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Abstract

Achieving a mechanistic understanding of
transformer-based language models is an open
challenge, especially due to their large number of
parameters. Moreover, the lack of ground truth
mappings between model weights and their func-
tional roles hinders the effective evaluation of in-
terpretability methods, impeding overall progress.
Tracr, a method for generating compiled trans-
formers with inherent ground truth mappings in
RASP, has been proposed to address this issue.
However, manually creating a large number of
models needed for verifying interpretability meth-
ods is labour-intensive and time-consuming. In
this work, we present a novel approach for gen-
erating interpretability test beds using large lan-
guage models (LLMs) and introduce TracrBench,
a novel dataset consisting of 121 manually writ-
ten and LLM-generated, human-validated RASP
programs and their corresponding transformer
weights. During this process, we evaluate the abil-
ity of frontier LLMs to autonomously generate
RASP programs and find that this task poses sig-
nificant challenges. GPT-4-turbo, with a 20-shot
prompt and best-of-5 sampling, correctly imple-
ments only 57 out of 101 test programs, necessitat-
ing the manual implementation of the remaining
programs. With its 121 samples, TracrBench aims
to serve as a valuable testbed for evaluating and
comparing interpretability methods.

1. Introduction
Recent advancements in transformer-based language models
have led to progress in various natural language processing
tasks (Achiam et al., 2023; Anthropic, 2024). However, un-
derstanding the internal workings of these models remains
challenging (Olah et al., 2018; Nanda et al., 2023; Black
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et al., 2022), which is problematic since models may gen-
erate harmful outputs (Shevlane et al., 2023; Perez et al.,
2022a; Brundage et al., 2018) or harbor other unacceptable
failure modes only revealed after deployment (Ngo et al.,
2022; Scheurer et al., 2023; Hubinger et al., 2024). Despite
various successes in interpretability (Bricken et al., 2023;
Conmy et al., 2023; Nanda et al., 2023; Cunningham et al.,
2023; Templeton et al., 2024), developing new interpretabil-
ity methods remains difficult, partly due to the lack of mod-
els with fully understood internals (Casper et al., 2023;
Casper, 2020), i.e. with ground truth mapping between
weights and their functional form. Existing benchmarks for
evaluating interpretability methods focus on input-output
behavior (Casper et al., 2024; 2023; Mazeika et al., 2022),
human evaluations (Templeton et al., 2024), or disentangling
attributions of different entities (Huang et al., 2024), rather
than the full mechanistic circuits, which hinders the rigorous
and fast validation of novel interpretability methods.

Restricted Access Sequence Processing Language (RASP)
(Weiss et al., 2021) maps the core components of a
transformer-encoder, i.e., attention and feed-forward com-
putation, into simple primitives, forming a programming
language to model and analyze transformer behavior. Tracr
(Lindner et al., 2024), compiles RASP programs into func-
tional transformer weights with a known mapping from
weights to their functional form, enabling, the evaluation
of interpretability methods (Conmy et al., 2023). However,
its adoption is limited due to the difficulty of writing RASP
programs and the large number of models required to effec-
tively evaluate interpretability methods.

In this work, we introduce and evaluate a method to auto-
matically generate RASP programs using LLMs and present
TracrBench, a novel dataset with 121 LLM generated and,
where necessary, manually written RASP programs and
their compiled transformers. We assess the ability of fron-
tier LLMs to generate RASP programs and find that this is
a challenging task. With best-of-5 sampling and a 20-shot
prompt, gpt-4-turbo-2024-04-09 correctly generates only 57
out of the 101 RASP programs in the test set. After adjust-
ing for the difficulty of the programs, using the number of
RASP operations as a proxy, the model achieves a normal-
ized, weighted difficulty score of 0.29 (the maximum score
is 1.0). TracrBench aims to be a rich testbed for evaluating
interpretability methods and accelerating their development.
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Figure 1. Results on the test set with 101 Tracr programs with pass-rate on the left and a normalized, difficulty-weighted score on the right
(maximum score on both metrics is 1.0). The 20-shot prompt with best-of-5-sampling achieves the best performance to other prompts.
gpt-4-turbo-2024-04-09 and gpt-4o models achieve the best performance overall. However, the task is challenging for all models.

2. Method
Current interpretability research faces challenges in rigor-
ously evaluating novel methods due to the lack of mod-
els with fully understood internals. While Tracr compiles
RASP programs into transformers with known mappings
from weights to their functional form, writing programs in
Tracr is time-consuming and difficult. This is partly because
RASP is an unconventional, non-Turing-complete program-
ming language that requires algorithms to be implemented
differently than in standard Turing-complete languages like
Python (see Appendix B for an example).

To address this issue, we propose to generate interpretabil-
ity testbeds using LLMs, leveraging their ability to write
code (Achiam et al., 2023; Li & Murr, 2024). We prompt
LLMs to generate RASP programs that implement specified
algorithms. We create TracrBench, a dataset of 121 RASP
programs, by leveraging LLMs and manual annotation when
they fail. These programs are then compiled into functional
transformer weights using Tracr, resulting in transformer
models with a known mapping between weights and their
functional form. This allows researchers to validate the
outputs of their novel interpretability methods against the
ground truth. Our dataset of compiled models thus serves
as an interpretability testbed.

