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ABSTRACT

Achieving the generalization of an invariant classifier from source domains to
shifted target domains while simultaneously considering model fairness is a sub-
stantial and complex challenge in machine learning. Existing domain gener-
alization research typically attributes domain shifts to concept shift, which re-
lates to alterations in class labels, and covariate shift, which pertains to vari-
ations in data styles. In this paper, by introducing another form of distribu-
tion shift, known as dependence shift, which involves variations in fair depen-
dence patterns across domains, we propose a novel domain generalization ap-
proach that addresses domain shifts by considering both covariate and depen-
dence shifts. We assert the existence of an underlying transformation model
can transform data from one domain to another. By generating data in synthetic
domains through the model, a fairness-aware invariant classifier is learned that
enforces both model accuracy and fairness in unseen domains. Extensive em-
pirical studies on four benchmark datasets demonstrate that our approach sur-
passes state-of-the-art methods. Anonymous link to the code for review purposes:
https://anonymous.4open.science/r/FDDG-57DC.

1 INTRODUCTION

While modern fairness-aware machine learning techniques have demonstrated significant success in
various applications (Zemel et al., 2013; Zhao et al., 2021; Wu et al., 2019), their primary objective is
to facilitate equitable decision-making, ensuring fairness across all demographic groups, regardless
of sensitive attributes, such as race and gender. Nevertheless, state-of-the-art methods can encounter
severe shortcomings during the inference phase, mainly due to poor generalization when the spurious
correlation deviates from the patterns seen in the training data. This correlation can manifest either
between model outcomes and sensitive attributes (Creager et al., 2021; Oh et al., 2022) or between
model outcomes and non-semantic data features (Pham et al., 2023). This issue originates from the
existence of out-of-distribution (OOD) data, resulting in catastrophic failures.

Over the past decade, the machine learning community has made significant strides in studying
the OOD generalization (or domain generalization, DG) problem and attributing the cause of the
poor generalization to the distribution shifts from source domains to target domains. There are
two dominant shift types (Moreno-Torres et al., 2012): concept shift and covariate shift. Concept
shift refers to OOD samples drawn from a distribution with semantic change e.g., dog v.s. cat,
and covariate shift characterizes the extent to which the distributions of data features differ across
domains e.g., photo v.s. cartoon. While a variety of DG approaches have been explored, these
methods often exhibit two specific limitations: (1) they predominantly address a single type of
distribution shift (either concept or covariate shift) and disregard the significance of integrating
fairness considerations into the learning process (Arjovsky et al., 2019; Chen et al., 2020; Krueger
et al., 2021; Lu et al., 2021; Robey et al., 2021; Zhang et al., 2022), or (2) existing methods assume
that the mentioned distribution shifts remain static, and there exist distinct fairness dependence
between model outcomes and sensitive attributes in the source and target domains (Creager et al.,
2021; Oh et al., 2022). Recently, Pham et al., (Pham et al., 2023) address the DG problem with a
focus on model fairness and accuracy in the presence of covariate shift. However, this work assumes
that the fair dependence patterns across domains remain constant. Hence, there is a need for research
that delves into the fairness-aware DG problem in the context of covariate shift and accounts for the
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Figure 1: Illustration of fairness-aware domain generalization problems. Different data domains
correspond to different image styles (“Photo”, “Cartoon”, and “Painting”). Each domain is associ-
ated with various fair dependencies between class labels (“Dog” and “Cat”) and sensitive attributes
(“Grass” and “Couch”), estimated using the demographic parity in Appendix C.3. In the Photo
domain, (mostly) dogs in the grass and cats in couches. In the Painting domain, (mostly) dogs in
couches and cats in the grass.

varying fairness dependence between source and target domains. Details and more related works
are summarized in Appendix A.

In this paper, in addition to concept shift and covariate shift, inspired by (Creager et al., 2021), we
first introduce a novel type of shift known as “dependence shift” for DG problems. The dependence
shift is characterized by a disparity in the dependence between sensitive attributes and sample classes
within source domains as compared to target domains. As illustrated in Figure 1, in the source do-
main 1, images labeled with “Dog” exhibit a strong correlation with the sensitive attribute “Grass”,
whereas “Cat” images are correlated with “Couch”. However, in the target domain, this correlation
between image labels and sensitive attributes is reversed and shifted from source domains. Fur-
thermore, we define the fairness-aware DG problem within a broader context, where we account
for two types of shifts, covariate shift and dependence shift, that occur when transferring from
observed source domains to an unknown and inaccessible target domain. As shown in Fig. 1, vari-
ous image styles (“Photo”, “Cartoon” and “Painting”) specify different data domains, and “Grass”
and “Couch” correspond to sensitive attributes. The goal of the problem is to find a classifier that
remains invariant in classifying between “Dog” and “Cat” across the observed source domains and
subsequently enhance its generalization performance when faced with a target domain that is unseen
during training characterized by different stylistic variations and fairness dependencies. To tackle
the problem, we introduce a new framework, which we called Fair Disentangled Domain General-
ization (FDDG). The key idea in our framework revolves around understanding transformations that
account for both covariate and dependence shifts, enabling the mapping of data between domains,
and then subsequently enforcing invariance by generating synthetic domains through these transfor-
mations. We leverage this framework to systematically define the fairness-aware DG problem as a
semi-infinite constrained optimization problem. We then apply this re-formulation to demonstrate
that a tight approximation of the problem can be achieved by solving the empirical, parameterized
dual for this problem. Moreover, we develop a novel interpretable bound focusing on fairness within
a target domain, considering the DG arising from both covariate and dependence shifts. Finally, ex-
tensive experimental results on the proposed new algorithm show that our algorithm significantly
outperforms state-of-the-art baselines on several benchmarks.

