
Published in Transactions on Machine Learning Research (02/2026)

Lempel-Ziv Penalty: An information-theoretic repetition
penalty for autoregressive language models

Antonio A. Ginart, Naveen Kodali, Jason Lee, Caiming Xiong, Silvio Savarese, John Emmons
Salesforce AI Research
aginart@salesforce.com, jemmons@salesforce.com

Reviewed on OpenReview: https://openreview.net/forum?id=vNzPB4YCHj

Abstract

We introduce the Lempel-Ziv (LZ) penalty, a penalty specialized for reducing degenerate
repetitions in autoregressive language models without loss of capability. The penalty is based
on the codelengths in the LZ77 universal lossless compression algorithm. Through the lens
of the prediction-compression duality, decoding with the LZ penalty has the interpretation
of sampling from the residual distribution after removing the information that is highly
compressible. We demonstrate that the LZ penalty enables open-source reasoning models to
operate with greedy decoding without loss of capability and without instances of degenerate
repetition. In contrast, the industry-standard frequency penalty and repetition penalty are
ineffective, incurring degenerate repetition rates of up to 4% or more.

1 Introduction

There has been an advent in reasoning models (Singh et al., 2025; Yang et al., 2025; Guo et al., 2025).
Reasoning models are a class of large, autoregressive foundation models that achieve impressive capability
gains in certain domains by scaling chain-of-thought reasoning sequences at inference time. While reasoning
models are a promising approach for scaling inference-time compute, open-source reasoning models currently
suffer from some friction points that make their use problematic for downstream application developers due
to a lack of determinism around the reasoning traces. This lack of determinism is rooted in the fact that
reasoning models do not run well at low temperatures because the sampling distribution can mode collapse
into degenerate repetitions.

Enabling deterministic algorithms for generation is useful for debugging and may be an explicit requirement
for some deployments. Furthermore, even at higher temperatures, even frontier models can still fall into
degenerate repetitions in real-world deployments, such as within Cursor1.

There are two industry-standard penalties aimed at reducing repetition. First, the repetition penalty (Keskar
et al., 2019) applies a fixed logit penalty that encourages the model to use new tokens. The frequency penalty
is more subtle, and applies a logit penalty proportional to the token count in context. Neither penalty
consistently stops degenerate repetitions without degrading the sample quality. First, the repetition penalty
does not actually succeed in preventing degenerate repetitions because it applies a naive, binary modal
penalty which does not take into account the number of times a token has appeared. Furthermore, if the
repetition penalty is set too high in an effort to minimize this mode collapse, the sampler becomes unable to
use fundamental, necessary, but frequent tokens, such as spaces or periods, resulting in poor completions.
Thus, merely increasing the repetition penalty is not a viable solution either.

1See Appendix. www.cursor.com.

1

https://openreview.net/forum?id=vNzPB4YCHj

Published in Transactions on Machine Learning Research (02/2026)

On the other hand, the frequency penalty is more adaptive. The logit penalty grows proportionally with the
token count in context. However, it still fails, because it produces an (interesting) degenerate cycle2 effect,
where a token repeats until it incurs too high a penalty, at which point the sampler picks a new token to
repeat. This is an excerpt from such a generation from an AIME question.

Excerpt from QwQ-32B using a frequency penalty of 0.3 and temperature of 0.

Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! nono! This! This!
This! This! This! This! This! This! This! This! This! This! This! This! This! This! This! This! This! Third! Third! Third!
Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Tenth! Tenth!
Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! tenth!
tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! Okay! We! We!
We! We! We! We! We! We! We! We! We! We! We! We! We! We! We! We!

The main reason this occurs is because reasoning traces used by reasoning models such as QwQ-32B can become
quite long, but the frequency penalty does not normalize for sequence length or account for it. Therefore,
important and common tokens eventually become banned by the penalty, which degrades the completion,
and eventually, results in catastrophic degeneration as seen in the excerpt.

The fundamental improvement in the LZ penalty relative to the repetition or frequency penalty is that the
LZ penalty, borrowing from the sliding window matching techniques pioneered in the LZ77 (Lempel & Ziv,
1977) and LZSS (Storer & Szymanski, 1982) lossless compression algorithms, depends on the repetition
of n-grams over a long but fixed-length sliding window. By penalizing as a function of length-normalized
n-gram statistics as opposed to single token statistics, the penalty can be significantly more surgical in how it
modulates the sampling distribution.