To generate a program, we condition a language model M
on a prompt P that includes a description of the specific
algorithm to be implemented and at least one example input-
output pair (see Fig. 2). To optimize LLM performance,
P includes a detailed description of the RASP language
and its five main components (SELECT, AGGREGATE, SE-
LECTWIDTH, MAP, and SEQUENCEMAP), along with rel-
evant Tracr source code defining these components and

up to 20 RASP programs with their descriptions. We use
Chain-of-thought prompting (Wei et al., 2022) to encourage
reasoning and planning before generating code (see Ap-
pendix C for the prompt). We create three variations of this
prompt: Zero-Shot, One-Shot (extending Zero-Shot with an
RASP program and its description), and 20-Shot (extending
Zero-Shot with 20 RASP programs and their descriptions).

Let M(P) represent the extracted program from the output
of model M when conditioned on the prompt. We define
a five-step verification pipeline to assess the correctness
of the generated program M(P). Each step performs a
specific verification relevant to the overall correctness of the
program. Here are the five stages of the pipeline:

1. Compilation and execution: Test whether the pro-
gram compiles without errors and runs error-free.

2. Output correctness: Test whether the function actu-
ally performs the correct computation and implements
the specified program using 1,000 input-output pairs1

generated by a manually written Python function equiv-
alent to the desired RASP program.

3. Tracr validation: Run the program through the in-
built Tracr (Lindner et al., 2024) validator2 to filter out
certain programs that aren’t converted to equivalent
transformer weights.

4. Transformer weights compilation: Run the actual
RASP-to-transformer compilation process to expose
runtime errors like a division by zero.

1The inputs are lists of random length between 1 and the maxi-
mum length selected for our compilation (which is 10).
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5. Compiled transformer correctness: Empirically test
whether the resulting transformer actually performs the
same computation as the RASP code using the same
1,000 test input-output pairs from step 2.

A program M(P) is considered correct if it passes all five
steps; failure at any step counts as incorrect. This five-
step verification pipeline helps identify and filter out pro-
grams with errors or inconsistencies, ensuring that the result-
ing dataset consists of high-quality, functionally equivalent
RASP programs and transformer models. We employ best-
of-5 sampling, allowing the model to attempt each task up
to five times (from scratch) before moving on to the next.
By evaluating the performance of LLMs with this process,
we aim to assess the feasibility of using LLMs to create
interpretability testbeds on demand.

3. Dataset
Writing RASP code to generate Tracr interpretability test
beds is labor-intensive and has a steep learning curve (see
Appendix B for an example). This has impeded the adop-
tion of Tracr as a method to evaluate novel interpretability
methods. To address this issue, we present TracrBench, a
novel dataset of Tracr models that enables interpretability
researchers to quickly test methods on transformers with
known mappings from weights to their functional form. The
dataset is generated as follows. First, we select 121 simple,
sequence-to-sequence algorithms that cover a diverse range
of tasks and difficulty levels (see the full list in Appendix A).
We come up with these by sampling concrete algorithms
from LLMs and manually selecting suitable ones. Some
algorithms are also taken from Michaud et al. (2024). We
then prompt gpt-4-0125-preview (which was the most com-
petitive model at the time) to generate a RASP program
for each program description. We test all outputs with our
verification pipeline and verify them manually, finding that
49 of the generated RASP programs are correct. We then
manually write the remaining RASP programs, ensuring
that all programs in the dataset are correct and of high qual-
ity. Finally, we take 20 samples to use as examples in the
prompt and use the remaining 101 samples as our test set.

The resulting dataset contains RASP programs of various
complexity, from simple elementwise operations to more
complex programs that lead to transformers with 2.7 million
parameters. We use the number of RASP functions (such
as Select and Aggregate, but also rasp.indices
and rasp.tokens) as a proxy for the difficulty of the
algorithm. This approach is more accurate than counting
lines of code because some programs may have many lines
that don’t involve RASP (see Appendix B for an example).
The distribution of task difficulties is depicted in Fig. 3 and
Fig. 4. The first figure shows that most programs are quite

# Your Task
Make a RASP program that replaces each element with

the parity (0 for even, 1 for odd) of its index.
Example: [5, 5, 5, 5] --> [0, 1, 0, 1]

Figure 2. The description of the target algorithm to implement that
is part of the prompt for the LLM.

easy, containing 3 to 10 RASP functions, but there is a long
tail of more complex programs with up to 43 RASP function
calls. The second figure empirically depicts the success and
failure of gpt-4-turbo on various programs, showing that
the number of RASP functions is a better indicator of task
complexity than the number of lines of code.

To facilitate the use of our dataset, we provide both the
RASP programs and their corresponding compiled trans-
formers as PyTorch (Imambi et al., 2021) models in Trans-
formerlens (Nanda & Bloom, 2022).

4. Experiments
In this section, we evaluate the capability of LLMs to gen-
erate correct RASP programs. As described in Section 2,
we condition an LLM on a prompt that includes a program
specification, a detailed description of the RASP language,
and important parts of the RASP source code. We use three
variations of the prompt: a zero-shot, a one-shot prompt,
and a 20-shot prompt. These different prompt variations are
used to assess how including examples affects the LLM’s
performance in generating RASP programs.

We evaluate the generated RASP programs using the veri-
fication pipeline described in Section 2. A program is con-
sidered correctly implemented if it passes all five pipeline
steps. To account for the variance in program difficulty,
we introduce a second metric called the difficulty-weighted
score, which weights each success by the number of RASP
functions in the program. Summing these weighted scores
across tasks provides us with a composite score that more
effectively represents the model’s proficiency.

