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ABSTRACT

Semi-Markov CRF (Sarawagi and Cohen, 2005) has been proposed as an alter-
native to the traditional Linear Chain CRF(Lafferty et al., 2001) for text seg-
mentation tasks such as Named Entity Recognition. In contrast to CRF, which
treats text segmentation as token-level prediction, Semi-CRF considers spans as
the task’s basic unit, which makes it more expressive. However, Semi-CRF has
two major drawbacks: (1) it has quadratic complexity over sequence length as
it operates on every span of the input sequence, and (2) empirically, it performs
worse than classical CRF for sequence labeling tasks such as NER. In our work,
we propose Filtered Semi-Markov CRF, a Semi-CRF variant that addresses the
aforementioned issues. Our model extends Semi-CRF by incorporating a filter-
ing step for eliminating irrelevant segments, which helps reduce the complexity
and dramatically reduce the search space. On a variety of NER benchmarks, we
find that our approach outperforms both CRF and Semi-CRF models while being
significantly faster. We will make our code available to the public.

1 INTRODUCTION

Sequence segmentation is the process of dividing a sequence into several distinct, non-overlapping
segments to cover the entire sequence (Sarawagi and Cohen, 2005; Terzi, 2006). It has a wide range
of use cases, including Named Entity Recognition (Tjong Kim Sang and De Meulder, 2003) and
Chinese Word Segmentation (Li and Yuan, 1998). Sequence segmentation has traditionally been
seen as a sequence labeling problem using pre-existing templates such as BIO and BILOU schemes
(Ratinov and Roth, 2009). Conditional Random Field (CRF) (Lafferty et al., 2001) has been widely
used in sequence labeling problems to model the dependence between adjacent token tags. Although
the Linear-chain CRF has performed well in various segmentation tasks, operating at the segment
level rather than the token level would be a more natural way to perform sequence segmentation. To
this end, the Semi-Markov CRF (Sarawagi and Cohen, 2005) has been proposed as a variant of CRF,
allowing for the incorporation of higher-level segment features, such as segment width. However,
Semi-CRF, unlike CRF, is considerably slower for both learning and inference due to its quadratic
complexity with respect to the sequence length. Moreover, Semi-CRF generally performs worse
than CRF (sometimes the Semi-CRF performs better but the gain is only marginal) (Liang, 2005;
Daumé and Marcu, 2005; Andrew, 2006). Indeed, the Semi-CRF performs joint segmentation and
labeling which results in a much larger search space making learning more challenging.

To address this problem, we propose a filtered version of the Semi-CRF. Like Semi-CRF (Sarawagi
and Cohen, 2005), our model operates on segments, but we add a filtering model to discard a large
number of candidate segments. Our aim is to reduce the computational complexity by pruning the
segmentation search space. During inference and after the filtering step, finding the best segmen-
tation and labeling boils down to finding the maximum scoring path in a weighted directed acyclic
graph. During training we use a similar dynamic programming algorithm allowing us to sum over
all paths in the graph.

We evaluate our approach on benchmark datasets for Named Entity Recognition and find that it
performs better than CRF and Semi-CRF models with noticeably faster inference. The rest of this
paper is organized as follows. In the next section, we provide some background and context for un-
derstanding the foundational CRF and Semi-CRF models. Next, we present our filtered Semi-CRF
model in detail, followed by the experimental setup, the results and further experimental analysis,
and an overview of related works. The final section concludes this paper.
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2 BACKGROUND

In this section, we first present the Linear-Chain CRF (Lafferty et al., 2001) and then the semi-
Markov CRF (Sarawagi and Cohen, 2005), namely their structured representation and their learning
and inference algorithms.

2.1 LINEAR CHAIN CRF

The Linear-Chain CRF (Lafferty et al., 2001) is a sequence labeling model that assigns a label to
each token in the input sequence. It assumes dependencies between adjacent output labels (typically
a Markov dependency of order 1). Hence, given an input sequence x, a sequence of labels y of the
same size L is produced with yi ∈ Y . The conditional probability of y given x is computed using
the following estimator:

p(y|x) =
exp

{∑L
i=1ψ(yi|x) +

∑L
i=2 Tyi−1,yi

}
Z(x)

=
expΨ(y|x)
Z(x)

(1)

where ψ(yi|x) ∈ R is the score of the sequence label at position i and T ∈ R|Y |×|Y | is a learnable
label transition matrix defined for each pair of labels. Furthermore, Z(x) =

∑
y′∈Y(x) expΨ(y|x)

is the partition function that serves as a normalizer of the probability distribution, where Y(x) is the
set of all possible label sequences admissable for x.