Contributions. Our main contributions are summarized

• To our knowledge, we are the first to introduce a fairness-aware DG problem within a framework
that accommodates inter-domain variations arising from two distinct types of distribution shifts,
covariate shift and dependence shift.

• We reformulate the problem to a novel constrained learning problem. We further establish duality
gap bounds for the empirically parameterized dual of this problem and develop a novel upper
bound that specifically addresses fairness within a target domain while accounting for the domain
generalization stemming from both covariate and dependence shifts.

• We present a novel algorithm designed to address the fairness-aware DG problem. This algorithm
enforces invariance across unseen target domains by utilizing generative models derived from the
observed source domains.

• Comprehensive experiments are conducted to verify the effectiveness of FDDG. We empirically
show that our algorithm significantly outperforms state-of-the-art baselines on four benchmarks.
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2 PRELIMINARIES

Notations. Let X ⊆ Rd denote a feature space, Z = {−1, 1} is a sensitive label space, and Y =
{0, 1} is a label space for classification. Let C ⊆ Rc, A ⊆ Ra, and S ⊆ Rs be the latent content,
sensitive and style spaces, respectively, induced from X and A by an underlying transformation
model T : X × Z × E → X × Z . We use X,Z, Y,C,A, S to denote random variables that
take values in X ,Z,Y, C,A,S and x, z, y, c,a, s the realizations. A domain e ∈ E is specified
by distribution P(Xe, Ze, Y e) : X × Z × Y → [0, 1]. A classifier f in a class space F denotes
f ∈ F : X → Y .

Fairness Notions. When learning a fair classifier f ∈ F that focuses on statistical parity across
different sensitive subgroups, the fairness criteria require the independence between the sensitive
random variables Z and the predicted model outcome f(X) (Dwork et al., 2011). Addressing the
issue of preventing group unfairness can be framed as the formulation of a constraint. This constraint
mitigates bias by ensuring that f(X) aligns with the ground truth Y , fostering equitable outcomes.

Definition 1 (Group Fairness Notion (Wu et al., 2019; Lohaus et al., 2020)). Given a dataset D =

{(xi, zi, yi)}|D|
i=1 sampled i.i.d. from P(X,Z, Y ), a classifier f ∈ F : X → Y is fair when the

prediction Ŷ = f(X) is independent of sensitive random variable Z. To get rid of the indicator
function and relax the exact values, a linear approximated form of the difference between sensitive
subgroups is defined as

ρ(Ŷ , Z) =
∣∣EP(X,Z)g(Ŷ , Z)

∣∣ where g(Ŷ , Z) =
1

p1(1− p1)

(Z + 1

2
− p1

)
Ŷ (1)

p1 and 1− p1 are the proportion of samples in the subgroup Z = 1 and Z = −1, respectively.

Specifically, when p1 = P(Z = 1) and p1 = P(Z = 1, Y = 1), the fairness notion ρ(Ŷ , Z) is
defined as the difference of demographic parity (DP) and the difference of equalized odds (EO),
respectively (Lohaus et al., 2020). In the paper, we will present the results under DP, while the
framework can be generalized to multi-class, multi-sensitive attributes and other fairness notions.
Strictly speaking, a classifier f is fair over subgroups if it satisfies ρ(Ŷ , Z) = 0.

Problem Setting. We consider a set of data domains E , where each domain e ∈ E corresponds to
a distinct data subset De = {(xe

i , z
e
i , y

e
i )}

|De|
i=1 sampled i.i.d. from P(Xe, Ze, Y e). Given a dataset

D = {De}e∈E , it is partitioned into multiple source domains Es ⊂ E and unknown target domains
which are inaccessible during training. Therefore, given samples from finite source domains Es,
the goal of fairness-aware domain generalization problems is to learn a classifier f ∈ F that is
generalizable across all possible domains.

Problem 1 (Fairness-aware Domain Generalization). Let Es ⊂ E be a finite subset of source do-
mains and assume that, for each e ∈ Es, we have access to its corresponding dataset De =

{(xe
i , z

e
i , y

e
i )}

|De|
i=1 sampled i.i.d from P(Xe, Ze, Y e). Given a classifier set F and a loss function

ℓ : Y × Y → R, the goal is to learn a fair classifier f ∈ F for any De ∈ Ds = {De}e∈Es
that

minimizes the worst-case risk over all domains in E satisfying a group fairness constraint:

min
f∈F

max
e∈E

EP(Xe,Ze,Y e)ℓ(f(X
e), Y e), subject to ρ(f(Xe), Ze) = 0. (2)

The goal of Prob. 1 is to seek a fair classifier f that generalizes from the given finite set of source
domains Es to give a good generalization performance on E . Since we do not assume data from
E\Es is accessible, it makes this problem challenging to solve.

