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Abstract
Censored survival data are common in clinical tri-
als, but small control groups can pose challenges,
particularly in rare diseases or where balanced
randomization is impractical. Recent approaches
leverage external controls from historical studies
or real-world data to strengthen treatment eval-
uation for survival outcomes. However, using
external controls directly may introduce biases
due to data heterogeneity. We propose a doubly
protected estimator for the treatment-specific re-
stricted mean survival time difference that is more
efficient than trial-only estimators and mitigates
biases from external data. Our method adjusts
for covariate shifts via doubly robust estimation
and addresses outcome drift using the DR-Learner
for selective borrowing. The approach can incor-
porate machine learning to approximate survival
curves and detect outcome drifts without strict
parametric assumptions, borrowing only compa-
rable external controls. Extensive simulation stud-
ies and a real-data application evaluating the ef-
ficacy of Galcanezumab in mitigating migraine
headaches have been conducted to illustrate the
effectiveness of our proposed framework.

1. Introduction
Understanding the risk of disease or death and how these
risks evolve over time is critical for assisting clinicians in
treatment assignment and disease diagnosis. In clinical tri-
als or biomedical studies, evaluating the effectiveness of
drugs often suffers from limited sample sizes due to low
disease prevalence or restrictive inclusion/exclusion criteria.
This issue is exacerbated in survival analysis, as time-to-
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event or survival endpoints may not always be observed.
As a complement to clinical trials, external controls offer
a promising avenue to improve statistical inference when
recruiting more patients is challenging. However, external
controls can differ from clinical trials in many aspects due to
differences in the underlying data acquisition and generation
mechanisms. Concerns regarding the plausibility of these
assumptions have limited their broader deployment. Guid-
ance documents from regulatory agencies, including the
recent Food and Drug Administration (FDA) draft guidance
on Considerations for the Design and Conduct of Externally
Controlled Trials for Drug and Biological Products, note
several potential issues with the use of external controls,
including selection bias, lack of concurrency, differences
in the definitions of covariates, treatments, or outcomes,
and unmeasured confounding (FDA, 2001; 2019; 2023).
Each of these concerns can result in biased treatment effect
estimates if external controls are integrated with the trial
without further scrutiny.

2. Related Work
Data Integration with Non-survival Outcomes To re-
liably leverage external data, it is crucial to address these
potential issues with the use of external data. One primary
concern is the distributional heterogeneity of the baseline
disease characteristics between the two studies, leading to
the issue of covariate shifts. Likelihood-based frameworks
have been explored to mitigate covariate shifts arising from
external datasets (Chatterjee et al., 2016; Huang et al., 2016).
Other propensity score weighting and matching methods
have been proposed to construct new external data that have
similar covariate distributions as the trial data (Li et al.,
2018). However, these frameworks often rely on the invari-
ance assumption, which posits that the conditional outcome
distributions are identical for the trial and external controls.
This assumption can be problematic, as the distributions of
outcomes may also vary across studies given the baseline
covariates, leading to the problem of outcome drift.

In recent years, various adaptive learning methods have been
proposed to address the study-specific generating mecha-
nisms for outcomes, aiming to ensure robust estimation
even when external controls differ significantly from the
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trial. The considered analytic frameworks include adaptive
information borrowing from diverse populations in linear
regression (Li et al., 2022; Yang et al., 2023; Gao & Yang,
2023), generalized linear models (Tian & Feng, 2023; Li
et al., 2023a), and nonparametric classification (Cai & Wei,
2021).

Data Integration with Survival Outcomes However, the
adaptive learning in survival analysis remains limited due to
challenges in incorporating external time-to-event outcomes.
Unlike regression settings, where models dynamically bor-
row information for covariate effects, survival analyses need
to address outcome drift in hazards as well. For instance,
Liu et al. (2014) and Huang et al. (2016) proposed accommo-
dating outcome heterogeneity by applying a constant factor
to the cumulative hazard function. Additionally, Chen et al.
(2022) and Wang et al. (2020) developed a propensity score-
integrated Bayesian framework for the Kaplan–Meier (KM)
estimator, which first selects external controls with similar
hazard risks and then down-weights their impacts before
incorporating them via the weighted KM estimator.

Nonetheless, these approaches overlook the time-varying
nature of the outcome drift for survival analysis. To ad-
dress this, Chen et al. (2021b) developed an adaptive empir-
ical likelihood estimation that incorporates constraints from
external summary-level information to account for time-
varying baseline hazard differences. Huang et al. (2023)
proposed a federated external control method to estimate
hazard ratios in a federated weighted Cox model for time-to-
event outcomes. Due to privacy and logistical concerns with
data-sharing, these frameworks are designed to utilize exter-
nal aggregated survival information, which can be restrictive
and less efficient.

Furthermore, it is essential to control the information shar-
ing between covariate effects and hazard risks simultane-
ously. Li et al. (2023b) proposed a transfer learning frame-
work that allows for comparable information borrowing in
both covariate effects and baseline hazards through penal-
ized likelihood under Cox models. However, this frame-
work lacks flexibility in modeling time-varying covariate ef-
fects. Bellot & van der Schaar (2019) proposed learning the
shared representation between two populations via the flexi-
ble nonparametric survival trees and correcting distribution
mismatches with boosting, aiming to improve prediction
performance without providing uncertainty quantification.

Our Contributions Existing integrative methods are lim-
ited by the assumption of the Cox model, either on the
cause-specific or subdistribution hazard scale, which re-
quires to accurately model the survival curves. In recent
years, semiparametric efficient and doubly robust estima-
tors, which leverage the efficient influence function (EIF),
including the methodology of solving the EIF-based estima-

tion equation (Gao et al., 2024a; Lee et al., 2024) and the
targeted maximum likelihood estimation (Rytgaard et al.,
2022; 2023), have gained great popularity to draw inferences
about the treatment effects for survival outcomes. There-
fore, there is a pressing need for developing a flexible and
data-adaptive integrative framework that accounts for out-
come drift in time-to-event outcomes, coupled with valid
inferential methods, to enhance efficiency and reliability in
survival model estimation.

In this paper, we develop a doubly protected estimation
method for evaluating treatment effects for survival out-
comes. To correct for covariate shifts, we utilize the density
ratio of baseline covariates between two datasets in the con-
struction of the doubly robust treatment estimator, motivated
by the semi-parametric EIF. Since our framework is devel-
oped based on the EIF, it offers an advantage over other
non-parametric methods in the construction of confidence
intervals.

Next, we recast this influence function into a selection-based
integrative framework to address outcome drift, identifying
a comparable subset of external data for borrowing. To ad-
just time-varying hazards for survival outcomes, we propose
to detect this subset based on differences in the subject-level
restricted mean survival time (RMST) with DR-Learner. By
minimizing the bias-variance trade-off, our framework does
not require stringent parametric assumptions on the survival
curves and allows for the dynamic borrowing of external
information with time-varying hazards.

Finally, we establish the asymptotic properties of our pro-
posed data-adaptive integrative estimator for survival out-
comes with guaranteed consistency and efficiency improve-
ment, even in the presence of external heterogeneity. Be-
sides, we demonstrate the robustness and reasonable effi-
ciency gains via extensive simulation studies and a real-data
application. Our implementation codes will be made pub-
licly available after the acceptance of this manuscript.

3. Methodology
3.1. Notation, Assumptions and Identifications

Following the potential outcomes framework, let T (a) be
the potential survival time if a subject received the binary
treatment A = a. Let Sa(t) and λa(t) be the corresponding
survival and hazard functions, defined as Sa(t) = P(T (a) ≥
t) and λa(t) = limh→0 h

−1P(t ≤ T (a) ≤ t+h)/P(T (a) ≥
t). Under the consistency assumption, the observed survival
time T is the realization of potential outcome under the
actualized treatment, i.e., T = AT (1) + (1 − A)T (0). In
the presence of censoring, the survival time T is not always
observable. Instead, we observe Y = min(T,C) and ∆ =
1(T < C), where C is the censoring time, and 1(·) is an
indicator function. Let MC

a (dt | X,R = r) = dNC
a (t) −
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1(Y ≥ t)λCa (t | X,R = r) be a martingale with dNC
a (t) =

1(Y = t,∆ = 0, A = a), and λCa (t | X,R = r) =
limh→0 h

−1P (t ≤ C ≤ t+h | X,A = a,R = r)/P (C ≥
t | X,A = a,R = r).

Suppose we have two data sets: the trial data and the ex-
ternal controls. Let X be the baseline covariates and R
be the indicator of the data source, where R = 1 if the
subject is from the trial data and R = 0 for the exter-
nal controls. For the trial data, we observe R = {Vi =
(Yi,∆i, Ai, Xi, Ri = 1)}Nt

i=1; for the external controls, only
E = {Vi = (Yi,∆i, Ai = 0, Xi, Ri = 0)}Nt+Ne

i=Nt+1 are ob-
served since no treatment is assigned. Denote the true dis-
tribution for Vi by P, and the empirical measure by PN as
PN (f) =

∑
i f(Vi)/N , where N = Nt +Ne.

Let πR(X) = P (R = 1 | X), qR(X) = πR(X)/{1 −
πR(X)} be the density ratio of the baseline covariates,
πA(X) = P (A = 1 | X,R = 1) be the propensity
score for the treatment, and Sa(t | R = 1) = P(T (a) ≥
t | R = 1) be the treatment-specific survival curves for
the trial population. The parameter of our interest θτ is
the average treatment effect measured by the restricted
mean survival time (RMST) difference up to τ , defined
by θτ =

∫ τ

0
{S1(t | R = 1) − S0(t | R = 1)}dt. To iden-

tify the difference in RMST, the following assumptions are
sufficient.

Assumption 3.1 (Internal validity for the trial data). (i)
T (a) ⊥ A | X,R = 1 for a = 0, 1; and (ii) 0 <
πA(X), πR(X) < 1 in the support of X .

Assumption 3.2 (Informative censoring). T (a) ⊥ C |
X,A = a,R = r for a = 0, 1 and r = 0, 1.

Assumption 3.3 (Comparability for the external data).
S0(t | X) = S0(t | X,R = 0) = S0(t | X,R = 1)
for any t < τ in the support of X , where Sa(t | X,R) =
P(T (a) ≥ t | X,R);

Assumption 3.1 holds by the design of trial and is useful
to detect the external heterogeneity. Assumption 3.2 is
a common censoring at random assumption for survival
analysis, which is a special case of the coarsening at random
(Tsiatis, 2006). Assumption 3.3 states the external data is
comparable to the trial data if there is a rich set of covariates
capturing all the outcome predictors that are correlated with
the data source indicator R.

