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Abstract

The hallucination problem of Large Language
Models (LLMs) significantly limits their relia-
bility and trustworthiness. Humans have a self-
awareness process that allows us to recognize
what we don’t know when faced with queries.
Inspired by this, our paper investigates whether
LLMs can estimate their own hallucination risk
before response generation. We analyze the
internal mechanisms of LLMs broadly both in
terms of training data sources and across 15
diverse Natural Language Generation (NLG)
tasks, spanning over 700 datasets. Our empiri-
cal analysis reveals two key insights: (1) LLM
internal states indicate whether they have seen
the query in training data or not; and (2) LLM
internal states show they are likely to hallu-
cinate or not regarding the query. Our study
explores particular neurons, activation layers,
and tokens that play a crucial role in the LLM
perception of uncertainty and hallucination risk.
By a probing estimator, we leverage LLM self-
assessment, achieving an average hallucination
estimation accuracy of 84.32% at run time.1

1 Introduction

Humans have an awareness of the scope and limit
of their own knowledge (Fleming and Dolan, 2012;
Koriat, 1997; Hart, 1965), as illustrated in Fig. 1.
This cognitive self-awareness ability in humans
introduces hesitation in us before we respond
to queries or make decisions in scenarios where
we know we don’t know (Yeung and Summer-
field, 2012; Nelson, 1990; Bland and Schaefer,
2012). However, LLM-based AI assistants lack this
cognitive uncertainty estimation. Consequently,
they tend to be overconfident and may produce
plausible-sounding but unfaithful or nonsensical
contents called hallucination or confabulation (Ji
et al., 2022; Xiao and Wang, 2021; Bang et al.,
2023; Xiong et al., 2023). This problem limits their

1The source code can be obtained from https://github.
com/ziweiji/Internal_States_Reveal_Hallucination

Figure 1: Humans have self-awareness and recognize
uncertainties when confronted with unknown questions.
LLM internal states reveal uncertainty even before re-
sponding. Pink dots are the internal LLM states asso-
ciated with hallucinated responses, whereas Blue dots
are those of faithful responses. The queries leading to
those LLM responses are colored accordingly.

applications in numerous real-world scenarios and
undermines user trustworthiness.

Previous research (Bricken et al., 2023; Tem-
pleton et al., 2024; Bills et al., 2023; Wu et al.,
2024) have explored the internal states of language
models that capture contextual and semantic infor-
mation learned from training data (Liu et al., 2023;
Chen et al., 2024; Gurnee and Tegmark, 2023).
Nevertheless, internal states of language models
sometimes exhibit limited generalization on unseen
data and their representation effectiveness can be
undermined by flawed training data or modeling is-
sues (Wang et al., 2022a; Belinkov and Glass, 2019;
Meng et al., 2021; Xie et al., 2022; Carlini et al.,
2021; Yin et al., 2023a). Notably, recent works
have shown that the LLM’s internal states can po-
tentially detect hallucinations in texts (Azaria and
Mitchell, 2023; Chen et al., 2024; Su et al., 2024).
However, these works examine texts not exclu-
sively produced by the same LLMs whose internal
states are analyzed, highlighting the necessity for
further investigation into the LLM self-awareness

https://github.com/ziweiji/Internal_States_Reveal_Hallucination
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and how their internal states correlate with their
uncertainty and own hallucination occurrence.

Our work takes a step further by investigating
whether LLM internal states have some indi-
cation of hallucination risk given queries and
whether it can be reliably estimated even before
the actual response generation (Fig. 1). We con-
duct a comprehensive analysis of LLMs internal
mechanisms in terms of training data sources and
across 15 diverse NLG tasks that extend beyond
the QA task (Snyder et al., 2023; Slobodkin et al.,
2023) and span over 700 datasets. We explore par-
ticular neurons, different activation layers, and to-
kens that play a crucial role in the LLM perception
of uncertainty and hallucination risk. Employing a
probing estimator (Belinkov, 2022) on the internal
states associated with the queries, we validate their
self-awareness and ability to indicate uncertainty
in two aspects: (1) Whether they have seen the
query in training data, achieving an accuracy of
80.28%. (2) Whether they are likely to hallucinate
regarding the query, achieving an average estima-
tion accuracy of 84.32% across 15 NLG tasks. We
propose that understanding these representations
could offer a proactive approach to estimating un-
certainty, potentially serving as an early indicator
for the necessity of retrieval augmentation (Wang
et al., 2023) or as an early warning system.

2 Hallucination and Training Data

The sources of hallucination in LLMs can be traced
back to data and modeling (Ji et al., 2022). Fac-
tors tied to data encompass unseen knowledge,
task-specific innate divergence, noisy training data,
etc. From the modeling perspective, hallucinations
can be traced to the model architecture, alignment
tax, teacher-forced maximum likelihood estimation
(MLE) training, etc.

A common situation where hallucinations from
data occur is when LLMs attempt to provide in-
formation on unseen queries that are not included
in their training set, rather than refusing to reply.
Previous works (Kadavath et al., 2022; Rajpurkar
et al., 2018; Onoe et al., 2022; Yin et al., 2023b)
explore to identify the unseen data based on var-
ious indicators such as text similarity, perplexity.
We investigate the capability of LLMs to recognize
whether they have seen the query in training
data via novel analysis of their internal states. To
facilitate analysis, we craft two sets of queries by
collecting news from periods before and after the

release of the LLM we analyze to represent unseen
and seen data, respectively.

However, in the real-world scenario, it’s imprac-
tical to definitively categorize data as entirely seen
or unseen due to the inability to access the vast
training data of LLM. Thus, we expand the pre-
liminary insights and further investigate LLMs’
self-awareness of recognizing whether models are
likely to hallucinate regarding the query. It’s
important to note that the hallucinations are source-
agnostic, meaning they can result from both unseen
and seen data. The latter can still trigger hallucina-
tions due to deficiencies in modeling. To facilitate
analysis, we construct data by using LLM to di-
rectly generate responses to queries across diverse
NLG tasks and then label the hallucination level in
the responses.

3 Methodology

This section begins with an introduction to the prob-
lem formulation of uncertainty estimation faced
with queries in § 3.1. We construct datasets in § 3.2
focusing on two dimensions: (1) the distinction
between queries seen and unseen in the training
data; (2) the likelihood of hallucination risk faced
with the queries. To validate the efficacy of internal
state representation in hallucination estimation, we
visualize the neurons for perception extracted from
a specified LLM layer (§ 3.3) and then leverage the
probing classifier technique (Belinkov, 2022) on
top of internal states associated with the last token
of queries (§ 3.4).