We first evaluate the performance of different prompts us-
ing gpt-3.5-turbo-0125 and gpt-4-turbo-2024-04-09. To
minimize compute costs, we evaluate the performance of
additional models using only the full prompt. These mod-
els include gpt-4o-2024-05-13, claude-3-haiku-20240307,
claude-3-sonnet-20240229, claude-3-opus-20240229 and
claude-3-5-sonnet-20240620. All models are evaluated on
the test set with 101 samples and sampled at temperature
0.9, with top-p=0.95. To distinguish between an LLM’s
general programming ability and its RASP-specific capabili-
ties, we establish a baseline where the LLM writes a Python
program for the same target algorithms.
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Figure 3. We show the distribution of RASP function calls within
TracrBench using Kernel Density Estimation. The plot shows that
most programs have around 6 RASP function calls, while a smaller
number of more complex programs form a long tail.

4.1. Results

The results of our experiment, visualized in Fig. 1, show
that state-of-the-art LLMs are able to understand the RASP
language and, to some extent, generate correct RASP pro-
grams. Adding examples to the prompt clearly improves the
performance, as shown with gpt-4-turbo and gpt-3.5-turbo.
Overall, gpt-4-turbo achieves the highest pass rate of 56%,
outperforming claude-3-opus with a pass rate of 46%. In
comparison, when generating Python programs for the target
algorithms, gpt-4-turbo achieves a pass rate of 96%. When
taking the difficulty of the target algorithms into account,
i.e., when using the difficulty-weighted score as a metric,
we observe that the successes are strongly concentrated
among the easy, low-difficulty programs (see Fig. 4) with
gpt-4-turbo achieving a score of 0.29 (out of 1.0) and gpt-4o
performing best with a score of 0.31. Claude-3-5-sonnet has
a similar pass rate (0.45) to claude-3-opus (0.46), however,
it achieves a higher difficulty-weighted score (0.27), than
claude-3-opus (0.23).

These results suggest that frontier LLMs cannot yet com-
petently generate correct RASP programs. The relatively
poor performance of generating RASP programs compared
to conventional programming languages like Python may be
attributed to RASP’s limited representation in LLM train-
ing data. This finding highlights that the ability of frontier
LLMs to extend their reasoning and programming capa-
bilities to low-resource programming languages is limited,
which may stand in contrast with their generalization in
natural low-resource languages (Reid et al., 2024).

5. Related Work
Evaluating novel interpretability methods is challeng-
ing (Casper, 2020). While previous work has addressed
this issue, it mainly focused on input-output level inter-
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Figure 4. We compare the number of RASP functions and program
lines as proxies for task difficulty. When plotting the pass-rate
of gpt-4o-turbo on all programs, we can see that the number of
RASP functions is a better indicator of task complexity than the
total lines of code.

pretability (Casper et al., 2024; 2023; Mazeika et al., 2022),
human evaluations (Templeton et al., 2024), or disentan-
gling attributes of different entities (Huang et al., 2024).
RASP (Weiss et al., 2021) a programming language com-
putationally equivalent to transformer, and Tracr (Lind-
ner et al., 2024), which compiles RASP programs into
corresponding transformers, have been used to create in-
terpretable models for validating interpretability methods
(Conmy et al., 2023). However, writing RASP programs
in sufficient quantity is very time-consuming, which hin-
ders the broad adoption of Tracr to evaluate interpretability
methods. Notably, Tracr weights are more sparse and sim-
ple than any set of weights likely to result from gradient
descent. Therefore, a method capable of interpreting Tracr
weights may not necessarily be able to interpret trained
transformers. However, interpretability methods that are
capable of interpreting trained transformers should also be
capable of interpreting Tracr transformers. Thus the latter
still serve as a valid method to test (but not to develop)
useful interpretability methods. Finally, both Thurnherr
& Riesen (2024) and Langosco et al. (2024) programmati-
cally generate large quantities of RASP programs with their
corresponding weights to train decompiler models that gen-
erate RASP programs for a given set of transformer weights.
Their RASP programs are, however, randomly generated by
re-combining a few elemental operations, which leads to
models that are often hard to decipher and do not correspond
to realistic algorithms.

LLMs have been explored for generating datasets for model
evaluations (Perez et al., 2022b) and automating part of the
interpretability workflow (Bills et al., 2023). We extend
this by using LLMs to scalably generate realistic and inter-
pretable RASP programs. The generated programs serve as
a test bed for evaluating interpretability methods.

4
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6. Conclusion
We demonstrate that LLMs can be used to generate inter-
pretability test beds. However, their performance rapidly de-
teriorates with the increasing difficulty of RASP programs,
indicating that frontier LLMs struggle to generate inter-
pretability test beds at scale. We expect that these current
limitations, likely due to Tracr’s low-resource nature, will di-
minish as LLM capabilities continue to advance. Finally, we
introduce TracrBench, a novel dataset comprising 121 trans-
formers with known mappings from weights to functional
form. Its intended use is the testing of interpretability meth-
ods. It is unsuitable as a target for interpretability method
development due to its small size and the fact that Tracr
weights are very dissimilar to those of trained transformers
in terms of sparsity and matrix-rank. TracrBench serves
as a valuable resource for evaluating and comparing inter-
pretability methods, facilitating the development of more
effective techniques for understanding the inner workings
of transformer-based models.

