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ABSTRACT

Recent point-based object completion methods have demonstrated the ability to
accurately recover the missing geometry of partially observed objects. However,
these approaches are not well-suited for completing objects within a scene as they
do not consider known scene constraints (e.g., other observed surfaces) in their
completions and further expect the partial input to be in a canonical coordinate
system which does not hold for objects within scenes. While instance scene com-
pletion methods have been proposed for completing objects within a scene, they
lag behind point-based object completion methods in terms of object completion
quality and still do not consider known scene constraints during completion. To
overcome these limitations, we propose a point cloud based instance completion
model that can robustly complete objects at arbitrary scales and pose in the scene.
To enable reasoning at the scene level, we introduce a sparse set of scene con-
straints represented as point clouds and integrate them into our completion model
via a cross-attention mechanism. To evaluate the instance scene completion task
on indoor scenes, we further build a new synthetic dataset called ScanWCF, which
contains labeled partial scans as well as aligned ground truth scene completions
that are watertight and collision free. Through several experiments, we demon-
strate that our method achieves improved fidelity to partial scans, higher comple-
tion quality, and greater plausibility over existing state-of-the-art methods. The
dataset and the code will be publicly available.

RfD-Net DIMR Ours
Figure 1: Visual comparison of completion results. Our approach is better at recovering missing
geometry, avoiding collisions, and preserving observed surfaces and known free space.

1 INTRODUCTION

Object modeling from sensor observations is an increasingly prominent problem as we aim to enable
robot interaction within real environments. However, sensors such as LiDAR and depth cameras
only provide us with partial observations of objects in a scene. Even with dense scanning and
reconstruction, many objects in a reconstructed scene are left incomplete as parts of their geometry
were completely occluded during the scanning process. With a lack of knowledge about the full 3D
geometry of objects, the performance of a robot on downstream tasks such as navigation and grasp
planning may be hindered because of limited capabilities to infer the center of gravity and other
physical properties of objects.

Point-based 3D object completion has been researched for several years starting from Yuan et al.
(2018). In recent years, the performance on this task has improved significantly by leverag-
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ing encoder-decoder architectures, which first produce a coarse completion, commonly known as
seeds (Xiang et al., 2021; Zhou et al., 2022) and then upsample it hierarchically. However, most of
these work operate in canonically aligned coordinate systems – i.e. setting the center of the com-
plete object as having 0 coordinates and a scale of 1, and rotated so that a designated “front” side
will always be along the z direction. This is also applied to the partial inputs so that they match the
normalization and pose of the completed object. These are unrealistic assumptions when objects are
presented in scenes, but they indeed simplify the problem so that, in some sense, algorithms only
have to match the partial object to complete objects in the training set, then directly generate the
coordinates for the completion, as the canonical coordinates of the complete object will always be
the same no matter which part is used as input.

On the other hand, semantic scene completion (Song et al., 2017; Li et al., 2019; Dong et al., 2023)
has been studied heavily, but they only provide voxel labels without identifying objects. Hou et al.
(2020) proposed the instance scene completion task, which involves detecting object instances in
the scene and completing the missing regions of these objects. Existing works in this area (Nie
et al., 2021; Tang et al., 2022) do not require objects to be in canonical coordinates, but produce
low quality completions due to inferior network designs compared to point-based object completion
methods.

In this paper, we explore whether the more refined network structures of the point-based object
completion models can be adapted to the instance scene completion task. We note two hurdles to this
goal, the first is to lift the canonical coordinates assumption so that the completion model no longer
has to know the scale and pose of the full object. The second is to make the instance completion to
be aware of potential scene constraints that can be deducted from visibility. For example, if one sees
a surface, then the network should not add points on this viewing ray. Besides, if there is another
object already present at some location, then the completion should not collide with those areas.

To solve these two difficult problems, we significantly improve the point-based completion frame-
work mainly by adopting a more sophisticated seed generator. First, we change the seed prediction to
two parts, predicting an object center location and seed offsets from the center. We made several ar-
chitectural improvements to improve performance in this setup to match the completion performance
when using canonical coordinates. Next, to provide our completion model with scene context, we
introduce a set of sparse constraints which encode known information about the scene. Unlike dense
TSDFs, our constraints are represented as two bounding shells of the underlying surface, indicating
the transition boundary from surface to known free space and surface to known occluded space.
We integrate these constraints into our seed generator, enabling our model to reason about comple-
tions which are plausible in the context of the observed scene. By leveraging this additional scene
information, we find that our approach produces less collisions between predicted completions.

Furthermore, existing datasets for the instance scene completion task suffer from errors in the ground
truth data making evaluation on them unreliable. Scan2CAD (Avetisyan et al., 2019a) lacks align-
ment between real partial scans from ScanNet and synthetic ground truth meshes from ShapeNet,
causing a trade off between respecting the partial scan and matching the ground truth mesh. Scan-
ARCW (Li et al., 2023a) contains collisions in their ground truth data, making it difficult to measure
scene completion plausibility with collision metrics. We introduce a new synthetic dataset called
ScanWCF addressing the issues present in these existing datasets. On our newly proposed dataset
we demonstrate that our approach outperforms existing works in term of both partial reconstruction
quality and completion quality while producing less collisions between predictions.

To summarize, our main contributions are as follows:
• We propose a novel object-level completion model which is robust to the scale and pose of

objects found within scenes.
• We integrate a sparse set of scene constraints into our model to provide our object comple-

tions with scene context (e.g., other observed surfaces, free space, occluded space).
• We build a new dataset for instance scene completion on indoor scenes, containing partial

scans and watertight ground truth meshes that are aligned, labeled, and collision free.

2 RELATED WORK

The 3D completion literature can roughly be broken down into two main categories: (1) object-level
completion, and (2) scene-level completion.
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Object-level Completion 3D object completion aims at recovering the complete geometry of an
object given some partial observation. With the introduction of point cloud architectures, Yuan et al.
(2018) was the first to propose a fully point cloud based completion architecture. Since then, there
have been many follow-up works which leveraged increasingly better encoder-decoder architectures
(Tchapmi et al., 2019; Liu et al., 2020; Wen et al., 2020; Huang et al., 2020; Wen et al., 2021; Yu
et al., 2021). In recent years, a popular choice has been to first produce a coarse completion, often
referred to as seeds, and then upsample the completion in a hierarchical fashion (Xiang et al., 2021;
Zhou et al., 2022; Chen et al., 2023; Khademi & Fuxin, 2024). However, all these approaches oper-
ate in canonically aligned coordinate systems and thus are not suited for completing objects in the
context of scenes where pose and scale are arbitrary. SCARP (Sen et al., 2023) is a point cloud com-
pletion method which aims to be robust to arbitrary pose by predicting the completion in a canonical
frame along with the pose needed to transform the completion back to its true coordinate system.
Unlike SCARP, our method considers the scene context around the object as we are interested in
the scene completion task. Additionally, our approach does not require estimating the pose of the
object, avoiding possible misalignment with the partial scan due to inaccuracies in pose estimation.

Scene-level Completion Scene-level completion has heavily been studied as a joint task of seman-
tically labeling the scene while recovering the geometric structures that are missing from it. For
indoor environments, this task has been studied almost exclusively as predicting the semantic label
and occupancy of each voxel in a dense voxel grid (Song et al., 2017; Liu et al., 2018; Li et al.,
2019; Chen et al., 2020; Cai et al., 2021; Dong et al., 2023; Wang et al., 2024). These methods do
not assign voxels to object instances in their completion, and use dense 3D convolutions to produce
predictions on low-resolution voxel grids, prohibiting the representation of fine-grained geometry
typically present in indoor environments.

Avoiding the need for dense occupancy and semantic prediction, some methods produce comple-
tions of partial scans by performing CAD model retrieval and alignment (Avetisyan et al., 2019b;
Ishimtsev et al., 2020). However, these approaches require the existence of a CAD pool, have to
search for the nearest CAD model for each object in the partial scan, and potentially require an
additional optimization for roughly aligning the models to the scan.