During training, the goal is to update all model parameters by minimizing the negative log proba-
bilities of the gold labels: − log p(y∗|x) = −Ψ(y∗|x) + logZ(x). The partition function Z(x)
is computed in polynomial time using the Forward algorithm (See Eq. 13 in Appendix A.2 for de-
tails). For inference, the goal is to produce the optimal segmentation y∗ = argmaxyΨ(y|x), which
is computed using the Viterbi algorithm (Eq. 14 in Appendix A.2). The CRF has linear complexity
in terms of the sequence length L, and quadratic complexity in terms of the number of labels |Y | for
both learning and inference, i.e., O(L|Y |2).

2.2 SEMI-MARKOV CRF

Unlike the Linear-chain CRF, the Semi-CRF (Sarawagi and Cohen, 2005) operates at the segment
level to account for segment features that cannot be easily modeled using sequence labeling. The
Semi-CRF produces a segmentation y (of size M ) of input sequence x (of size L, with L ≥ M ).
The conditional probability of the labeled segmentation y given an input x is computed as follows:

p(y|x) =
exp

{∑M
k=1 ϕ(sk|x) + T [lk−1, lk]

}
Z(x)

=
expΦ(y|x)
Z(x)

(2)

ϕ(sk|x) ∈ R is the score of the k-th segment of y and T [lk−1, lk] is the label transition score
with T [l0, l1] = 0. Furthermore, following Sarawagi and Cohen (2005), a labeled segmentation
y = {s1, . . . , sM} ∈ Y(x) has the following properties:

• A segment sk = (ik, jk, lk) ∈ y consists of a start position ik, an end position jk, and a
label lk ∈ Y .

• The segments have positive lengths and completely cover the sequence 1 . . . L without
overlapping, i.e., jk and ik always satisfy i1 = 1, jM = L, 1 ≤ ik ≤ jk ≤ L, and
ik+1 = jk + 1.

For instance, for Named Entity Recognition, a segmentation of the sentence “Michael Jordan eats an
apple .” would be Y =[(1, 2, PER), (3, 3, O), (4, 4, O), (5, 5, O), (6, 6, O)]. In (Sarawagi and Cohen,
2005), it is always assumed that non-entity segments (also O or null segments) have unit length.

The model parameters are learned to maximize the conditional probability of gold segmentation
p(y|x) over the training data, similar to CRF. The partition functionZ(x) =

∑
y′∈Y(x) expΦ(y|x)

can be computed in polynomial time using a modification of the Forward algorithm (Eq. 15 in
Appendix A.3), and inference is done by segmental Viterbi (Eq. 16 in Appendix A.3) to produce the
best segmentation y∗ = argmaxyΦ(y|x). Finally, the Semi-CRF has quadratic complexity in terms
of both sequence length and the number of labels for both learning and inference, i.e., O(L2|Y |2).
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2.3 GRAPH-BASED FORMULATION OF SEMI-CRF

Given a sequence x of lenght |x| = L, a labeled segment sk = (ik, jk, lk) is defined by its start and
end positions 1 ≤ ik ≤ jk ≤ L and its label lk ∈ Y . Let G(V,E) be a directed graph, whose set of
nodes V is made of all segments x, with |x| = L:

V =

L⋃
i=1

L⋃
j=i

|Y |⋃
l=1

{(i, j, l)}, (3)

and the directed edge sk′ → sk ∈ E if and only if jk′ + 1 = ik. We further define the weight of an
edge sk′ → sk as follows:

w(sk′ → sk|x) = ϕ(sk|x) + T [lk′ , lk] (4)

where ϕ(sk|x) is the score of the segment sk and T [lk′ , lk] is the label transition score.

Proposition 1. Any directed path {s1, s2, . . . , sM} in the graph verifying i1 = 1 and jM = L
corresponds to a segmentation of x.

Proof. Any directed path {s1, s2, . . . , sM} verify the properties of the segmentation described in
section 2.2, namely i1 = 1, jM = L, 1 ≤ ik ≤ jk ≤ L, and jk + 1 = ik+1 (by definition).

In addition, the score of the path {s1, s2, . . . , sM} computed as the sum of the edge scores is equiv-
alent to the Semi-CRF score (2.2) of the segmentation y = {s1, s2, . . . , sM}:

score(s1, s2, . . . , sM ) =

M∑
k=1

w(sk−1 → sk|x) =
M∑
k=1

ϕ(sk|x) + T [lk−1, lk]

= Φ(y = {s1, . . . , sM}|x)

(5)

The search for the best segmentation consists in finding the maximal weighted path of the graph that
begins at i1 = 1 and end at jM = L. Finding the best path in this graph has a complexity of L3

using a generic search algorithm such as Bellman-Ford (see section 3.3 for details). Nevertheless,
taking into account the lattice structure of the problem allows reducing the complexity to L2, as is
done in the Viterbi algorithm (Viterbi, 1967).