7. Author Contributions
Hannes Thurnherr executed the whole project, developed
the prompts, created the dataset (i.e., the Tracr programs)
with the help of LLMs, and manually, where necessary, ran
all experiments and wrote the paper. Jérémy Scheurer
developed the idea and ran exploratory experiments, over-
saw the project, including detailed guidance on directions,
experiments, presentation, and the final paper.
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Heiner, S., Pettit, C., Olsson, C., Kundu, S., Kadavath, S.,
et al. Discovering language model behaviors with model-
written evaluations. arXiv preprint arXiv:2212.09251,
2022b.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Scheurer, J., Balesni, M., and Hobbhahn, M. Technical re-
port: Large language models can strategically deceive
their users when put under pressure. arXiv preprint
arXiv:2311.07590, 2023.

Shevlane, T., Farquhar, S., Garfinkel, B., Phuong, M., Whit-
tlestone, J., Leung, J., Kokotajlo, D., Marchal, N., An-
derljung, M., Kolt, N., et al. Model evaluation for extreme
risks. arXiv preprint arXiv:2305.15324, 2023.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Thurnherr, H. and Riesen, K. Neural decompiling of tracr
transformers. Manuscript in preparation, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like trans-
formers. In International Conference on Machine Learn-
ing, pp. 11080–11090. PMLR, 2021.

6

https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html


TracrBench: Generating Interpretability Testbeds with Large Language Models

A. Complete list of Algorithms

Program Name Program Description
make sum digits replaces each element with the sum of its digits.
make absolute takes the absolute value of each element in the sequence.
make first element returns the first element of the sequence.
make nth fibonacci replaces each element with the nth Fibonacci number.
make count greater than replaces each element with the number of elements greater than it in the sequence.
make double first half doubles the first half of the sequence. For uneven number of entries, round up to

half.
make decrement decrements each element in the sequence by 1.
make count frequency counts the frequency of each unique element.
make increment by index increments each element by its index.
make decrement to multiple of three decrements each element until it becomes a multiple of 3.
make hyperbolic cosine applies the hyperbolic cosine to each element.
make check fibonacci checks if each element is a Fibonacci number.
make square root takes the square root of each element.
make increment odd indices increments elements at odd indices.
make hyperbolic tangent applies the hyperbolic tangent to each element.
make hyperbolic sine applies the hyperbolic sine to each element.
make zero every third sets every third element to zero.
make element second replaces each element with the second element of the sequence. If the sequence

has fewer than two elements you should return [None].
make mirror first half mirrors the first half of the sequence to the second half.
make sorting sorts the sequence.
make increment increments each element in the sequence by 1.
make rank ranks each element according to its size.
make factorial replaces each element with its factorial.
make count less than replaces each element with the number of elements less than it in the sequence.
make cube each element cubes each element in the sequence.
make cube root takes the cube root of each element.
make round rounds each element to the nearest integer.
make multiply by length multiplies each element by the number of elements in the sequence.
make increment to multiple of three increments each element until it becomes a multiple of 3.
make sign determines the sign of each element (positive, negative, or zero).
make cosine applies the cosine function to each element.
make divide by length divides each element by the number of elements in the sequence.
make negation negates each element in the sequence.
make sine applies the sine function to each element.
make histogram creates a histogram of elements.
make element double doubles each element in the sequence.
make zero even indices sets all even indices to zero.
make tangent applies the tangent function to each element.
make count occurrences replaces each element with the number of times it appears in the sequence.
make compute median computes the median of the sequence.
make halve second half halves the second half of the sequence. Note that you should divide sequences

with odd number of elements into [first half of size n, second half of size n+1].
make triple triples each element in the sequence.
make arctangent applies the arctangent function to each element.
make square each element squares each element in the sequence.
make check power of n checks if each element is a power of n (make the default for n 2). 1 and n itself,

also count as power of n since they correspond to n0 and n1.
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make binarize binarizes elements based on a threshold (make the default threshold 3).
make average first last sets each element to the average of the first and last elements.
make check increasing checks if every element is greater than or equal to the previous one. The output

should only contain all ones if every entry, that has a previous entry, meets this
condition. Otherwise the output should be all 0s.

make identity returns the same sequence.
make apply threshold applies a threshold, setting elements below it to zero (make the default threshold

3).
make replace small tokens replaces tokens smaller than a threshold with zero (make the default threshold 2).
make swap odd index swaps the nth with the n+ 1th element if n%2 == 1. Note that this means that

the first element will remain unchanged. The second will be swapped with the
third and so on.

make check descending checks if the sequence is in descending order.
make rotate left rotates elements to the left by 1 position.
make remove duplicates removes (replaces with 0) duplicates from the sequence. The first occurrences of

the duplicated numbers also have to be removed.
make scale by max scales each element by the maximum value in the sequence.
make sum with next replaces each element with the sum of it and the next element. For the last

element you can sum it with itself.
make swap elements swaps two elements at specified indices (make the default indices 0 and 1). If an

input sequence only has 1 element return [None].
make one if equal to next sets elements to one if they are equal to the next element. The last element should

be compared with the first.
make swap consecutive swaps every two consecutive elements. If the number of entries is odd, the last

entry should stay in place.
make check palindrome checks if the sequence is a palindrome.
make next prime replaces each element with the next larger prime number. If the element is already

prime, it should stay the same.
make mask sequence masks a sequence, replacing every element with 0 except the one at a specified

index (make the default index 1).
make wrap wraps each element within a range (make the default range [2, 7]). Wrapping

here means that the values are projected into the range starting from the lower
bound, once they grow larger than the upper bound, they start again at the lower.