To improve the level of scene understanding required for object interaction within environments,
Hou et al. (2020) proposed the instance scene completion task, which involves detecting individual
object instances in the scene and completing the missing regions of these objects. Their approach
relies on producing occupancy predictions and semantic labels for a dense voxel grid using 3D
convolutions, limiting the resolution of scenes due to memory footprint. More recent instance scene
completion methods operate directly on point clouds. RfD-Net (Nie et al., 2021) generates instance
proposals via 3D object detection and completions via an implicit function. DIMR (Tang et al.,
2022) trains a 3D instance segmentation model for proposal generation and produces completions
from latent codes with a pre-trained shape generator. DDIT (Li et al., 2023a) performs 3D instance
segmentation and deforms deep implicit shape templates into completions conditioned on shape
latent codes extracted from the segmented partial objects. However, DDIT requires an iterative
procedure for estimating object pose and a per scene optimization step for respecting the partial
input which is slow. PaSCo (Cao et al., 2024) performs panoptic scene completion on LiDAR scans
of outdoor scenes. However, they employ a dense 3D CNN in part of their network, making their
work infeasible for our indoor scenes due to memory constraints (our 2cm resolution indoor scans
would require ∼ 4− 5× more voxels than the outdoor scans with 20cm voxels used in their work).

3 METHOD

We present an overview of our architecture in Figure 2. Given a partial scan of a scene, we run a
state-of-the-art 3D instance segmentation method Mask3D (Schult et al., 2023) to decompose our
scene into a set of objects. The partial information of each object is first encoded into a set of local
features and a global shape descriptor. We then introduce a novel seed generator which generates
a coarse representation of the complete shape, called Patch Seeds, from our partial encoding. Our
generator produces Patch Seeds as offsets of the object’s predicted center, which we find to be
more robust to change in pose compared to existing Patch Seed generators. To provide our object
completions with scene context, we additionally integrate a set of scene constraints into our seed
generator via cross-attention. Generated Patch Seeds are then decoded into a dense completion in a
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Stage I: Instance Segmentation Stage II: Object Completion Stage III: Mesh Reconstruction
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Figure 2: Overview of our instance scene completion framework. Instance segmentation is first
performed on the partial scan to decompose the scene into its individual objects. Each object is run
through our proposed object completion model, which predicts both the complete shape and surface
normals. Meshes of each object are then reconstructed to produce the completed scene.

hierarchical fashion by applying a series of upsampling layers. We design our upsampling layer to
contain both local and global attention, which helps with producing a globally coherent completion
capable of representing fine-grained geometry. At the densest completion level, we additionally
leverage a local transformer to predict surface normals, allowing us to reconstruct meshes of our
completions using an off-the-shelf surface reconstruction method. Finally, we place each mesh back
into the world frame, producing a scene of labeled object instances with complete geometry. In the
following sections, we describe the key components of our completion model in more detail.

3.1 PARTIAL ENCODER

Our partial encoder takes as input the partial object instance P ∈ RM×3 and estimated surface
normals N ∈ RM×3 to produce a downsampled set of points P l ∈ RMl×3 with local features
F l
p ∈ RMl×Clocal and a global shape descriptor fp ∈ RCglobal from the object. We base our

encoder on the design proposed by Khademi & Fuxin (2024), which is in turn based on Zhou et al.
(2022). The encoder consists of l downsampling blocks, where at each block the point set is first
downsampled, followed by a series of point convolutions for interpolating and aggregating features
for the downsampled point set. The final downsampled set of features are then passed through an
MLP followed by a max-pooling operation to produce global shape descriptor fp.

The main improvement we made to the partial encoder is that we replace the PointConv (Wu et al.,
2019) layers in Khademi & Fuxin (2024) with VI-PointConv (Li et al., 2023b) layers and addition-
ally use estimated normals as input. The convolution filters generated in PointConv are only trans-
lation invariant. To be robust to rotation and scale, the network would have to be shown the same
object under many different rotations and scales and have enough capacity to encode appropriate
filter weights for each of them. On the other hand, the convolution filters in VI-PointConv are gen-
erated from a mix of non-invariant, scale-invariant, and rotation-invariant position embeddings. In
this way, the MLP generating filter weights can potentially learn to ignore the non-invariant position
embeddings to share filter weights across neighborhoods of different scales and rotations, increasing
robustness of the network. Furthermore, using both XYZ coordinates and surface normals provide
a better description of local surface geometry than XYZ coordinates alone.

3.2 SEED GENERATOR

Given the downsampled point set P l, locally extracted features F l
p, and global shape descriptor fp,

our seed generator is tasked with producing a set of Patch Seed coordinates S ∈ RMseed×3 and
features Fseed ∈ RMseed×Cseed which represent a coarse encoding of the complete shape.

SeedFormer (Zhou et al., 2022) produces Patch Seeds through a local attention-based upsampler fol-
lowed by an MLP to regress the seed coordinates. In Table 3 we show that such an approach suffers
a significant drop in completion quality if we attempt to use it to complete objects not canonically
aligned along an axis. Instead, we design a global attention-based seed generator, which allows the
generator to use information from the entire scene to predict the center of the object before producing
seed coordinates as offsets of the object center. Our full architecture is shown in Figure 3.

We introduce a learnable token otoken ∈ RC which is to be decoded into the center of an object
O ∈ R3. Our learnable token otoken along with downsampled partial information {P l,F l

p} is
first passed through a set of transformer blocks performing multi-head self-attention to produce an
updated object center embedding oobj ∈ RC and updated partial features Fobj ∈ RMl×C . Having
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Figure 3: Overview of our proposed seed generator. Predicting Patch Seed coordinates as offsets
from the shape’s predicted object center is more robust than directly regressing seed coordinates
as in Zhou et al. (2022). Our object completions additionally consider other objects in the scene
through cross-attention with our known free and occluded space constraints.

aggregated information from the partial input via attention, oobj is then used to regress the object
center. We concatenate oobj with the global shape descriptor fp along the feature dimension before
predicting the object center O with an MLP θ:

O = θ([oobj ,fp]) (1)

To reliably cover the entire object in our coarse representation, we increase the number of points
present in our Patch Seeds compared to the partial points and features from which they are generated.
Specifically, we ”split” our output partial features Fobj using a transposed convolution with a stride
and kernel size of 2. Upsampled features are then passed through a multi-head self-attention block
followed by an MLP ω to produce Patch Seed features Fseed:

Fseed = ω(SelfAttn(TransposeConv(Fobj))) (2)

Finally, Patch Seed coordinates S are predicted as offsets from object center O. We use a MLP
γ which predicts per point offsets from Patch Seed features Fseed concatenated with object center
token oobj and global shape descriptor fp along the feature dimension:

S = O + γ([Fseed,oobj ,fp]) (3)

3.3 SCENE-AWARE OBJECT COMPLETION

As mentioned earlier, correctly completing objects in a scene requires satisfying visibility constraints
from the scene, i.e. not creating object parts that cut into other objects or grow towards the camera
(violating the free space that has been seen). TSDFs are commonly used for representing known
information in a scene, such as the surfaces of objects as well as known free or occluded space due to
the viewpoints at which the scene was captured. However, TSDFs are typically stored as dense voxel
grids, making them computationally expensive to process and not compatible with point clouds. To
our knowledge, no one has attempted to address the difficult task of incorporating scene constraints
to point-based completion. We propose to represent the constraint information in the scene as sparse
sets of points representing known occupied and free spaces. Our goal is to input these constraint
points to the network so that it can learn to avoid generating parts in those areas.

We generate our scene constraints as two bounding shells of the partial scan’s surface defined as
Pin ± δNin. We further resample these surfaces to 10 cm resolution, leaving us with a sparse set of
free space points Pfree ∈ RMfree×3 and occluded space points Pocc ∈ RMocc×3. Along with these
point sets, we learn additional embeddings efree ∈ RC and eocc ∈ RC , which are shared across all
free space points and occluded space points, respectively.

We provide our constraints as information to our seed generator through a set of transformer blocks
containing multi-head cross-attention as shown in Figure 3. Here the object’s partial information is
treated as the query tokens while the scene constraints represent the key-value pairs, allowing each
partial object to decide what constraints to focus on when completing the object. The transformer
blocks output a set of features Fscene ∈ RMl×C and oscene ∈ RC , which are directly added to the
outputs Fobj and oobj , respectively, before being used to predict the object’s center and Patch Seeds.
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Scan2CAD ScanARCW ScanWCF (ours)

Figure 4: Our proposed ScanWCF has aligned ground truth meshes and partials scans while being
free of collisions, unlike previous datasets Scan2CAD and ScanARCW.

