we vary the ablation ratio from 12.5% to 87.5%.716

As shown in Figure 6, sufficiently high ablation ratios (> 50%) require fewer heads to achieve717

the same level of faithfulness and completeness. This result aligns with the motivation behind the718

head attribution method, which mitigates interactions between heads by ablating multiple heads719

simultaneously. Additionally, the results remain consistent across sufficiently high ablation ratios,720

indicating that the head attribution method operates robustly within a reasonable range of ablation721

ratios.722

C Additional Experiments723

C.1 Head Ablation on Individual Attention Heads724

As described in §4.1, we apply head ablation to each attention head individually. We then measure the725

logit difference ∆πn between the original and patched models for each head n (see §A.4 for technical726

details). As shown in Figure 7, the logit difference is not significant for most samples. These results727

suggest that image-to-text information flow is distributed across many attention heads rather than728

being concentrated in a single specialized head. Therefore, we introduce head attribution to more729

effectively measure each head’s contribution to image-to-text information flow.730

C.2 Logit Lens Analysis731

To further understand the role of attention heads in image-to-text information transfer, we apply732

logit lens [43] to the top 5 attention heads ranked by attribution coefficients θ and visualize the733

top 10 vocabulary items in Figure 8. We find that some heads are clearly associated with the final734

answer, while others are only weakly related or primarily encode background information. Although735

certain influential heads are not interpretable in the vocabulary space, the logit lens reveals that736

most top-ranked heads transfer semantically relevant information in text, rather than contributing in737

an uninterpretable way. This suggests that some degree of image-to-text transformation may have738

already occurred at the image token level, and the attention heads retrieve this partially converted739

information.740

C.3 Generalization of Attribution Coefficients Across Prompts741

In the main paper, we fix the prompt, “What is the main object in the image? Please answer with a742

single word.” and measure the attribution coefficients θ for each attention head. We also examine743
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Figure 7: Head ablation results for individual attention heads in LLaVA-1.5-7B. Each subfigure
presents the results of individual head ablation for a randomly selected image sample. The logit
difference ∆πn is not significant for most samples, suggesting that the image-to-text information
flow is distributed across multiple attention heads and individual head ablation does not provide a
consistent explanation for the model’s behavior (§C.1). Related to §4.1.
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Figure 8: Logit lens analysis on top-ranked attention heads, selected by attribution coefficients θ.
Top-ranked attention heads often transfer semantically meaningful information aligned with the final
textual output (§C.2).

Table 1: Cosine similarity of the attribution coefficients θ across different prompts. The consistency
of the attribution coefficients across prompts suggests that LVLMs utilize attention heads based on
the task rather than the specific wording of the prompt (§C.3).

Prompts Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Prompt 7 Prompt 8 Prompt 9

Similarity 0.97± 0.02 0.96± 0.03 0.97± 0.02 0.96± 0.02 0.91± 0.03 0.94± 0.02 0.94± 0.03 0.93± 0.04 0.94± 0.03

whether LVLMs utilize attention heads based on the meaning of the task or if they are sensitive744

to the wording of the prompt. To investigate this, we assess whether the attribution coefficients,745

which represent the contribution of each attention head to the image-to-text information flow, remain746

consistent across different prompts. If the attribution coefficients are stable across varying prompts, it747

suggests that LVLMs systematically rely on attention heads according to the task’s meaning rather748

than the specific wording of the prompt.749

We ask ChatGPT to generate nine different prompts, each with different wording but maintaining the750

same visual object identification task. The prompts are as follows:751

1. Identify the primary subject in this picture with a single word.752

2. Please specify the key item in this image using one word only.753

3. Please give me the main subject in this picture, stated in a single word.754

4. Provide a one-word term for the principal object depicted here.755

5. In one word, what is the primary focus of the photo?756

6. Name the primary element in the photo, limiting your answer to one word.757

7. Which single word best describes the main subject of this picture?758

8. Using a single word, name the object that stands out the most in this image.759

9. Offer the primary object’s name from the picture, restricted to a single word.760

We collect 40 samples for each prompt and measure the cosine similarity between the attribution761

coefficients obtained from the original prompt and those from each of the nine new prompts.762
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As shown in Table 1, the cosine similarity between the attribution coefficients from the original763

prompt and those from the nine new prompts is high, with an average similarity of 0.95. These results764

suggest that the attribution coefficients generalize across different prompts, indicating that LVLMs765

systematically utilize attention heads based on the task’s meaning rather than the precise wording of766

the prompt.767

C.4 Generalization of Attribution Coefficients Across Image Styles768

To further evaluate whether the model’s internal mechanisms generalize beyond natural images,769

we analyze its behavior under more challenging domain shifts. While Figure 3E demonstrates that770

semantically similar natural images elicit consistent attention head usage patterns, all tested inputs771

were restricted to natural images. Here, we extend the analysis to the DomainNet dataset [28], which772

contains images from diverse visual domains, including real, sketch, and clipart styles. This setting773

enables a more rigorous test of the model’s robustness and invariance to domain-specific variations.774