Another challenge is how closely the data distributions in unknown target domains match those
in the observed source domains. In (Moreno-Torres et al., 2012), there are two forms of distribu-
tion shifts: concept shift, where the instance conditional distribution P(Y e|Xe, Ze) varies across
different domains, and covariate shift, where the marginal distributions over instance P(Xe) are var-
ious. Yet, neither of these shifts captures the degree to which the distribution shifts with regard to
model fairness. Therefore, we introduce a novel variation, dependence shift, where the dependence
ρ(Y e, Ze) between sensitive attributes and sample classes differs across domains.

Definition 2 (Covariate Shift (Robey et al., 2021) and Dependence Shift). In Prob. 1, covariate shift
occurs when environmental variation is attributed to disparities in the marginal distributions across
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instances {P(Xe)}e∈E . On the other hand, Prob. 1 exhibits a dependence shift when environmental
variation arises from alterations in the sensitive dependence ρ(Y e, Ze).

3 FAIRNESS-AWARE DISENTANGLED DOMAIN GENERALIZATION

DG tasks can generally be characterized by one form of the three distribution shifts. In this paper,
we restrict the scope of our framework to focus on Prob. 1 in which inter-domain variation is due to
covariate shift and dependence shift simultaneously through an underlying transformation model T .

Assumption 1 (Transformation Model). We assume that, ∀ei, ej ∈ E , ei ̸= ej , there exists a mea-
surable function T : X × Z × E → X ×Z , referred as transformation model, that transforms
instances from domain ei to ej , denoted (Xej , Zej ) = T (Xei , Zei , ej).

Under Assump. 1, a data subset Dej ∈ D of domain ej can be regarded as generated from another
data subset Dei through the transformation model T by altering (Xei , Zei) to (Xej , Zej ). Building
upon the insights from existing DG literature (Zhang et al., 2022; Zhao et al., 2023; Lin et al., 2023),
we define T with a specific emphasis on disentangling the variation in data features across domains
into latent spaces with three factors. For specific information about the design of T and the learning
algorithm, please refer to Sec. 4.
Assumption 2 (Multiple Latent Factors). Given datasetDe = {(xe

i , z
e
i , y

e
i )}

|De|
i=1 sampled i.i.d. from

P(Xe, Ze, Y e) in domain e ∈ E , we assume that each instance xe
i is generated from

• a latent content factor c ∈ C, where C = {cy=0, cy=1} refers to a content space;

• a latent sensitive factor a ∈ A, where A = {az=1,az=−1} refers to a sensitive space;

• a latent style factor se, where se is specific to the individual domain e.

We assume that the content and sensitive factors in C and A do not change across domains. Each
domain e over P(Xe, Ze, Y e) is represented by a style factor se and the dependence score ρe =
ρ(Y e, Ze), denoted e := (se, ρe), where se and ρe are unique to the domain e.

Note that Assump. 2 is similarly related to the one made in (Zhang et al., 2022; Robey et al., 2021;
Huang et al., 2018; Liu et al., 2017). In our paper, with a focus on group fairness, we expand
upon the assumptions of existing works by introducing three latent factors. Because we assume
the instance conditional distribution P(Y |X,Z) remains consistent across domains (i.e., there is no
concept shift taking place), under Assumps. 1 and 2, if two instances (xei , zei , y) and (xej , zej , y)
where ei, ej ∈ E , i ̸= j share the same class label, then the latter instance can be reconstructed
from the former using T . Specifically, T constructs xej using the content factor of xei , the sensitive
factor of xej , and the style factor of xej . Additionally, T constructs zej by employing the sensitive
factor of xej . For fairness-aware invariant learning, we make the following assumption.

Assumption 3 (Fairness-aware Domain Shift). We assume that inter-domain variation is character-
ized by the covariate shift and dependence shift in P(Xe) and ρ(Y e, Ze),∀e ∈ E . As a consequence,
we assume that P(Y e|Xe, Ze) is stable across domains. Given a domain transformation function
T , for any x ∈ X , z ∈ Z , and y ∈ Y , it holds that

P(Y ei = y|Xei = xei , Zei = zei) = P(Y ej = y|(Xej , Zej ) = T (xei , zei , ej)), ∀ei, ej ∈ E , i ̸= j

In Assump. 3, the domain shift captured by T would characterize the mapping from the underlying
distributions P(Xei) and ρ(Y ei , Zei) over Dei to the distribution P(Xej ) and ρ(Y ej , Zej ) of sam-
ples from a different data domain Dej , respectively. With this in mind and under Assump. 3, we
introduce a new definition of fairness-aware invariance with respect to the variation captured by T
and satisfying the group fair constraint introduced in Defn. 1.

Definition 3 (Fairness-aware T -Invariance). Given a transformation model T , a fairness-aware
classifier f ∈ F is domain invariant if it holds

f(xei) = f(xej ), and ρ(f(Xei), Zei) = ρ(f(Xej ), Zej ) = 0 (3)

almost surely when (xej , zej ) = T (xei , zei , ej), xei ∼ P(Xei), xej ∼ P(Xej ), and ei, ej ∈ E .
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Defn. 3 is crafted to enforce invariance on the predictions generated by f directly. We expect a
prediction to yield the same prediction for any realization of data under T while being aware of
group fairness.