While there may be numerous reasonable ways to convert n-gram statistics into serviceable sampling penalties,
we opt to base our penalty in the prediction-compression duality principle, which has various formulations,
but essentially states that for every autoregressive language model, there is a dual data compression algorithm
(and vice-versa). More precisely, the duality states that logits in a language model are equivalent, in various
ways that can be formalized, to codelengths in a data compressor.

Following the principle, we give a quick gist of the proposed LZ penalty:

1. Simulate a universal LZ sliding window compression over the causal token sequence to compute the
code: C ∈ {0, 1}∗

2. Compute the change in codelength over the alphabet for each next-token: ∆|C| ∈ R|A|

3. Apply the change in codelengths as a penalty the model’s logits (denoted ℓ): ℓ← ℓ + ∆|C|

Informally speaking, the interpretation of this penalty is that we are extracting the residual information in
the language model after removing the information that is easily compressible by the Lempel-Ziv universal
lossless data compressor. From an information-theoretic standpoint, autoregressive generation can be viewed
as a sequential compression process: the model predicts each next token so as to minimize the expected
codelength of the sequence under its learned distribution. In this view, both the language model and the LZ
universal compressor quantify how predictable (or equivalently, how redundant) each continuation is. The
LZ penalty can thus be interpreted as biasing the model’s next-token distribution away from redundancies
identifiable by the LZ compressor, encouraging sampling from the residual, less-compressible information.

Limitations While the LZ penalty substantially improves resistance to degenerate repetition, several
limitations remain:

Algorithmic complexity. Compared to industry-standard penalties, the LZ penalty introduces additional
complexity. Three hyperparameters must be set: two intrinsic to the LZ compressor (window length and
buffer length) and the standard penalty strength parameter. However, similar to how the LZ hyperparameters
do not need to be tuned in gzip, we find that they do not need to be tuned here.

2We refer to this as a cycle because, in principle, the model would eventually run out of new tokens and be forced to circle
back to a previously used token.

2

Published in Transactions on Machine Learning Research (02/2026)

Compute overhead. The penalty requires simulating an LZ-style compression step at each decoding step to
compute codelength differentials for every token in alphabet. While the overhead is minor compared to the full
forward pass of a modern large language model, and can be efficiently parallelized on GPU using operations
such as PyTorch’s torch.unfold, it is still worth consideration, especially as naive implementations can
become burdensome during inference.

Intentional Repetitions Consider the query: Repeat the letter "a" 100 times. While this is a contrived
query, it is a situation for which we may observe diminished performance.

Natural Language Assumption The LZ penalty is designed and tested for natural language modeling tasks.
The LZ compression algorithm itself requires the mathematical assumptions of stationarity and ergodicity
for theoretical purposes, but practically, it works quite well across almost all natural language sequences of
sufficient length (at least a few hundred tokens). While variations of the LZ penalty may work for other tasks,
such as multimodal, it may require a domain-specific compressor for best empirical performance.

2 Background and Related Works

2.1 Language Modeling and Sampling

Language modeling traces its origins back to Shannon’s testament (Shannon, 1948), where he trained a
causal language model by computing the n-gram frequencies over an English text corpus. Modern language
models are predominantly based on the transformer architecture (Vaswani et al., 2017). Completions from
transformer language models are generated by autoregressive sampling of the next-token distribution. The
development of transformer language models has been accompanied by significant advancements in sampling
techniques that govern text generation. Early explorations of language modeling employed top-k sampling
(Jozefowicz et al., 2016) to constrain the output distribution to the k most probable tokens, a technique
later refined in (Welleck et al., 2019), which paired it with unlikelihood training to mitigate repetition.
Concurrently, temperature sampling (Bowman et al., 2016) emerged as a method to control randomness.
Later, nucleus sampling was introduced as a proposed improvement over top-k sampling (Holtzman et al.,
2020).

These sampling strategies evolved alongside efforts to address text degeneration and repetition. GPT-2’s
implementation (Radford et al., 2019) implicitly utilized frequency penalties to enhance output fluency, and,
concurrently, the repetition penalty (Keskar et al., 2019) was devised to prevent repetitions and encourage
diversity in completions. Later, LaMDA (Thoppilan et al., 2022) applied repetition penalties to improve
dialog coherence, reflecting a growing emphasis on balancing creativity and quality in LLM outputs. Together,
these contributions and others eventually led to an industry-standard sampler which supports a temperature,
a top-k, a top-p and a frequency or repetition penalty, all of which can be used in tandem to transform the raw
next token logits into a final distribution for sampling. These mechanisms are related to the theory of intrinsic
motivation, which defines curiosity and creativity as progress in prediction or compression (Schmidhuber,
2010).