3 FILTERED SEMI-MARKOV CRF

We describe in this section our proposed alternative to Semi-CRF, which we term Filtered Semi-
CRF. The motivations for this new model is to address two weaknesses of the Semi-CRF. First, the
Semi-CRF is not well-suited for long texts due to its quadratic complexity and the search space is
prohibitively large. Second, in tasks such as NER where some segments should be labeled null,
multiple paths in the Semi-CRF graph can produce the same set of entities. This is because long
null segments can be broken into smaller contiguous null segments without modifying the result.
In fact, Sarawagi and Cohen (2005) constrains null segments to have a unit length and assigns
them a score. The crux of our approach is to use an independent model to filter the Semi-CRF graph
described in § 2.3 prior to further computations. The resulting graph is order of magnitude smaller
than the original one and does not contain null segments thus addressing both issues.

3.1 FILTERING

In our model, filtering is applied to the full set of segments (we denote as Vfull). The filtering
eliminates the segments that are predicted to be null segments by means of a local classifierϕlocal :

V =

{
sk ∈ Vfull | argmax

lk

ϕlocal(sk = (ik, jk, lk)|x) ̸= null

}
(6)

Since the filtered nodes V may not contain all segments, defining the edges E as we did in 2.3
would not be applicable here. Thus, we propose to define the edges using the method of Liang et al.
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(1, 1)

(1, 2)

(1, 3)

…

(L, L)

(1, 2) 0.6

(1, 3) -2.1

(3, 4) 1.4

(4, 5) 0.7

start

(1, 2)

(1, 3)

(3, 4)

(4, 5)

end

1.4

0.7

All possible paths:

Start, (1, 2), (3, 4), end | 𝒔𝒄𝒐𝒓𝒆 = 𝟎. 𝟔 + 𝟏. 𝟒 = 𝟐. 𝟎

Start, (1, 2), (4, 5), end  | 𝑠𝑐𝑜𝑟𝑒 = 0.6 + 0.7 = 1.3

Start, (1, 3), (4, 5), end  | 𝑠𝑐𝑜𝑟𝑒 = −2.1 + 0.7 = −1.4

Partition function: 𝑍 𝑥 = exp 2.0 + exp 1.3 + exp −1.4

Training: loss = − 𝑠𝑐𝑜𝑟𝑒 𝑦∗ 𝑥 + log 𝑍 𝑥

Decoding: Return maximum weighted path

(1) All segments 𝑠𝑘
(2) Filtering step:

{𝑠𝑘 | argmax𝑙𝑘 𝜙𝑙𝑜𝑐𝑎𝑙 𝑠𝑘 𝑥 ≠ 𝑛𝑢𝑙𝑙} (3) Graph construction (4) Scoring, loss computation and decoding

Figure 1: Filtered Semi-Markov CRF. 1) Enumerate all the segments of the input sequence. 2)
null segments are dropped (Eq. 6) using a local segment classifier ϕlocal. 3) Construct the path
graph from the filtered segments; we omit the transition scores for better readability. 4) During
training, we compute the loss function (Eq. 9 and 10) by constraining the gold path y∗ to be a path
of the graph, and during inference, return the maximum weighted path (Alg. 2). Please note that the
size of the graph can vary a lot depending on the input sequence and training stage (Fig. 2 and 3).

(1991): ∀(sk′ , sk) ∈ V 2, sk′ → sk ∈ E if jk′ < ik and there is no sk∗ ∈ V such that jk′ < ik∗ and
ik∗ < jk. This formulation means that sk′ → sk is an edge if sk begins after sk′ , and that no other
segment lies completely inside (jk′ , ik). This formulation generalizes the Semi-CRF to graphs with
missing segments. However, when segments are missing, the starting and ending of segmentation
are not necessarily i1 = 1 and jM = L. To fix this problem, we simply add two terminal nodes
start and end:

• start→ sk ∈ E if sk′ → sk ̸∈ E for all k′ ̸= start

• sk → end ∈ E if sk → sk′ ̸∈ E for all k′ ̸= end

A segmentation in the graph is a path from start to end, i.e., {s0, s1, . . . , sM , sM+1} with s0 =
start and sM+1 = end.1 An illustration of the graph construction is shown in the figure 1.

For named entity recognition, if we take again the example of Section 2.2, the correct
segmentation of “Michael Jordan eats an apple.” using the Filtered Semi-CRF would be
y=[start, (1, 2, PER), end], the remaining segments being considered as null label: in fact,
the Filtered Semi-CRF only accounts for entity segments and assumes that the remaining parts of
the sequence have the null label.