3.4 COARSE-TO-FINE DECODER

For upsampling, we use the upsampling layer proposed by Zhou et al. (2022). In each upsampling
layer, we further introduce a series of global attention layers before their local attention-based Up-
sample Transformer. With our added global attention, we provide the refinement and upsampling
layers with information which can encourage global coherence across the completion. Additionally,
global attention allows us to potentially learn fine-grained structure for the missing geometry from
the existing geometry which may not be present in the local neighborhood (e.g., through a symmetric
part on the opposite side of the object).

Starting from our Patch Seed coordinates S and features Fseed, we repeatedly apply our upsampling
layer to generate a dense completion in a coarse-to-fine manner. At each upsample layer j, we
produce a completion Cj and corresponding upsampled features F j

up with double the resolution
of the previous layer. We apply 3 upsampling layers to upsample our completion from a coarse
resolution of Mcoarse = 256 points to Mdense = 2, 048 points. The completion produced at each
layer is supervised by the ground truth completion Cj

gt which has been subsampled to the same
resolution as the output resolution at layer j (we additionally treat Patch Seed coordinates S as our
coarsest resolution C0 during training).

3.5 MESH RECONSTRUCTION

We leverage NKSR (Huang et al., 2023) for reconstructing meshes from point clouds. NKSR re-
quires both point clouds and surface normals, where normals are typically estimated from the point
cloud using PCA-based plane fitting. In practice, we found these normals to be overly noisy, leading
to poor reconstruction quality on our completions. To address this, we introduce a normal estimation
module which is jointly trained with our completion network. We first process our final completion
C3 ∈ RMdense×3 and corresponding upsampled features F 3

up ∈ RMdense×C using a modified ver-
sion of the Upsample Transformer from SeedFormer (Zhou et al., 2022), replacing the transposed
convolution used for upsampling with a regular convolution. The features output from this layer
encode local surface information of the object and are directly inputted to a small MLP to regress
surface normals N3 ∈ RMdense×3.

3.6 LOSS

We use the same loss function for both pre-training the object completion model and training our
scene completion model. Our overall loss objective is defined as:

L = λc

3∑
j=0

LCD(Cj ,Cj
gt) + λp

3∑
j=0

LOCD(P ,Cj) + λoLMSE(O,Ogt) + λnLCS(N3,N3
gt) (4)

where LCD is the Chamfer Distance between predicted and ground truth completions at each up-
sample layer j, LOCD is the One-sided Chamfer Distance between partial input and completion at
each upsample layer j, LMSE is the mean squared error between predicted object center and ground
truth object center Ogt ∈ R3, and LCS is a cosine similarity based loss between the predicted
normals N3 and ground truth normals N3

gt. We set λc = 1, λp = 1, λo = 1, λn = 10−2 for
experiments.
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4 SCANWCF DATASET

Previous works evaluate the instance scene completion task on the Scan2CAD dataset (Avetisyan
et al., 2019a). The Scan2CAD dataset is derived from both the ScanNet (Dai et al., 2017) and
ShapeNet (Chang et al., 2015) datasets, where for each detected partial object in a ScanNet scene,
the closest synthetic mesh from ShapeNet has been selected and fit to the scan to serve as the ground
truth completion. The synthetic meshes are not the true completion of the partial object and their
fitment to the partial scan is imperfect as shown in Figure 4. The lack of alignment between the
input and ground truth makes evaluation of metrics unreliable on this data. To address this, Li et al.
(2023a) proposed ScanARCW which regenerates new partial scans by rendering depth maps and
semantic labels of the ground truth meshes and then backprojects this information back into 3D to
generate an aligned scan. While ScanARCW addresses the alignment issue, the ground truth scenes
in their dataset contain collisions. This makes it unreliable to measure scene completion plausibility
with collision metrics, as the collision may be an artifact of the ground truth data itself.

To address the limitations of existing datasets, we introduce a new dataset called ScanWCF, where
”WCF” refers to our ground truth scenes being ”Watertight and Collision Free”. Our dataset contains
scenes with partial scans and ground truth complete meshes that are aligned and labeled, with each
ground truth scene being watertight and collision free. We generate our scenes from data included in
both the Scan2CAD and ScanARCW datasets. We use the background meshes from ScanARCW as
scene boundaries (e.g., walls, floor, ceiling), filling holes in the mesh to make it completely enclosed.
For selecting which objects to place in the scene, we use the Scan2CAD object matchings. Each
ground truth mesh is processed to be watertight and initialized in the scene using the pose and scale
from Scan2CAD. We then optimize the pose and scale of each object in the scene such that they are:
(1) closely aligned with the partial scan from ScanNet, (2) do not contain any collisions, and (3) are
not floating in air. After optimization, we manually verify the scene is collision free before includ-
ing it in our dataset. If there exists minor implausibilities after optimization, we manually correct
the scene; otherwise we completely discard it if too many collisions exist. After our optimization
and manual verification, we find that on average only 0.14% of points in the scene are in collision
with another object, compared to an average of 2.5% of points per scene in the ScanARCW dataset.
Finally, to generate aligned and labeled partial scans, we render depth maps and instance segmenta-
tion maps from a subset of camera poses in the ScanNet camera trajectory. This information is then
backprojected into 3D to generate a partial scan labeled with instance information.

Our dataset contains 1202 indoor scenes based on ScanNet scenes, where 946 of the scenes are used
for training and the other 246 scenes are reserved for testing. To increase the amount of training and
test data, we generate 2 partial scans per scene using a different subset of camera poses from the
ScanNet camera trajectory. We refer readers to our appendix for more details.

5 EXPERIMENTS

In this section, we perform a variety of experiments to demonstrate the superiority of our method
over existing approaches. We first evaluate our method on the task of instance scene completion,
where the goal is to jointly predict object instances and their completions. Secondly, we evaluate
completion quality in isolation by removing the instance prediction task and instead providing the
ground truth instance information directly to each method. Across both tasks, we show that our
method outperforms existing approaches both quantitatively and qualitatively. Finally, we conduct
a set of ablations which validate the design choices of our architecture.

5.1 IMPLEMENTATION DETAILS

Our object-level completion model is pre-trained on the 34 ShapeNet categories present in our
dataset, excluding objects present only in the validation scenes. For augmentations, we perform
random rotations about the up-axis. For optimization, we use Adam with an initial learning rate of
1×10−4 and linearly decay by a factor of 0.98 every 2 epochs. We train for 150 epochs with a batch
size of 64 using 2 NVIDIA V100 GPUs, which takes approximately 4 days. Our scene completion
model is then trained on the ScanWCF dataset, initialized from the weights of our pre-trained object
completion model. For training, we use the same augmentation and optimization setup used for
pre-training. We train for 200 epochs on a single RTX 4090 GPU which takes about 3 days.
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Table 1: Instance scene completion quality. Mean average precision (mAP) is reported for differ-
ent metric@threshold.

IoU@0.25 IoU@0.5 CD@0.1 CD@0.047 LFD@5000 LFD@2500 PCR@0.5 PCR@0.75

RfD-Net 38.78 7.25 61.68 31.32 39.18 14.65 59.56 42.36
DIMR 34.18 8.67 41.15 23.30 27.14 8.81 43.37 31.14
Ours (no pre-training) 61.99 45.13 61.48 54.67 52.03 24.57 63.71 62.69
Ours (w/ pre-training) 62.77 47.55 61.57 56.07 51.29 29.03 63.71 62.67

5.2 BASELINES

We evaluate our proposed approach against instance scene completion methods RfD-Net (Nie et al.,
2021) and DIMR (Tang et al., 2022). Both methods are trained on our ScanWCF dataset using the
same hyperparameters that were used for their original experiments on the Scan2CAD dataset. We
additionally retrain the pre-trained shape generator used in DIMR, but on the 34 categories from
ShapeNet present in our dataset rather than the 8 ShapeNet categories it was originally trained on.

5.3 METRICS

For the instance scene completion task, we follow Tang et al. (2022) and compute the 3D detection
mean average precision (mAP) across several different metrics and at varying thresholds. Specifi-
cally, Intersection over Union (IoU), Chamfer Distance (CD), and Light Field Distance (LFD) are
used for evaluating completion quality while the Point Coverage Ratio (PCR) metric is used for
evaluating partial reconstruction quality. For IoU and PCR, higher thresholds are more challenging,
while for CD and LFD lower thresholds are more difficult.