However, Assumption 3.3 is prone to violations in practice
due to many bias-generating concerns, such as unmeasured
confounding, lack of concurrency, and outcome validity.
Our proposed framework is two-fold: 1) Under Assumption
3.3 where covariate shift can be present, we develop a semi-
parametric efficient integrative estimator for the treatment
effects evaluation using the combined data sets (Section 3.2);
2) Considering the potential violation of Assumption 3.3
where the outcome drift is allowed, we adapt the efficient

estimation into a selective integrative procedure that first
detects the biases and only retains a subset of comparable
external data for integration (Section 3.3).

3.2. Efficient Integrative Estimation Assuming
Population Homogeneity

Under Assumptions 3.1 to 3.3, the average treatment effects
θτ , or Sa(t | R = 1) sufficiently, is identified based on
the observed data. The following theorem provides the
identification formulas.

Theorem 3.4. Under Assumptions 3.1 to 3.3, the follow-
ing identification formulas hold for the treatment-specific
survival curves Sa(t | R = 1).

(a) Based on the trial data:

Sa(t | R = 1) =
1

P(R = 1)
E {RSa(t | X,R = 1)}

=
1

P(R = 1)
E
{
R1(A = a)∆1(Y > t)

P (A = a | X)πC
1 (Y,X)

}
,

where πC
1 (t,X) = P (C ≥ t | X,R = 1) is the

censoring probability for the trial.

(b) Based on the external data:

S0(t | R = 1)

=
1

P(R = 1)
E
{
(1−R)qR(X)∆1(Y > t)

πC
0 (Y,X)

}
,

where πC
0 (t,X) = P (C ≥ t | X,R = 0) is the

censoring probability for the external controls.

Theorem 3.4 provides the identification formulas for Sa(t |
R = 1), which is sufficient to identify the average treatment
effect θτ among the trial population. In particular, Theorem
3.4(a) identifies Sa(t | R = 1) based on the outcome impu-
tation or the inverse probability censoring weighting with
the trial data only; Theorem 3.4(b) uses the external controls
to identify S0(t | R = 1). As the covariate distribution of
the external controls may not be representative of the trial
population, the identification formula relies on the density
ratio qR(X) to obtain the survival curves marginalized over
the trial population. A detailed proof of Theorem 3.4 is
provided in Appendix A.1.

However, the identification formulas provided in Theorem
3.4 could motivate infinitely many estimators for θτ under
Assumptions 3.1 to 3.3. To construct a more principled
estimator, we derive the efficient influence function (EIF)
of θτ in Theorem 3.5 based on the semiparametric theory
(Tsiatis, 2006). The EIF, also known as the canonical gra-
dient (Van der Laan et al., 2011), is a fundamental tool to
achieve local semiparametric efficiency for estimation.
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Theorem 3.5. Under Assumptions 3.1 to 3.3,

(a) the EIF for S1(t | R = 1) is ψS1,eff(t, V ) =
ϕS1,eff(t, V )−RS1(t | R = 1)/P(R = 1), where

ϕS1,eff(t, V ) =
RA1(Y > t)

P(R = 1)πA(X)πC
1 (t,X)

+

∫ t

0

RA · dMC
1 (r | X)

P(R = 1)πA(X)πC
1 (r,X)

S1(t | X,R = 1)

S1(r | X,R = 1)

+
RS1(t | X,R = 1)

P(R = 1)

{
1− A

πA(X)

}
.

(b) the EIF for S0(t | R = 1) is ψS0,eff(t, V ) =
ϕS0,eff(t, V )−RS0(t | R = 1)/P(R = 1), where

ϕS0,eff(t, V ) =
R(1−A)

P(R = 1)

qR(X)1(Y > t)

πC
1 (t,X)D(t,X)

+

∫ t

0

R(1−A)

P(R = 1)

qR(X)dMC
0 (r | X,R = 1)

πC
1 (r,X)D(t,X)

× S0(t | X,R = 1)

S0(r | X,R = 1)

+

∫ t

0

(1−R)

P(R = 1)

qR(X)r(t,X)dMC
0 (r | X,R = 0)

πC
0 (r,X)D(t,X)

× S0(t | X,R = 0)

S0(r | X,R = 0)

+
(1−R)

P(R = 1)

qR(X)r(t,X)1(Y > t)

πC
0 (t,X)D(t,X)

+
S0(t | X,R = 1)

P(R = 1)

{
RqR(X){A− πA(X)}

D(t,X)

+
r(t,X){R− (1−R)qR(X)}

D(t,X)

}
,

D(t,X) = r(t,X) + {1 − πA(X)}qR(X),
r(t,X) = VR1,A0/VR0, VR1,A0 =
var {1(T > t) | R = 1, A = 0}, and VR0 =
var {1(T > t) | R = 0}.

(c) the EIF for θτ is:

ψθτ ,eff(V ) =

∫ τ

0

{ψS1,eff(t, V )− ψS0,eff(t, V )}dt.

Theorem 3.5(a) shows the EIF for S1(t | R = 1) with the
trial data, which is well-studied as the observed-data EIF un-
der monotone coarsening in (Tsiatis, 2006); Theorem 3.5(b)
shows the EIF for S0(t | R = 1), which is an extension of
Gao et al. (2024a) with additional integral terms contributed
by the censoring scores of concurrent controls and external
data; Theorem 3.5(c) suggests that the EIF for θτ is an inte-
gral of the EIFs for Sa(t | R = 1) as the average treatment
effect θτ is an integral function of the treatment-specific
survival curves Sa(t | R = 1). Furthermore, the proposed

integrative framework can be generalized to any estimand
that is a function of the survival function Sa(t) (e.g., the
mean or median of the survival time), with only a trivial
algebraic extension, since the EIFs are derived for Sa(t).

We now give some intuitions behind the EIF ψS0,eff(t, V )
for the combined data sets. First, we derive the full-data EIF
ψF
S0,eff

(t, V ) under Assumption 3.3, which involves a part
being the weighted-averaged of the EIFs for the trial and
external data with weights being inversely proportionately
to the variances for the EIFs of the trial and external data,
respectively. Next, we project the full-data EIF ψF

S0,eff
(t, V )

to the coarsened data space induced by the censoring, and
gives the observed-data EIF in Theorem 3.5(b); see Theorem
10.4, Tsiatis (2006). A detailed proof of Theorem 3.5 is
provided in Appendix A.2.

However, constructing an estimator based on the EIFs first
requires approximating the unknown nuisance functions
πR(X), πA(X), Sa(t | X), and SC(t | X,R). By replac-
ing the true distribution P with its estimated counterparts
and solving the empirical expectation PN{ψ̂θτ ,eff(V )}, we
have

θ̂acw
τ = N−1

∑
i∈R∪E

∫ τ

0

{
ϕ̂S1,eff(t, Vi)dt− ϕ̂S0,eff(t, Vi)

}
dt.

Under the conditions in Theorem 3.6, our proposed inte-
grative estimator θ̂acw

τ is rate doubly robust, asymptotically
normal, and locally efficient as established below.

Theorem 3.6. Denote ∥f∥L2
= P{f(V )2}1/2 where P is

the true distribution. Let π̂R(X), π̂A(X), Ŝa(t | X,R =
1), and π̂C

r (t,X) be general semi-parametric models for
πR(X), πA(X), Sa(t | X,R = 1), and πC

r (t,X), respec-
tively. Suppose Assumptions 3.1 to 3.3 and the regularity
conditions A.1 are satisfied, up to a multiplicative constant,
the estimation error θ̂acw

τ − θr = err(θ̂acw
τ , θr) is bounded

by

err(θ̂acw
τ , θr) =

{
∥Ŝ0(t | X,R = 1)− S0(t | X,R = 1)∥L2

+∥Ŝ1(t | X,R = 1)− S1(t | X,R = 1)∥L2

}
× {∥π̂A(X)− πA(X)∥L2 + ∥π̂R(X)− πR(X)∥L2

+max
r<t

∥λ̂C0 (r | X,R)− λC0 (r | X,R)∥L2

}
.

Thus, we have N1/2(θ̂acw
τ − θτ )

d→ N(0,Vτ ), where N =
Nt +Ne and Vτ = E{ψ2

θτ ,eff
(V )} is the semi-parametric

lower bound for the variance.

Theorem 3.6 shows that the proposed estimator θ̂τ can incor-
porate flexible nonparametric or machine learning methods
for estimating the nuisances with the required convergence
rates, while maintaining the parametric-rate consistency.
The proof of Theorem 3.6 is deferred to Appendix A.3.
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3.3. Robust Selective Borrowing with DR-Learner for
Outcome Drift Detection

In practice, Assumption 3.3 is often violated, that is, S0(t |
X,R = 1) ̸= S0(t | X,R = 0) for some t ∈ [0, τ ], and
θ̂τ may be biased. Suppose there exists a comparable sub-
set A ⊆ {1, · · · , Ne} of the external controls such that
S0(t | Xi, R = 1) = S0(t | Xi, R = 0) for any time t and
subject i ∈ A, and we aim to selectively borrow this com-
parable subset. However, the subset A is often unknown a
priori. In this section, we propose a robust selective borrow-
ing framework to incorporate comparable external controls
in estimating the average treatment effect. We introduce
a vector of bias parameter b0 = (b1,0, · · · , bNe,0), where
bi,0 =

∫ τ

0
S0(t | Xi, Ri = 1)dt−

∫ τ

0
S0(t | Xi, Ri = 0)dt.

To prevent bias in θ̂τ , our goal is to identify the zero-valued
subset of the bias parameter and leverage only this subset
for the integrative estimation.

One simple estimator to detect the bias is the “plug-in” es-
timation, defined as b̂i = b̂(Vi) =

∫ τ

0
Ŝ0(t | Xi, Ri =

1)dt −
∫ τ

0
Ŝ0(t | Xi, Ri = 0)dt. However, the “plug-

in” estimator might have large finite-sample biases if one
uses flexible models for the conditional survival functions.
Heuristically, bias detection is equivalent to estimating
the conditional differences in expected control means over
two datasets, which parallels the conditional average treat-
ment estimation in the causal inference literature when
the study source indicator is perceived as the treatment
indicator. To more accurately approximate the biases, the
DR-Learner approach (Kennedy Edward, 2020; Kallus &
Oprescu, 2023) is utilized to construct the initial pseudo-
outcome ξi for the bias bi,0 by ξi = ξ(Vi) =

∫ τ

0
κ0(t, Vi |

R = 1)dt−
∫ τ

0
κ0(t, Vi | R = 0)dt, where

κ0(t, Vi | R = 1) = S0(t | Xi, R = 1)

+

∫ t

0

Ri(1−Ai)dM
C
0 (r | Xi, R = 1)

πR(Xi){1− πA(Xi)}πC
1 (r,X)

S0(t | Xi, R = 1)

S0(r | Xi, R = 1)

+
Ri(1−Ai)

πR(Xi){1− πA(Xi)}

×
{
1(Yi > t)

πC
1 (t,Xi)

− S0(t | Xi, R = 1)

}
,

and

κ0(t, Vi | R = 0) = S0(t | Xi, R = 0)

+

∫ t

0

(1−Ri)dM
C
0 (r | Xi, R = 0)

{1− πR(Xi)}πC
0 (t,Xi)

S0(t | Xi, R = 0)

S0(r | Xi, R = 0)

+
(1−Ri)

1− πR(Xi)

{
1(Yi > t)

πC
0 (t,Xi)

− S0(t | Xi, R = 0)

}
.