3.2 SCORING, LEARNING AND INFERENCE

Segmentation probability To compute a segmentation score in the filtered graph, we sum the
weights of the path edges representing the segmentation as for the Semi-CRF described in Section
2.3:

score(y = {s0, . . . , sM+1}|x) =
∑
sk∈y

w(sk−1 → sk|x) (7)

where w(sk−1 → sk|x) = ϕglobal(sk|x) + T [lk−1, lk] if k ̸∈ {1,M + 1} and w(s0 → s1) =
ϕglobal(s1|x) and w(sM → sM+1) = 0, where s0 = start and sM+1 = end. Note that
the start and end nodes are added only to make the problem a single-source, single-destination
shortest path problem. Moreover, ϕglobal is a neural network, similarly to ϕlocal, it takes as input
the labeled segments sk = (ik, jk, lk) ∈ V and returns their scores. Finally, the segmentation
probability of the Filtered Semi-CRF is:

p(y = {s0, . . . , sM+1}|x) =
expscore(y|x)

Z(x)
(8)

Z(x) =
∑

y′∈Y(x) expscore(y
′|x) is the partition function, which makes the probabilities of all

segmentation sum to one.

1It is worth noting that the segmentation problem can be formulated as finding a the highest scoring Maximal
Independent Set (MIS) in a interval graph (Gupta et al., 1982).
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The set Y(x) contains all paths in the graph from start to end. For a reasonably small graphs,
Y(x) can be enumerated, but this is intractable for larger graphs. The partition function can be effi-
ciently computed without enumeration; with dynamic programming using a variant of the Bellman-
Ford algorithm, which can be seen as a message-passing algorithm (Wainwright and Jordan, 2008):

Algorithm 1 Computing Z(x)
1: Topologically sort the nodes of V
2: α[start] = 1 and α[k] = 0 otherwise for k ∈ V
3: for all k ̸= start in V do
4: for all k′ such that k′ → k ∈ E do
5: α[k]← α[k] + α[k′] exp{w(sk′ → sk)|x}
6: end for
7: end for
8: Z(x) = α[end]

In practice, this implementation of Z(x) is unstable, so we did all the computations in the log space
to prevent overflow/underflow. The complexity of the algorithm is O(|V |+ |E|). We provide more
details about the size of V and E as a function of L in Section 3.3.

Learning During training, we jointly minimize the filtering loss and the segmentation loss. The
filtering loss Llocal of the local classifier ϕlocal is the sum of the negative log-probability of all gold
labeled segments of the training set T . Since the filtering task is highly imbalanced, we down-weight
the loss for the label l = null as a mean of regularization. The weighting ratio β ∈ [0, 1] is tuned
on the development set:

Llocal = −
∑

(i,j,l)∈T
l ̸=null

log p(i, j, l|x)− β ×
∑

(i,j,l)∈T
l=null

log p(i, j, l|x)
(9)

where p(i, j, l|x) is the probability that the segment (i, j) has the label l using the local classifier
ϕlocal. The loss of the segmentation model ϕglobal is computed as:

Lglobal = −score(y|x) + logZ(x) (10)

Furthermore, during the training, we constrain the candidate segments V (Eq. 6) to contain the gold
entity segments y, and we also ensure that the gold segmentation is a path of the filtered graph, i.e.,
all other candidate spans should be overlapping at least with one segment of the gold. This choice
may be sub-optimal since it can cause exposure bias, i.e., a training-inference discrepancy. However,
we found that it works well in practice, and suppressing it leads to unstable learning and a negative
value of the global loss since score(y|x) can be larger than logZ(x). The total loss of the model
is the sum of the local and global losses, Ltotal = Lglobal + Llocal.

Inference During inference, the objective is to return the path (from start to end) of the graph
that has the best score. We solve this problem using a max-sum dynamic programming algorithm
that has the same structure as Algorithm 1:

Algorithm 2 Decoding

1: Topologically sort the nodes of V
2: δ[start] = 0
3: for all k ̸= start in V do
4:

δ[k] = max
k′

(k′→k)∈E

δ[k′] + w(sk′ → sk|x)

5: end for

The highest scoring path, i.e argmaxyscore(y|x), is the path traced by δ[end] which can be
obtained by backtracking. This algorithm has a complexity of O(|V |+ |E|), the same as computing
the partition function Z(x).
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Figure 2: Empirical complexity analysis. This plot illustrates the relationship between the size
of the filtered graph (|V | + |E|) and the input sequence length L, on three NER datasets. This
experment is done with trained models.

3.3 COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the algorithms (1 and 2) O(|V |+ |E|) as a function of
the input sequence length L. Note that the size of V does not depend on the number of labels |Y |
since there is at most one label per segment due to the filtering step in equation 6.

Proposition 2. There are L(L+1)
2 nodes in a complete segment path graph constructed using a

sequence of length L.

Proposition 3. There are L(L−1)(L+1)
6 edges in a complete segment path graph constructed from a

sequence of length L.

We use propositions 2 and 3 to derive the complexity of the Filtered Semi-CRF model, developed
below. Their proofs can be found in Appendix A.1.