To remove the possibility that poor completions are caused by worse instance segmentation, we
evaluate completion quality when each method is directly provided with the ground truth instance
masks. For partial reconstruction quality, we compute Unidirectional Hausdorff Distance (UHD)
and One-Sided Chamfer Distance between the partial scan and the predicted complete scene. To
evaluate completion quality, we use the Chamfer Distance (CD) between points uniformly sampled
from the scene mesh and the predicted completion. Finally, we evaluate plausibility of scene com-
pletions by measuring collisions between predicted completions. For each object, we sample points
from its completion and compute their signed distance to all the other predicted objects in the scene
and the scene background mesh, penalizing points which fall inside another object mesh or outside
the background mesh. We measure both the average distance of collisions (COL) and the percent of
points in collision (%COL). We scale UHD, One-Sided CD, and CD by 103 and scale COL by 104.

5.4 RESULTS

Instance Scene Completion We present results on the instance scene completion task in Table
1. Despite the fact that we do not jointly train our instance segmentation network together with
our completion model, unlike RfD-Net and DIMR, we outperform both approaches in terms of
mAP across almost all metrics and thresholds. Both RfD-Net and DIMR suffer large drop offs in
performance for all metrics in the transition from easier threshold to more difficult threshold. This
suggests that these approaches can produce completions that share some similarities to the ground
truth shape, but likely cannot represent fine geometric details while also suffering from inaccuracies
in their prediction of an object’s pose and scale. On the other hand, we see much smaller drop
offs in our method for both CD and PCR, suggesting better ability to represent the shape’s surface
accurately. Furthermore, the pre-training of our object completion model is not a strict requirement,

Partial Scan RfD-Net DIMR Ours Ground Truth

Figure 5: Qualitative comparison on the instance scene completion task.
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Table 2: Scene completion quality. Evaluation of scene completion quality when ground truth
instance masks are used for all methods.

UHD ↓ One-sided CD ↓ CD ↓ COL ↓ % COL ↓

RfD-Net 190.65 38.39 38.36 8.58 3.79
DIMR 270.67 44.91 39.04 10.42 4.63
Ours (no pre-training) 60.56 12.50 21.22 3.42 1.74
Ours (w/ pre-training) 60.07 12.10 20.74 2.67 1.81

as we outperform both RfD-Net and DIMR without it; however, we do find that pre-training helps
improve completion quality at the more challenging metric thresholds.

In Figure 5 we share an example of instance scene completions on a partial scan. RfD-Net struggles
to represent thin geometric structures such as the base of a rolling chair, merging the wheel bases
into almost a solid circular base. DIMR suffers from low fidelity completions, with many objects
appearing to be a composition of planar primitives and failing to produce thin structures such as the
legs of the chairs. On the other hand, our approach can faithfully represent the fine-grained geometry
present in the partial scans while producing plausible hallucinations of the missing regions (e.g.,
wheel bases of chairs). We share more qualitative results in Figures 9 and 10 of our appendix.

Scene Completion To isolate our evaluation on completion quality, we present results on scene
completion when the ground truth instance information has been provided to each method. In this
setting, poor completion quality cannot be attributed to incorrect instance predictions, enabling us to
better understand the limitations of the completion network of each method. In Table 2, One-Sided
CD and UHD measure the predicted completions average and maximal deviation from the surface of
a partial scan, respectively. Both of these metrics indicate that RfD-Net and DIMR are significantly
worse at respecting the partial input in comparison to our approach. Similarly, we find that our
method is capable of producing higher quality completions than previous approaches, reflected by
the significant gap in CD. Finally, our method does a much better job at avoiding collisions between
predictions. In particular, RfD-Net and DIMR tend to produce completions that penetrate much
further into other objects in the scene, producing an average collision distance (COL) which is
3− 4× larger than our method. This is further demonstrated by RfD-Net and DIMR having 2− 3%
more points from predicted completions either in collision or extending outside the scene boundaries
compared to our approach. In Figures 1 and 6, we qualitatively demonstrate that our approach
achieves higher fidelity to the partial scan, better completion quality, and produces less collisions
than previous methods. We refer readers to our appendix for more qualitative results.

5.5 ABLATION STUDIES

In Table 3, we conduct an ablation of our object completion model on the chair category from
ShapeNet to justify our proposed additions for completing objects under arbitrary pose and scale.
Our baseline method is SeedFormer (Zhou et al., 2022) with their partial encoder replaced by the
PointConv encoder proposed in (Khademi & Fuxin, 2024). This replacement suffers no drop in per-
formance and allows us to later update the PointConv layers for VI-PointConv layers in our work.
When trained and tested under ideal conditions (i.e., normalizing the input by the ground truth com-
plete shape and having the object canonically aligned along a shared axis) our baseline is capable of
producing high quality completions. When our baseline is trained and evaluated on a more realistic
setting (i.e., normalizing by the partial input and objects containing arbitrary pose and scale) we see
that performance drops in both completion and partial reconstruction quality. We find that adding
VI-PointConv (Li et al., 2023b) to our partial encoder improves partial reconstruction quality, as
the added rotation and scale invariant features likely enable better reasoning about the partial input.

RfD-Net DIMR Ours

Figure 6: Results on scene completion when ground truth instance information is provided.
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Table 3: Ablation of our proposed object completion network. Each row containing + additionally
contains all the modules in the rows above it.

One-sided CD ↓ CD ↓ (Seeds) CD ↓ (Dense)

Baseline using canonical coordinates 6.50 41.69 20.20

Baseline 7.12 47.00 22.87
+ VI-PointConv & Input Normals 6.04 46.47 22.57
+ Object Center & Seed Offset Prediction 6.28 42.86 21.11
+ Global Attention in Upsample Layers 6.18 43.71 20.05
+ Surface Normal Prediction 6.19 43.26 20.08

Table 4: Ablation of our scene completion network with and without scene constraints.

UHD ↓ One-sided CD ↓ CD ↓ COL ↓ % COL ↓

w/o constraints 60.18 12.20 22.37 3.75 1.83
w/ constraints 60.07 12.10 20.74 2.67 1.81

W/out constraints W/ constraints W/out constraints W/ constraints

Figure 7: Comparison of our completion model with and without considering scene constraints.

Additionally, with the introduction of global attention in the seed generator and producing seed co-
ordinates by first regressing the object center followed by predicting seeds as offsets from the center,
we see the coarse and dense completion quality significantly improve over the old seed generator.
Furthermore, incorporating global attention into the upsampling layers allows us to not only match
our baseline’s performance under ideal conditions, but actually beat it even though we are under
non-ideal conditions. Finally, we find that our surface normal prediction module neither harms nor
helps our completions; however, it provides us with a way to reconstruct object meshes.

In Table 4, we evaluate the importance of leveraging scene constraints. We observe that using scene
constraints does not improve partial reconstruction quality (UHD and One-Sided CD) as the comple-
tion model does not need information about free space and occluded space to reconstruct the already
observed portion of the object. However, we find that incorporating scene constraints into our model
produces a 7% relative improvement in completion quality (CD) and 29% relative improvement in
how far points in collision are penetrating into each other (COL). The scene constraints provide our
model with information about the scene boundaries as well as other objects in the scene, which helps
better constrain our completions to ones which are plausible within the scene as shown in Figure 7.

6 CONCLUSION

We present a novel scene completion framework which obtains state-of-the-art performance on the
instance scene completion task for indoor scenes. Our proposed object completion model is robust to
arbitrary pose and scale, enabling our method to produce high-quality completions with high fidelity
to the partial input without having to rely on accurately estimated pose and scale parameters needed
to transform the object to a canonically aligned axis. Furthermore, our proposed scene constraints
enable our completion model to incorporate scene context in our completions, improving completion
quality and reducing collisions between predicted completions. To evaluate our approach, we build a
new dataset for the instance scene completion task on indoor scenes called ScanWCF, which contains
collision-free scenes whose partial scans and ground truth meshes are aligned and labeled. Through
several experiments, we demonstrate our method achieves higher completion quality, greater fidelity
to the partial scan, and better plausibility over existing approaches.