Problem 2 (Fairness-aware Disentanglement for Domain Generalization). Under Defn. 3 and As-
sump. 3, if we restrict F of Prob. 1 to the set of invariant fairness-aware classifiers, the Prob. 1 is
equivalent to the following problem

P ⋆ ≜ min
f∈F

R(f) ≜ EP(Xei ,Zei ,Y ei )ℓ(f(X
ei), Y ei) (4)

subject to f(xei) = f(xej ), ρ(f(Xei), Zei) = ρ(f(Xej ), Zej ) = 0

where xei ∼ P(Xei), zei ∼ P(Zei), (xej , zej ) = T (xei , zei , ej), ∀ei, ej ∈ E , i ̸= j.

Similar to (Robey et al., 2021), Prob. 2 is not a composite optimization problem. Moreover, ac-
quiring domain labels is often expensive or even unattainable, primarily due to privacy concerns.
Consequently, under the assumptions of disentanglement-based invariance and domain shift, Prob-
lem 1 can be approximated to Problem 2 by removing the max operator. Furthermore, Prob. 2 offers
a new and theoretically-principled perspective on Prob. 1, when data varies from domain to domain
with respect to an underlying transformation model T . To optimize Prob. 2 is challenging because

• The strict equality constraints in Prob. 2 are difficult to enforce in practice;
• Enforcing constraints on deep networks is known to be a challenging problem due to non-

convexity. Simply transforming them to regularization cannot guarantee satisfaction for con-
strained problems;

• As we have incomplete access to all domains E or P(X,Z, Y ), it limits the ability to enforce
fairness-aware T -invariance and further makes it hard to estimate R(f).

Due to such challenges, we develop a tractable method for approximately solving Prob. 2 with
optimality guarantees. To address the first challenge, we relax constraints in Prob. 2

P ⋆(γ1, γ2) ≜ min
f∈F

R(f) subject to δei,ej (f) ≤ γ1, ϵ
ei(f) ≤ γ2

2
and ϵej (f) ≤ γ2

2
(5)

where
δei,ej (f) ≜ EP(X,Z)d

[
f(Xei), f(Xej = T (Xei , Zei , ej))

]
, (6)

ϵei(f) ≜ ρ(f(Xei), Zei), ϵej (f) ≜ ρ(f(Xej ), Zej ) (7)
and ∀ei, ej ∈ E , i ̸= j. Here, γ1, γ2 > 0 are constants controlling the extent of relaxation and d[·] is
a distance metric, e.g., KL-divergence. When γ1 = γ2 = 0, Eqs. (4) and (5) are equivalent.
Theorem 1 (Fairness Upper Bound of the Unseen Target Domain). In accordance with Defn. 1
and Eq. (7), for any domain e ∈ E , the fairness dependence under instance distribution
P(Xe, Ze, Y e) with respect to the classifier f ∈ F is defined as:

ϵe(f) =
∣∣EP(Xe,Ze)g(f(X

e), Ze)
∣∣

With observed source domains Es, the dependence at any unseen target domain et ∈ E\Es is upper
bounded. D[·] is the Jensen-Shannon distance (Endres & Schindelin, 2003) metric.

ϵet(f) ≤ 1

|Es|
∑
ei∈Es

ϵei(f) +
√
2 min
ei∈Es

D
[
P(Xet , Zet , Y et),P(Xei , Zei , Y ei)

]
+
√
2 max
ei,ej∈Es

D
[
P(Xei , Zei , Y ei),P(Xej , Zej , Y ej

]
where D[P1,P2] =

√
1
2KL(P1||P1+P2

2 ) + 1
2KL(P2||P1+P2

2 ) is JS divergence defined based on KL
divergence.

Since it is unrealistic to have access to the full distribution and we only have access to source
domains, given data sampled from Es, we consider the empirical dual problem

D⋆
ξ,N,Es

(γ1, γ2) ≜ max
λ1(ei,ej),λ2(ei,ej)

min
θ∈Θ

R̂(θ) (8)

+
1

|Es|
∑

ei,ej∈Es

[
λ1(ei, ej)

(
δ̂ei,ej (θ)− γ1

)
+ λ2(ei, ej)

(
ϵ̂ei(θ) + ϵ̂ej (θ)− γ2

)]
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Figure 2: An overview of data generation in synthetic domains via an underlying transformation
model T . Data are augmented through T based on invariant content factors and randomly sampled
sensitive and style factors that encode synthetic domains. We demonstrate the concept using the
CCMNIST introduced in Sec. 5, where the domains are associated with various digit colors and the
sensitive labels are determined by the background colors of each image.

where ξ = EP(X)||f(x) − f̂(x,θ)||∞ > 0 is a constant bounding the difference between f and its
parameterized counterpart f̂ : X × Θ → R defined in the Definition 5.1 of (Robey et al., 2021).
λ1(ei, ej), λ2(ei, ej) > 0 are dual variables. R̂(θ), δ̂ei,ej (θ), ϵ̂ei(θ) and ϵ̂ej (θ) are the empirical
counterparts of R(f̂(·,θ)), δei,ej (f̂(·,θ)), ϵei(f̂(·,θ)) and ϵej (f̂(·,θ)), respectively. With such
approximation on the dual problem in Eq. (8), the duality gap between P ⋆ and D⋆