Worst case complexity In the worst case, the filtering model ϕlocal does not filter any segments,
i.e., all segments are kept. From propositions 2 and 3, we can deduce that in the worst case,
O(|V |) = O(L2) and O(|E|) = O(L3) which means that the complexity of our worst case al-
gorithm is cubic as a function of the sequence length L since O(|V | + |E|) = O(L3). However,
note that in the worst case, the resulting graph is the Semi-CRF and the complexity can be reduced
to L2 using the algorithms Forward (during training) and Viterbi (during inference).

Best case complexity The best case scenario means that the filtering is perfect, so the number of
nodes in the graph |V | is equal to the true number of non-null segments in the input sequence,
which we denote by J . Moreover, since J does not contain overlapping segments, |J | ≤ L with
|J | = L if all segments in J have unit length and cover the entire sequence i.e J = {(i, i, li)|i =
1 . . . L, li ̸= null}. Furthermore, |E| = |J | − 1 ≤ L− 1 because perfect filtering implies that the
path number is unique. Finally, we can conclude that the complexity is linear i.e, O(|V | + |E|) =
O(L).

Empirical analysis We further investigate the empirical complexity of our approach by looking
for a relationship between |V |+ |E| and the sequence length L in practice. We performed the exper-
iments on three text segmentation datasets, Conll-2003, OntoNotes 5.0 and Arabic ACE dedicated
to the task of Named Entity Recognition. The results are shown in Figure 2. The plots show that
the graph size |V |+ |E| is generally smaller than the sequence length L for a trained model, mean-
ing that empirically, the complexity is close to the best case complexity which is O(L). However,
during training, especially in the first stage, the size of the graph can be large because the filtering
model may be poor, as illustrated in the figure 3. Empirically, the early steps of the training can be
time consuming due to larger graph size. However, after a few gradient steps, the size of the graph
decreases significantly since most of the segments of an input sequence are labeled as null.
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Figure 3: Evolution of the graph size during training. The two axis are in log-scale and the data
are smoothed using Savitzky–Golay filter (Savitzky and Golay, 1964). There are three main stages.
At the beginning of the training, the size of the graph is large because the filtering model is not
trained. At the second stage, the size of the graph is small because the filtering model is confident
about null segments (most segments are null). At the last stage, the size of the graph is stabilizing.

4 EXPERIMENTAL SETUPS

4.1 REPRESENTATION AND SCORES

For all our models, we used pre-trained transformer models (Devlin et al., 2019) to compute word
representations. Specifically, the input sequence {x}ni=1 is fed into a pre-trained transformer pro-
ducing a set of contextualized embeddings {h}ni=1 ∈ RD, with D the embedding size of the model.
In addition, since pre-trained transformers typically separate words into sub-tokens, we use the first
sub-token embedding as the representation of the whole word, which is a common practice for
token-level prediction tasks.

Token scores In our sequence labeling baseline, we compute the label score at position i as a
linear projection of the token representation at the same position: ψ(yi|x) = wT

y hi ∈ R, where
wy ∈ RD×1 is a label-specific learnable weight vector.

Segment scores For our segment-level models (Semi-CRF and FSemiCRF), we compute the rep-
resentation si:j of the segment (i, j) using a sum pooling of the representations of the tokens com-
prising the segment, si:j = SUM([hi,hi+1, . . . ,hj ]).

Indeed, according to Adi et al. (2017), sum pooling can effectively model the length of the sequence.
Moreover, for the segment-based models (i.e, Semi-CRF and Filtered Semi-CRF), we restrict the
segment to a maximum width to reduce complexity without harming the recall score on the training
set (however some segments may be missed for the test set). By bounding the maximum width
of the segments, we reduce the number of segments from L2 to LK, where K is the maximum
width. Thus, under this setup, the the complexity of the Semi-Markov CRF become O(LK|Y |2).
Finally, the segment scores (i.e all ϕ.(sk)) are computed using a linear projection of the segment
representations, analogous to token scores.

4.2 SETUP

Datasets and evaluation We evaluate our models on three diverse datasets of Named Entity
Recognition. conll-2003 (Tjong Kim Sang and De Meulder, 2003) is a dataset from the news do-
main designed for extracting entities such as Person, Location, and Organisation. OntoNotes 5.0
(Weischedel et al., 2013) is a large corpus comprising various kinds of text, including newswire,
broadcast news, and telephone conversation, with a total of 18 different entity types, such as Person,
Organization, Location, Product, or Date. Arabic ACE is the Arabic portion of the multilingual in-
formation extraction corpus, ACE 2005 (Walker et al., 2006). It includes texts from a wide range of
genres, such as newswire, broadcast news, and weblogs, with a total of 7 entity types. We follow the
standard common approach for evaluating NER models, based on exact matching between predicted
and gold entities, discarding non-entity segments. We report the micro-averaged precision (P), recall
(R), and the F1-score (F) on the test set for models selected on the dev set.
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Models
Conll-2003 OntoNotes 5.0 Arabic ACE