Lemma 3.7 provides bounds for estimation error for the
pseudo-outcomes, which is the key step for bias detection.

Lemma 3.7. Let ξ̂(V ) be the pseudo-outcome with un-
known nuisance functions replaced by their estimated coun-
terparts and ξ∗(V ) be its probability limit, the conditional
expectation ∥E{ξ∗(V )− b0 | X}∥L2

is bounded by

1∑
r=0

∥π̂R(X)− πR(X)∥L2

× ∥Ŝ0(t | X,R = r)− S0(t | X,R = r)∥L2

+

1∑
r=0

∥π̂C
r (t,X)− πC

r (t,X)∥L2

× ∥Ŝ0(t | X,R = r)− S0(t | X,R = r)∥L2

+ ∥π̂A(X)− πA(X)∥L2

× ∥Ŝ0(t | X,R = 1)− S0(t | X,R = 1)∥L2
,

up to a multiplicative constant.

The results in Lemma 3.7 show that nuisance errors will
have smaller impacts on the pseudo-outcomes ξ̂ as its esti-
mation error is bounded by a quadratic form of the nuisance
errors. The proof is provided in Appendix A.4.

We now present our adaptive integrative framework in Al-
gorithm 1. The cutoff value τ for computing the RMST is
crucial in practice, as the distribution of the tail beyond this
point is neglected. Typically, the event rates at this cutoff
value should exceed 10% to ensure sufficient data for model
development.

In Algorithm 1, Step 1 is a typical strategy to use machine
learning techniques for estimating the nuisance functions;
The penalty term in Step 2 is chosen to guarantee the se-
lection consistency such that P(Ã = A) → 1, where
Ã = {i : b̃i = 0} is the estimated comparable set. For ex-
ample, the penalty term p(·) can be the adaptive lasso (Zou,
2006), the smoothly clipped absolute deviation (SCAD)
(Fan & Li, 2001), and the minimax concave penalty (MCP)
(Zhang, 2010); Finally, Step 3 outputs the adaptive integra-
tive estimator θ̂adapt

τ with the comparable set Ã by

θ̂adapt
τ = N−1

∑
i∈R∪E

∫ τ

0

ϕ̂S1,eff(t, Vi)dt

−N−1
∑

i∈R∪E

∫ τ

0

ϕ̂ÃS0,eff(t, Vi)dt,

where the difference between ϕAS0,eff
(t, V ) in Step 3 and

ϕS0,eff(t, V ) in Theorem 3.5 lies in the focus on leveraging
the comparable set A instead of the whole external controls
E for the integrative analysis.

Theorem 3.8. Let Vaipw
τ be the variance of the trial-only

estimator. Under the same conditions in Theorem 3.6, we
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Algorithm 1 Doubly Protected Adaptive Integrative Analy-
sis for Survival Outcomes

Input: trial data R = {Vi = (Yi,∆i, Ai, Xi, Ri =
1)}Nt

i=1, the external controls E = {Vi = (Yi,∆i, Ai =

0, Xi, Ri = 0)}Nt+Ne

i=Nt+1, penalty function p(·), tuning
parameter λN , and the cutoff value τ .

◁ Preparation
Randomly split the data R∪ E into two folds I1 and I2.

◁ Step 1
Fit the conditional survival curves Ŝa(t | X,R = r) and
ŜC(t | X,R = r) on I1 for r = 0, 1.
Fit the propensity scores π̂R(X) and π̂A(X) on I1.
Compute the pseudo-outcomes ξ̂i by κ0(t, Vi | R = 1)

and κ0(t, Vi | R = 0) on I2.

◁ Step 2
Refine the pseudo-outcomes by b̃i = argminbi(ξ̂i −
bi)

2 + λNp(|bi|).
Obtain the comparable set Ã = {i : b̃i = 0}.

◁ Step 3
Output the adaptive integrative estimator θ̂adapt

τ .

have N1/2(θ̂adapt
τ − θτ )

d→ N(0,Vadapt
τ ), where

Vadapt
τ − Vaipw

τ =
πR(X)r(t,X)P(b0 = 0 | X,R = 0)

P(R = 1)2Db0(t,X){1− πA(X)}

×
D∗

b0
(t,X)

Db0(t,X)

r(t,X)

r∗(t,X)
VR1,A0,

where D∗
b0
(t,X) = r∗(t,X)P(b0 = 0 | X,R = 0) + {1−

πA(X)}qR(X) and r∗(t,X) = V ∗
R1,A0/V

∗
R0; VR1,A0 are

defined in Theorem 3.5, and the modified variance terms
V ∗
R1,A0 and V ∗

R0 are defined in Appendix A.5.

Theorem 3.8 highlights the benefit of selective incorporating
external controls, where the asymptotic variance of θ̂adapt

τ

is strictly smaller than the variance Vaipw
τ of the trial-only

estimator unless the external study is in extremely poor
quality (i.e., r(t,X) = 0) or the comparable external subset
is empty (i.e., P(b0 = 0 | X,R = 0) = 0). A proof is
provided in Appendix A.5.

4. Simulation
In this section, we conduct several simulation studies to eval-
uate the finite-sample performance of the proposed selective
integrative estimator. The sample size for the external con-
trols are fixed atNe = 500, and the parameter of our interest
is the difference in RMST with τ = 2. First, we generate

X = (Xi,1, · · · , Xi,p) ∼ N (0, Ip×p) with p = 3 for each
subject i. Next, we generate the data source indicator R by
Bernoulli sampling in Table 1, where αR,0 is chosen such
that the average of R is around Nt/N . For the trial data,
where R = 1, the treatment A is generated by Bernoulli
sampling:

A | X,R = 1 ∼ Bernoulli
{

exp(αA,0 + 1⊺pX)

1 + exp(αA,0 + 1⊺pX)

}
,

where αA,0 is chosen such that the average of A is around
N1/Nt, and N1 is the size of treatment group. We consider
the following conditional hazard function λa(t | X,R =
1) = exp(−.5a − 1⊺pX · 0.2), and λC(t | X,R = 1) =
exp(1⊺pX · 0.1 + βC) for the trial. The time-to-event out-
comes T and the censoring times C are generated by invert-
ing the survival functions induced by the hazard function
λa(t | X) and λC(t | X), respectively. The parameter
βC = 1 controls the expected censoring time for the trial
data where the censoring rates P (C < T ) is around 40%;
additional simulations where the data is subject to a differ-
ent intensities of censoring with various values of βC are
available in Appendix B.

Next, to mimic the bias-generating concerns raised by the
FDA, namely, selection bias, unmeasured confounding, lack
of concurrency, and different covariate effects and time-
varying baseline hazards, we consider five simulation set-
tings for the external controls, as summarized in Table 1.
Under Setting One, the survival and censoring times for
the external controls are generated using the exact same pa-
rameters as λa(t | X) with a fixed at 0 (i.e., no treatment).
Under Setting Two, the hazard functions for both studies
are confounded by an unobserved factor U to maintain the
same level of hazard variability across the two datasets. In
particular, U ∼ N (0, 1) (zero mean) is included in the haz-
ard function for the trial data, whereas U + 1 ∼ N (1, 1)
(non-zero mean) is used for the external controls, which is
expected to introduce greater outcome drift. Under Setting
Three, the external controls are subject to inconcurrency
bias, where δi takes values from {0, 5} with equal proba-
bility 1/2. Lack of concurrency could occur when the trial
data and external control data are collected during different
time periods or under varying healthcare settings. Under
Setting Four, the external controls have different covariate
effects, whereas under Setting Five, they exhibit different
baseline time-varying hazards. Such discrepancies may
arise if the two populations respond differently to the treat-
ment (or placebo), even when they share the same baseline
covariates.

In our evaluation, we compare the proposed selective bor-
rowing estimator θ̂adapt

τ with the trial-only estimator θ̂aipw
τ

(Tsiatis, 2006), the naive full borrowing estimator θ̂acw
τ , the

propensity score-integrated estimator θ̂psrwe (Chen et al.,
2020), and the transfer learning Cox regression θ̂TransCox

τ (Li
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Table 1. Summary of considered three simulation settings

Bias Setting Details

Covariate shift Selection bias R | X ∼ Bernoulli
{

exp(αR,0+1⊺pX)

1+exp(αR,0+1⊺pX)

}
,

λ0(t | X,R = 0) = exp(−1⊺pX · 0.2)
Outcome drift Unmeasured confounder R | X ∼ Bernoulli

{
exp(αR,0+1⊺pX+U)

1+exp(αR,0+1⊺pX+U)

}
,

λa(t | X,U,R) = exp{−0.5a− 1⊺pX · 0.2 + 3(U + 1(R = 0)}

Lack of concurrency R | X ∼ Bernoulli
{

exp(αR,0+1⊺pX)

1+exp(αR,0+1⊺pX)

}
,

λa(t | X,R) = exp{−.5a− 1⊺pX · 0.2 + 3δ1(R = 0)}

Different covariate effect λa(t | X,R = 1) = exp(−.5a− 1⊺pX · 0.2)
λ0(t | X,R = 0) = exp(−1⊺pX · 0.5)

Different baseline hazard λa(t | X,R = 1) = t exp(−.5a− 1⊺pX · 0.2)
λ0(t | X,R = 0) = 2t exp(−1⊺pX · 0.2)

et al., 2023b). The penalty term p(·) is chosen to be the
adaptive lasso (Zou, 2006). The conditional survival curves
Sa(t | X) and SC(t | X) are modeled by the Cox model,
and the propensity scores πR(X) and πA(X) are modeled
by the SuperLearner with the logistic regression and random
forest as the base learners (Van Der Laan & Rubin, 2006).

Figure 1(Top) presents the bias, standard error (SE), and
the square root of the mean squared error (Root-MSE) for
each method across three simulation settings, with the size
of the concurrent control N0 ranging from 50 to 400. As
expected, the trial-only benchmark estimator θ̂aipw

τ exhibits
small biases across these three settings by design. Under
Setting One, where the external controls do not present any
outcome heterogeneity, all integrative estimators demon-
strate improved Root-MSE relative to the benchmark θ̂aipw

τ .
Our proposal θ̂adapt

τ is less efficient compared to other inte-
grative estimators as it induces extra variability due to bias
detection for selective borrowing. However, θ̂acw

τ , θ̂psrwe and
θ̂TransCox
τ can be substantially biased under Settings Two and

Three, where the unmeasured confounder or time inconcur-
rency are present. In particular, our data-adaptive integrative
estimator can detect the incompatibility of external controls
and selectively borrows the comparable subset, resulting in
a similar level of biases, but improved standard errors com-
pared to the benchmark θ̂aipw

τ . The results under Settings
Four and Five are presented in Appendix B.