3.1 Problem Formulation

Suppose we have an LLM f parameterized by
θ. It is able to gain internal states I and gener-
ate response r given user query q represented as
Iθ,q, rθ,q = fθ(q). We aim to investigate the self-
awareness of LLM, specifically how their internal
states I relate to their level of hallucination risk h
when faced with a query q.

We employ a dataset Dθ = {⟨I train
θ,q,i, h

train
i ⟩}Ni=1

consisting of N query-label pairs. These pairs
serve to represent the behavior of fθ Here, htrain

i

denotes the level of hallucination risk, which is
labeled based on (1) the query’s presence in the
training data or (2) the degree of hallucination in
the response r to q. Thus, our objective is mathe-
matically expressed as:

h = E(Iθ,q;Dθ) (1)

Here, E signifies an estimator function. The combi-



Figure 2: Visualization of the Neurons for Hallucination Perception in various NLG tasks. Pink dots represent
Unknown Queries triggering hallucinations and Blue dots represent Known Queries.

nation of model-specific attribute via fθ, and query-
only attribute via q, allows it to accurately capture
the characteristics of individual LLMs and fosters
a more efficient prediction mechanism that mirrors
human cognitive processes.

3.2 Data Construction

As introduced in § 1 and 2, we investigate LLM in-
ternal states’ self-awareness and ability to indicate
uncertainty in two aspects: (1) whether they have
seen the query in training data; and (2) whether
they are likely to hallucinate when faced with the
query.

(1) Seen/Unseen Query in Training Data The
unseen queries will trigger hallucinations due to
the lack of information within the model’s train-
ing data when the model doesn’t refuse to respond.
In other words, hallucinations triggered by unseen
queries are data-related. To investigate the dis-
tinguishability between seen and unseen queries,
we construct a compact dataset consisting of two
distinct sets of queries. For the seen group, we
utilize historical BBC news in 2020 highly likely
exposed during LLM’s training. For the unseen
group, we utilize recent BBC news in 2024 after
the release of the LLM we analyze. To ensure com-
parability, we ensure these two sets share similar
length distributions and semantic information via
sentence embeddings 2. The two groups are both
from LatestEval (Li et al., 2024), a benchmark de-
signed to tackle data contamination in evaluation
through dynamic and time-sensitive construction.
The query is Tell more details about the
news: {news_title}.

2https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

(2) Hallucination Risk faced with the Query
We first construct data using LLM to directly gen-
erate responses to queries in diverse NLG tasks.
Subsequently, for labeling the responses and corre-
sponding queries, a comprehensive integration of
NLG metrics assesses the levels of hallucination.

We select 15 NLG task categories including QA,
Summarization, Translation, etc consisting of over
700 datasets from Super-Natural Instructions
benchmark (Wang et al., 2022b) 3. This genera-
tion only uses the parametric knowledge of LLM
which is a proxy of performance in real-world ap-
plications. This generation process can also be in
other settings, such as retrieval-augmented genera-
tion (RAG), to explore whether the internal states
can estimate hallucination risk or other aspects’
performance in these settings.

To evaluate the generated responses, we imple-
ment a multi-faceted evaluation approach. We em-
ploy classical Rouge-L (Lin, 2004), which com-
pares the generated response with gold-standard
reference. To measure hallucination level, we
also utilize Natural Language Inference (NLI) 4

and Questeval (Scialom et al., 2021). NLI is a
common metric for hallucination evaluation (Ji
et al., 2023a,b) which assesses the logical consis-
tency/entailment of generated text with the pro-
vided context or the reference. QuestEval is a
QA-based metric for evaluating the faithfulness of
the output in generation tasks. This work adopts its
reference-dependent mode depending both on the
input source and golden reference.

To make up for deficiencies of single automatic
metrics, we integrate these three metrics compre-

3Please find the full list of NLG task categories in Fig. 3
or 4 and the full list of tasks in Tab. A2 in § A.

4https://huggingface.co/MoritzLaurer/
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
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hensively. If NLI predicts entailment and both
Rouge-L and Questeval exceed their respective me-
dian values, we assign a label of 1. Conversely, if
NLI predicts contradiction or neutrality, and both
Rouge-L and Questeval fall below their median
values, we assign a label of 0. This labeling strat-
egy not only provides a binary quality assessment
but also reflects a multi-dimensional evaluation of
the text, capturing the hallucination level of the
generated responses.

3.3 Preliminary Analysis: Neurons for
Hallucination Perception from Internal
States

Internal states play a crucial role in language mod-
els, encapsulating rich contextual and semantic in-
formation learned from predicting tokens. They
are adept at recognizing complex patterns and re-
lationships pertinent to various NLP tasks, which
positions them as potentially powerful tools for
estimating the risk of hallucinations (Azaria and
Mitchell, 2023; Liu et al., 2023; Chen et al., 2024).
Furthermore, previous works (Azaria and Mitchell,
2023; Ahdritz et al., 2024; Liu et al., 2024) have
demonstrated that the activations of the last token
from the last layer in LLMs contain one of the
most useful features. Therefore, we take these rep-
resentations for preliminary analysis on the self-
assess sense of internal states and the role of spe-
cific neurons in the uncertainty and hallucination
estimation. Specifically, we employ a feature selec-
tion method based on Mutual Information (Kraskov
et al., 2004) to measure the relevance of different
features/dimensions for distinguishing between the
categories in a dataset.

In the context of NLG tasks including dialogue,
QA, and translation, we select the eight most sig-
nificant neurons/dimensions from the last activa-
tion layer and visualize them in Fig. 2. We ob-
serve that these neurons exhibit sensitivity to uncer-
tainty, allowing them to distinguish between differ-
ent hallucination levels given known and unknown
queries. In other words, there exist individual neu-
rons within LLM that can fairly perceive uncer-
tainty and predict future hallucinations. This ap-
proach not only enhances our understanding of the
neural correlates of hallucinations but also paves
the way for developing targeted interventions that
mitigate the effects of hallucinations.

Figure 3: Automatic evaluation results for our method
and baselines including Perplexity (PPL), Zero-shot
Prompt, and In Context Learning (ICL) Prompt.

3.4 Internal State-based Estimator

Based on the above preliminary analysis and previ-
ous works, we use the activations corresponding to
the last token of queries from a specified layer in
LLMs, denoted as xq, as the input for our estima-
tion model. The accessibility and ease of obtaining
these states further underscore their practicality for
such applications.

For the architecture of our estimator, we em-
ploy a variant of the multilayer perceptron (MLP)
adapted from the Llama (Touvron et al., 2023). The
estimator is mathematically formulated as:

H = down(up(xq)× SiLU(gate(xq))) (2)

where SiLU is the activation function. down, up,
and gate are linear layers for down-projection, up-
projection, and gate mechanisms, respectively. The
combination of internal states and the Llama MLP
structure handles the complexity of hallucination
risk estimation in NLG tasks.