make alternate elements alternates elements with their indices.
make check last two equal checks whether the last two entries of a sequence are equal. If the sequence only

has one entrance, return [0].
make insert zeros inserts zeros between each element. This means that the latter half of the sequence

will be cut off (no 4 and 5 in the following example).
make last element returns the last element of the sequence and pads the rest with zeros.
make difference to next replaces each element with the difference to the next element.
make invert if sorted inverts the sequence if it is sorted in ascending order, otherwise leaves it un-

changed.
make logarithm applies logarithm base 10 to each element.
make product with next replaces each element with the product of it and the next element. The last

element should be multiplied with itself.
make check multiple of first checks if each element is a multiple of the first element.
make sum of last two returns the sum of the last two elements in the sequence. If the sequence only

has one entry, return [None].
make pairwise sum replaces each element with the sum of it and the previous element. The first

element can be left as it is.
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make polynomial evaluates a polynomial with sequence elements as parameters. The x is repre-
sented by the first entry, the rest are parameters for example

[3, 4, 2, 1]

is equal to 4x2 + 2x + 1 for x = 3so4 ∗ 32 + 2 ∗ 3 + 1 = 36 + 6 + 1 = 43
represented as

[43, 43, 43, 43]

.
make flip halves flips the order of the first and second half of the sequence. Note that you should

divide sequences with odd number of elements into [first half of size n, second
half of size n+1].

make arcsine applies the arcsine function to each element.
make check divisibility checks if the sequence consists of numbers divisible by some parameter (make

the default 3).
make arccosine applies the arccosine function to each element.
make check all equal checks whether all elements are equal.
make position replaces each element with its position in the sequence.
make set to median replaces each element with the median of all elements.
make swap min max swaps the largest and smallest elements in the sequence. If the maximum or

minimum appears more than once, both occurrences must be replaced.
make clip clips each element to be within a range (make the default range [2, 7]). ”Clipping”

means that values outside of the range, are turned into the lower or upper bound,
whichever is closer.

make pairwise max makes each element the maximum of it and the previous element, leaving the
first element as it is.

make check alternating checks if the sequence consists of alternating odd and even numbers. If this is
not true, all the entries in the output sequence should be zero.

make exponential exponentiates each element.
make interleave reverse interleaves elements with their reverse order Numbers at the odd indices should

be in reverse order.
make element divide divides each element by the division of the first two elements. If either the first

or second element are zero, or if the sequence has fewer than two entries, you
should just return the original sequence.

make set to index sets elements to their index value.
make check multiple of n checks if all elements are a multiple of n (set the default at 2). The output should

be all 1s if this is true for all elements, otherwise all 0s.
make swap first last swaps the first and last elements of the sequence. If the sequence only has one

entry, just return the original sequence.
make test at least two equal checks whether at least two elements are equal.
make reflect reflects each element within a range (make the default range [2, 7]). Reflect

means that the values will be projected into the range, ”bouncing” from the
borders, until they have travelled as far in the range as they travelled outside of it.

make check square checks for every entry of the sequence whether it is a square number or not.
make count prime factors replaces each element with the number of prime factors it has.
make zero if less than previous sets elements to zero if they are less than the previous element.
make element subtract constant subtracts a constant from each element (make the default constant 2).
make check prime checks if each element is a prime number.
make index parity replaces each element with the parity (0 for even, 1 for odd) of its index.
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B. Example Program
RASP, a programming language designed to be computationally equivalent to transformers, requires a conceptually different
approach to implementing algorithms compared to conventional programming languages. For instance, sorting algorithms
in RASP must be implemented unconventionally due to the language’s unique constraints. Unlike traditional programming
languages that allow iteration over a sequence, RASP processes all elements in a sequence in parallel, mimicking the
behavior of transformers. Consequently, a sorting algorithm in RASP would count, for each entry, the number of other
entries smaller than itself and then use these counts to rearrange the original elements. While this approach would be
considered inefficient in conventional programming languages, it is a straightforward implementation under the constraints
of RASP. This example highlights the need for a different mindset when writing algorithms in RASP, as the language’s
parallel processing nature requires unconventional solutions to common problems.

1 def make_sort_unique(vals: rasp.SOp, keys: rasp.SOp) -> rasp.SOp:
2 smaller = rasp.Select(keys, keys, rasp.Comparison.LT) # find the smaller elements for

each entry
3 target_pos = rasp.SelectorWidth(smaller) # count the number of smaller elements for

each entry
4 sel_new = rasp.Select(target_pos, rasp.indices, rasp.Comparison.EQ) # create the

rearrangement selector according to target_pos
5 return rasp.Aggregate(sel_new, vals) # apply the rearrangement selector to the

original sequence
6

7 def make_sort(vals: rasp.SOp, keys: rasp.SOp, *, max_seq_len: int, min_key: float) -> rasp
.SOp:

8 keys = rasp.SequenceMap(lambda x, i: x + min_key * i / max_seq_len, keys, rasp.indices
) # turn all the elements unique by adding a small fraction of their index

9 return make_sort_unique(vals, keys) # apply sort_unique to the sequence using the now
unique elements as keys

RASP programs written for the Tracr compiler are written in Python using the tracr.rasp module. Sometimes they consist of
a number of lines where the tracr.rasp module is not used. These parts of the RASP program can be written independently of
one’s understanding of the RASP language. The following is an example of a program where most lines don’t involve RASP.
This illustrates why the number of rasp functions in a program is a better approximation of difficulty than the number of
total lines when it comes to evaluating a model’s ability to write RASP code.