To evaluate the asymptotic properties of our proposed esti-
mators, Figure 1(Bottom) presents the type-I error, the cov-
erage probability, and the power for detecting θτ > −0.3

for the estimators θ̂aipw
τ , θ̂acw

τ , and θ̂adapt
τ . The bootstrap-

based variance estimation with bootstrap size 50 is used to
construct the 95% Wald confidence intervals for evaluation.
Under Setting One, θ̂acw

τ successfully controls the type-I
errors, maintain the nominal coverage rates and achieve the

highest powers for detecting treatment effects over a varying
size of concurrent controls. However, it has inflated type-I
errors and deteriorated coverage probabilities under Setting
Two and Three when the outcome drift is present. In con-
trast, our proposed borrowing estimator effectively controls
the type-I error, maintains the satisfactory coverage rates,
and achieves improved or comparable power levels com-
pared to the benchmark θ̂aipw

τ , irrespective of the presence
of the outcome drift.

5. Real-data Application
This section presents an application of the proposed selec-
tive borrowing methodology to evaluate the effectiveness
of Galcanezumab (120mg) versus placebo in patients with
episodic migraine. The primary trial study is EVOLVE-1,
a phase 3 double-blinded trial for patients with episodic
migraines that randomized patients 1:1:2 to receive monthly
Galcanezumab 120mg, 240mg, or placebo for up to 6
months (Stauffer et al., 2018). In addition, placebo subjects
from the REGAIN study were used as external controls to
augment the control arm from the EVOLVE-1 study. The
REGAIN study is a phase-3 double blinded trial for patients
with chronic migraine headaches that randomized patients
1:1:2 to receive monthly galcanezulab 120mg, 240mg, or
placebo for up to 3 months, with a subsequent 9-month open
label extension follow-up period (Detke et al., 2018).

The primary objective is to assess whether galcanezumab
120mg is superior to placebo in helping patients with
episodic migraine achieve a meaningful improvement in
migraine headache days (MHD), defined as a 50% reduc-
tion in mean MHD per month from baseline. To estimate
the difference in time to first meaningful MHD reduction
up to 6 months post-baseline, the galcanezumab 120mg
and placebo arms from EVOLVE-1 are augmented with
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Figure 1. (Top) Point estimation results for RMST over 500 Monte
Carlo experiments; (Bottom) Asymptotic results for RMST over
500 Monte Carlo experiments under Settings 1) selection bias only;
2) unmeasured confounding; 3) lack of concurrency.

the placebo arm from the REGAIN study. The treatment
effect θτ is defined as the RMST difference of the time to
first occurrence of 50% MHD reduction up to time τ = 6
months.
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Figure 2. (A) Kaplan-Meier survival curves for the EVOLVE-
1 study and the placebo group of the REGAIN study; (B)
The estimated treatment effect in RMST for the EVOLVE-1
study; (C) Probability of study success of detecting θτ <
−0.05,−0.1,−0.15 using θ̂aipw

τ and θ̂adapt
τ over a range of re-

stricted times τ under varying sizes of sub-samples from the
placebo group of the REGAIN study.

Figure 2(A) presents the unconditional Kaplan-Meier curves
for the placebo group of these two studies. The log-rank test
indicates that the time to meaningful MHD improvement is
different between the placebo arms of the EVOLVE-1 study
and the REGAIN study, suggesting the need to account for
outcome drift. Figure 2(B) provides the estimated treatment
effect of Galcanezumab (120mg) in terms of RMST as a
function of the restricted month τ . All estimators exhibit a
trend of decreasing RMST and show significant improve-
ments in mitigating migraines severity, implying a shortened
response time for at least a 50% reduction in MHD after
being treated with Galcanezumab (120mg). Our proposed
estimator θ̂adapt

τ yields a RMST that is closer to the trial-only
estimator θ̂aipw

τ , highlighting its capability to control the bias
arising from external heterogeneity.

Next, we benchmark the performances of θ̂adapt
τ with the

trial-only estimator θ̂aipw
τ to emphasize the efficiency gain

of our selective borrowing framework. To accomplish this,
we retain the treatment group of the primary EVOLVE-1
study with a size of N1 = 212, and create 50 sub-samples
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by randomly selecting N c
0 patients from its placebo group

with N c
0 = 100, 150, 200. The placebo group of the RE-

GAIN study is then augmented to each selected sub-samples.
Figure 2(C) presents the empirical probability of study suc-
cess (PrSS) over a range of restricted times τ under dif-
ferent sizes of concurrent controls. The empirical PrSS
is computed by the proportion of successfully detecting
θτ < −0.05,−0.1,−0.15 over the repeated sub-samples.
When combined with the placebo group of the REGAIN
study, θ̂adapt

τ enhances the time-to-event analyses and yields
a higher PrSS compared to θ̂aipw

τ across all the sizes of sam-
pled concurrent controls.

For example, suppose that we aim to reach PrSS ≥ 0.6 of
detecting θτ < −0.1 at month τ = 6, θ̂adapt

τ only need to
recruit 100 patients for the placebo group (solid red line
at τ = 6 of the middle panel in Figure 2(C)), however,
the trial-only estimator θ̂aipw

τ needs at least 150 patients for
the placebo group (dash green line at τ = 6 of the middle
panel in Figure 2(C)). Therefore, our approach could attain
similar levels of PrSS with fewer patients and a shortened
patient enrollment period by appropriately leveraging the
external controls, which could eventually accelerate the
drug development for rare diseases where the event rates are
typically low and imbalanced trials are often considered.

6. Discussion
In this paper, we introduce a doubly protected borrowing
framework that utilizes external controls to enhance treat-
ment estimation for survival outcomes. Unlike most existing
approaches, our method is built on semi-parametric efficient
estimation coupled with the DR-Learner to detect outcome
drift for selective borrowing. This approach effectively in-
corporates external controls without introducing biases into
the integrative treatment evaluation. Moreover, the pro-
posed approach offers a new perspective on the integrative
analysis for survival outcomes with a proper method for
inference, which could be a valuable contribution to many
survival analyses in the machine learning community, such
as those involving customer churn (Larivière & Van den
Poel, 2004; Gao et al., 2024b), and multi-source domain
adaption (Mansour et al., 2008; Shaker & Lawrence, 2023).

Our simulation studies reveal several challenges in control-
ling type I errors in the presence of unmeasured confounding
for small samples, a problem also noted in other methods
such as Bayesian dynamic borrowing (Dejardin et al., 2018;
Kopp-Schneider et al., 2020). Future work will focus on
enhancing type I error control using alternative strategies,
such as exact inference. In addition, the current selection
criterion focuses on detecting outcome drift based on the
differences in RMSTs. However, this may be less efficient
when some parts of the conditional survival function are
invariant across studies, as our proposal might exclude these

valuable external controls that are partially comparable to
the trial data. Future research should explore approaches
that select comparable information rather than entire com-
parable subjects. One promising direction involves jointly
estimating the average treatment effect and bias functions,
as suggested in recent studies (Yang et al., 2020; Wu &
Yang, 2023).

Software and Data
Our R codes with illustrative examples are avail-
able at https://github.com/Gaochenyin/
SelectiveIntegrative.
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A. Proofs
A.1. Proof of Theorem 3.4

We only prove the identification formulas for S0(t | R = 1), and similar proofs follow for S1(t | R = 1). Based on the trial
data, we have

S0(t | R = 1) = E{S0(t | X,R = 1) | R = 1}

=
1

P(R = 1)
E{RS0(t | X,R = 1)} (1)

=
1

P(R = 1)
E{RP (T (0) > t | X,R = 1)}

=
1

P(R = 1)
E{RP (T (0) > t | X,R = 1, A = 0, C > T )}

=
1

P(R = 1)
E
{

R(1−A)∆1(Y > t)

{1− πA(X)}SC(Y | X,A = 0, R = 1)

}
,

where the fourth equality holds under Assumptions 3.1 and 3.2. Based on the external data, we have

S0(t | R = 1) = E{S0(t | X,R = 1) | R = 1}

=
1

P(R = 1)
E{RS0(t | X,R = 1)}

=
1

P(R = 1)
E{πR(X)S0(t | X,R = 0)}

=
1

P(R = 1)
E{πR(X)P (T (0) > t | X,R = 0, A = 0, C > T )}

=
1

P(R = 1)
E
{
(1−R)qR(X)∆1(Y > t)

SC(Y | X,A,R = 0)

}
,

where the third equality holds under Assumptions 3.3.

A.2. Proof of Theorem 3.5

A.2.1. PRELIMINARIES

We first derive the full-data efficient influence function (EIF) for the treatment-specific survival curves Sa(t | R = 1)
without censoring, i.e., the full data Wi = (Ti, Ai, Xi, Ri = r). We next employ the semi-parametric theory in Bickel et al.
(1993) to derive the EIFs. In particular, we consider a one-dimensional parametric submodel fθ(W ), which contains the
true model f(W ) at θ = 0, i.e., fθ(W ) |θ=0= f(W ). We use dot to denote the partial derivative with respect to θ, and sθ(·)
to denote the score function of the submodel. For example, we have

µ̇0 =
∂

∂θ
Eθ{µ0(X)} =

∫
X
µ0(X)

∂fθ(X)

∂X
dX

=

∫
X
µ0(X)

ḟθ(X)

fθ(X)
fθ(X)dX = E{µ0(X)sθ(X)},

where sθ(X) = ∂ log fθ(X)/∂θ. Further, we can factorize the full-data likelihood function as:

f(W ) = f(X)P(R = 1 | X)RP(R = 0 | X)1−R

× P(A = 1 | X,R = 1)RAP(A = 0 | X,R = 1)R(1−A)

× f(T | X,R = 1, A = 1)RAf(T | X,R = 1, A = 0)R(1−A)

× f(T | X,R = 0)1−R,

12
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and the associated score function under the submodel can be decomposed as

sθ(W ) = sθ(X) +
R− P(R = 1 | X)

P(R = 1 | X){1− P(R = 1 | X)}
Ṗθ(R = 1 | X)

+
R{A− πA(X)}

πA(X){1− πA(X)}
Ṗθ(A = 1 | X,R = 1)

+RAsθ(T | X,A = 1, R = 1) +R(1−A)sθ(T | X,R = 1, A = 0)

+ (1−R)sθ(T | X,R = 0),

where sθ(X) = ∂ log fθ(X)/∂θ, sθ(T | X,R = 1, A = a) = ∂ log fθ(T | X,R = 1, A = a)/∂θ for a = 0, 1,
and sθ(T | X,R = 0) = ∂ log fθ(T | X,R = 0)/∂θ. Analogous to our definition fθ(W ) |θ=0= f(W ), we have
sθ(·) |θ=0= s(·), which is the true score function evaluated at the true parameter under the one-dimensional submodel.