4 Experiments

4.1 LLM

In this work, we primarily use Llama2-7B (Touvron
et al., 2023) as our generative model and delve
into its internal states to access hallucination risk
estimation. In addition, we explore the impact of



different internal states in the Mistral-7B (Jiang
et al., 2023) in § 5.

4.2 Baselines

To explore query-only uncertainty estimation, we
involve straightforward prompt-based approaches
as baselines.

Zero-shot Prompt We directly ask the LLM
whether it can accurately respond to the query via
the following prompt: "Query: {Query}\n\nAre
you capable of providing an accurate
response to the query given above?
Respond only to this question with ’yes’
or ’no’ and do not address the content of
the query itself."

In-Context-Learning (ICL) Prompt We ask
the LLM whether it can accurately respond to
the query and give some examples: "Are you
capable of providing an accurate response
to the following query? Respond only
to this question with ’yes’ or ’no’
and do not address the content of
the query itself.\n\nQuery: {Example
Query 0}\nAnswer: no\n\nQuery: {Example
Query 1}\nAnswer: yes...\n\nQuery:
{Query}\nAnswer:"

Perplexity (PPL) Considering the prompt-based
methods only use the model’s inner knowledge,
we also incorporate the distribution of the training
dataset and employ a Perplexity (PPL)-based base-
line. Assume LLMs are trained on a hypothetical
large dataset that perfectly contains every possi-
ble query-response pair, where the responses are
guaranteed to be faithful. Then, the hallucination
estimation can be simply done by checking whether
the given query appears in the training corpus (Lee
et al., 2021; Kandpal et al., 2023). To determine
this threshold, we first calculate the PPL for each
query. Subsequently, we identify the optimal PPL
threshold that yields the maximum accuracy on our
training dataset. This optimal threshold is then ap-
plied to the test dataset to gauge the accuracy of
our hallucination risk estimation method.

4.3 Estimator Evaluation Protocols

For the classification task with the discrete type
predicted, we utilize F1 and Accuracy to measure
the quality of predicted categorization.

Figure 4: F1 scores of Internal-State from Different
Layers for Hallucination Estimation.

Training Task Testing Task F1 ACC

QA
Unseen QA 64.79 73.32
Translation 51.34 65.10

Translation
Unseen Translation 74.03 73.81

QA 20.45 37.50

Table 1: Zero-Shot Automatic Evaluation Results in the
Same Task and across Different Tasks.

5 Results and Analysis

5.1 Results for Internal State-based Estimator
(1) Seen/Unseen Query in Training Data We
evaluate our internal state-based estimator trained
to distinguish unseen and seen questions. The F1
and accuracy scores reach 80.28% and 80.24%.
These high results shed light on the effectiveness
of our internal state-based method in identifying un-
seen queries. This phenomenon is aligned with the
previous works (Kadavath et al., 2022; Yin et al.,
2023b) which find the model can distinguish an-
swerable and unanswerable questions that include
future information.

(2) Hallucination Risk faced with the Query
For estimating hallucination risk, as depicted in
Fig. 3, our methods exhibit superior performance
in both F1 and ACC. Notably, its performance re-
mains stable across different tasks. It performs



Task Internal State F1 ACC

Dialogue
Llama2 74.33 74.22
Mistral 72.39 72.55

QA
Llama2 82.37 82.55
Mistral 80.46 81.00

Summarization
Llama2 88.08 88.95
Mistral 83.63 85.42

Translation
Llama2 76.90 76.90
Mistral 73.10 73.14

Table 2: Automatic Evaluation Results of Internal States
from Different Models.

less effectively in the translation task (F1 and ACC
76.90%) while excelling in the Number Conversion
task (F1 94.04%, ACC 96.00%). Zero-shot prompt
and ICL yield similar results, with ICL slightly out-
performing zero-shot prompt. Both methods tend
to be overconfident and predict LLM can accurately
respond to the query (Recall 99%), which is aligned
with the observation of (Xiong et al., 2023). PPL
is better than the prompt methods while exhibit-
ing varying performance across tasks. It performs
poorly in the translation task (F1 33.73%, ACC
50.36%) but achieves its best performance in the
data-to-text task (F1 88.28%, ACC 92.08%).

More results are described in Appendix B in-
cluding treating separate metrics (Rouge-L, NLI,
and QuestEval) as continuous regression labels and
different estimator backbones.

5.2 Analysis

Layer Depth Positively Correlates with its Pre-
diction Performance. We systematically dissect
the contribution of each layer to the overall hallu-
cination risk estimation. We hypothesize that cer-
tain layers may be more indicative of hallucinatory
propensities than others, and our analysis seeks to
validate this hypothesis. As shown in Fig. 4, early
Layers perform poorly since they often capture
basic syntactic information. Intermediate layers
perform better since these layers typically encode
more complex semantic relationships. Deep lay-
ers perform best and learn hallucination patterns
with high-level presentation. This observation is
different from Azaria and Mitchell (2023) where
middle-layer hidden states of statements perform
best in recognizing lying.

Consistency of Internal States across Different
LLMs To evaluate the impact of the LLM’s In-
ternal State, we use Mistral-7B’s internal state to

Figure 5: Inference time of various estimation methods.

assess Llama2’s hallucination risk. As shown in
Tab. 2, the results for four common NLG tasks ex-
hibit a decrease compared to Llama2’s own internal
states. Since different LLMs share a similarity in
model architecture and data, there is a potential for
zero-shot transfer. Nonetheless, the most effective
predictor of LLM’s generative performance is still
its own internal state, which underscores the impor-
tance of considering model-specific assessments
rather than universal ones.

Internal States Share Features inner-task but do
not Cross-task. As shown in Tab. 1, we evalu-
ate the generalization across different NLG tasks
and within the same NLG task. Specifically, we
examine zero-shot performance in QA and transla-
tion. While the zero-shot performance within these
individual tasks is acceptable, the cross-task gener-
alization remains relatively weak, aligned with the
findings reported by Kadavath et al. (2022).

In addition, we evaluate our estimator trained in
QA on the out-of-domain hallucination QA dataset
ANAH (Ji et al., 2024) to test our estimator’s per-
formance in the hallucination aspect and its gener-
alization. ANAH is a bilingual dataset that offers
analytical annotation of Hallucinations in LLMs
within Generative QA. Our work uses English sam-
ples and treats the hallucination type as the label in
the testing stage. The F1 score reaches 78.56% and
the accuracy is 78.83%. These relatively high re-
sults shed light on the effectiveness of our internal
state estimator in handling hallucination challenges
and further show our generalization capabilities.
Therefore, the features in internal states are shared
with OOD data within the same task but not shared
across tasks.