1 def primecheck(n):
2 for i in range(2,int(n/2)):
3 if n%i==0:
4 return 0
5 return 1
6

7 def make_check_prime() -> rasp.SOp:
8 return rasp.Map(lambda x: primecheck(x), rasp.tokens)

C. Full Prompt

Prompt ”Paraphrased + Tip about different stock”

1

2 # Introduction to Task:
3 Your assignment is to generate RASP programs capable of implementing a variety of

algorithms using sequence operations. "RASP" stands for "Restricted Access
Sequence Processing Language". RASP allows you to articulate complex sequence
to sequence in a format equivalent to what a neural network of the transformer
architecture can do. RASP programs always output a sequence that has the same
length as the input sequence.
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4

5 # Your Task
6 Make a RASP program that replaces each element with the parity (0 for even, 1 for

odd) of its index.
7 Example: [5, 5, 5, 5] --> [0, 1, 0, 1]
8 Name the function that you can call to make this program ’make_index_parity()’
9

10 Keep your task in mind while reading the following information.
11

12 # Understanding RASP:
13

14 RASP programs are unique because they always process sequences and output
transformed sequences of equivalent length. While doing so they void
conditional branches or loops if possible. Instead, they rely on a series of
operations that interpret and manipulate the input data in a sequence-to-
sequence fashion. The length of the sequence never changes during this process
.

15

16 ## Fundamental Principles:
17

18 - Input and Output: Each RASP program receives an input sequence and yields an
output sequence of identical length.

19 - Structure: Loops and if statements cannot depend on attributes or individual
elements of the input sequence. If you make loops, they should have a fixed
length or depend on a "max_sequence_length" parameter.

20 - Operation Calls: Programs can only invoke core RASP functions or refer to other
RASP programs. Never attempt to access the internals of the sequence.

21

22 ## Technical operational Jargon:
23

24 Here are descriptions of various operations that are used in RASP.
25

26 - ‘rasp.Select‘: Matches elements from two sequences based on a boolean comparison
condition and returns a corresponding matrix of "True" and "False" values

called a selector.
27 - ‘rasp.Aggregate‘: takes as input a selector and an SOp (Sequence Operation,

which is an operation that transforms a sequence), and produces an SOp that
averages the value of the SOp weighted by the selection matrix.

28 - ‘rasp.Map‘: Transforms a sequence by applying a function to each element
29 - ‘rasp.SequenceMap‘: Produces a new sequence based on two previous sequences and

a lambda function that gets applied to each pair of elements.
30 - ‘rasp.SelectorWidth‘: returns the number of "True" values in each row of a

selector
31

32 ### Function overview:
33

34 #### Select:
35 Function: Creates a selector to define relationships between elements of sequences

.
36 Syntax: ‘rasp.Select(keys: SOp, queries: SOp, predicate: Predicate)‘
37 Example: ‘rasp.Select(rasp.indices, rasp.indices, rasp.Comparison.EQ)‘ selects

elements where indices are equal.
38

39 #### Aggregate:
40 Function: Takes as input a selector and an SOp, and produces an SOp that averages

the value of the SOp weighted by the selection matrix.
41 Syntax: ‘rasp.Aggregate(selector: Selector, sop: SOp, default: Optional[VT] = None

)‘
42 Example: ‘rasp.Aggregate(select_all, any_negative, default=0)‘ aggregates based on

select_all.
43

44 #### Map:
45 Function: Applies a function element-wise on the input SOp.
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46 Syntax: ‘(f: Callable[[Value], Value], inner: SOp)‘
47 Example: ‘Map(lambda x: x + 1, tokens)‘ adds 1 to each element of tokens.
48

49 #### SequenceMap:
50 Function: Applies a function element-wise on two given SOps.
51 Syntax: ‘rasp.SequenceMap(f: Callable[[Value, Value], Value], fst: SOp, snd: SOp)‘
52 Example: ‘rasp.SequenceMap(lambda x, y: x - y, rasp.indices, rasp.tokens)‘

subtracts tokens from indices.
53

54 #### SelectorWidth:
55 Function: Returns the "width" of a selector, which corresponds to the number of "

True"-values in each row.
56 Syntax: ‘rasp.SelectorWidth(selector: Selector)‘
57 Example: ‘rasp.SelectorWidth(selectAll)‘
58

59 #### Tokens, Indices:
60 rasp.tokens: The original input sequence.
61 rasp.indices: Returns the position index at each token.
62

63 ### Example use of above Functions:
64 This is an example use the rasp.Select function. Here, it produces a selector

based on rasp.tokens applied to itself with the "Greater Than" or GT
comparison operator:

65

66 ‘‘‘python
67 greater_than_selector = rasp.Select(rasp.tokens, rasp.tokens, rasp.Comparison.GT).

named("greater_than_selector")
68 ‘‘‘
69 If the rasp.tokens-sequence is [1, 2, 3, 4] the selector will look like this:
70 [False, True, True, True]
71 [False, False, True, True]
72 [False, False, False, True]
73 [False, False, False, False]
74 If we now apply this to the original rasp.tokens again with:
75 ‘‘‘python
76 output = rasp.Aggregate(greater_than_selector, rasp.tokens)
77 ‘‘‘
78 We will get an average of all the values selected in each row. The output looks

like this:
79 [3, 3.5, 4, None]
80 [
81 3, # as an average of the selected 2,3 and 4
82 3.5, # as an average of the selected 3 and 4
83 4, # as an average of the selected 4
84 None # because none of the values were selected as none of them are greater than 4

at this position. So, None, which is always the default value, takes this
spot.