A.2.2. FULL-DATA EFFICIENT INFLUENCE FUNCTION

From the semiparametric theory, the orthogonal complement of the full-data nuisance tangent space Λ⊥
F equals to

Λ⊥
F = H1 ⊕H2 ⊕H3 ⊕H4, (2)

where

H1 = {Γ(X) : E{Γ(X)} = 0},
H2 = {{R− P(R = 1 | X)}a(X)} , H3 = {R{A− πA(X)}b(X)} ,
H4 = H41 ∩H42 = {Γ(T,X,R,A) : E{Γ(T,X,R,A) | X,R,A} = 0}

∩
{
Γ(T,X,R,A) : E

[{
(1−R)1(T > t)

P (R = 0 | X)
− R(1−A)1(T > t)

P (R = 1, A = 0 | X)

}
Γ(T,X,R,A) | X

]
= 0, t < τ

}
,

for any two arbitrary square-integrable measurable functions a(X) and b(X). The tangent space H42 is induced by the
conditional mean exchangeability in Assumption 3.3, where S0(t | X,R = 1) = S0(t | X,R = 0) for any t < τ . The EIF
for S0(t | R = 1), denoted by ψF

S0,eff
(t,W ) ∈ Λ⊥

F should satisfy

∂S0(t | R = 1)/∂θ |θ=0= E{ψF
S0,eff(t,W )s(W )}.

Based on our identification formula (1), S0(t | R = 1) = E{πR(X)S0(t | X,R = 1)}/P(R = 1), which is a ratio for with
numerator N = E{πR(X)S0(t | X,R = 1)} and denominator D = P(R = 1). Therefore, our strategy is to first derive the
EIF for the numerator and denominator, and then combine them to have the final full-data EIF ψF

S0,eff
(t,W ).

Let Nθ and Dθ denote N and D being evaluated at the submodel fθ(W ). For the numerator, pathwise derivative is evaluated
by the chain rule:

∂Nθ

∂θ
|θ=0 = E{P(R = 1 | X)P(T > t | R = 1, A = 0, X)s(X)}

+ E
{
∂Pθ(R = 1 | X)

∂θ
P(T > t | R = 1, A = 0, X)

}
|θ=0 (3)

+ E
{
P(R = 1 | X)

∂Pθ(T > t | R = 1, A = 0, X)

∂θ

}
|θ=0 . (4)

Next, we show the second part of the pathwise derivative (3) is

∂Pθ(R = 1 | X)

∂θ
= E[{R− P(R = 1 | X)}s(A,R | X)].

However, the pathwise derivative ∂Pθ(T > t | X,R = 1)/∂θ in the third part can be derived in different ways under
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Assumption 3.3 with the trial data by (5) and the external controls by (6):

∂

∂θ
Pθ(T > t | R = 1, A = 0, X)

=
∂

∂θ
Eθ {1(T > t) | R = 1, A = 0, X}

=

∫ ∞

t

1(T > t)
∂

∂θ
fθ(T | R = 1, A = 0, X)dT

=

∫ ∞

t

1(T > t)sθ(T | R = 1, A = 0, X)fθ(T | R = 1, A = 0, X)dT

=

∫ ∞

t

R(1−A)fθ(T | X) {1(T > t)− S0(t | X,R = 1)}
P(R = 1, A = 0 | X)

sθ(T | R,A,X)dT

= E
[
R(1−A) {1(T > t)− S0(t | X,R = 1)} sθ(T | R,A,X)

P(R = 1, A = 0 | X)
| X
]
, (5)

and

∂

∂θ
Pθ(T > t | R = 1, A = 0, X)

=
∂

∂θ
Pθ(T > t | R = 0, A = 0, X)

=
∂

∂θ
Eθ {1(T > t) | R = 0, A = 0, X}

=

∫ ∞

t

1(T > t)
∂

∂θ
fθ(T | R = 0, A = 0, X)dT (0)

=

∫ ∞

t

1(T > t)sθ(T | R = 0, A = 0, X)fθ(T | R = 0, A = 0, X)dT

=

∫ ∞

t

{1(T > t)− S0(t | X,R = 0)} sθ(T | X,R) (1−R)fθ(T | X)

P(R = 0 | X)
dT

= E
[
(1−R) {1(T > t)− S0(t | X,R = 0)} sθ(T | X,R)

P(R = 0 | X)
| X
]
. (6)

To obtain the efficient influence function of N , we need to find the proper functions C1 and C2 of (X,R,A) such that the
third part (4) belongs to the tangent space H4, which satisfies:

E
([
C1(1−R)q(X) {1(T > t)− S0(t | X,R = 1)}+ C2R(1−A)

1(T > t)− S0(t | X,R = 1)

1− πA(X)

]
(7)

×
{
(1−R)1(T > t)

P(R = 0 | X)
− R(1−A)1(T > t)

P(R = 1, A = 0 | X)

}
| X
)

= 0.

By simple algebra, we can show that

C1

C2
=

E
[
R2(1−A)2{1(T > t)− S0(t | X,R = 1)}1(T > t) | X

]
{1− πA(X)}P(R = 1, A = 0 | X)(

E
[
(1−R)2qR(X){1(T > t)− S0(t | X,R = 1)}1(T > t) | X

]
P (R = 0 | X)

)−1

=
r(t,X)

{1− πA(X)}qR(X)
,

where r(t,X) = var {1(T > t) | R = 1, A = 0} /var {1(T > t) | R = 0}. Plugging the above formulas, we obtain the
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EIF for the numerator N as:

ψF
N,eff(t,W ) = RS0(t | X,R = 1)

+
(1−R)r(t,X)qR(X) {1(T > t)− S0(t | X,R = 1)}

D(t,X)

+
R(1−A)qR(X) {1(T > t)− S0(t | X,R = 1)}

D(t,X)
.

where D(t,X) = r(t,X) + {1 − πA(X)}qR(X). For the denominator Dθ, we have ∂Dθ/∂θ |θ=0= E{R∂Pθ(R =
1)/∂θ} |θ=0. By Lemma S1 in Jiang et al. (2022), the full-data EIF of N/D is obtained by:

ψF
S0,eff(t,W ) =

ψF
N,eff(t,W )−RS0(t | R = 1)

P(R = 1)

=
R(1−A)

P(R = 1)

qR(X) {1(T > t)− S0(t | X,R = 1)}
D(t,X)

+
1−R

P(R = 1)

r(t,X)qR(X) {1(T > t)− S0(t | X,R = 1)}
D(t,X)

+
R

P(R = 1)
{S0(t | X,R = 1)− S0(t | R = 1)},

=
R(1−A)

P(R = 1)

qR(X) {1(T > t)− S0(t | R = 1)}
D(t,X)

+
(1−R)qR(X)

P(R = 1)

r(t,X) {1(T > t)− S0(t | R = 1)}
D(t,X)

+
S0(t | X,R = 1)− S0(t | R = 1)

P(R = 1)

{
R{A− πA(X)}qR(X)

D(t,X)
+
r(t,X){R− (1−R)qR(X)}

D(t,X)

}
,

which belongs to the tangent space Λ⊥
F .

A.2.3. OBSERVED-DATA EFFICIENT INFLUENCE FUNCTION

In the presence of censoring, i.e., a special form of monotone coarsening, we observe the data set Vi = (Yi,∆i, Ai, Xi, Ri =
r) instead of Wi. Define the many-to-one linear mapping K : Λ⊥

η → Λ⊥
F to be K(h) = E{h(V ) | W} for any h ∈ Λ⊥

η ,
where Λ⊥

η is the orthogonal complement of the observed-data nuisance tangent space by Lemma 7.3, Tsiatis (2006). Let
ψF (t,W ) be a typical element of Λ⊥

F , by Theorem 7.2 from Tsiatis (2006), the space Λ⊥
η consists of all elements that can

be written as

Λ⊥
η = K−1(Λ⊥

F ) =
∆ψF (t,W )

P(∆ = 1 |W )
+K−1(0) (8)

where K−1 as the inverse operator, and K−1(0) consists any arbitrary functions L(t, V ) such that E{L(t, V ) | W} = 0.
The first part of (8) is motivated by the inverse censoring weighting of the complete-case estimator where the event time
is observed, indicated by ∆ = 1. The second part of (8) is referred to as the augmentation space due to censoring. The
optimal element (8) with the greatest efficiency improvement is obtained by projecting ∆ψF (t,W )/P(∆ = 1 |W ) to the
tangent space K−1(0). By Theorems 9.2 and 10.4, we derive the observed-data EIF for S0(t | R = 1) under our monotone
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coarsened data:

ψS0,eff(t, V ) =
R(1−A)∆

P(R = 1)SC(Y | X,R = 1)

qR(X) {1(Y > t)− S0(t | R = 1)}
D(t,X)

(9)

+
(1−R)∆qR(X)

P(R = 1)SC(Y | X,R = 0)

r(t,X) {1(Y > t)− S0(t | R = 1)}
D(t,X)

(10)

+
S0(t | X,R = 1)− S0(t | R = 1)

P(R = 1)

{
R{A− πA(X)}qR(X)

D(t,X)
+
r(t,X){R− (1−R)qR(X)}

D(t,X)

}
(11)

+

∫ ∞

0

R(1−A)

P(R = 1)

dMC
0 (r | X)

SC(r | X,R = 1)
E
[
qR(X) {1(T > t)− S0(t | R = 1)}

D(t,X)
| T > r,X

]
(12)

+

∫ ∞

0

(1−R)qR(X)

P(R = 1)

dMC
0 (r | X)

SC(r | X,R = 0)
E
[
r(t,X) {1(T > t)− S0(t | R = 1)}

D(t,X)
| T > r,X

]
, (13)

where dMC
0 (r | X) = dNC

0 (r)− 1(Y ≥ r)λC0 (r | X). The last two terms (12) and (13) belong to the augmentation space
K−1(0). Next, we can simplify it to be the EIF in Theorem 3.5. Note that (12) can be expressed by∫ ∞

0

R(1−A)

P(R = 1)

dMC
0 (r | X)

SC(r | X,R = 1)
E
[
qR(X) {1(T > t)− S0(t | R = 1)}

D(t,X)
| T > r,X

]
=

∫ ∞

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)
1(r < t)

{
S0(t | X,R = 1)

S0(r | X,R = 1)
− S0(t | R = 1)

}
+

∫ ∞

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)
1(r ≥ t) {1− S0(t | R = 1)}

=

∫ t

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)

S0(t | X,R = 1)

S0(r | X,R = 1)
(14)

+

∫ ∞

t

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)
(15)

− S0(t | R = 1)

∫ ∞

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)
. (16)

The second term (15) equals to∫ ∞

t

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)

=
R(1−A)qR(X)

P(R = 1)D(t,X)

∫ ∞

t

dMC
0 (r | X)