Our completion framework is deterministic, meaning that our approach can only produce one com-
pletion of a partial scan. In the future, we plan to explore incorporating generative models into our
completion framework in order to be able to produce multiple plausible completions of a scene.
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A APPENDIX

An overview of our appendix is presented as follows:

• Model details (Section B): we provide more details of our scene completion model
• ScanWCF dataset (Section C): we provide a detailed description of our proposed dataset
• Metrics (Section D): we formally define our evaluation metrics
• Results (Section E): we share more results and ablations of our method

B MODEL DETAILS

B.1 PARTIAL ENCODER

Our partial encoder consists of l = 4 downsampling blocks, where each block contains a down-
sampling operation on the point set followed by 2 VI-PointConv (Li et al., 2023b) layers. For point
convolutions, we use a neighborhood size of 16. We design our encoder such that the final downsam-
pled point set P 4 ∈ RM4×3 and corresponding local features F 4

p ∈ RM4×Clocal have M4 = 128

points and local feature dimension size Clocal = 256. From downsampled points P 4 and local
features F 4

p , we extract global shape descriptor fp ∈ Cglobal through a 2-layer MLP followed by
max-pooling. We set the global feature dimension size to be Cglobal = 512.

B.2 SEED GENERATOR

Our seed generator produces Patch Seeds with coordinates S ∈ RMseed×3 and features Fseed ∈
RMseed×Cseed . We define our Patch Seeds to have double the resolution of the downsampled partial
information they are generated from (i.e., Mseed = 256) and set the seed feature dimension size
to be Cseed = 256. All of the multi-head attention layers in our seed generator use the same
hyperparameters, consisting of 8 heads where each head performs attention on features of dimension
size 48. We define our learned embeddings otoken ∈ RC , efree ∈ RC , and eocc ∈ RC to have an
embedding size of C = 384. We positionally encode downsampled partial points P 4, free space
points Pfree, and occluded space points Pocc via a 2-layer MLP, mapping the points to features of
the same dimension size as our learned embeddings. The object’s center is predicted by a 3-layer
MLP, and the seed offsets which are added to the object center are predicted via a separate 3-layer
MLP.
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B.3 COARSE-TO-FINE DECODER

Our decoder uses the upsampling layer proposed by SeedFormer Zhou et al. (2022) for producing
a dense completion of an object in a hierarchical fashion. We use a neighborhood size of 20 when
computing local attention in the Upsample Transformer of their upsampling layer. For our added
global attention layers, we once again use multi-head self-attention with 8 heads. We upsample our
completion 3 times, doubling the number of points present in the completion at each upsampling
layer, to produce a dense completion of Mdense = 2048 points.

B.4 SCENE CONSTRAINTS

Scene constraints are generated from the input partial scan Pin ∈ RMin×3 and its estimated surface
normals Nin ∈ RMin×3. As described in Section C.4, our partial scans are produced by backpro-
jecting depth maps from 10 different viewpoints and resampling the scene to a 2 cm resolution. As
we are backprojecting a depth map into a point cloud, we also estimate surface normals, orienting
them towards the camera the point cloud was generated from so that the normals are pointing to-
wards ”free space”. With our partial points and estimated normals, we generate constraint points as
Pin ± δNin, where we set δ = 2 cm.

B.5 3D INSTANCE SEGMENTATION

For 3D instance segmentation, we retrain Mask3D (Schult et al., 2023) on our ScanWCF dataset,
following the training procedure that they use for ScanNet. Training for 600 epochs with a batch size
of 3 on scenes with 2 cm voxelization takes approximately 4 days on a single RTX 4090 GPU. We
note that the instance segmentations produced by Mask3D are only used during inference. During
the training phase of our completion model we use the ground truth partial object instances.

B.6 MESH RECONSTRUCTION

Meshes of our object completions are only reconstructed at inference time. For this, we directly use
NKSR’s (Huang et al., 2023) pre-trained kitchen-sink model, which has been jointly trained across
several object and scene scale datasets.

C SCANWCF DATASET

Our proposed ScanWCF dataset is composed of data gathered from the ShapeNet (Chang et al.,
2015), ScanNet (Dai et al., 2017), Scan2CAD (Avetisyan et al., 2019a), and ScanARCW (Li et al.,
2023a) datasets. All data was obtained directly through publicly available download links on their
websites and permission to use the data was granted for datasets which required it.

The ScanWCF dataset consists of 1202 scenes, which are based off scenes from the ScanNet dataset.
Our dataset does not contain all 1513 scans from ScanNet as it relies on the background meshes from
the ScanARCW dataset, which are only provided for 1274 of the scenes. Additionally, the scenes
in our dataset must pass a manual verification process of which 72 out of the 1274 scenes failed.
Despite our dataset not containing all the scenes from ScanNet, we reuse the scene id train/test split
from the original dataset, resulting in 946 training scenes and 246 test scenes. Objects from 34
different categories from ShapeNet are present across all the scenes in our dataset. While we train
each method with all the objects present in the training scenes, we only evaluate the instance scene
completion task on the 13 categories which had more than 150 training examples present across all
the scenes. We chose this as we observed poor performance across all methods on categories which
contained a small number of training examples.

In the following sections, we describe the data generation process for our proposed ScanWCF
dataset, which is both Watertight and Collision Free (hence the name ScanWCF).

C.1 PRE-PROCESSING FOR WATERTIGHTNESS

The objects provided in the ShapeNet dataset are not guaranteed to be watertight, making it difficult
to reason about collisions between objects. To address this, we process ShapeNet objects for wa-
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tertightness using the method proposed by Wang et al. (2022). This enables us to obtain the signed
distance of any point with respect to the object mesh, making collision checking easy. To reason
about collisions with scene boundaries (e.g., walls, floor, ceiling), we use the background meshes
from the ScanARCW dataset. While the background mesh for each scene aligns with the corre-
sponding scan from ScanNet, some of the background meshes have holes in them where window or
door meshes would be placed. Unlike ScanARCW, we leave out the door and window meshes and
instead fill the holes in the background meshes to make them watertight.

C.2 OPTIMIZING SCENE LAYOUT

Our goal is to be able to produce a scene layout containing meshes which closely align with objects
in a ScanNet scene while being free of collisions. In order to do so, we begin by initializing our scene
as the empty watertight background mesh which is already aligned with a real scan from ScanNet.
We then proceed to place one object into the scene at a time, optimizing for both the pose and scale
of the object. We make use of the Scan2CAD dataset for deciding which ground truth meshes from
ShapeNet to place in the scene, as the dataset has already detected objects in the real ScanNet scenes
and matched them to their closest mesh in ShapeNet. Additionally, we initialize each object’s pose
and scale using the Scan2CAD annotations as they have roughly aligned the synthetic meshes to the
real scans. Then we optimize the pose and scale of each object such that the following criteria are
best met:

1. Alignment with partial scan. We minimize the Chamfer Distance between points sampled
on the ground truth mesh and the partial object it was matched to within the real ScanNet
scene.

2. Minimize amount of collisions. We uniformly sample points on the object mesh and com-
pute their signed distance to the scene mesh (both objects and background). We penalize
points which fall inside another object or outside the scene boundaries.

3. Minimize large changes in scale. We penalize large deviations in object scale from their
initialized value. This prevents the optimization from shrinking the object scale by large
amounts to reduce collisions.

4. Minimize floating objects. Minimizing the amount of collisions while penalizing changes
in scale can lead to the optimization producing objects floating in space. To help prevent
this, we sample points on the bottom of the object mesh and compute their signed distance
to the scene mesh. We penalize values which deviate from 0, which signifies the object is
not resting on a surface.

After an object’s pose and scale has been optimized, it is added to the ground truth scene mesh to
provide further constraints for the objects which will later be optimized.

C.3 MANUAL VERIFICATION

Not all scene layouts are guaranteed to be free of collisions upon the optimization phase finishing.
Therefore, after optimizing for the scene layout, we manually verify that the scene is plausible. If
no objects are in collision with each other and the scene looks plausible (e.g., no floating objects),
we include the scene in our dataset. If the scene includes some objects which are in collision or
are implausible, we manually correct the issue and include the scene in our dataset. If too many
collisions still exist after our optimization step, we simply disregard the scene from being included
in the dataset.