P R F P R F P R F
(Yu et al., 2020) 93.7 93.3 93.5 91.1 91.5 91.3
(Yan et al., 2021) 92.61 93.87 93.24 89.99 90.77 90.38
(Zhu and Li, 2022) 93.61 93.68 93.65 91.75 91.74 91.74
(Shen et al., 2022) 93.29 92.46 92.87 91.43 90.73 90.96

Our experiments
CRF 93.29 92.21 92.75 89.00 90.16 89.57 82.79 84.44 83.61
Semi-CRF 92.37 90.49 91.42 88.91 89.78 89.34 82.97 84.24 83.60
+ Unit size null† 92.08 91.41 91.74 89.17 89.76 89.47 83.35 83.62 83.48
FSemiCRF 94.72 93.09 93.89 90.69 91.31 91.00 83.43 85.51 84.46
– w/o Lglobal (10)† 94.24 92.70 93.46 90.85 89.57 90.21 83.73 83.56 83.64

Table 1: Main results. All English models employ bert-large-cased for representing the
tokens on English datasets, except (Yan et al., 2021) that uses bart-large. † See ablation study (sec.
5.2) for details about these models.

Hyperparameters To produce contextual token representations, we used bert-large-cased
(Devlin et al., 2019) for both conll-2003 and OntoNotes 5.0 datasets, and
bert-base-arabertv2 (Antoun et al., 2020) for Arabic ACE. For simplicity, we do not
use auxiliary embeddings (eg. character embeddings). All models are trained with Adam optimizer
(Kingma and Ba, 2017). We employed a learning rate of 2e-5 for the pre-trained parameters
and a learning rate of 5e-4 for the other parameters. We used a batch size of 8 and trained for a
maximal epoch of 15. We keep the best model on the validation set for testing. We trained all the
models on a server equipped with V100 GPUs. We implemented our model with PyTorch (Paszke
et al., 2019). The pre-trained transformer models were loaded from HuggingFace’s Transformers
library (Wolf et al., 2019). We used AllenNLP (Gardner et al., 2018) for data preprocessing and
the seqeval library (Nakayama, 2018) for evaluating the sequence labeling models. Our Semi-CRF
implementation is based on pytorch-struct (Rush, 2020).

Baselines We compare our Filtered Semi-CRF against the CRF (Lafferty et al., 2001) and the
Semi-CRF (Sarawagi and Cohen, 2005). We also report some results from the literature: Bi-
affineNER (Yu et al., 2020), Bart-NER (Yan et al., 2021), Boundary Smoothing (Zhu and Li, 2022)
and PIQN (Shen et al., 2022). For English datasets, all the models are using bert-large-case
for token representation except BartNER which used bart-large (Lewis et al., 2020). Moreover,
for a fair comparison, we only report results for models using sentence-level context (in contrast to
paragraph-level context).

5 RESULTS

5.1 MAIN RESULTS

CRF v.s. Semi-CRF v.s. FSemiCRF We here compare our proposed model to the CRF and Semi-
CRF baseline models reported in Table 1. Semi-CRF is the worst-performing model, with the lowest
scores on conll-2003 and OntoNotes 5.0 datasets and the same performance as CRF on the Arabic
ACE dataset. Moreover, on all datasets, our proposed FSemiCRF outperforms CRF and Semi-CRF
in terms of precision and recall, demonstrating its utility in a variety of scenarios. Furthermore, we
find that there is no significant difference between FSemiCRF with and without transition scores
(in fact, most of the time the result is the same), which can be explained by the fact that adjacent
segments in the filtered graph may be far from each other.

Comparison to SOTA Compared to the state-of-the-art models, our FSemiCRF has the highest
score on the Conll-2003 dataset, outperforming the second-highest score by 0.24 in terms of F1-
score. On OntoNotes, while not the best, our model is still competitive.
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Datasets |Y | Training Inference
CRF SemiCRF FSemiCRF CRF SemiCRF FSemiCRF

conll-2003 4 9.51 8.73 7.50 20.41 17.35 31.54
OntoNotes 5.0 18 7.68 3.38 5.49 13.63 4.26 23.22
Arabic ACE 7 4.60 4.14 6.12 7.87 6.30 12.60

Table 2: Model Throughput (higher is better). We measure the throughput of the model in batch
per second, using a batch size of 8 on a V100 GPU. All models use the same vector dimensions for
token representation for fair comparison.

5.2 ABLATION STUDY

Semi-CRF + Unit size null We study an alternative variant of the Semi-CRF that allows null
labels only for segments of unit length. To do this, we simply modify the original Semi-CRF by
eliminating/masking segmentation paths that contain null segments whose size is greater than one.
The motivation for this study is to reduce the search space and force out segmentation ambiguity.
We can see that it improves the results on conll-2003 and OntoNotes 5.0. However, the results are
still poor compared to the other approaches.