ξ,N,Es
(γ1, γ2) can

be explicitly bounded.
Theorem 2 (Fairness-aware Data-dependent Duality Gap). Given ξ > 0, assuming {f̂(·,θ) : θ ∈
Θ} ⊆ F has finite VC-dimension, with M datapoints sampled from P(X,Z, Y ) we have

|P ⋆ −D⋆
ξ,N,Es

(γ)| ≤ L||γ||1 + ξk(1 + ||λ⋆
p||1) +O(

√
log(M)/M)

where γ = [γ1, γ2]
T ; L is the Lipschitz constant of P ⋆(γ1, γ2); k is a small universal constant

defined in Proposition 3 of Appendix E; and λ⋆
p is the optimal dual variable for a perturbed version

of Eq. (5).

The duality gap that arises when solving the empirical problem presented in Eq. (8) is minimal when
the fairness-aware T -invariance in Defn. 3 margin γ is narrow, and the parametric space closely
approximates F . Proofs of Theorems 1 and 2 are provided in Appendix E.

4 AN EFFECTIVE ALGORITHM

Fairness-aware DG via T . Motivated by the theoretical insights in Sec. 3, we propose a simple but
effective algorithm, namely FDDG. This algorithm consists of two stages. In the first stage, we train
the transformation model T using data from the source domains. In the second stage, we harness
the power of T to address the unconstrained dual optimization problem outlined in Eq. (8) through
a series of primal-dual iterations.

Regarding the architecture of T , we expand upon the networks used in (Huang et al., 2018) by
incorporating an additional output of the encoder E : X × Z → C × A × S for sensitive factors
a ∈ A and including a sensitive classifier h : A → Z . A generator (decoder) G : C×A×S → X×Z
is used to reconstruct instances from encoded latent factors. Following (Huang et al., 2018; Robey
et al., 2021), the transformation model T is trained using data in the observed source domains by
applying reconstruction of them. Detailed training process of T is provided in Appendix C.

Given the finite number of observed source domains, to enhance the generalization performance for
unseen target domains, the invariant classifier f̂ is trained by expanding the dataset with synthetic
domains. These synthetic domains are created by introducing random instance styles and random
fair dependencies within the domain. As described in Fig. 2, the sensitive factor ae

′
and the style

factor se
′

are randomly sampled from their prior distributions N (0, Ia) and N (0, Is), respectively.
Along with the unchanged content factor c, they are further passed through G to generate a new
instance within a novel domain. Under Assump. 3 and Defn. 3, according to Eqs. (6) and (7), data
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Algorithm 1 Fair Disentangled Domain Generalization.

Require: Pretained encoder E, decoder G and sensitive classifier h within T .
Initialize: primal and dual learning rate ηp, ηd, empirical constant γ1, γ2.

1: repeat
2: for minibatch B = {(xi, zi, yi)}mi=1 ⊂ Ds do
3: Lcls(θ) =

1
m

∑m
i=1 ℓ(yi, f̂(xi,θ))

4: Initialize Linv(θ) = 0 and B′ = [ ]
5: for each (xi, zi, yi) in the minibatch do
6: Generate (xj , zj , yj) = DATAAUG(xi, zi, yi) and add it to B′

7: Linv(θ)+ = 1
m
d[f̂(xi,θ), f̂(xj ,θ)]

8: end for
9: Lfair(θ) =

∣∣ 1
m

∑
(xi,zi)∈B g(f̂(xi,θ), zi)

∣∣+ ∣∣ 1
m

∑
(xj ,zj)∈B′ g(f̂(xj ,θ), zj)

∣∣
10: L(θ) = Lcls(θ) + λ1 · Linv(θ) + λ2 · Lfair(θ)
11: θ ← Adam(L(θ),θ, ηp)
12: λ1 ← max{[λ1 + ηd · (Linv(θ)− γ1)], 0}, λ2 ← max{[λ2 + ηd · (Lfair(θ)− γ2)], 0}
13: end for
14: until convergence
15: procedure DATAAUG(x, z, y)
16: c,a, s = E(x)
17: Sample a′ ∼ N (0, Ia), s′ ∼ N (0, Is)
18: x′ = G(c,a′, s′), z′ = h(a′)
19: return (x′, z′, y)
20: end procedure

augmented in synthetic domains are required to maintain invariance in terms of accuracy and fairness
with the data in the corresponding original domains.

Walking Through Algorithm 1. Our proposed implementation is shown in Algorithm 1 to solve
the empirical dual Eq. (8). In lines 15-20, we describe the DATAAUG procedure that takes an
example (x, z, y) as INPUT and returns an augmented example (x′, z′, y) from a new synthetic
domain as OUTPUT. The augmented example has the same content factor as the input example but
has different sensitive and style factors sampled from their associated prior distributions that encode
a new synthetic domain. Lines 1-14 show the main training loop for FDDG. In line 6, for each
example in the minibatch B, we apply the procedure DATAAUG to generate an augmented example
from a new synthetic domain described above. In line 7, we consider KL-divergence as the distance
metric for d[·]. All the augmented examples are stored in the set B′. The Lagrangian dual loss
function is defined based on B and B′ in line 10. The primal parameters θ and the dual parameters
λ1 and λ2 are updated in lines 11-12.