Internal State as an Efficient Hallucination Es-
timator Our estimator has three linear layers
which requires minimal computing power. As
shown in Fig. 5, our estimator demonstrates im-
pressive efficiency. Specifically, likelihood-based
costs 1.36s per sample, while internal-state-based
costs only 0.05s per sample. This rapid inference



Figure 6: Hallucination Rate for each NLG Task.

speed is essential for real-world applications. The
generation time, with a maximum token length of
50 and a batch size of 1, is 3.37 seconds. Notably,
Questeval costs the most time 10.25s in total.

Hallucination Rate During the labeling process
mentioned in § 3.2, we obtain the hallucination
rate in the responses of each task. As illustrated in
Fig. 6, the hallucination rate fluctuates significantly
across NLG tasks. Among them, Title Generation
exhibits the highest rate since its divergent nature
and there is no unique and standard answer. In
contrast, Number Conversion gains the lowest rate
since the task is relatively easy and the answer is
fixed leaving less room for hallucination.

Visualizing Tokens Triggering Hallucination
To further understand the mechanisms behind hal-
lucination, we dissect the process of the queries
triggering hallucinations at a fine-grain level. In-
spired by the Gradient-weighted Class Activation
Mapping (Grad-CAM) technique (Selvaraju et al.,
2017), we quantify the average gradients of in-
put embedding associated with each token in the
joint operation of the LLM and estimator. Specifi-
cally, we focused on how these tokens influence the
LLM’s internal state and the subsequent estimation
of hallucinations based on this internal state.

Fig. 7 indicates that tokens within an unknown
query contribute unequally to the occurrence of
hallucinations. We observe that the tokens that are
part of unfamiliar named entities or carry critical
information exhibit a higher impact. For instance,
“amniotes” in the QA task and “麻雀” in the trans-
lation task gain higher gradients and significantly
impact hallucination estimation. This could be
attributed to the system’s attempts to generate flu-
ent responses despite gaps in its understanding or
knowledge about these entities.

Error Analysis Although our method performs
better than the baselines in the estimation task, it

Figure 7: Visualization of Token Contributions to hallu-
cinations in unknown queries for QA (top) and transla-
tion (bottom) tasks. Deeper background color means
higher contributions and the hallucinated content in the
generated reply is marked in pink .

still generates a few cases of failure. To gain more
insight into our model, we present a failure exam-
ple in Tab. 3 and conduct an error analysis. For
example, the estimator predicts that LLM can cor-
rectly answer the query “What is the term for tough,
flexible connective tissue that contains the protein
collagen?” But LLM replies “ligaments” instead
of “cartilage”, which is hallucinated. the estimator
predicts that LLM will hallucinate when faced with
“what appropriately nicknamed pacific location?”
But LLM replies without hallucination.

6 Related Work

Knowledge Boundary Researchers investigate
the boundary of parametric knowledge in LLMs
which aim to uncover what models know and where
their capabilities end. Current research on the
knowledge boundary predominantly narrows down
this investigation to specialized tasks, charting a
map of knowns and unknowns within these defined
borders. In the representative QA field, Rajpurkar
et al. (2018) and Yin et al. (2023b) collect datasets
containing known and unknown questions and de-
velop classifiers to differentiate them. The concept
of unanswerability in these works is universal and
model-agnostic, such as philosophical questions
and unsolved mysteries. In contrast, Kadavath et al.
(2022); Slobodkin et al. (2023), and Gottesman
and Geva (2024) focus on model-specific predic-
tion for questions. The former focuses on whether



Query Generated
Reply

Golden
Answer

Trainig
Label

Predicted
Label

Given a scientific question, generate a
correct answer to it. What is the term
for tough, flexible connective tissue
that contains the protein collagen?

Ligaments are fibrous connective tis-
sue structures that connect bones to
other bones and provide support and
stability to the joint...

cartilage hallucinated faithful

Given a scientific question, generate a
correct answer to it. Since 1900, four
of the five earthquakes of the greatest
magnitude occurred near what appro-
priately nicknamed pacific location?

Since 1900, four of the five earth-
quakes of the greatest magnitude have
occurred near the Pacific location of
the Ring of Fire. The Ring of Fire is
an area of...

ring of fire faithful hallucinated

Table 3: Negative Samples. The hallucinated context is marked in pink .

the model will answer correctly, while the latter
focuses on whether the model linguistically refuses
to answer. Out-of-domain or out-of-distribution
detection (Zhou et al., 2023; Ryu et al., 2018; Tan
et al., 2019; Yang et al., 2021; Zheng et al., 2020)
are also relevant areas dealing with the differenti-
ation of unknown/unseen from training data, with
main focus on classification tasks. Our method is
versatile across various NLG tasks without requir-
ing fine-tuning of LLMs.

Hallucination Detection The phenomenon of
hallucination in NLG encourages a variety of de-
tection methods (Min et al., 2023; Ji et al., 2024; Li
et al., 2023; Scialom et al., 2021). Some of these
methods delve into the internal states for detection.
Azaria and Mitchell (2023), for example, collect a
true-false statement dataset with artificial guidance
and the classification results indicate that the LLMs’
internal state can reveal the truthfulness of state-
ments. INSIDE (Chen et al., 2024) also leverages
LLMs’ internal states and proposes EigenScore
for evaluating the self-consistency of responses,
thereby serving as a proxy for hallucination levels.
MIND (Su et al., 2024), an unsupervised training
approach, distinguishes the hallucinated continua-
tion text from the original Wikipedia content based
on internal states. Snyder et al. (2023) explore the
query-only detection within the QA task based on
internal states, gradients, and probabilities. On the
other hand, Xiao and Wang (2021) shows evidence
that higher uncertainty corresponds to a higher
hallucination probability. Uncertainty estimation
methods, such as (Xiao et al., 2022; Xiong et al.,
2023; Kadavath et al., 2022), predict the reliabil-
ity of their natural language outputs and can also
serve as a tool for hallucination detection. Previous
works leverage the LLM’s internal states for the
text to be measured which is not necessary from

the same LLM. Differently, this work focuses on
self-awareness corresponding to the queries across
multiple NLG tasks.