FSemiCRF w/o global loss As shown in Table 1, we investigate the influence of global loss on
FSemiCRF by removing it, resulting in a local span-based NER model. Its decoding is performed
using a greedy algorithm where the highest-scoring entity is iteratively added to the result as long as
it does not overlap with the previously selected entities. As shown in the Table 1, even without the
global loss, the model is competitive, but the global model consistently improves the scores.

5.3 EFFICIENCY ANALYSIS

In this section, we analyse the computational efficiency of the models both for training and infer-
ence. We performed two experiments: 1) the training and inference throughput in Table 2, measured
in batch per second; 2) the inference wall clock time for comparing the Semi-CRF and FSemi-
CRF to show the time needed for computing the span scores and the decoding, in millisecond per
sample. For both experiments, we use a batch size of 8 and an Nvidia V100 GPU with 16 GB of
memory. For a fair comparison, for all the datasets and models, we employed a similar model size
for the token representation, namely bert-base-cased for Conll-2003 and OntoNotes 5.0 and
bert-base-arabertv2 for Arabic ACE.

Throughput For training, the results show that the CRF model is the fastest for most of the
datasets. Then, the FSemiCRF is the second fastest; it has a better training throughput than the
Semi-CRF on all datasets except for Conll-2003. We empirically found that the speed of the Semi-
CRF depends strongly on the number of labels; therefore, it is fast on Conll-2003 since this dataset
has only a few label types. During inference, our FSemiCRF is significantly faster than other meth-
ods: it is 5 times faster than Semi-CRF on OntoNotes 5.0 and 2 times faster on Arabic ACE. We
explain this behavior by two main points: 1) During inference, segment filtering is highly paral-
lelizable, while during training it is not. 2) The complexity of FSemiCRF strongly depends on the
performance of the filtering model; at the early stage of training, the filtering model may be poor,
which leads to a larger graph (as shown in the figure 3) while the size of the graph is generally small
during inference. See section 3.3 for more detail.

Wall clock time We performed a wall clock time analysis of the Semi-CRF and Filtered Semi-CRF
on the table 3. As shown in the table, computing the segment scores (using bert-based models) is
the same for both approaches. However, for the decoding, Semi-CRF applies the segmental Viterbi
algorithm to the segments, while FSemiCRF only uses the filtered segments. This study shows
that the decoding time of the FSemiCRF is almost negligible compared to computing the segment
scores. In contrast, the decoding for Semi-CRF is significantly slower. Noticeably, the decoding
is sometimes slower than computing the segment score for the Semi-CRF, which is the case on
OntoNotes 5.0 and Arabic ACE datasets.
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Conll-2003 OntoNotes 5.0 Arabic ACE
Semi-CRF FSemiCRF Semi-CRF FSemiCRF Semi-CRF FSemiCRF

Scoring 3.85 ms 4.88 ms 8.33 ms
Decoding 3.71 ms 0.21 ms 27.5 ms 0.22 ms 10.13 ms 0.33 ms
Total 7.56 ms 4.06 ms 32.38 ms 5.10 ms 18.47 ms 8.66 ms

Table 3: Wall clock time (lower is better). This table reports the average wall-clock time comparison
of Semi-CRF and Filtered Semi-CRF in milliseconds (per sample). We separate the time needed for
computing the segment representations (with BERT) and the decoding algorithm. Please note that
the scoring time is the same for Semi-CRF and FSemiCRF. We use the same setup as in table 2.

6 RELATED WORK

Many frameworks have been proposed for text segmentation. The most popular is the Linear-Chain
CRF (Lafferty et al., 2001), which treats text segmentation tasks as token-level prediction. It is
trained by maximizing the sequence-level objective of the gold standard labeling and using the
Viterbi algorithm (Viterbi, 1967; Forney, 2010) for decoding, adding some constraints to the tran-
sition matrix to enforce the well-formedness of the output. First variants employed handcrafted
features (Lafferty et al., 2001; Gross et al., 2006; Roth and tau Yih, 2005) and it has been further ex-
tended to automatic feature learning using neural networks (Do and Artières, 2010; van der Maaten
et al., 2011; Kim et al., 2015; Huang et al., 2015; Lample et al., 2016). Usually, CRF is used with a
1st order Markov transition on the labels, but other methods such as Ye et al. (2009) and Cuong et al.
(2014) have proposed to employ higher order dependency to further enhance the performance, how-
ever due to the high complexity and the marginal gains, it has not gained in popularity. Semi-CRF
(Sarawagi and Cohen, 2005) has been proposed as an alternative to CRF for sequence segmenta-
tion tasks. Instead of operating on the token level, the Semi-CRF considers segments as the basic
unit for the prediction. It has been applied to several sequence segmentation tasks, such as Chinese
word segmentation (Kong et al., 2016) and Named Entity Recognition (Sarawagi and Cohen, 2005;
Andrew, 2006; Zhuo et al., 2016; Liu et al., 2016; Ye and Ling, 2018). Its main advantage over
traditional CRFs is that it can incorporate segment-level features such as segment length, which can
help obtain a model with higher predictive ability. However, it presents two major shortcomings:
it has quadratic complexity as a function of the sequence length, which makes it difficult to apply
for long sequences, and it generally obtains inferior or marginal gains over the CRFs (Liang, 2005;
Daumé and Marcu, 2005; Andrew, 2006). In this work, we proposed a more efficient alternative
by adding a filtering step that drops null segments. Our approach provides significantly better
performance and more efficient inference than both CRF and Semi-CRF.