5 EXPERIMENTS

Settings. We evaluate the performance of our FDDG on four benchmarks. To highlight each domain
e and its fair dependence score ρe, we summarize the statistic in Tab. 1. Three image datasets
ccMNIST, FairFace (Karkkainen & Joo, 2021), YFCC100M-FDG (Thomee et al., 2016), and
one tabular dataset New York Stop-and-Frisk (NYSF) (Koh et al., 2021) are conducted
on FDDG against 17 state-of-the-art baseline methods that fall into two categories, state-of-the-art
DG methods (RandAug1, ERM (Vapnik, 1999), IRM (Arjovsky et al., 2019), GDRO (Sagawa et al.,
2020), Mixup (Yan et al., 2020), MLDG (Li et al., 2018a), CORAL (Sun & Saenko, 2016), MMD
(Li et al., 2018b), DANN (Ganin et al., 2016), CDANN (Li et al., 2018c), DDG (Zhang et al., 2022),
and MBDG (Robey et al., 2021)) and fairness-aware methods in changing environments (DDG-FC,
MBDG-FC 2, EIIL (Creager et al., 2021), FarconVAE (Oh et al., 2022), FATDM (Pham et al., 2023)).
Three metrics are used for evaluation. Two of them are for fairness quantification, Demographic

1RandAug (or ColorJitter) is a naive built-in function in Torch used for image transformations. It randomly
changes the brightness, contrast, saturation, and hue of given images.

2DDG-FC and MBDG-FC are two fairness-aware DG baselines that built upon DDG (Zhang et al., 2022)
and MBDG (Robey et al., 2021), respectively. These extensions involve the straightforward addition of fairness
constraints defined in Defn. 1 to the loss functions of the original models.
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Table 1: Statistics summary of all datasets.
Dataset Domain, e Sensitive label, Z Class label, Y (e, ρe), ∀e ∈ E

ccMNIST digit color background color digit label (R, 0.11), (G, 0.43), (B, 0.87)
FairFace race gender age (B, 0.91), (E, 0.87), (I, 0.58), (L, 0.48), (M, 0.87), (S, 0.39), (W, 0.49)
YFCC100M-FDG year location indoor/outdoor (d0, 0.73), (d1, 0.84), (d2, 0.72)
NYSF city race stop record (R, 0.93), (B, 0.85), (M, 0.81), (Q, 0.98), (S, 0.88)
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Generated with random style and 

sensitive factors Original Reconstruction
Generated with random style and 

sensitive factors
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Figure 3: Visualizations for images under reconstruction and the
transformation model T with random style and sensitive factors.
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Figure 4: Tracking the change
of reconstruction loss using
the B/L/W domains of the
FairFace dataset.

Parity (DP) (Dwork et al., 2011) and the Area Under the ROC Curve (AUC) between predictions
of sensitive subgroups (Ling et al., 2003). Notice that the AUC metric is not the same as the one
commonly used in classification based on TPR and FPR. The intuition behind this AUC is based on
the nonparametric Mann-Whitney U test, in which a fair condition is defined as the probability of a
randomly selected sample x−1 from one sensitive subgroup being greater than a randomly selected
sample x1 from the other sensitive subgroup is equal to the probability of x1 being greater than x−1

(Zhao & Chen, 2019; Calders et al., 2013). A value of DP closer to 1 indicates fairness and 0.5 of
AUC represents zero bias effect on predictions. Due to space limits, we defer a detailed description
of the experimental settings (including datasets, baselines, evaluation metrics, etc.) in Appendix C
and complete results on all baselines and datasets in Appendix F.

Data Reconstruction and Generation via T . To assess the effectiveness of the transformation
model T , we visualize instance reconstruction and domain variation using image datasets in Fig. 3.
The first column (Original) shows the images sampled from the datasets. In the second column
(Reconstruction), we display images that are generated from latent factors encoded from the images
in the first column. The images in the second column closely resemble those in the first column.
We showcase the reconstruction loss using the FairFace dataset in Fig. 4. Images in the last
three columns are generated using the content factors that were encoded from images in the first
column. These images are generated with style and sensitive factors randomly sampled from their
respective prior distributions. The images in the last three columns preserve the underlying semantic
information of the corresponding samples in the first column. However, their style and sensitive at-
tributes undergo significant changes. This demonstrates that the transformation model T effectively
extracts latent factors and produces diverse transformations of the provided data domains. More
visualization and plot results are given in Appendix F.

The Effectiveness of FDDG Across Domains in terms of Fairness and Accuracy. Comprehensive
experiments showcase that FDDG consistently outperforms baselines by a considerable margin. For
all tables in the main paper and Appendix, results shown in each column represent performance
on the target domain, using the rest as source domains. Due to space limit, selected results for
three domains of FairFace are shown in Tab. 2, but the average results are based on all domains.
Complete performance for all domains of datasets refers to Appendix F. As shown in Tab. 2, for
the FairFace dataset, our method has the best accuracy and fairness level for the average DG
performance over all the domains. More specifically, our method has better fairness metrics (4%
for DP, 2% for AUC) and comparable accuracy (0.23% better) than the best of the baselines for
individual metrics. As shown in Tab. 3, for YFCC100M-FDG, our method excels in fairness metrics
(8% for DP, 5% for AUC) and comparable accuracy (0.35% better) compared to the best baselines.