C.4 PRODUCING ALIGNED PARTIAL SCANS

After the manual verification phase, we have a set of scenes which serve as the ground truth instance
completions for our dataset and now need to generate partial scans which are aligned to them. To
generate partial scans of the scene, we render depth maps from different viewpoints and backproject
them back into 3D. For a particular scene id, we make use of the camera extrinsics and intrinsics from
the corresponding scene id in the ScanNet dataset to render 2D information with. Using PyTorch3D
(Ravi et al., 2020), we render depth maps, 2D instance segmentations, and surface normal maps of
the scene from each viewpoint. We share some example renderings of a scene in Figure 8a. Upon
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(a)

(b)

Figure 8: (a) We render our ground truth scene meshes into depth maps, instance segmentation
maps, and surface normal maps from multiple views. (b) Each scene contains a ground truth labeled
scene mesh and an aligned and labeled partial scan constructed from our multi-view renderings of
the scene.

rendering 2D information, we select 10 viewpoints per scene and backproject their 2D information
into world coordinates, fusing together the different point clouds to produce a partial scan as shown
in Figure 8b. While backprojecting the depth map of each viewpoint into a point cloud, we also
estimate surface normals and orient them such that they are correctly oriented towards the camera.
To keep the number of points in the scene reasonable, we resample each partial scan using grid
subsampling with a 2 cm resolution. Finally, To increase the amount of training/test data, for each
scene, we choose to generate 2 partial scans using a different subset of 10 ScanNet camera poses.
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D METRICS

D.1 SCENE COMPLETION METRICS

For the scene completion task, we have removed the need to predict instance proposals from each
method. Instead we provide each method with the ground truth proposals such that each network is
only responsible for completing the partial object. In this setting, false positive detections/proposals
are not possible and therefore we do not have to rely on the use of mean Average Precision (mAP)
as a way to evaluate completion quality. Instead we can evaluate the completion quality of each
approach using common metrics from the point cloud completion literature. Each metric used in the
scene completion task is defined in the following sections.

D.1.1 CHAMFER DISTANCE (CD)

The Chamfer Distance between two point clouds P ∈ RN×3 and Q ∈ RM×3 can be defined as:

dCD(P ,Q) =
1

|P |
∑
x∈P

min
y∈Q

∥x− y∥22 +
1

|Q|
∑
y∈Q

min
x∈P

∥x− y∥22 (5)

We use Chamfer Distance as a measure of completion quality. For evaluation, we sample 2048
points per predicted object and concatenate each object’s point set into a single scene point cloud.
We do the same procedure for the ground truth objects, uniformly sampling the 2048 points from
each object mesh. Chamfer Distance is then measured between the predicted scene point cloud and
ground truth scene point cloud using Equation 5. Numbers reported in tables have been scaled by a
factor of 103.

D.1.2 ONE-SIDED CHAMFER DISTANCE

Equation 5 measures the bi-directional (or symmetric) Chamfer Distance. To evaluate how well the
completion respects the partial input, we instead measure the One-sided Chamfer Distance. The
One-sided Chamfer Distance between two point clouds P ∈ RN×3 and Q ∈ RM×3 can be defined
as:

dOCD(P ,Q) =
1

|P |
∑
x∈P

min
y∈Q

∥x− y∥22 (6)

We measure the One-sided Chamfer Distance between the 2 cm resolution partial scan excluding the
background (i.e., points on the walls, floor, ceiling) and our predicted scene point cloud. Numbers
reported in tables have been scaled by a factor of 103.

D.1.3 UNIDIRECTIONAL HAUSDORFF DISTANCE (UHD)

One-sided Chamfer Distance measures the average deviation of the partial reconstruction from the
partial input. We additionally measure the maximum deviation of the partial reconstruction from
the partial input using the Unidirectional Hausdorff Distance (UHD). The Unidirectional Hausdorff
Distance between point clouds P ∈ RN×3 and Q ∈ RM×3 can be defined as:

dUHD(P ,Q) = max
x∈P

min
y∈Q

∥x− y∥2 (7)

Similar to One-Sided Chamfer Distance, we measure UHD between the 2 cm resolution partial scan
with background removed and our predicted scene point cloud. Numbers reported in tables have
been scaled by a factor of 103.

D.1.4 COLLISION METRIC (COL)

We measure completion plausibility by how badly predicted completions collide with each other or
the scene boundaries. Let the watertight background mesh (i.e., walls, floor, ceiling) be denoted
as B and the set of predicted watertight object meshes be denoted as {M1, ...,Mn}. We define
SDF (M, p) to represent the signed distance of an arbitrary 3D point p to its closest point on the
surface of a mesh M, where SDF (M, p) < 0 implies the point p falls inside mesh M. Addi-
tionally, we denote our set of point clouds which we reconstructed meshes from as {C1, ...,Cn}

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(for RfD-Net and DIMR we sample 2048 points uniformly from a mesh Mi to produce point cloud
completion Ci). Each object point cloud Ci is composed of a set of 3D points, where we denote a
point being in the point cloud as p ∈ Ci. Now we can define the collision metric for a scene as:

COL = − 1

n

n∑
i=1

1

|Ci |
∑
p∈Ci

min(0, −SDF (B, p)) +
n∑

j=1
i̸=j

min(0, SDF (Mj , p))


If no points in the scene completion are violating scene constraints (i.e., penetrating into other ob-
jects or the scene boundaries), the collision metric is 0. Otherwise, the collision metric is equal to
the sum of how far each violating point has penetrated into an object or extended outside the scene
boundaries.

D.2 INSTANCE SCENE COMPLETION METRICS

To evaluate our proposed approach on the joint task of instance segmentation and object completion,
we use the metrics and setup proposed by Tang et al. (2022). In particular, we compute the 3D
detection mean Average Precision (mAP) for each metric defined in the following sections. For
computing average precision, the PASCAL VOC 2007 11-point interpolation method is used.

D.2.1 INTERSECTION OVER UNION (IOU)

Intersection over Union is a voxel-based approach for evaluating completion quality. It measures
the predicted completion’s voxel occupancy against the ground truth completion’s voxel occupancy.
To compute it, both predicted meshes and ground truth meshes are first voxelized with a fixed voxel
size of 4.7 cm. Then Intersection over Union is computed as the Volume of overlap

Volume of union with regards to voxel
occupancy.

D.2.2 CHAMFER DISTANCE (CD)

Chamfer Distance provides a point-based evaluation of completion quality. It measures the distance
from points sampled on the surface of the predicted mesh to points sampled on the ground truth
mesh. To generate point sets, we uniformly sample 4096 points from both the predicted mesh and
the ground truth mesh. Chamfer Distance is then computed using Equation 5.

D.2.3 LIGHT FIELD DISTANCE (LFD)

Light Field Distance is a visual similarity metric for meshes. The main idea is that if the predicted
complete mesh is similar to the ground truth mesh then it should look similar from all viewpoints.
To compute LFD, each predicted mesh and ground truth mesh is rendered into 2D images from
multiple viewpoints and encoded into a light field descriptor that is used for measuring distances
between meshes. We refer readers to the work by Chen et al. (2003) for a description of the light
field descriptor.

D.2.4 POINT COVERAGE RATIO (PCR)

Point Coverage Ratio measures how well the completed mesh aligns with the partial input. The
Point Coverage Ratio between a point set P ∈ RN×3 and a mesh M can be defined as:

PCR(P ,M) =
1

|P |
∑
x∈P

1{dist(x,M)<τpcr} (8)

where 1 is the indicator function, dist(x,M) is the distance from the point p to the surface of mesh
M, and τpcr is a distance threshold (we set τpcr = 0.047 for evaluation).

D.3 SURFACE NORMAL METRICS

In section E.8, we evaluate the quality of our surface normal predictions needed to reconstruct a
mesh. Rather than directly evaluate accuracy of the predicted surface normals, we evaluate the
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quality of the reconstructed meshes produced using NKSR (Huang et al., 2023) with our point cloud
and surface normals. To evaluate object mesh quality, we use the metrics and setup proposed by
Park et al. (2019).

D.3.1 CHAMFER DISTANCE (CD)

Chamfer Distance is used to evaluate overall shape quality. In particular, we sample 30, 000 points
on both the predicted and ground truth meshes and compute the Chamfer Distance between the two
point sets using Equation 5. Here a lower value indicates a better match to the ground truth shape.