SC(r | X,R = 1)

=
R(1−A)qR(X)

P(R = 1)D(t,X)

∫ ∞

t

dNC
0 (r)− 1(Y ≥ r)λC0 (r | X)

SC(r | X,R = 1)

=
R(1−A)qR(X)1(Y ≥ t)

P(R = 1)D(t,X)

{
1−∆

SC(Y | X,R = 1)
−
∫ Y

t

λC0 (r | X)dr

SC(r | X,R = 1)

}

=
R(1−A)qR(X)1(Y ≥ t)

P(R = 1)D(t,X)

{
1

SC(t | X,R = 1)
− ∆

SC(Y | X,R = 1)

}
,

where the last equality holds as we know that λC0 (r | X) = −∂ logSC(r | X,R = 1)/∂r, and
∫
λC0 (r | X)/SC(r |

X,R = 1) = 1/SC(r | X,R = 1). For the third term (16), we have

S0(t | R = 1)

∫ ∞

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)

= S0(t | R = 1)
R(1−A)qR(X)

P(R = 1)D(t,X)

∫ ∞

0

dNC
0 (r)− 1(Y ≥ r)λC0 (r | X)

SC(r | X,R = 1)

= S0(t | R = 1)
R(1−A)qR(X)

P(R = 1)D(t,X)

{
1− ∆

SC(Y | X,R = 1)

}
.
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Plugging these formulas back with (9) and (12), we obtain

R(1−A)∆

P(R = 1)SC(Y | X,R = 1)

qR(X) {1(Y > t)− S0(t | R = 1)}
D(t,X)

+

∫ t

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)

S0(t | X,R = 1)

S0(r | X,R = 1)

+
R(1−A)qR(X)1(Y ≥ t)

P(R = 1)D(t,X)

{
1

SC(t | X,R = 1)
− ∆

SC(Y | X,R = 1)

}
− S0(t | R = 1)

R(1−A)qR(X)

P(R = 1)D(t,X)

{
1− ∆

SC(Y | X,R = 1)

}
=

R(1−A)qR(X)1(Y ≥ t)

P(R = 1)D(t,X)SC(t | X,R = 1)
− R(1−A)qR(X)S0(t | R = 1)

P(R = 1)D(t,X)

+

∫ t

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)

S0(t | X,R = 1)

S0(r | X,R = 1)
.

Analogous simplification applies to the combination of (10) and (13), which leads to

(1−R)qR(X)r(t,X)1(Y > t)

P(R = 1)D(t,X)SC(t | X,R = 0)
− (1−R)qR(X)r(t,X)S0(t | R = 1)

P(R = 1)D(t,X)

+

∫ t

0

(1−R)

P(R = 1)

dMC
0 (r | X)qR(X)r(t,X)

SC(r | X,R = 1)D(t,X)

S0(t | X,R = 1)

S0(r | X,R = 1)
.

So the final observed-data EIF now becomes:

ψS0,eff(t, V ) =
R(1−A)qR(X)1(Y ≥ t)

P(R = 1)D(t,X)SC(t | X,R = 1)

+

∫ t

0

R(1−A)

P(R = 1)

dMC
0 (r | X)qR(X)

SC(r | X,R = 1)D(t,X)

S0(t | X,R = 1)

S0(r | X,R = 1)

+
(1−R)qR(X)r(t,X)1(Y > t)

P(R = 1)D(t,X)SC(t | X,R = 0)

+

∫ t

0

(1−R)

P(R = 1)

dMC
0 (r | X)qR(X)r(t,X)

SC(r | X,R = 1)D(t,X)

S0(t | X,R = 1)

S0(r | X,R = 1)

+
S0(t | X,R = 1)

P(R = 1)

{
R{A− πA(X)}qR(X)

D(t,X)
+
r(t,X){R− (1−R)qR(X)}

D(t,X)

}
− RS0(t | R = 1)

P(R = 1)
,

where

R{A− πA(X)}qR(X) +R(1−A)qR(X)

P(R = 1)D(t,X)
=
R{1− πA(X)}qR(X)

P(R = 1)D(t,X)
,

r(t,X){R− (1−R)qR(X)}+ (1−R)qR(X)r(t,X)

P(R = 1)D(t,X)
=

Rr(t,X)

P(R = 1)D(t,X)
.

A.3. Proof of Theorem 3.6

Assumption A.1. Assume (a) ∥π̂R(X)−πR(X)∥L2
= oP(1), ∥π̂A(X)−πA(X)∥L2

= oP(1), ∥Ŝa(t | X,R = 1)−Sa(t |
X,R = 1)∥L2 = oP(1), and ∥ŜC(t | X,R)− SC(t | X,R)∥L2 = oP(1); 0 < c1 ≤ πR(X), πA(X), SC(t | X,R), S0(t |
X,R) ≤ c2 < 1 and their estimated counterparts are bounded away from 0 and 1 for some constants c1 and c2; (c)
∥Ŝa(t | X,R = 1) − Sa(t | X,R = 1)∥L2

· ∥π̂A(X) − πA(X)∥L2
= oP(N

−1/2), ∥Ŝa(t | X,R = 1) − Sa(t |
X,R = 1)∥L2 · ∥π̂R(X) − πR(X)∥L2 = oP(N

−1/2), and ∥Ŝa(t | X,R = 1) − Sa(t | X,R = 1)∥L2 ·maxr<t ∥λ̂C0 (r |
X,R)− λC0 (r | X,R)∥L2 = oP(N

−1/2) for a ∈ {0, 1}.
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Assumption A.1 is analogous to those for double machine learning estimation for average treatment effects (Kennedy, 2016).
To investigate the asymptotic properties of θ̂τ , we need to understand the components that constitute θ̂τ − θτ . Let PN be the
empirical measure, we have

θ̂τ − θτ =

∫
ϕ̂θτ ,eff(V )dPN −

∫
ϕθτ ,eff(V )dP

=

∫
ϕθτ ,eff(V )dPN (17)

+

∫
{ϕ̂θτ ,eff(V )− ϕθτ ,eff(V )}dP (18)

+

∫
{ϕ̂θτ ,eff(V )− ϕθτ ,eff(V )}d(PN − P), (19)

where the first term (17) is asymptotically normal by the central limit theorem. The third term (19) is the empirical
process which is negligible if ϕθτ ,eff(V ) belongs to Donsker classes or the cross-fitting technique is employed. Under the
assumptions in Theorem 3.6, and the regularity conditions A.1, we have

θ̂τ = θτ +
1

N

∑
i∈R∪E

ϕθτ ,eff(V ) + ∥Rem(P̂,P)∥L2
+ oP(N

−1/2),

where P̂ is the estimated counterpart of the true distribution P, and

∥Rem(P̂,P)∥2L2
=

∫
{ϕ̂θτ ,eff(V )− ϕθτ ,eff(V )}2dP

is second-order remainder term (18). By the definition that ϕθτ ,eff(V ) =
∫ τ

0
{ϕS1,eff(t, V ) − ϕS0,eff(t, V )}dt, we will

first characterize the remainder term induced by ϕS0,eff(V ), the remainder term induced by ϕS1,eff(V ) follows in similar
techniques. Combining parts (9), (10), (12), and (13) in ψS0,eff(V ), we can show

m1(t, V ) +

{
∆

SC(Y | X,R = 1)
− 1

}
m1(t, V ) +m2(t, V ) +

{
∆

SC(Y | X,R = 0)
− 1

}
m2(t, V )

+

∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 1)
E {m1(t, V ) | T > r,X}+

∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 0)
E {m2(t, V ) | T > r,X}

= m1(t, V ) +m2(t, V )

−
∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 1)
[m1(t, V )− E {m1(t, V ) | T > r,X}]

−
∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 0)
[m2(t, V )− E {m2(t, V ) | T > r,X}] ,

where

m1(t, V ) =
R(1−A)qR(X) {1(T > t)− S0(t | R = 1)}

P(R = 1)D(t,X)
,

m2(t, V ) =
(1−R)qR(X)r(t,X) {1(T > t)− S0(t | R = 1)}

P(R = 1)D(t,X)
,

1− ∆

SC(Y | X,R = r)
=

∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 1)
,

by Lemma 10.4 from Tsiatis (2006); Zeng & Lin (2007). Combine them with (11), the second-order remainder term
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{ϕ̂S0,eff(V )− ϕS0,eff(V )}dP becomes

P

(
Ŝ0(t | X,R = 1)− S0(t | X,R = 1)

P(R = 1)D̂(t,X){1− π̂R(X)}
[πR(X){πA(X)− π̂A(X)}π̂R(X) + r̂(t,X){πR(X)− π̂R(X)}]

)

+ P

(∫ ∞

0

dM̂C
0 (r | X)

ŜC(r | X,R = 1)

[
m̂1(t, V )− Ê {m̂1(t, V ) | T > r,X}

])
(20)

+ P

(∫ ∞

0

dM̂C
0 (r | X)

ŜC(r | X,R = 0)

[
m̂2(t, V )− Ê {m̂2(t, V ) | T > r,X}

])
, (21)

since P{m1(t, V )} = P{m2(t, V )} = 0, where

m̂1(t, V ) =
R(1−A)q̂R(X) {1(T > t)− S0(t | R = 1)}

P(R = 1)D̂(t,X)
,

m̂2(t, V ) =
(1−R)q̂R(X)r̂(t,X) {1(T > t)− S0(t | R = 1)}

P(R = 1)D̂(t,X)
.

Next, we compute the expectations of dM̂C
0 (r | X) and E {1(T > t) | T > r,X} under the true distribution P by condi-

tioning on {T > r,C > r,X}:

P{dM̂C
0 (r | X) | T > r,C > r,X} = 1(Y > r){λC0 (r | X)− λ̂C0 (r | X)}dr,

P[E{1(T > t) | T > r,C > r,X}] = P[E{1(T > t) | T > r,X}],

where the first equality holds since P{1(Y > r,∆ = 0, A = 0) | T > r,C > r,X} = 1(Y > r)λC0 (r | X), and the second
equality holds under Assumption 3.2. By conditioning on {T > r,C > r,X} for r < t, we show that the expectation (20)
is equal to

P

(∫ ∞

0

1(Y > r)πR(X){1− πA(X)}q̂R(X)

P(R = 1)D̂(t,X)ŜC(r | X,R = 1)
{λC0 (r | X,R = 1)− λ̂C0 (r | X,R = 1)}dr

×
[
E {1(T > t) | T > r,X} − Ê {1(T > t) | T > r,X}

])
.