Ablation Studies. We conduct three ablation studies to study the robustness of FDDG on
FairFace. In-depth descriptions and the pseudocodes for these studies can be found in Ap-
pendix D. More results can be found in Appendix F. (1) In FDDG w/o sf, we modify the encoder
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Table 2: Performance on for FairFace. Bold is the best and underline is the second best.
DP ↑ / AUC ↓ / Accuracy ↑

Methods (B, 0.91) (L, 0.48) (W, 0.49) Avg

RandAug 0.64±0.26 / 0.64±0.15 / 93.47±1.56 0.39±0.10 / 0.70±0.02 / 91.77±0.61 0.34±0.09 / 0.64±0.02 / 92.07±0.55 0.42 / 0.66 / 92.94
ERM 0.67±0.17 / 0.58±0.02 / 91.89±1.10 0.57±0.15 / 0.62±0.01 / 91.96±0.51 0.39±0.09 / 0.61±0.01 / 92.82±0.38 0.51 / 0.61 / 93.08
IRM 0.63±0.12 / 0.58±0.01 / 93.39±1.03 0.41±0.21 / 0.63±0.05 / 92.06±1.89 0.32±0.19 / 0.66±0.01 / 90.54±1.56 0.43 / 0.62 / 92.48
GDRO 0.71±0.16 / 0.57±0.02 / 89.81±1.10 0.54±0.15 / 0.62±0.01 / 91.59±0.51 0.48±0.09 / 0.60±0.01 / 92.50±0.38 0.55 / 0.60 / 92.55
Mixup 0.58±0.19 / 0.59±0.02 / 92.46±0.69 0.55±0.22 / 0.61±0.02 / 93.43±2.02 0.43±0.19 / 0.61±0.01 / 92.98±0.03 0.51 / 0.60 / 93.19
DDG 0.60±0.20 / 0.59±0.02 / 91.76±1.03 0.44±0.17 / 0.62±0.02 / 93.46±0.32 0.51±0.07 / 0.60±0.01 / 91.34±0.80 0.49 / 0.61 / 92.74
MBDG 0.60±0.15 / 0.58±0.01 / 91.29±1.41 0.56±0.09 / 0.61±0.01 / 93.49±0.97 0.30±0.04 / 0.62±0.01 / 91.05±0.53 0.50 / 0.60 / 92.71

DDG-FC 0.61±0.06 / 0.58±0.03 / 92.27±1.65 0.50±0.25 / 0.62±0.03 / 92.42±0.30 0.48±0.15 / 0.62±0.02 / 92.45±1.55 0.52 / 0.61 / 93.23
MBDG-FC 0.70±0.15 / 0.56±0.03 / 92.12±0.43 0.57±0.23 / 0.62±0.02 / 91.89±0.81 0.32±0.07 / 0.60±0.03 / 91.50±0.57 0.53 / 0.60 / 92.48
EIIL 0.88±0.07 / 0.59±0.05 / 84.75±2.16 0.49±0.07 / 0.59±0.01 / 88.39±1.25 0.46±0.05 / 0.65±0.03 / 86.53±1.02 0.64 / 0.61 / 87.78
FarconVAE 0.93±0.03 / 0.54±0.01 / 89.61±0.64 0.58±0.05 / 0.60±0.05 / 88.70±0.71 0.51±0.07 / 0.60±0.01 / 86.40±0.42 0.66 / 0.58 / 88.46
FATDM 0.93±0.03 / 0.57±0.02 / 92.20±0.36 0.51±0.16 / 0.63±0.02 / 93.33±0.20 0.46±0.05 / 0.63±0.01 / 92.56±0.31 0.67 / 0.61 / 92.54

FDDG 0.94±0.05 / 0.55±0.02 / 93.91±0.33 0.58±0.15 / 0.59±0.01 / 93.73±0.26 0.52±0.17 / 0.58±0.03 / 93.02±0.50 0.70 / 0.58 / 93.42

Table 3: Performance on YFCC100M-FDG. (bold is the best; underline is the second best).
DP ↑ / AUC ↓ / Accuracy ↑