D.3.2 MESH COMPLETION

Mesh completion evaluates how well the ground truth surface is covered by the predicted mesh
reconstruction. In particular, we compute the percent of points sampled from the ground truth
surface whose distance to the predicted mesh reconstruction is within a threshold τcomp (we set
τcomp = 0.01 following Park et al. (2019)). We compute the mesh completion metric over 1000
points uniformly sampled from the ground truth mesh. A higher score indicates better coverage of
the ground truth surface by the predicted mesh reconstruction.

D.3.3 MESH ACCURACY

Mesh accuracy evaluates how close points on the predicted mesh surface are to the surface of the
ground truth mesh. In particular, we find the minimum distance threshold τacc such that 90% of
points sampled from the surface of the predicted mesh are within distance τacc to the ground truth
surface. To compute mesh accuracy, we sample 1000 points from the predicted mesh reconstruction
and compute each points distance to the ground truth surface. A lower score indicates better accuracy
to the ground mesh.

E RESULTS

In this section we share more results of our scene completion method.

E.1 RUNTIME

On an RTX 4090 GPU, our completion model takes on average 0.104 seconds to complete a scene
containing an average of 9 objects in it. In other words, our method can complete about 86 objects
per second.

E.2 INSTANCE SCENE COMPLETION

In Table 5 and Table 6, we share per class Average Precision (AP) scores for the Intersection over
Union (IoU) metric at thresholds 0.25 and 0.5, respectively. Note that at both thresholds our method
outperforms RfD-Net and DIMR across almost all categories. In particular, we notice a significant
gap in the performance of our method compared to previous approaches when evaluating at the more
difficult threshold (Table 6).

In Table 7 and Table 8, we show per class AP scores for the Chamfer Distance (CD) metric at thresh-
old 0.1 and 0.047, respectively. Both RfD-Net and DIMR suffer large drops in performances when
evaluating on the more difficult threshold (Table 8). On the other hand, the drops in performance, if
any, for our method are much smaller.

Along with CD, we evaluate completion quality using the Light Field Distance (LFD) metric which
measures visual similarity between meshes. In Table 9 and Table 10, we see that RfD-Net and
DIMR behave similarly to how they do with CD and IoU, achieving decent performance on easier
thresholds but very low scores at the more difficult thresholds. This trend occurring across all three
metrics suggests that previous approaches can only produce completions which are somewhat simi-
lar in shape to the ground truth objects. On the other hand, we see our method obtains a much higher
LFD score on the more challenging threshold, which is similar to how we perform on CD and IoU
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compared to previous works, suggesting that our method produces completions that more accurately
represent the geometry of the objects in the scene.

To evaluate partial reconstruction quality, in Table 11 and Table 12, we share per class AP scores
on the Point Coverage Ratio (PCR) metric. Our method observes almost no drop in performance
between the easier and more difficult threshold across all categories, demonstrating that our com-
pletions align with the partial scans with high fidelity.

Finally, in Figure 9 and Figure 10 we share more qualitative comparisons against previous works
RfD-Net and DIMR on the instance scene completion task.

E.3 SCENE COMPLETION

In Figure 11, we share qualitative results when the ground truth instances have been supplied to each
method. Despite having the ground truth instance information, RfD-Net still produces low-quality
completions of chairs and tables while DIMR fails to complete or even reconstruct the observed
inputs in many cases. Additionally, we see RfD-Net tends to produce many collisions between
completions. On the other hand, our approach respects the partial input well and completes the
fine-grained geometry that is missing from the scans while avoiding collisions between predictions.

E.4 ANALYZING THE EFFECTS OF OBJECT SCAN INCOMPLETENESS

In Figure 12, we further investigate how the completion quality of our method varies under different
levels of incompleteness in the partial input. In Figure 12a, we present a histogram breaking down
the object instances in the test set of our dataset by how much of the complete shape is present in the
partial object scan. We find that a majority of our partial object scans contain between 30− 60% of
the complete geometry before being input to our completion model. In Figures 12b - 12d, we plot
the average completion metrics for various methods for each bin in our histogram. We find that our
method outperforms the baseline approaches at each completeness level by a large margin, which
is consistent with the large gap in performance observed in our main results shown in Table 1 and
Table 2. However, we do observe that RfD-Net and DIMR do outperform our method for extremely
sparse inputs (e.g., when only 0− 10% of the object is present in the partial scan).

E.5 ANALYZING THE EFFECTS OF IMPERFECT INSTANCE SEGMENTATION

In Figure 13, we visualize some example completions when there are errors present in the instance
segmentation predictions produced by Mask3D. In the top four rows, we show examples where
Mask3D produced segmentations that missed large or important parts of the partial object instance.
The regions missed by Mask3D contain important cues for the true geometry and size of the object,
and the lack of this information leads our model to produce a completion which is different from
the ground truth completion. In the bottom two rows, we show examples where Mask3D incorrectly
segments two objects that are side by side as a single object. In this scenario, our completion model
has no knowledge that there are actually two objects present and instead completes both objects
together as if it were one.

E.6 GENERALIZATION TO REAL SCANS

In Figure 14, we share some example completions which demonstrate our methods ability to gen-
eralize to partial objects from real scans in the ScanNet dataset. While we sample object instances
from categories we have trained on (e.g., chair, table, trash bin), all the object instances shown are
completely novel as the ScanNet object instances have no overlap with objects in the ShapeNet
dataset. Moreover, the partial scans from ScanNet are considerably less clean than the partial scans
from our dataset, yet our method is still able to produce plausible completions of the missing regions
of the objects.

E.7 ABLATIONS

In Figure 15 we present a qualitative comparison of our scene completion model with and without
pre-training. While our method can outperform previous approaches without pre-training the object
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completion model, we find that pre-training is important for reasoning about the missing geometry
when entire parts of an object are missing from the partial scan. In the first scene of Figure 15,
we see that without pre-training our completion model is able to represent the thin legs of the chair
when some of the legs are observed in the partial scan (e.g., cyan and green chairs), but produces a
solid circular base instead of thin legs when the entire base of the chair is missing (e.g., blue, purple,
and pink chairs). On the other hand, when we pre-train our object completion model we are able to
recover the individual legs of the chair despite not observing any part of it due to the model having
a prior over objects which it can fall back on when needing to hallucinate the missing structures of
largely occluded objects. Furthermore, we find that pre-training helps clean up noisy predictions
such as the dark blue chair in the third scene of Figure 15.

E.8 SURFACE NORMAL ESTIMATION

In Figure 16, we share a qualitative comparison of our completions and estimated surface normals
compared to the ground truth meshes and surface normals. We find that our method does a good
job at recovering the complete geometry of the scene even for small details such as the handles on
drawers of the bathroom sink in the first scene or the thin cross bars on the legs of the chairs in the
last scene.

For mesh reconstruction, NKSR (Huang et al., 2023) typically uses a PCA-based plane fitting tech-
nique for estimating normals of a point cloud. In Table 13 and Figure 17, we show that normals es-
timated using PCA-based plane fitting suffer from poor reconstruction quality on our completions.
We find that varying the neighborhood size used in plane fitting does not seem to help improve
the reconstructions. Instead the normals produced by our normal estimation module lead to signif-
icantly better reconstructions, outperforming PCA-based normal estimation across all metrics. In
Figure 17, we show that PCA-based plane fitting suffers from inaccurate normal estimation in the
presence of noise in the completion or on thin structures such as the legs of chairs, leading to arti-
facts in the reconstructions. Alternatively, our estimated normals are oriented correctly despite noise
being present or the completion containing thin structures, producing much better reconstructions
with NKSR.

E.9 FAILURE CASES

In Figure 18, we share some example failure cases of our scene completion model. We find that our
method occasionally suffers from collisions between predictions when two objects are up against
each other but there are no scene constraint points suggesting a separation between the two objects.
An example of this can be seen in the left most scene of Figure 18, where the partial scan (black
points) contains no information on how far the blue drawer should extend to the right, causing it to
overextend into the yellow drawer. While our object completion model does include information
about the scene when producing a completion, it only considers observed information present in the
partial scan. This means our model cannot reason about avoiding collisions in regions of space that
will be filled by another object’s completion.