Similar iterated expectation can be applied to (21). Under the regularity conditions A.1, we collect all the terms above and
use the Cauchy-Schwarz inequality:∫

|ϕ̂S0,eff(V )− ϕS0,eff(V )|dP

≲

{
∥π̂A(X)− πA(X)∥L2 + ∥π̂R(X)− πR(X)∥L2 +max

r<t
∥λ̂C0 (r | X,R = 1)− λC0 (r | X,R = 1)∥L2

}
× ∥Ŝ0(t | X,R = 1)− S0(t | X,R = 1)∥L2

,

where ≲ indicates that the inequality holds up to a multiplicative constant. Thus, we can show the second-order remainder
term is bounded:

∥Rem(P̂,P)∥2L2
=

∫
{ϕ̂θτ ,eff(V )− ϕθτ ,eff(V )}2dP

≲
{
∥Ŝ0(t | X,R = 1)− S0(t | X,R = 1)∥L2 + ∥Ŝ1(t | X,R = 1)− S1(t | X,R = 1)∥L2

}
×
{
∥π̂A(X)− πA(X)∥L2

+ ∥π̂R(X)− πR(X)∥L2
+max

r<t
∥λ̂C0 (r | X,R)− λC0 (r | X,R)∥L2

}
,

which is negligible under the regularity conditions A.1. Thus, we have θ̂τ = θτ +
∑

i∈R∪E ϕθτ ,eff(V )/N + oP(N
−1/2),

which achieves semiparametric efficiency Vτ = E{ψ2
θτ ,eff

(V )}.
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A.4. Proof of Lemma 3.7

Follow the similar technique in the proof of Theorem 3.5, the observed-data EIF-motivated estimator for S0(t | X,R = 1)
with the trial data only

κ0(t, V | R = 1) = S0(t | X,R = 1)

+
R(1−A)∆{1(Y > t)− S0(t | X,R = 1)}
πR(X){1− πA(X)}SC(Y | X,R = 1)

+

∫ ∞

0

R(1−A)dMC
0 (r | X,R = 1)

πR(X){1− πA(X)}SC(r | X,R = 1)
E{1(T > t)− S0(t | X,R = 1) | T > r}.

By simple algebra, we obtain the simplified formula in the main paper

κ0(t, V | R = 1) = S0(t | X,R = 1)

+
R(1−A)∆{1(Y > t)− S0(t | X)}

πR(X){1− πA(X)}SC(Y | X,R = 1)

+

∫ t

0

R(1−A)dMC
0 (r | X,R = 1)

πR(X){1− πA(X)}SC(r | X,R = 1)

S0(t | X,R = 1)

S0(r | X,R = 1)

+
R(1−A)1(Y > t)

πR(X){1− πA(X)}

{
1

SC(t | X,R = 1)
− ∆

SC(Y | X,R = 1)

}
− R(1−A)S0(t | X)

πR(X){1− πA(X)}

{
1− ∆

SC(Y | X,R = 1)

}
= S0(t | X,R = 1)

+
R(1−A)

πR(X){1− πA(X)}

{
1(Y > t)

SC(t | Xi, R = 1)
− S0(t | X,R = 1)

}
+

∫ t

0

R(1−A)dMC
0 (r | X,R = 1)

πR(X){1− πA(X)}SC(r | X,R = 1)

S0(t | X,R = 1)

S0(r | X,R = 1)
,

where ∫ ∞

t

dMC
0 (r | X,R = 1)

SC(r | X,R = 1)
= 1(Y > t)

{
1

SC(t | X,R = 1)
− ∆

SC(Y | X,R = 1)

}
,∫ ∞

0

dMC
0 (r | X,R = 1)

SC(r | X,R = 1)
= 1− ∆

SC(Y | X,R = 1)
,

by our arguments in Theorem 3.6. Following another representation of κ0(t, V | R = 1), we can show that

κ0(t, V | R = 1) = S0(t | X,R = 1)

+
R(1−A){1(T > t)− S0(t | X)}

πR(X){1− πA(X)}

+

{
∆

SC(Y | X,R = 1)
− 1

}
R(1−A){1(T > t)− S0(t | X,R = 1)}

πR(X){1− πA(X)}

+

∫ ∞

0

R(1−A)dMC
0 (r | X,R)

πR(X){1− πA(X)}SC(r | X,R = 1)
E{1(T > t)− S0(t | X) | T > r,R = 1}

= S0(t | X,R = 1) +
R(1−A){1(T > t)− S0(t | X,R = 1)}

πR(X){1− πA(X)}

+

∫ ∞

0

R(1−A)dMC
0 (r | X,R)

πR(X){1− πA(X)}SC(r | X,R = 1)
[E{1(T > t) | T > r,R = 1} − 1(T > t)] ,
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where 1−∆/SC(Y | X,R = r) =
∫∞
0
dMC

0 (r | X)/SC(r | X,R = 1). Let κ∗0(t, V | R = 1) be the probability limit of
κ̂0(t, V | R = 1), we can show that

E{κ∗0(t, V | R = 1)− S0(t | X,R = 1) | X}

≤{S∗
0 (t | X,R = 1)− S0(t | X,R = 1)} ·

[
1− πR(X){1− πA(X)}

π∗
R(X){1− π∗

A(X)}

]
+
πR(X){1− πA(X)}
π∗
R(X){1− π∗

A(X)}
E
(∫ ∞

0

E{dMC∗
0 (r | X,R = 1) | C > r, T > r}

SC∗(r | X,R = 1)

× [E∗{1(T > t) | T > r} − E{1(T > t) | T > r}]) .

Thus, we establish the bound for κ∗0(t, V | R = 1) by

∥E{κ∗0(t, V | R = 1)− S0(t | X,R = 1) | X}∥L2

≲ ∥π∗
R(X)− πR(X)∥L2

· ∥S∗
0 (t | X,R = 1)− S0(t | X,R = 1)∥L2

+ ∥π∗
A(X)− πA(X)∥L2

· ∥S∗
0 (t | X,R = 1)− S0(t | X,R = 1)∥L2

+ ∥λC∗
0 (t | X,R = 1)− λC0 (t | X,R = 1)∥ · ∥S∗

0 (t | X,R = 1)− S0(t | X,R = 1)∥L2 .

Similarly, we can establish the bound for κ∗0(t, V | R = 0) as

∥E{κ∗0(t, V | R = 0)− S0(t | X,R = 0) | X}∥L2

≲ ∥π∗
R(X)− πR(X)∥L2

· ∥S∗
0 (t | X,R = 0)− S0(t | X,R = 0)∥L2

+ ∥λC∗
0 (t | X,R = 0)− λC0 (t | X,R = 0)∥L2 · ∥S∗

0 (t | X,R = 0)− S0(t | X,R = 0)∥L2 .

Putting the bounds for κ∗0(t, V | R = 1) and κ∗0(t, V | R = 0) together, we obtain the desired result:

∥E{ξ(V )− b0 | X}∥L2

≲
1∑

r=0

∥π∗
R(X)− πR(X)∥L2

· ∥S∗
0 (t | X,R = r)− S0(t | X,R = r)∥L2

+

1∑
r=0

∥SC∗(t | X,R = r)− SC(t | X,R = r)∥L2 · ∥S∗
0 (t | X,R = r)− S0(t | X,R = r)∥L2

+ ∥π∗
A(X)− πA(X)∥L2

· ∥S∗
0 (t | X,R = 1)− S0(t | X,R = 1)∥L2

,

which completes the proof of Lemma 3.7.

A.5. Proof of Theorem 3.8

Under the condition that there exists a subset Aof the external controls such that S(t | Xi, R = 1) = S(t | Xi, R = 0) for
any time t and subject i ∈ A, the tangent space H4 in (2) is modified for the updated restricted moment condition

H∗
4 = {Γ(T,X,R,A) : E{Γ(T,X,R,A) | X,R,A} = 0}

∩
{
Γ(Y,X,R,A) : E

[{
(1−R)1(b = 0)1(T > t)

P(R = 0, b = 0 | X)
− R(1−A)1(T > t)

P(R = 1, A = 0 | X)

}
Γ(Y,X,R,A) | X

]
= 0, t < τ

}
.
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Similarly, we find the proper functions C∗
1 and C∗

2 as in (7) to obtain the full-data EIF for S0(t | R = 1):

ψF,A
S0,eff

(t,W ) =
R(1−A)

P(R = 1)

qR(X) {1(T > t)− S0(t | X,R = 1)}
Db0(t,X)

+
(1−R)1(b0 = 0)

P(R = 1)

r(t,X)qR(X) {1(T > t)− S0(t | X,R = 1)}
Db0(t,X)

+
R

P(R = 1)
{S0(t | X,R = 1)− S0(t | R = 1)},

=
R(1−A)

P(R = 1)

qR(X) {1(T > t)− S0(t | R = 1)}
Db0(t,X)

+
(1−R)1(b0 = 0)qR(X)

P(R = 1)

r(t,X) {1(T > t)− S0(t | R = 1)}
Db0(t,X)

+
R{A− πA(X)}qR(X)

P(R = 1)Db0(t,X)
{S0(t | X,R = 1)− S0(t | R = 1)}

+
r(t,X){RP(b = 0 | X,R = 0)− (1−R)1(b0 = 0)qR(X)}

P(R = 1)Db0(t,X)
{S0(t | X,R = 1)− S0(t | R = 1)},

where Db0(t,X) = r(t,X)P (b = 0 | X,R = 0) + {1 − πA(X)}qR(X). By finding the optimal element of the
augmentation space with some algebra similar to Section A.2.3, we obtain the modified observed-data EIF under the updated
restricted moment condition

ψA
S0,eff(t, V ) =

R(1−A)

P(R = 1)

qR(X)1(Y > t)

SC(t | X,R = 1)Db0(t,X)

+
(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)1(Y > t)

SC(t | X,R = 0)Db0(t,X)

+

∫ t

0

R(1−A)

P(R = 1)

qR(X)dMC
0 (r | X)

SC(r | X,R = 1)Db0(t,X)

S0(t | X)

S0(r | X)

+

∫ t

0

(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)dMC
0 (r | X)

SC(r | X,R = 0)Db0(t,X)

S0(t | X)

S0(r | X)

+
RqR(X){A− πA(X)}S0(t | X)

P(R = 1)Db0(t,X)

+
r(t,X){RP(b = 0 | X,R = 0)− (1−R)1(i ∈ A)qR(X)}S0(t | X)

P(R = 1)Db0(t,X)
− RS0(t | R = 1)

P(R = 1)

= ϕAS0,eff(t, V )− RS0(t | R = 1)

P(R = 1)
,

which belongs to the orthogonal complement of the updated observed-data nuisance tangent space Λ∗⊥
η . From our previous

arguments, we know that the trial-only efficient influence function is ψrct
S0,eff

(t, V ):

ψrct
S0,eff(t, V ) =

R(1−A)1(Y > t)

P(R = 1){1− πA(X)}SC(t | X,R = 1)

+

∫ t

0

R(1−A)dMC
0 (r | X)

P(R = 1){1− πA(X)}SC(r | X,R = 1)

S0(t | X)

S0(r | X)

+
R{A− πA(X)}S0(t | X,R = 1)