7 Conclusion

Inspired by human self-awareness, this work
demonstrates the latent capacity of LLMs to self-
assess and estimate hallucination risks prior to re-
sponse generation. We conduct a comprehensive
analysis of the internal states of LLMs both in terms
of training data sources and across 15 NLG tasks
with over 700 datasets. Employing a probing es-
timator on the internal states associated with the
queries, we assess their self-awareness and ability
to indicate uncertainty in two aspects: (1) recog-
nizing whether they have seen the query in training
data, achieving an accuracy of 80.28%5. (2) recog-
nizing whether they are likely to hallucinate when
faced with the query. The results demonstrate that
internal state-based self-assessment outperforms
PPL-based and prompt-based baselines, with an
average estimation accuracy of 84.32% across all
tested datasets. In addition, we explore the role
of particular neurons in uncertainty and hallucina-
tion perception and reveal a positive correlation
between the depth of activation layers in an LLM
and its predictive accuracy. The consistency of
internal states across different models suggests a
potential for zero-shot transfer, but model-specific
estimation is the optimal strategy. Challenges of
generalizing these findings across different tasks
are noted, despite observing promising generaliza-
tions within the same NLG tasks.

For future work, we aim to refine our methodol-
ogy to enhance the robustness and generalization
across various NLG tasks in the field of hallucina-
tion risk assessment. In addition, we will involve a

5Please refer to the first parts of § 3.2 and § 5.1.



broader spectrum of LLMs to extend the applica-
bility of our findings.

8 Limitation

Model Coverage This work primarily investigate
the widely used LLM, Llama2, due to its preva-
lence in current NLG applications. However, it
does not encompass other LLMs. In the future,
we will extend the scope of LLMs to enhance the
robustness and applicability of our results.

Human Evaluation in Data Construction Hu-
man judgment is extremely resource-intensive for
hallucination judgment. The extensive time com-
mitment and financial expenditure required are be-
yond the scope of this study, particularly given the
large scale of the datasets. Consequently, this re-
search did not include human evaluation in the data
labeling process in § 3.2.

Comparative Performance Our method pre-
dicts the risk in advance of generation and depends
solely on the query. It may lead to a trade-off in per-
formance compared to other existing approaches
that consider both the query and the response.

9 Ethical Considerations

In our experiments, we utilized datasets that are
either publicly accessible or synthetically gener-
ated, thereby circumventing any potential adverse
effects on individuals or communities. The datasets
employed in this investigation were meticulously
curated and processed to uphold the principles of
privacy and confidentiality. We ensured the ex-
clusion of any personally identifiable information,
with all data undergoing anonymization before any
analysis was conducted.

When contemplating the deployment of our re-
search outcomes, we recognize the inherent risks
and ethical dilemmas involved. The tendency of
LLMs to produce hallucinations could dispropor-
tionately affect various demographic groups, a con-
sequence of the inherent biases in the training
datasets. We are committed to the identification
and rectification of such biases to forestall the con-
tinuation of stereotypes or the inequitable treatment
of any demographic.

By adhering to these ethical considerations, we
aim to contribute positively to the field of NLP
and ensure that advancements in understanding and
mitigating hallucinations in LLMs are achieved

responsibly and with consideration for the broader
societal impact.
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A Dataset

This work uses benchmark Super-Natural Instruc-
tions (Wang et al., 2022b) which includes 1,616 di-
verse NLP datasets covering 76 distinct task types.
We select 15 NLG task types and list all datasets
included in each NLG task in Tab. A2.

B Results and Analysis

Separate Metric as Continuous Regression La-
bel In addition to the comprehensive integration
of all metrics (i.e. NLI, Rouge-L, Questeval) de-
scribed in § 3.2, we analyze our internal state-based
method’s performances when treating each metric
as the label, separately.

We consider three forms of “golden score” for
each metric. First, the absolute values, which serve
as the target for regression, with higher scores indi-
cating fewer hallucinations. We consider the proba-
bility of entailment as the absolute value of the NLI
metric. Second, we standardize these absolute val-
ues using the minimum and maximum values from
the training dataset to obtain normalized “golden
scores”. Third, we use the relative rankings of these
scores within the training dataset as an alternative
regression target.

For the regression task with continuous score
predicted, we utilize Root Mean Squared Error
(RMSE) to measure the average difference be-
tween the values predicted by our estimator and
the actual values.

As shown in Fig. A1, our method’s prediction
performance varies across the form of the “golden
score”. For each metric, the RMSE is the smallest
when predicting absolute value, which indicates
that the hidden state performs best in predicting
the absolute value of the metric. Conversely, the
highest RMSE occurs when the model attempts
to predict the relative rankings, implying that pre-
dicting the precise ordering of the metrics is more
challenging for the hidden state representation.

Estimator Backbone Instead of Llama MLP, we
employ a standard MLP as the backbone of the
estimator. The results in Tab. A1 demonstrate that
Llama MLP outperforms the standard MLP.

C Implementation Details

The input dimension of our classifier is 4096 and
the hidden dimension is 11008, which are aligned
with Llama2-7B. We train our classifier with the
following settings and hyper-parameters: the epoch

Figure A1: RMSE Scores of Internal State-based Esti-
mator with Labels: (a) Rouge-L (b) NLI (c) QuestEval

Task Internal State F1 ACC

Dialogue
LlamaMLP 74.33 74.22

MLP 70.22 71.12

QA
LlamaMLP 82.37 82.55

MLP 81.57 81.84

Summarization
LlamaMLP 88.08 88.95

MLP 87.59 87.59

Translation
LlamaMLP 76.90 76.90

MLP 74.23 74.90

Table A1: Automatic Evaluation Results for Different
Classifier Backbone

is 10, the batch size is 128, the learning rate is 1e-5,
and the AdamW optimizer has a linear scheduler.
Our model is trained on 1 NVIDIA A800 GPU.

D AI Assistants Using

In this paper, we use ChatGPT to improve the writ-
ing at the grammar level.