Methods (d0 , 0.73) (d1 , 0.84) (d2 , 0.72) Avg

RandAug 0.67±0.06 / 0.57±0.02 / 57.47±1.20 0.67±0.34 / 0.61±0.01 / 82.43±1.25 0.65±0.21 / 0.64±0.02 / 87.88±0.35 0.66 / 0.61 / 75.93
ERM 0.81±0.09 / 0.58±0.01 / 40.51±0.23 0.71±0.18 / 0.66±0.03 / 83.91±0.33 0.89±0.08 / 0.59±0.01 / 82.06±0.33 0.80 / 0.61 / 68.83
IRM 0.76±0.10 / 0.58±0.02 / 50.51±2.44 0.87±0.08 / 0.60±0.02 / 73.26±0.03 0.70±0.24 / 0.57±0.02 / 82.78±2.19 0.78 / 0.58 / 68.85
GDRO 0.80±0.05 / 0.59±0.01 / 53.43±2.29 0.73±0.22 / 0.60±0.01 / 87.56±2.20 0.79±0.13 / 0.65±0.02 / 83.10±0.64 0.78 / 0.62 / 74.70
Mixup 0.82±0.07 / 0.57±0.03 / 61.15±0.28 0.79±0.14 / 0.63±0.03 / 78.63±0.97 0.89±0.05 / 0.60±0.01 / 85.18±0.80 0.84 / 0.60 / 74.99
DDG 0.81±0.14 / 0.57±0.03 / 60.08±1.08 0.74±0.12 / 0.66±0.03 / 92.53±0.91 0.71±0.21 / 0.59±0.03 / 95.02±1.92 0.75 / 0.61 / 82.54
MBDG 0.79±0.15 / 0.58±0.01 / 60.46±1.90 0.73±0.07 / 0.67±0.01 / 94.36±0.23 0.71±0.11 / 0.59±0.03 / 93.48±0.65 0.74 / 0.61 / 82.77

DDG-FC 0.76±0.06 / 0.58±0.03 / 59.96±2.36 0.83±0.06 / 0.58±0.01 / 96.80±1.28 0.82±0.09 / 0.59±0.01 / 86.38±2.45 0.80 / 0.58 / 81.04
MBDG-FC 0.80±0.13 / 0.58±0.01 / 62.31±0.13 0.72±0.09 / 0.63±0.01 / 94.73±2.09 0.80±0.07 / 0.53±0.01 / 87.78±2.11 0.77 / 0.58 / 81.61
EIIL 0.87±0.11 / 0.55±0.02 / 56.74±0.60 0.76±0.05 / 0.54±0.03 / 68.99±0.91 0.87±0.06 / 0.78±0.03 / 72.19±0.75 0.83 / 0.62 / 65.98
FarconVAE 0.67±0.06 / 0.61±0.03 / 51.21±0.61 0.90±0.06 / 0.59±0.01 / 72.40±2.13 0.85±0.12 / 0.55±0.01 / 74.20±2.46 0.81 / 0.58 / 65.93
FATDM 0.80±0.10 / 0.55±0.01 / 61.56±0.89 0.88±0.08 / 0.56±0.01 / 90.00±0.66 0.86±0.10 / 0.60±0.02 / 89.12±1.30 0.84 / 0.57 / 80.22

FDDG 0.87±0.09 / 0.53±0.01 / 62.56±2.25 0.94±0.05 / 0.52±0.01 / 93.36±1.70 0.93±0.03 / 0.53±0.02 / 93.43±0.73 0.92 / 0.53 / 83.12

Table 4: Ablation studies results on FairFace.
DP ↑ / AUC ↓ / Accuracy ↑

Methods (B, 0.91) (L, 0.48) (W, 0.49) Avg

FDDG w/o sf 0.68±0.18 / 0.57±0.02 / 93.07±0.68 0.47±0.07 / 0.63±0.01 / 92.62±0.93 0.35±0.26 / 0.58±0.01 / 92.18±0.46 0.49 / 0.59 / 93.08
FDDG w/o T 0.83±0.08 / 0.56±0.01 / 92.81±0.81 0.53±0.03 / 0.59±0.01 / 91.19±0.57 0.52±0.23 / 0.59±0.01 / 90.78±0.31 0.58 / 0.59 / 91.65
FDDG w/o fc 0.59±0.16 / 0.58±0.01 / 92.92±1.35 0.40±0.07 / 0.70±0.02 / 92.96±0.85 0.34±0.08 / 0.72±0.03 / 91.88±0.67 0.42 / 0.66 / 93.01

within T by restricting its output to only latent content and style factors. (2) FDDG w/o T skips data
augmentation in synthetic domains via T and results are conducted only based f constrained by fair
notions outlined in Defn. 1. (3) In FDDG w/o fc, the fair constraint on f is not included, and we
eliminate the Lfair in line 9 of Algorithm 1. We include the performance of such ablation studies
in Tab. 4. The results illustrate that when data is disentangled into three factors and the model is
designed accordingly, it can enhance DG performance due to covariate and dependence shifts. Gen-
erating data in synthetic domains with randomly fair dependence patterns proves to be an effective
approach for ensuring fairness invariance across domains.

6 CONCLUSION

Differing from established domain generalization research, which attributes distribution shifts from
source domains to target domains to concept shift and covariate shift, we introduce a novel form
of distribution shift known as dependence shift. This shift pertains to varying dependence patterns
between model outcomes and sensitive attributes in different domains. Furthermore, we introduce a
novel approach to fairness-aware learning designed to tackle the challenges of domain generalization
when confronted with both covariate shift and dependence shift simultaneously. In our pursuit of
learning a fairness-aware invariant classifier across domains, we assert the existence of an underlying
transformation model that can transform instances from one domain to another. This model plays a
crucial role in achieving fairness-aware domain generalization by generating instances in synthetic
domains characterized by novel data styles and fair dependence patterns. We present a practical and
tractable algorithm, accompanied by comprehensive theoretical analyses and exhaustive empirical
studies. We showcase the algorithm’s effectiveness through rigorous comparisons with state-of-the-
art baselines.
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