85 ]
86 Note that, in the programs you create, you should avoid using rasp.Aggregate with

selectors that have more than one true value in each row. In other words: you
can use rasp.Aggregate to shift elements around, but avoid using it for
averaging multiple elements. However, using rasp.SelectWidth with selectors
that have more than one "True" value per row is completely fine.

87 If we now call:
88 ‘‘‘python
89 count_GT_selector = rasp.SelectorWidth(greater_than_selector)
90 ‘‘‘
91 We will get a sequence that contains the count of the truth values in each row:
92 [3,2,1,0]
93 If we call:
94 ‘‘‘python
95 map_count_GT = rasp.Map(lambda x: x*3+1, count_GT_selector)
96 ‘‘‘
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97 We will get a sequence where this lambda function has been applied to all the
values of count_GT_selector:

98 [10, 7, 4, 1]
99

100 But if we call:
101 ‘‘‘python
102 sequenceMap_combination = rasp.SequenceMap(lambda x, y: x*y+x, count_GT_selector,

output)
103 ‘‘‘
104 We get an output where the sequences "count_GT_selector" and "output" are combined

element-wise according to the lambda function.
105 At this point, "count_GT_selector" is [3,2,1,0] and output is [3, 3.5, 4, None],

so sequenceMap_combination is [12, 9, 5, None]
106 [
107 12, #because 3 * 3 + 3 = 12
108 9, #because 2 * 3.5 + 2 = 9
109 5, #because 1 * 4 + 1 = 5
110 0 #because 0 * None + 0 = 0
111 ]
112

113 # Rules and Constraints:
114 - Use provided operation types (Select, Aggregate, SelectorWidth Map, SequenceMap)

as the building blocks of your program. Feel free to be creative in how to
combine them but remember which kind of output (Selector or Sop) they produce.

115 - Each operation must be traceable and reproducible, implying a transparent
translation from instructions to action.

116

117 # Source Code
118 To make you better understand the RASP language you can look at the following code

. These are the most important parts of rasp.py, which defines the library of
RASP. Use this as a reference to find out what kind of functions exist in RASP
, which inputs they take, and what they do.

119

120

121

122 # Example use of Functions:
123 This is an example use the rasp.Select function. Here, it produces a selector

based on rasp.tokens applied to itself with the "Greater Than" or GT
comparison operator:

124

125 ‘‘‘python
126 greater_than_selector = rasp.Select(rasp.tokens, rasp.tokens, rasp.Comparison.GT).

named("greater_than_selector")
127 ‘‘‘
128 If the rasp.tokens-sequence is [1, 2, 3, 4] the selector will look like this:
129 [False, True, True, True]
130 [False, False, True, True]
131 [False, False, False, True]
132 [False, False, False, False]
133 If we now apply this to the original rasp.tokens again with:
134 ‘‘‘python
135 output = rasp.Aggregate(greater_than_selector, rasp.tokens)
136 ‘‘‘
137 We will get an average of all the values selected in each row. The output looks

like this:
138 [3, 3.5, 4, None]
139 [
140 3, # as an average of the selected 2,3 and 4
141 3.5, # as an average of the selected 3 and 4
142 4, # as an average of the selected 4
143 None # because none of the values were selected as none of them are greater than 4

at this position. So, None, which is always the default value, takes this
spot.
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144 ]
145 Note that, in the programs you create, you should avoid using rasp.Aggregate with

selectors that have more than one true value in each row. In other words: you
can use rasp.Aggregate to shift elements around, but avoid using it for
averaging multiple elements. However, using rasp.SelectWidth with selectors
that have more than one "True" value per row is completely fine.

146 If we now call:
147 ‘‘‘python
148 count_GT_selector = rasp.SelectorWidth(greater_than_selector)
149 ‘‘‘
150 We will get a sequence that contains the count of the truth values in each row:
151 [3,2,1,0]
152 If we call:
153 ‘‘‘python
154 map_count_GT = rasp.Map(lambda x: x*3+1, count_GT_selector)
155 ‘‘‘
156 We will get a sequence where this lambda function has been applied to all the

values of count_GT_selector:
157 [10, 7, 4, 1]
158

159 But if we call:
160 ‘‘‘python
161 sequenceMap_combination = rasp.SequenceMap(lambda x, y: x*y+x, count_GT_selector,

output)
162 ‘‘‘
163 We get an output where the sequences "count_GT_selector" and "output" are combined

element-wise according to the lambda function.
164 At this point, "count_GT_selector" is [3,2,1,0] and output is [3, 3.5, 4, None],

so sequenceMap_combination is [12, 9, 5, None]
165 [
166 12, #because 3 * 3 + 3 = 12
167 9, #because 2 * 3.5 + 2 = 9
168 5, #because 1 * 4 + 1 = 5
169 0 #because 0 * None + 0 = 0
170 ]
171

172

173 Start your process by looking at the examples and the RASP language basics, then
write down a plan based on the information in the files and the examples above
, and then write your program.

174 If your plan includes the usage of a certain function, look up all of the allowed
parameters for this function, write them down before you start writing the
program and make sure you do not make up any new parameters to any of the RASP
functions.