Task No. Dataset
Code
to
Text

4 Task 110: logic2text sentence generation, Task 129: scan long text generation action command short,
Task 127: scan long text generation action command all, Task 131: scan long text generation action
command long

Data
to
Text

9 Task 1728: web nlg data to text, Task 1598: nyc long text generation, Task 1631: openpi answer
generation, Task 677: ollie sentence answer generation, Task 957: e2e nlg text generation generate,
Task 760: msr sqa long text generation, Task 1407: dart question generation, Task 102: commongen
sentence generation, Task 1409: dart text generation

Dialogue
Generation 13 Task 574: air dialogue sentence generation, Task 361: spolin yesand prompt response classification,

Task 576: curiosity dialogs answer generation, Task 1603: smcalflow sentence generation, Task 1714:
convai3 sentence generation, Task 1730: personachat choose next, Task 565: circa answer generation,
Task 611: mutual multi turn dialogue, Task 1729: personachat generate next, Task 1600: smcalflow
sentence generation, Task 639: multi woz user utterance generation, Task 1590: diplomacy text
generation, Task 360: spolin yesand response generation

Explanation 6 Task 295: semeval 2020 Task 4: commonsense reasoning, Task 192: hotpotqa sentence generation,
Task 593: sciq explanation generation, Task 1369: healthfact sentence generation, Task 223: quartz
explanation generation, Task 134: winowhy reason generation

Grammar
Error
Correction

2 Task 1415: youtube caption corrections grammar correction, Task 1557: jfleg answer generation

Number
Conversion 2 Task 1703: ljspeech textmodification, Task 1704: ljspeech textmodification

Overlap
Extraction 2 Task 039: qasc find overlapping words, Task 281: points of correspondence

Paraphrasing 12 Task 776: pawsx japanese text modification, Task 045: miscellaneous sentence paraphrasing, Task
770: pawsx english text modification, Task 771: pawsx korean text modification, Task 774: pawsx
german text modification, Task 177: para-nmt paraphrasing, Task 466: parsinlu qqp text modification,
Task 775: pawsx chinese text modification, Task 1614: sick text modify, Task 773: pawsx spanish text
modification, Task 132: dais text modification, Task 772: pawsx french text modification

Program
Execution 90 Task 113: count frequency of letter, Task 1151: swap max min, Task 509: collate of all alphabetical and

numerical elements in list separately, Task 100: concatenate all elements from index i to j, Task 096:
conala list index subtraction, Task 365: synthetic remove vowels, Task 622: replace alphabets in a list
by their position in english alphabet, Task 852: synthetic multiply odds, Task 1088: array of products,
Task 1405: find median, Task 637: extract and sort unique digits in a list, Task 1446: farthest integers,
Task 506: position of all alphabetical elements in list, Task 378: reverse words of given length, Task
093: conala normalize lists, Task 1404: date conversion, Task 097: conala remove duplicates, Task
372: synthetic palindrome numbers, Task 755: find longest substring and replace its sorted lowercase
version in both lists, Task 636: extract and sort unique alphabets in a list, Task 267: concatenate and
reverse all elements from index i to j, Task 162: count words starting with letter, Task 159: check
frequency of words in sentence pair, Task 208: combinations of list, Task 1316: remove duplicates
string, Task 504: count all alphabetical elements in list, Task 079: conala concat strings, Task 158:
count frequency of words, Task 507: position of all numerical elements in list, Task 374: synthetic
pos or neg calculation, Task 1087: two number sum, Task 163: count words ending with letter, Task
756: find longert substring and return all unique alphabets in it, Task 101: reverse and concatenate
all elements from index i to j, Task 1551: every ith element from kth element, Task 606: sum of all
numbers in list between positions i and j, Task 368: synthetic even or odd calculation, Task 1150: delete
max min, Task 851: synthetic multiply evens, Task 377: remove words of given length, Task 063: first i
elements, Task 064: all elements except first i, Task 245: check presence in set intersection, Task 161:
count words containing letter, Task 605: find the longest common subsequence in two lists, Task 850:
synthetic longest palindrome, Task 157: count vowels and consonants, Task 373: synthetic round tens
place, Task 206: collatz conjecture, Task 1443: string to number, Task 123: conala sort dictionary, Task
244: count elements in set union, Task 499: extract and add all numbers from list, Task 124: conala
pair averages, Task 1444: round power of two, Task 099: reverse elements between index i and j, Task
1089: check monotonic array, Task 1188: count max freq char, Task 125: conala pair differences, Task
488: extract all alphabetical elements from list in order, Task 1542: every ith element from starting,
Task 1194: kth largest element, Task 371: synthetic product of list, Task 1406: kth smallest element,
Task 095: conala max absolute value, Task 1315: find range array, Task 243: count elements in set
intersection, Task 1331: reverse array, Task 062: bigbench repeat copy logic, Task 122: conala list
index addition, Task 091: all elements from index i to j, Task 369: synthetic remove odds, Task 497:
extract all numbers from list in order, Task 505: count all numerical elements in list, Task 205: remove
even elements, Task 1189: check char in string, Task 1445: closest integers, Task 094: conala calculate
mean, Task 160: replace letter in a sentence, Task 1148: maximum ascii value, Task 098: conala list
intersection, Task 078: all elements except last i, Task 523: find if numbers or alphabets are more in list,
Task 370: synthetic remove divisible by 3, Task 367: synthetic remove floats, Task 1190: add integer
to list, Task 376: reverse order of words, Task 600: find the longest common substring in two strings,
Task 207: max element lists, Task 366: synthetic return primes



Table A1 – continued from previous page
Task No. Dataset

Question
Answering 207 Task 837: viquiquad answer generation, Task 701: mmmlu answer generation high school computer