Table 5: IoU@0.25 Per class AP scores for mesh quality based on occupancy against ground truth
voxels using Intersection over Union (IoU) with threshold of 0.25. † denotes our scene completion
model results without pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 22.79 45.75 41.90 6.97 30.37 70.83 13.95 69.81 31.21 12.34 76.80 62.66 18.79
DIMR 56.06 80.16 55.04 26.59 0.00 63.83 0.00 0.00 26.45 44.60 69.25 17.79 4.55
Ours † 70.74 86.75 66.08 61.24 72.33 77.89 11.06 63.40 49.56 61.97 78.76 62.25 43.80
Ours 71.71 86.86 65.84 68.97 72.33 77.89 11.06 63.40 49.79 63.30 79.31 62.25 43.39
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Table 6: IoU@0.5 Per class AP scores for mesh quality based on occupancy against ground truth
voxels using Intersection over Union (IoU) with threshold of 0.5. † denotes our scene completion
model results without pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 1.81 0.46 2.19 0.09 2.27 32.08 0.65 29.55 3.03 0.20 11.76 9.88 0.30
DIMR 11.13 6.57 11.02 1.81 0.00 34.45 0.00 0.00 0.57 0.81 31.72 14.56 0.00
Ours † 37.56 72.16 45.95 29.59 59.33 75.63 10.39 53.98 31.69 10.88 64.43 51.78 43.39
Ours 39.63 74.22 47.61 29.86 54.34 76.03 10.06 53.98 37.22 31.14 66.64 61.01 36.36

Table 7: CD@0.1 Per class AP scores for mesh quality based on distances between mesh surfaces
using Chamfer Distance (CD) with threshold of 0.1. † denotes our scene completion model results
without pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 58.39 88.28 62.66 49.33 44.71 74.80 23.30 69.84 57.30 63.28 85.74 74.44 49.78
DIMR 70.49 89.32 58.53 50.37 0.00 64.05 0.00 0.00 36.30 59.82 80.31 18.18 7.57
Ours † 71.25 86.89 57.02 61.46 72.33 77.89 11.06 63.40 49.59 63.31 79.31 61.93 43.80
Ours 71.49 86.92 57.60 61.46 72.33 77.89 11.06 63.40 49.36 62.91 79.95 62.25 43.80

Table 8: CD@0.047 Per class AP scores for mesh quality based on distances between mesh surfaces
using Chamfer Distance (CD) with threshold of 0.047. † denotes our scene completion model results
without pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 14.55 36.07 23.12 3.13 25.63 68.78 11.25 69.12 22.54 2.27 67.51 56.85 6.32
DIMR 21.19 66.61 34.11 9.35 0.00 63.36 0.00 0.00 17.66 1.52 67.09 17.39 4.55
Ours † 57.46 85.64 46.95 45.94 70.27 77.08 10.39 63.40 40.54 38.89 68.36 61.93 43.80
Ours 59.26 86.00 48.55 45.71 70.27 77.00 10.39 63.40 41.74 51.06 77.20 61.93 36.36

Table 9: LFD@5000 Per class AP scores for mesh quality based on visual appearance using Light
Field Distance (LFD) with threshold of 5000. † denotes our scene completion model results without
pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 12.55 4.73 53.75 40.56 0.00 60.80 27.65 68.67 53.97 52.93 22.45 68.63 42.61
DIMR 24.76 10.30 61.37 53.99 0.00 50.59 0.00 0.00 44.69 40.19 23.20 26.65 17.53
Ours † 50.12 59.77 46.54 60.37 36.57 73.07 18.19 63.40 50.55 59.15 54.43 60.81 43.39
Ours 51.15 64.79 55.41 58.67 27.75 60.30 18.71 63.16 52.14 62.80 54.41 61.15 36.36

Table 10: LFD@2500 Per class AP scores for mesh quality based on visual appearance using Light
Field Distance (LFD) with threshold of 2500. † denotes our scene completion model results without
pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 1.81 0.43 30.54 4.85 0.00 29.24 22.94 26.93 33.67 12.73 0.12 24.09 3.09
DIMR 0.87 3.03 31.68 13.95 0.00 5.82 0.00 0.00 32.85 7.38 0.16 17.22 1.52
Ours † 24.13 28.40 15.96 42.35 5.05 19.50 13.63 13.09 39.01 22.28 26.49 33.08 36.36
Ours 28.72 32.47 23.35 45.74 3.64 28.82 12.25 27.30 39.21 28.76 32.17 38.55 36.36

Table 11: PCR@0.5 Per class AP scores for point-to-mesh mapping quality using point coverage
ratio (PCR). † denotes our scene completion model results without pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 47.76 88.79 60.50 34.58 43.87 72.11 22.69 69.57 58.00 67.84 79.43 74.79 54.38
DIMR 76.87 80.67 64.08 59.07 0.00 63.95 0.00 0.00 37.22 70.70 77.33 26.65 7.27
Ours † 73.31 86.97 66.42 68.98 72.33 77.89 11.06 63.40 50.68 70.94 80.37 62.17 43.80
Ours 73.26 86.97 66.38 68.97 72.33 77.89 11.06 63.40 50.68 70.94 80.37 62.17 43.80

Table 12: PCR@0.75 Per class AP scores for point-to-mesh mapping quality using point coverage
ratio (PCR). † denotes our scene completion model results without pre-training.

Table Chair Bookshelf Sofa Lamp Trash Bin File Cabinet Bag Cabinet Bed Display Bathtub Printer

RfD-Net 34.72 59.53 30.56 15.64 25.32 58.03 13.64 67.85 47.60 28.88 78.33 64.10 26.47
DIMR 54.38 65.68 26.90 35.96 0.00 61.95 0.00 0.00 31.00 38.65 68.02 17.80 0.04
Ours † 70.80 86.33 65.25 68.63 72.33 77.89 11.06 63.16 49.97 63.23 80.37 62.17 43.80
Ours 70.32 86.13 65.55 68.63 72.33 77.89 11.06 63.15 49.90 63.44 80.37 62.17 43.80
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Partial Scan RfD-Net DIMR Ours Ground Truth

Figure 9: Qualitative comparison on the instance scene completion task.

Table 13: Evaluation of mesh reconstruction quality using our predicted surface normals vs. a PCA-
based normal estimation.

CD (↓) Mesh Comp. (↑) Mesh Acc. (↓)

PCA (k=16) 28.83 0.327 0.062
PCA (k=32) 28.58 0.331 0.063
PCA (k=48) 28.51 0.321 0.062
Ours 21.12 0.508 0.046
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Partial Scan RfD-Net DIMR Ours Ground Truth

Figure 10: More qualitative comparisons on the instance scene completion task.
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RfD-Net DIMR Ours

Figure 11: Qualitative results on the scene completion task when ground truth instance information
is provided.
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(a) (b)

(c) (d)
Figure 12: (a) Histogram breaking down the objects in our test dataset based on how much of the
complete shape is present in the partial object scan. (b) Comparison of average Chamfer Distance
for various methods for each bin in our histogram. (c) Comparison of average One-Sided Chamfer
Distance for various methods for each bin in our histogram. (d) Comparison of average Unidirec-
tional Hausdorff Distance for various methods for each bin in our histogram. We note that each data
point is an average over all the partial objects that fall into a bin of our histogram (e.g., the data
points at x=1.0 are really the average metric on completions over all partial objects which fell into
histogram bin [0.9, 1.0]).
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GT Instance Mask3D Instance Pred. Our Completion GT Completion

Figure 13: Example completions on imperfect instance segmentation predictions. Errors in the in-
stance segmentations produced by Mask3D can lead to our method producing incorrect completions.
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Figure 14: Example completions when generalizing to partial objects from real scans in the ScanNet
dataset (Dai et al., 2017).
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W/out pre-training W/ pre-training

Figure 15: Qualitative comparison of our scene completion model with and without pre-training.
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Partial Scan Completion & Normals Ground Truth

Figure 16: Qualitative results of our predicted completions and surface normals.
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Partial Input GT Mesh PCA Normals Recon. (PCA) Our Normals Recon. (Ours)

Figure 17: Comparison of reconstructing meshes from our completions with NKSR (Huang et al.,
2023) using PCA-based estimated normals vs. our estimated normals.

Figure 18: Example failure cases of our scene completion method.
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