P(R = 1){1− πA(X)}
− RS0(t | R = 1)

P(R = 1)
,

which leads to the EIF of θτ by ψrct
θτ ,eff

(V ) =
∫ τ

0
{ψS1,eff(t, V ) − ψrct

S0,eff
(t, V )}dt with the asymptotic variance Vaipw

τ .
Compare the asymptotic variance Vadapt

τ to Vaipw
τ , we have

Vaipw
τ − Vadapt

τ = E{ψrct
θτ ,eff(V )}2 − E{ψA

θτ ,eff(V )}2

= E{ψrct
θτ ,eff(V )− ψA

θτ ,eff(V )}2

+ 2E[ψA
θτ ,eff(t, V ){ψrct

θτ ,eff(V )− ψA
θτ ,eff(V )}]. (22)
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By directional derivative, we have

θ̇τ = E{ψrct
θτ ,eff(V )s(V )} = E{ψA

θτ ,eff(V )s(V )},

where s(V ) is the score function for the observed data, and therefore E[{ψrct
θτ ,eff

(V ) − ψA
θτ ,eff

(V )}s(V )] = 0, implying
ψrct
θτ ,eff

(V )− ψA
θτ ,eff

(V ) belongs to the updated observed-data nuisance tangent space Λ∗
η. Note that ψA

θτ ,eff
(t, V ) ∈ Λ∗⊥

η ,
we have (22) equals to zero, and

Vaipw
τ − Vadapt

τ = E{ψrct
θτ ,eff(V )− ψA

θτ ,eff(V )}2,

where ψrct
θτ ,eff

− ψA
θτ ,eff

(V ) =
∫ τ

0
ψrct
S0,eff

(t, V )dt−
∫ τ

0
ψA
S0,eff

(t, V )dt. Next, we can show

ψrct
S0,eff(t, V )− ψA

S0,eff(t, V )

=
R(1−A)

P(R = 1)SC(t | X,R = 1)

{
1

1− πA(X)
− qR(X)

Db0(t,X)

}
1(Y > t)

−
∫ t

0

R(1−A)dMC
0 (r | X)

P(R = 1)SC(t | X,R = 1)

S0(t | X)

S0(r | X)

{
qR(X)

Db0(t,X)
− 1

1− πA(X)

}
− (1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)1(Y > t)

SC(t | X,R = 0)Db0(t,X)

−
∫ t

0

(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)dMC
0 (r | X)

SC(r | X,R = 0)Db0(t,X)

S0(t | X)

S0(r | X)

+
R{A− πA(X)}S0(t | X,R = 1)

P(R = 1){1− πA(X)}
− RqR(X){A− πA(X)}S0(t | X,R = 1)

P(R = 1)Db0(t,X)

− r(t,X){RP(b = 0 | X,R = 0)− (1−R)1(b0 = 0)qR(X)}S0(t | X,R = 1)

P(R = 1)Db0(t,X)
.

By some algebra, we have

R{A− πA(X)}S0(t | X,R = 1)

P(R = 1){1− πA(X)}
=

R

P(R = 1)

{
1− 1−A

1− πA(X)

}
S0(t | X,R = 1),

and

RqR(X){A− πA(X)}S0(t | X,R = 1)

P(R = 1)Db0(t,X)

+
r(t,X){RP(b = 0 | X,R = 0)− (1−R)1(b0 = 0)qR(X)}S0(t | X,R = 1)

P(R = 1)Db0(t,X)

1

P(R = 1)

{
R− R(1−A)qR(X)

P(R = 1)Db0(t,X)
− r(t,X)(1−R)1(b0 = 0)qR(X)

P(R = 1)Db0(t,X)

}
S0(t | X,R = 1).

Plugging these terms back to ψrct
S0,eff

(t, V )− ψA
S0,eff

(t, V ), we have
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ψrct
S0,eff(t, V )− ψA

S0,eff(t, V )

=
R(1−A)

P(R = 1)SC(t | X,R = 1)

{
1

1− πA(X)
− qR(X)

Db0(t,X)

}
1(Y > t) (23)

−
∫ t

0

R(1−A)dMC
0 (r | X)

P(R = 1)SC(t | X,R = 1)

S0(t | X)

S0(r | X)

{
qR(X)

Db0(t,X)
− 1

1− πA(X)

}
(24)

− (1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)1(Y > t)

SC(t | X,R = 0)Db0(t,X)
(25)

−
∫ t

0

(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)dMC
0 (r | X)

SC(r | X,R = 0)Db0(t,X)

S0(t | X)

S0(r | X)
(26)

− R(1−A)

P(R = 1)

{
1

1− πA(X)
− qR(X)

Db0(t,X)

}
S0(t | X) (27)

+
r(t,X)(1−R)1(b0 = 0)qR(X)

P(R = 1)Db0(t,X)
S0(t | X). (28)

Combining (23), (24), and (27) gives us

R(1−A)

P(R = 1)SC(t | X,R = 1)

{
1

1− πA(X)
− qR(X)

Db0(t,X)

}
1(Y > t)

−
∫ t

0

R(1−A)dMC
0 (r | X)

P(R = 1)SC(t | X,R = 1)

S0(t | X)

S0(r | X)

{
qR(X)

Db0(t,X)
− 1

1− πA(X)

}
− R(1−A)

P(R = 1)

{
1

1− πA(X)
− qR(X)

Db0(t,X)

}
S0(t | X)

=
R(1−A)

P(R = 1)

{
r(t,X)P (b = 0 | X,R = 0)

{1− πA(X)}Db0(t,X)

}
m∗

1(t, V ),

where

m∗
1(t, V ) =

1(Y > t)

SC(t | X,R = 1)
+

∫ τ

0

dMC
0 (r | X)

SC(r | X,R = 1)

S0(t | X)

S0(r | X)
− S0(t | X)

=
∆1(Y > t)

SC(Y | X,R = 1)
+

∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 1)

S0(t | X)

S0(r | X)
− S0(t | X).

Similarly, (25), (26), and (28) together gives us

(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)1(Y > t)

SC(t | X,R = 0)Db0(t,X)

+

∫ t

0

(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)dMC
0 (r | X)

SC(r | X,R = 0)Db0(t,X)

S0(t | X)

S0(r | X)

− r(t,X)(1−R)1(b0 = 0)qR(X)

P(R = 1)Db0(t,X)
S0(t | X)

=
(1−R)1(b0 = 0)

P(R = 1)

qR(X)r(t,X)

Db0(t,X)
m∗

2(t, V ),

where

m∗
2(t, V ) =

1(Y > t)

SC(t | X,R = 0)
+

∫ t

0

dMC
0 (r | X)

SC(r | X,R = 0)

S0(t | X)

S0(r | X)
− S0(t | X)

=
∆1(Y > t)

SC(Y | X,R = 0)
+

∫ ∞

0

dMC
0 (r | X)

SC(r | X,R = 0)

S0(t | X)

S0(r | X)
− S0(t | X).
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Then, we can show that E[{ψrct
S0,eff

(t, V )− ψA
S0,eff

(t, V )}2 | X] equals to

πR(X){1− πA(X)}
P(R = 1)2

{
r(t,X)P(b0 = 0 | X,R = 0)

{1− πA(X)}D∗(t,X)

}2

var {m∗
1(t, V ) | R = 1, A = 0}

+
{1− πR(X)}P(b0 = 0 | X,R = 0)

P(R = 1)2

{
qR(X)r(t,X)

D∗(t,X)

}2

var {m∗
2(t, V ) | R = 0, b0 = 0}

=
πR(X)r(t,X)P(b0 = 0 | X,R = 0)

P(R = 1)2Db0(t,X){1− πA(X)}
D∗

b0
(t,X)

Db0(t,X)

r(t,X)

r∗(t,X)
V ∗
R1,A0,

where

r∗(t,X) =
V ∗
R1,A0

V ∗
R0

, D∗
b0(t,X) = r∗(t,X)P(b = 0 | X,R = 0) + {1− πA(X)}qR(X),

V ∗
R1,A0 =var {m∗

1(t, V ) | R = 1, A = 0} , V ∗
R0 = var {m∗

2(t, V ) | R = 0, b0 = 0} .

Thus, the proof of Theorem 3.8 is completed.

B. Additional Simulations
Additional Bias-generating Settings Figure 3(Left) presents the simulation results under Settings Four and Five. Both
θ̂adapt
τ and θ̂TransCox

τ account for heterogeneity in covariate effects and the risk associated with varying baseline times in
these settings. However, θ̂TransCox

τ is only valid under the Cox model. For example, when the conditional survival curve
Sa(t | X) does not follow the Cox model, as in Settings Two and Three of the main paper where the marginalized curves
Sa(t | X) over U (or δ) result in a model that no longer satisfies the Cox proportional hazards assumption, θ̂TransCox

τ may
exhibit substantial bias, whereas the proposed estimator θ̂adapt

τ continues to control for bias due to its double robustness and
demonstrates improved performance.

Asymptotic Properties of the Proposed Estimator Figure 3(Right) provides more details of our proposed selective
integrative estimator, specifically focusing on its average borrowing proportion of the external controls and its relative
efficiency. The relative efficiency is measured by the ratio of the width of its confidence intervals to the trial-only estimator.
In Setting One, it is reasonable to observe that the selective integrative estimator θ̂adapt

τ is always more efficient compared
to the benchmark as every external control is comparable, and the proportion of borrowing approaches 1 as N0 increases.
Under Setting Two, the proportion of borrowing diminishes to zero as it detects that nearly all the external controls are not
comparable when more concurrent controls become available. Under Setting Three, the borrowing proportion approaches
50%, aligning well with the true proportion of comparable external subset in our data-generation process. One side note is
that our proposal might be subject to slight relative efficiency inferiority compared to the benchmark in some cases, which is
also observed in other literature (Chen et al., 2021a).

Varying Censoring Intensity We conduct additional simulation studies to evaluate our selective borrowing estimator θ̂adapt
τ

under varying censoring rates for the trial. In particular, we vary the value of βC in the hazard functions λC(t | X,R = 1)
to represent different censoring levels, with βC = 0 indicating high censoring (the censoring rate is around 60%) and
βC = −2 indicating low censoring (the censoring rate is around 20%). The results, presented in Figure 4, demonstrate that
our proposed estimator effectively controls external biases across all settings and achieves improved estimation, as shown by
smaller Root-MSEs compared to the trial-only estimator.
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Figure 3. (Left) Point estimation results for RMST over 500 Monte Carlo experiments under Settings 4) different covariate effects, and 5)
different baseline time-varying hazards; (Right) Average borrowing proportion of external controls and relative efficiency of the selective
integrative estimator θ̂adapt

τ over 500 Monte Carlo experiments.
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Figure 4. Point estimation results for RMST over 500 Monte Carlo experiments under Settings One, Two and Three when (Left) βC = −2
(low censoring rate) and (Right) βC = 0 (high censoring rate).
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