science, Task 1399: obqa answer generation, Task 075: squad1.1 answer generation, Task 724:
mmmlu answer generation moral scenarios, Task 666: mmmlu answer generation astronomy, Task
742: lhoestq answer generation frequency, Task 1438: doqa cooking answer generation, Task 863:
asdiv multiop question answering, Task 864: asdiv singleop question answering, Task 058: multirc
question answering, Task 669: ambigqa answer generation, Task 704: mmmlu answer generation high
school government and politics, Task 728: mmmlu answer generation professional accounting, Task
740: lhoestq answer generation quantity, Task 1293: kilt tasks hotpotqa question answering, Task 849:
pubmedqa answer generation, Task 1424: mathqa probability, Task 1625: disfl qa asnwer generation,
Task 858: inquisitive span detection, Task 723: mmmlu answer generation moral disputes, Task 083:
babi t1 single supporting fact answer generation, Task 118: semeval 2019 Task 10: open vocabulary
mathematical answer generation, Task 582: naturalquestion answer generation, Task 237: iirc answer
from subtext answer generation, Task 714: mmmlu answer generation human sexuality, Task 444: com
qa question paraphrases answer generation, Task 720: mmmlu answer generation marketing, Task
332: tellmewhy answer generation, Task 119: semeval 2019 Task 10: geometric mathematical answer
generation, Task 310: race classification, Task 1132: xcsr ur commonsense mc classification, Task
702: mmmlu answer generation high school european history, Task 710: mmmlu answer generation
high school statistics, Task 870: msmarco answer generation, Task 047: miscellaneous answering
science questions, Task 711: mmmlu answer generation high school us history, Task 1286: openbookqa
question answering, Task 598: cuad answer generation, Task 685: mmmlu answer generation clinical
knowledge, Task 084: babi t1 single supporting fact identify relevant fact, Task 1420: mathqa general,
Task 1520: qa srl answer generation, Task 868: mawps singleop question answering, Task 768: qed
text span selection, Task 061: ropes answer generation, Task 041: qasc answer generation, Task 144:
subjqa question answering, Task 1570: cmrc2018 answer generation, Task 1610: xquad es answer
generation, Task 164: mcscript question answering text, Task 703: mmmlu answer generation high
school geography, Task 705: mmmlu answer generation high school macroeconomics, Task 1131:
xcsr es commonsense mc classification, Task 1130: xcsr vi commonsense mc classification, Task 750:
aqua multiple choice answering, Task 473: parsinlu mc classification, Task 385: socialiqa incorrect
answer generation, Task 691: mmmlu answer generation college physics, Task 719: mmmlu answer
generation management, Task 1327: qa zre answer generation from question, Task 715: mmmlu answer
generation international law, Task 737: mmmlu answer generation world religions, Task 010: mctaco
answer generation event ordering, Task 741: lhoestq answer generation place, Task 028: drop answer
generation, Task 730: mmmlu answer generation professional medicine, Task 491: mwsc answer
generation, Task 716: mmmlu answer generation jurisprudence, Task 732: mmmlu answer generation
public relations, Task 735: mmmlu answer generation us foreign policy, Task 898: freebase qa answer
generation, Task 887: quail answer generation, Task 024: cosmosqa answer generation, Task 1140: xcsr
pl commonsense mc classification, Task 225: english language answer generation, Task 1608: xquad
en answer generation, Task 170: hotpotqa answer generation, Task 667: mmmlu answer generation
business ethics, Task 699: mmmlu answer generation high school biology, Task 595: mocha answer
generation, Task 751: svamp subtraction question answering, Task 1656: gooaq answer generation,
Task 1431: head qa answer generation, Task 1296: wiki hop question answering, Task 490: mwsc
options generation, Task 867: mawps multiop question answering, Task 865: mawps addsub question
answering, Task 1133: xcsr nl commonsense mc classification, Task 1422: mathqa physics, Task 1135:
xcsr en commonsense mc classification, Task 054: multirc write correct answer, Task 1661: super glue
classification, Task 708: mmmlu answer generation high school physics, Task 1726: mathqa correct
answer generation, Task 664: mmmlu answer generation abstract algebra, Task 1412: web questions
question answering, Task 002: quoref answer generation, Task 752: svamp multiplication question
answering, Task 1297: qasc question answering, Task 692: mmmlu answer generation computer
security, Task 1136: xcsr fr commonsense mc classification, Task 727: mmmlu answer generation
prehistory, Task 725: mmmlu answer generation nutrition, Task 104: semeval 2019 Task 10: closed
vocabulary mathematical answer generation, Task 694: mmmlu answer generation econometrics, Task
820: protoqa answer generation, Task 700: mmmlu answer generation high school chemistry, Task 390:
torque text span selection, Task 1421: mathqa other, Task 918: coqa answer generation, Task 309: race
answer generation, Task 247: dream answer generation, Task 695: mmmlu answer generation electrical
engineering, Task 230: iirc passage classification, Task 712: mmmlu answer generation high school
world history, Task 731: mmmlu answer generation professional psychology, Task 596: mocha question
generation, Task 698: mmmlu answer generation global facts, Task 718: mmmlu answer generation
machine learning, Task 395: persianqa answer generation, Task 597: cuad answer generation, Task
339: record answer generation, Task 835: mathdataset answer generation, Task 238: iirc answer from
passage answer generation, Task 228: arc answer generation easy, Task 380: boolq yes no question,
Task 152: tomqa find location easy noise, Task 754: svamp common-division question answering, Task
713: mmmlu answer generation human aging, Task 665: mmmlu answer generation anatomy, Task
706: mmmlu answer generation high school mathematics, Task 697: mmmlu answer generation formal
logic, Task 753: svamp addition question answering, Task 1727: wiqa what is the effect, Task 1139:
xcsr ru commonsense mc classification, Task 1134: xcsr hi commonsense mc classification, Task 344:
hybridqa answer generation, Task 165: mcscript question answering commonsense, Task 1145: xcsr
jap commonsense mc classification, Task 1295: adversarial qa question answering, Task 239: tweetqa
answer generation, Task 1382: quarel write correct answer...