We randomly sample 300 images across the three domains (see Figure 9D for examples), and apply775

our head attribution method to examine whether semantically equivalent images still activate similar776

attention head patterns.777

First, we confirm that the proposed head attribution method maintains high faithfulness and complete-778

ness compared to the Attention and Causal baselines (Figure 9A), in line with the results in Section779

4.2. Figure 9B and C replicate the analyses of Figure 3C and D, showing that head attribution patterns780

remain consistent across different domains. This consistency suggests that the model’s attention heads781

are not tailored to specific visual domains but rather capture domain-invariant semantic structures.782

Finally, Figure 9E illustrates that attention head usage patterns cluster similarly across styles, as783

observed previously in natural image domains. This further supports the conclusion that the model784

generalizes well across domains and that its internal mechanisms reflect semantic content rather than785

superficial style.786

Overall, these results demonstrate that our finding extends beyond natural images and remains787

effective across diverse visual domains, validating its generalizability in broader settings.788

C.5 Attribution Coefficients of Individual Attention Heads789

To gain a deeper understanding of individual attention heads, we concatenate the attribution coeffi-790

cients θn of each head n across all samples used in Figure 3E and define this as a head vector hn. We791

then visualize the head vectors of attention heads with θn > 0.1 in at least one sample in Figure 10.792

To identify patterns among attention heads, we apply hierarchical clustering to the head vectors,793

grouping similar attention heads together. The results are interpreted as follows.794

First, the head vectors form two major clusters. The first cluster consists of attention heads that are795

consistently utilized across samples (sample-agnostic heads), while the second cluster comprises796

heads that are used in a sample-specific manner (sample-specific heads). This finding aligns with the797

observation in Figure 3C, indicating that LVLMs leverage both sample-agnostic and sample-specific798

attention heads to process image-to-text information flow.799

Second, the head vector patterns remain consistent within the same object category or super-category.800

In other words, different images containing the same object tend to activate the same attention heads.801

This observation further supports the results in Figure 3E, demonstrating that LVLMs utilize attention802

heads based on the semantics of the input image.803

D Additional Results for Other Models804

In this section, we provide additional results for other models.805

In §4.1, we fit a linear regression model to estimate the final logit based on which attention heads806

remain intact. We report the quantitative results of the regression model, including the explained807

variance (R2) and the Pearson correlation coefficient (ρ), in Table 2. High R2 and ρ values indicate808

that the contribution of attention heads to the final logit is well captured by the linear regression809

model.810
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Figure 9: DomainNet experiment. Despite large variations in image style, attention head patterns
remain consistent across domains when the semantic content is preserved (§C.4).
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Figure 10: Visualization of the head vectors hn of attention heads with θn > 0.1 in at least one
sample in LLaVA-1.5-7B. The head vectors are hierarchically clustered. The x-axis represents each
sample, and the y-axis represents each attention head. See §C.5 for the interpretation.
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In §4.2, we validate the head attribution method by comparing the number of heads required to achieve811

the same level of faithfulness and completeness across three other methods: Random, Attention, and812

Causal. We report the full results in Figure 11. The head attribution method consistently requires fewer813

heads to achieve the same level of faithfulness and completeness, demonstrating its effectiveness in814

measuring the importance of attention heads.815

In §4.3, we analyze the head attribution results from three perspectives: the distribution of important816

attention heads (Figure 3C), their relation to image attention weights (Figure 3D), and systematic817

patterns in attention heads (Figure 3E). Figure 12 shows the distribution of important attention heads818

across all models. Generally, important heads are concentrated in mid-to-late layers. Interestingly,819

LLaVA-1.5 and LLaVA-NeXT, which share the same backbone large language model, exhibit similar820

distributions of important attention heads. This result suggests that, to some extent, the role of attention821

heads is predetermined by the backbone large language model. We leave further investigation of this822

phenomenon for future work. Figure 14 visualizes the relationship between attribution coefficients823

θ and image attention weights. No clear correlation is observed between the two, supporting the824

claim that image attention weights are not reliable indicators of attention head importance. Figure 13825

presents the t-SNE visualization of the attribution coefficients θ in LLaVA-NeXT-7B, InternVL2.5-826