175 Note that you are not allowed to directly call the above examples as functions in
your code, without explicitly writing/copying them into your output yourself.
This means if you want to call functions like ‘make_length()‘ or ‘shift_by()‘,
you have to rewrite them in your output code.

176

177 # Output Format
178 Use the following Format for your answer:
179

180 <Task>
181 [Reiterate your understanding of the task and add a new example of an input and

the corresponding desired output.]
182 </Task>
183

184 <Plan>
185 [Your plan on how the program should broadly work.]
186 [Some details on which functions you’ll have to use and what their inputs will be

.]
187 </Plan>
188
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189 <PlanVerification>
190 [Look back at your plan. Will it really work? Is this compatible with the

functionality of the functions you’re using? Are you using your functions
correctly? (Look at the source code to verify this) Answer these questions
here explicitly]

191 [List changes you have to make to the plan based on your verification]
192 </PlanVerification>
193

194 ‘‘‘python
195 [write out your RASP-python code in a code block here]
196 ‘‘‘
197

198 ### Example Use of Format:
199

200 Here is an example of how you might use this output format:
201

202 <Task>
203 The task is to create a RASP program that takes a sequence and returns a new

sequence of identical length where each element is the maximum value found in
the original sequence.

204

205 For example:
206 max = make_max()
207 max([1,2,6,-2,1]) # returns [6,6,6,6,6]
208 </Task>
209

210 <Plan>
211 1. Create a selector that compares each element with every other element using a "

Less Than or Equal" (LEQ) comparison.
212 2. Use SelectorWidth to count the number of elements that each element is less

than or equal to.
213 3. The maximum element will have a count equal to the length of the sequence, so

create a selector that selects the elements where the count from step 2 equals
the length of the sequence.

214 4. Use Aggregate with the selector from step 3 to broadcast the maximum element
across the entire sequence.

215

216 The functions we will use include:
217 - Select: for creating the comparison selector.
218 - SelectorWidth: for counting the number of comparisons that are true for each

element.
219 - Map: for creating a sequence of the sequence length.
220 - Aggregate: for selecting and broadcasting the maximum element.
221 </Plan>
222

223 <PlanVerification>
224 The plan seems feasible and aligns with the capabilities of the RASP functions:
225 - The Select operation can create a comparison matrix that identifies where each

element is less than or equal to every other element.
226 - SelectorWidth can count the number of True comparisons for each element.
227 - Map can create a sequence where each element is the length of the sequence.
228 - Aggregate can then broadcast the maximum element where the comparison count

equals the sequence length.
229

230 There are no changes needed for the plan based on verification.
231 </PlanVerification>
232

233 ‘‘‘python
234 def make_max() -> rasp.SOp:
235 # Selector that creates a comparison matrix where each element is compared to

every other element.
236 leq_selector = rasp.Select(rasp.tokens, rasp.tokens, rasp.Comparison.LEQ).

named("leq_selector")
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237

238 # Count the number of comparisons where each element is less than or equal to
other elements.

239 leq_count = rasp.SelectorWidth(leq_selector).named("leq_count")
240

241 # Create a Map to get the sequence length for each element.
242 sequence_length = rasp.Map(lambda x: len(x), rasp.tokens).named("

sequence_length")
243

244 # Selector that selects the element where the leq_count equals the
sequence_length.

245 max_element_selector = rasp.Select(leq_count, sequence_length, rasp.Comparison
.EQ).named("max_element_selector")

246

247 # Use Aggregate to broadcast the maximum element across the entire sequence.
248 max_sequence = rasp.Aggregate(max_element_selector, rasp.tokens).named("

max_sequence")
249

250 return max_sequence
251 ‘‘‘
252

253

254 # Your Task
255 Make a RASP program that replaces each element with the parity (0 for even, 1 for

odd) of its index.
256 Example: [5, 5, 5, 5] --> [0, 1, 0, 1]
257 Name the function that you can call to make this program ’make_index_parity()’
258

259

260 Examples provided are references; use them to grasp the syntax and structure
required for RASP. From there, your original programs should follow these
established patterns but are not limited to the examples’ specific functions.

261

262 Keep in mind:
263 - Adhere strictly to RASP’s core operations.
264 - Keep your programs simple, if possible. (E.g. For identity, just return rasp.Map

(lambda x: x, rasp.tokens)
265 - Meticulously add comments to your code for clarity.
266 - Output functional, executable Python code utilizing RASP’s parameters.
267 - Don’t import any additional packages. Write pure RASP code.
268 - Provide functional, complete Python code, not pseudo-code or placeholders.
269

270 Also Note:
271 - Do not import rasp. It is already imported. You should also not try to import

the rasp components individually.
272 - Aggregate functions should always have None as the default (meaning you should

leave the default as is.) This is because we want to compile these functions
later, which only works with a default of None.

273 - Again, do not use any functions from the example without defining them yourself.
You cannot assume any function from the examples is already defined.

274 - If your ‘make_x()‘ functions have additional parameters like ‘make_x(n)‘ or ‘
make_x(threshold)‘, you should always have a default value like ‘make_x(
threshold = 2)‘

275 - Avoid the ‘rasp.Full()‘ functionality. It will prevent compiling. Instead of ‘
rasp.Full(n)‘‘ use the following function: ‘rasp.Map(lambda x: n, rasp.indices
)‘

276

277 Endeavour to follow these guidelines to construct accurate and efficient RASP
programs. Your expertise in Python will be fundamental to this task, so make
sure that your code is both clean and precise, adhering to the RASP principles
.
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