Table A1 – continued from previous page
Task No. Dataset

Translation 394 Task 808: pawsx chinese korean translation, Task 254: spl translation fi en, Task 1111: ted translation
he it, Task 988: pib translation oriya english, Task 650: opus100 ar en translation, Task 763: emea es lt
translation, Task 1648: opus books en-sv translation, Task 1263: ted translation pl fa, Task 1020: pib
translation telugu oriya, Task 913: bianet translation, Task 1060: pib translation urdu malayalam, Task
1676: xquad-ca translation, Task 1098: ted translation ja fa, Task 984: pib translation marathi gujarati,
Task 1086: pib translation marathi english, Task 789: pawsx french english translation, Task 1110:
ted translation he gl, Task 1689: qed amara translation, Task 787: pawsx korean chinese translation,
Task 1071: pib translation malayalam marathi, Task 548: alt translation en ch, Task 1373: newscomm
translation, Task 1023: pib translation english hindi, Task 1271: ted translation fa it, Task 1274: ted
translation pt en, Task 552: alt translation en bu, Task 1040: pib translation punjabi oriya, Task 1323:
open subtitles hi en translation, Task 1058: pib translation urdu english, Task 1105: ted translation ar
gl, Task 1353: hind encorp translation en hi, Task 1085: pib translation english marathi, Task 1103:
ted translation es fa, Task 784: pawsx korean french translation, Task 811: pawsx chinese german
translation, Task 1365: opustedtalks translation, Task 1278: ted translation pt he, Task 1115: alt ja
id translation, Task 538: alt translation bu en, Task 786: pawsx korean german translation, Task 805:
pawsx german chinese translation, Task 1692: qed amara translation, Task 1690: qed amara translation,
Task 655: bible en fa translation, Task 1256: ted translation pl en, Task 977: pib translation oriya urdu,
Task 841: para pdt de en translation, Task 996: pib translation english bengali, Task 531: europarl es
en translation, Task 452: opus paracrawl en ig translation, Task 1250: ted translation it ar, Task 644:
refresd translation, Task 1248: ted translation it ja, Task 1034: pib translation hindi gujarati, Task 1225:
ted translation ja he, Task 997: pib translation bengali oriya, Task 1127: alt ja th translation, Task 783:
pawsx korean english translation, Task 1031: pib translation bengali telugu, Task 560: alt translation
en entk, Task 1000: pib translation tamil malayalam, Task 252: spl translation en tr, Task 1650: opus
books en-fi translation, Task 654: bible fa en translation, Task 802: pawsx german korean translation,
Task 1025: pib translation bengali punjabi, Task 262: spl translation ja en, Task 785: pawsx korean
spanish translation, Task 530: europarl en es translation, Task 1232: ted translation ar es, Task 799:
pawsx spanish chinese translation, Task 1119: alt fil ja translation, Task 260: spl translation zh en,
Task 1686: menyo20k translation, Task 448: opus paracrawl en tl translation, Task 994: pib translation
tamil hindi, Task 1065: pib translation punjabi telugu, Task 557: alt translation en ba, Task 1072: pib
translation marathi malayalam, Task 535: alt translation ch en, Task 762: emea fr sk translation, Task
1024: pib translation hindi english, Task 914: bianet translation, Task 779: pawsx english spanish
translation, Task 547: alt translation entk en, Task 1128: alt th ja translation, Task 537: alt translation th
en, Task 1277: ted translation pt ar, Task 1124: alt ja lo translation, Task 1514: flores translation entone,
Task 435: alt en ja translation, Task 425: hindienglish corpora en hi translation, Task 1371: newscomm
translation, Task 818: pawsx japanese chinese translation, Task 873: opus xhosanavy translation xhosa
eng, Task 1240: ted translation gl es, Task 553: alt translation en ma, Task 1351: opus100 translation gu
en, Task 999: pib translation malayalam tamil, Task 438: eng guj parallel corpus en gu translation, Task
541: alt translation kh en, Task 1329: open subtitles en hi translation, Task 1102: ted translation es pl,
Task 661: mizan en fa translation, Task 1259: ted translation pl ar, Task 424: hindienglish corpora hi en
translation, Task 793: pawsx french chinese translation, Task 1005: pib translation malayalam punjabi,
Task 1262: ted translation pl it, Task 1367: opustedtalks translation, Task 117: spl translation en de,
Task 1237: ted translation he ar, Task 1122: alt khm ja translation, Task 1230: ted translation ar en, Task
790: pawsx french korean translation, Task 433: alt hi en translation, Task 253: spl translation en zh,
Task 1037: pib translation telugu urdu, Task 840: para pdt en es translation, Task 982: pib translation
tamil bengali, Task 1009: pib translation bengali hindi, Task 1062: pib translation marathi bengali, Task
1218: ted translation en ja, Task 1113: ted translation he fa, Task 1691: qed amara translation, Task
1276: ted translation pt es, Task 1108: ted translation ar fa, Task 1070: pib translation urdu bengali,
Task 1244: ted translation gl pl, Task 1239: ted translation gl ja, Task 1055: pib translation marathi
oriya, Task 794: pawsx french japanese translation, Task 1004: pib translation malayalam bengali,
Task 1049: pib translation malayalam telugu, Task 989: pib translation marathi urdu, Task 450: opus
paracrawl so en translation, Task 815: pawsx japanese french translation, Task 1066: pib translation
telugu punjabi, Task 777: pawsx english korean translation, Task 542: alt translation ja en, Task 830:
poleval2019 mt translation, Task 1655: mkb translation, Task 313: europarl en sv translation, Task
1044: pib translation punjabi gujarati, Task 1038: pib translation urdu telugu, Task 1057: pib translation
english urdu, Task 1047: pib translation english telugu, Task 1258: ted translation pl es, Task 1001:
pib translation gujarati urdu, Task 1063: pib translation gujarati tamil, Task 1649: opus books en-no
translation, Task 1282: ted translation pt fa, Task 983: pib translation gujarati marathi, Task 261: spl
translation es en, Task 439: eng guj parallel corpus gu en translation, Task 795: pawsx spanish english
translation, Task 1046: pib translation telugu hindi, Task 1233: ted translation ar he, Task 1112: ted
translation he pl, Task 663: global voices en fa translation, Task 662: global voices fa en translation,
Task 1376: newscomm translation, Task 258: spl translation fa en, Task 1029: pib translation marathi
punjabi, Task 986: pib translation oriya hindi, Task 1067: pib translation bengali gujarati, Task 604:
flores translation entosn, Task 1224: ted translation ja ar, Task 250: spl translation en ar, Task 1242: ted
translation gl he, Task 559: alt translation en fi, Task 1015: pib translation punjabi tamil, Task 259:
spl translation tr en, Task 1269: ted translation fa he, Task 807: pawsx chinese english translation,
Task 809: pawsx chinese french translation, Task 995: pib translation bengali english, Task 1093: ted
translation en fa, Task 174: spl translation en ja, Task 1036: pib translation urdu tamil...



Table A1 – continued from previous page
Task No. Dataset

Sentence
Compression 1 Task 1340: msr text compression compression

Summarization16 Task 1357: xlsum summary generation, Task 672: amazon and yelp summarization dataset summa-
rization, Task 1579: gigaword incorrect summarization, Task 1658: billsum summarization, Task 618:
amazonreview summary text generation, Task 522: news editorial summary, Task 1355: sent comp
summarization, Task 589: amazonfood summary text generation, Task 1553: cnn dailymail summariza-
tion, Task 1572: samsum summary, Task 1291: multi news summarization, Task 668: extreme abstract
summarization, Task 1309: amazonreview summary classification, Task 1499: dstc3 summarization,
Task 1290: xsum summarization, Task 511: reddit tifu long text summarization

Text
to
Code

12 Task 210: logic2text structured text generation, Task 107: splash question to sql, Task 077: splash
explanation to sql, Task 076: splash correcting sql mistake, Task 130: scan structured text generation
command action long, Task 869: cfq mcd1 sql to explanation, Task 212: logic2text classification, Task
126: scan structured text generation command action all, Task 211: logic2text classification, Task 128:
scan structured text generation command action short, Task 868: cfq mcd1 explanation to sql, Task 956:
leetcode 420 strong password check

Title
Generation 19 Task 1540: parsed pdfs summarization, Task 1561: clickbait new bg summarization, Task 769: qed

summarization, Task 1342: amazon us reviews title, Task 1356: xlsum title generation, Task 569: recipe
nlg text generation, Task 1161: coda19 title generation, Task 220: rocstories title classification, Task
219: rocstories title answer generation, Task 1586: scifact title generation, Task 602: wikitext-103
answer generation, Task 1358: xlsum title generation, Task 1659: title generation, Task 418: persent
title generation, Task 743: eurlex summarization, Task 288: gigaword summarization, Task 500:
scruples anecdotes title generation, Task 619: ohsumed abstract title generation, Task 510: reddit tifu
title summarization

Table A2: Dataset list for each NLG task from Super-Natural Instructions.