8B, and Qwen2-VL-7B. We select representative models from each family due to the computational827

cost of collecting additional samples. The t-SNE visualization reveals that LVLMs systematically828

utilize attention heads in response to the semantic content of the input, as samples belonging to the829

same super-category are typically clustered together.830

In §5.1, we identify the text tokens that receive image information by measuring the causal effect of831

blocking image information flow to each text token. As shown in Figure 15, these tokens are primarily832

role tokens and the final token in the text. Furthermore, we validate these findings by measuring the833

logit when retaining only the role tokens and the final token. More specifically, we retain tokens834

with ∆πi > 0.05 (see §A.4 for the definition), which are highlighted in red in Figure 15. As shown835

in Table 3, the logit remains well preserved, indicating that receiving image information in the role836

tokens and the final token is essential for the model to predict the correct answer.837

In §5.2, we qualitatively visualize the attribution coefficients θ and image attention weights (see §A.4838

for technical details). Additional qualitative results are presented in Figure 16 and Figure 17. The839

results indicate that only a subset of object tokens and a few background tokens contribute to the final840

logit, while the remaining tokens have minimal impact. Notably, the number of important tokens is841

smaller than the number of tokens with high image attention weights, suggesting that further token842

reduction is possible without significantly affecting the model’s performance.843
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Table 2: Quantitative results of head attribution for all models. The table presents the explained
variance (R2) and the Pearson correlation coefficient (ρ) between π(x) and π̂(x). These results
indicate that the contribution of attention heads to the final logit is well captured by the linear
regression model. Related to §4.1.

Model R2 ρ

LLaVA-1.5-7B 0.82± 0.05 0.91± 0.03
LLaVA-1.5-13B 0.79± 0.06 0.89± 0.03

LLaVA-NeXT-7B 0.83± 0.05 0.91± 0.03
LLaVA-NeXT-13B 0.82± 0.04 0.91± 0.02

InternVL2.5-1B 0.92± 0.03 0.96± 0.02
InternVL2.5-2B 0.79± 0.05 0.89± 0.03
InternVL2.5-4B 0.79± 0.06 0.89± 0.03
InternVL2.5-8B 0.77± 0.06 0.88± 0.03

Qwen2-VL-2B 0.90± 0.04 0.95± 0.02
Qwen2-VL-7B 0.82± 0.05 0.91± 0.03

Table 3: The logit relative to π(x∗) when retaining only the important text tokens (∆πi > 0.05,
highlighted in red in Figure 15). These results suggest that the role tokens and the final token are
essential for the model to predict the correct answer. Related to §5.1.

Model Logit relative to π(x∗)

LLaVA-1.5-7B 0.98± 0.02
LLaVA-1.5-13B 0.92± 0.04

LLaVA-NeXT-7B 0.95± 0.02
LLaVA-NeXT-13B 0.89± 0.05

InternVL2.5-1B 0.94± 0.15
InternVL2.5-2B 0.93± 0.07
InternVL2.5-4B 0.93± 0.04
InternVL2.5-8B 0.82± 0.14

Qwen2-VL-2B 0.99± 0.01
Qwen2-VL-7B 0.82± 0.10
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Figure 11: The minimum number of attention heads for faithfulness > 0.8 (Left) and completeness
< 0.2 (Right) across all models. The head attribution method (HeAr) needs fewer heads to achieve
the same level of faithfulness and completeness compared to the other methods. Related to Figure 3A.
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Figure 12: The portion of samples requiring a given head for faithfulness > 0.8 across all models.
The important attention heads are located in the mid-to-late layers. Related to Figure 3C.

Figure 13: t-SNE visualization of attribution coefficients θ in LLaVA-NeXT-7B, InternVL2.5-8B, and
Qwen2-VL-7B. Objects with similar semantic meanings are typically clustered together, indicating
that LVLMs systematically utilize attention heads to process the input image based on their semantic
contents. Related to Figure 3E.

27



Figure 14: Scatter plot showing the relationship between attribution coefficients θ and image attention
weights across all models. The x-axis represents image attention weights, and the y-axis represents
attribution coefficients. The color of each point represents the relative layer depth. No significant
correlation is observed between the two, suggesting that image attention weights are not reliable for
explaining the importance of attention heads. Related to Figure 3D.
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Figure 15: Logit difference relative to π(x∗) when blocking each text token across all models. The
text tokens with ∆πi > 0.05 are highlighted in red, which are consistently the role tokens and the
final token. Related to Figure 4A.
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Figure 16: More qualitative results of image, attribution coefficients θ, and image attention weights
for LLaVA-1.5-7B and LLaVA-1.5-13B. Related to Figure 4B.
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Figure 17: More qualitative results of image, attribution coefficients θ, and image attention weights
for LLaVA-NeXT-7B and LLaVA-NeXT-13B. Related to Figure 4B.
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