7 CONCLUSION

In this paper, we proposed Filtered Semi-CRF, a novel technique for text segmentation tasks. We
applied our method to the Named Entity Recognition (NER) task and obtained significant gain over
traditional CRF and Semi-CRF models on various benchmark datasets. In addition to being more
efficient, our algorithm is faster and more scalable than the baseline models. In future work, we plan
to extend our algorithm to nested segment structures.
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A APPENDIX

A.1 PROOFS

Proposition 2. There are L(L+1)
2 nodes in a complete segment path graph constructed using a

sequence of length L.

Proof. Nodes are the enumeration of all segments (regardless of labels). Thus,

V =

L⋃
i=1

L⋃
j=i

(i, j) =⇒ |V | =
L∑

i=1

L∑
j=i

1 =

L∑
i=1

(L+ 1− i)

=

L∑
i=1

(L+ 1)−
L∑

i=1

i = L(L+ 1)− L(L+ 1)

2
(11)

|V | = L(L+ 1)

2

Proposition 3. There are L(L−1)(L+1)
6 edges in a complete segment path graph constructed from

a sequence of length L.

Proof. We know that in the complete segment graph

1. By definition, (ik, jk)→ (ik′ , jk′) ∈ E iff jk + 1 = ik′

2. There are jk segments ending at jk i.e |
⋃jk

i=1(i, jk)| = jk

3. There are L− jk segments starting at ik′ i.e |
⋃L

i=ik′ (ik′ , i)| = L− ik′ + 1 = L− jk

From 1, 2 and 3, we can deduce that there is jk(L− jk) segments starting at ik′ and ending at jk.
Finally, the total number of edges of the graph is the sum over all jk from 0 to L:

|E| =
L∑

jk=1

jk(L− jk) = L

L∑
jk=1

jk −
L∑

jk=1

j2k

= L
L(L+ 1)

2
− L(L+ 1)(2L+ 1)

6
= L(L+ 1)(

L

2
− 2L+ 1

6
) (12)

|E| = L(L+ 1)(L− 1)

6

A.2 CRF

Partition function The partition function Z(x) of the CRF (Lafferty et al., 2001) is computed
using the forward algorithm, with α(1, y) = ψ(y|x) and for i = 2 . . . L:

α(i, y) =
∑
y′∈Y

α(i− 1, y′) exp{ψ(y|x) + Ty′,y}

Z(x) =
∑
y∈Y

α(L, y)
(13)

Decoding The decoding of CRF is done with the Viterbi algorithm, with δ(1, y) = ψ(y|x)

δ(i, y) = max
y′∈Y

δ(i− 1, y′) +ψ(y|x) + Ty′,y (14)

The best labeling is given by the path traced by maxy∈Y δ(L, y). Both the computation of the
partition function and the decoding of the CRF have a complexity of O(L|Y |2).
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A.3 SEMI-CRF

Partition function The partition function of the Semi-CRF (Sarawagi and Cohen, 2005) Z(x)
is computed using the following dynamic program (a modification of the forward algorithm) with
α(0, :) = 1 and α(m, :) = 0 if m < 0 and otherwise:

α(m, y) =

L∑
d=1

∑
y′∈Y

α(m− d, y′) exp {ϕ((i = m− d+ 1, j = m, l = y)|x) + T [y′, y]}

Z(x) =
∑
y∈Y

α(L, y)

(15)

Decoding The decoding of the Semi-CRF is done with the segmental/Semi-Markov Viterbi algo-
rithm with δ(0, :) = 0 and δ(m, :) = −∞ if m < 0 and otherwise:

δ(m, y) = max
y′∈Y

d=1...L

δ(i− d, y′) + ϕ((i = m− d+ 1, j = m, l = y)|x) + T [y′, y] (16)

The highest scoring segmentation is the path traced by maxy∈Y δ(L, y). Both the computation of
the partition function and the decoding of the Semi-CRF have a complexity of O(L2|Y |2).
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