Recent frontier chat models have significantly improved in addressing repetition issues through advancements
in training and largely no longer require a repetition penalty even for greedy decoding. Nevertheless,
specialized reasoning models continue to exhibit challenges related to repetitive outputs, particularly during
complex inference tasks or extended reasoning chains. While visibility is limited into closed-source reasoning
models, open-source reasoning models such as DeepSeek’s R1 and Qwen’s QwQ both require high-temperature
sampling (generally, at least 0.5 to 0.7 is recommended) in order to prevent degenerate repetitions.
Definition 1. Data Sequence. A data sequence of tokens will generally be denoted by x over some alphabet
A.

We will write xi to refer to the i-th token in the sequence, and we will write x≤t to denote the head of the
sequence (x1, ..., xt) and x<t to denote (x1, ..., xt−1). We write xt

i to denote the slice (xi, ..., xt). We will also
write x>i to denote the tail of a sequence.
Definition 2. Causal Language Model. A causal language model, LM is an algorithm that maps sequences
x to a probability mass function (pmf) over A.

3

Published in Transactions on Machine Learning Research (02/2026)

Definition 3. Cross entropy. Let HLM(x) denote the average cross-entropy loss of causal language model
LM on a data sequence x. Recall that cross-entropy is defined:

HLM(x) = − 1
|x|

|x|∑
i=1

log pLM(xi | x<i) (1)

where pLM(xi | x<i) is the probability assigned by the model to the i-th token given the preceding context x<i.

We will generally be working in the log-domain, so we write ℓLM (x) to denote the log-probabilities (or
logits) and pLM to denote the corresponding pmf generated by the model given the sequence x: pLM =
softmax(ℓLM).

2.2 Data Compression

Data compression algorithms go back to the turn of the 20th century. In Shannon’s testament (Shannon,
1948), he describes the first provably optimal compressor. Later, many entropy-optimal compressors achieved
practical computational complexity assuming known data distributions. Later still, in 1977 and 1978, the first
universal compressors were launched, LZ77 and LZ78, that could, asymptotically, achieve the entropy-rate of
any stationary, ergodic data source (Lempel & Ziv, 1977; 1978; Wyner & Ziv, 1994; Morita & Kobayashi,
1993). Since then, a whole family of LZ-style compressors has emerged (Fiala & Greene, 1989; Miller &
Wegman, 1985; Pavlov, 2007; Oberhumer, 1997; Yoshizaki, 1988; Storer & Szymanski, 1982; Welch, 1984).

LZ77 and LZ78 both operate on the principle of adaptively building data structures based on previously seen
tokens. Imagine a scenario in which you want to train your language model from scratch while doing inference.
The model updates as each new token arrives, but you also care about the model’s average cross-entropy
loss over the entire sequence, from start to finish, since you care about the overall compression rate. LZ
algorithms are not only theoretically universal in the sense they are provably optimal for stationary ergodic
data, but they are practically universal in that they generally work well on real data too, even without any
prior statistical assumptions.

In this work, we will only focus on the LZ77 family, which we refer to herein as the LZ sliding window
compression algorithm, which uses string matching from a buffer over a lookback window. This contrasts
the LZ78 family, which favors tree-style dictionaries. Sliding windows are more convenient for GPUs (for
example, by using PyTorch’s (Paszke et al., 2019) unfold operation) whereas tree-based dictionary methods
are more inherently sequential.

Even though all LZ sliding window algorithms work on the same basic principle of computing n-gram
repetitions within a sliding window, they can vary in how they encode their compressed data and how they
manage lookback buffers. Concretely, LZSS (Storer & Szymanski, 1982) modifies LZ77 by using a 1-bit
flag to indicate whether the next chunk of data is a literal or a length-distance pair and uses literals if a
length–distance pair is below a given minimum length. Since we do not actually need to encode or decode
the token sequence, the details of the encoding subroutine are not particularly important for our purposes.
Instead, we should focus on how many bits are required for the encodings — the codelengths of the resulting
codes. We take LZSS as our reference compressor herein, and use the LZSS encoding scheme in the LZ
penalty. When we refer to a generic LZ sliding window algorithm, we will mean the LZSS variant.
Definition 4. Data Compression Algorithm. A data compression algorithm, or data compressor, C is
an algorithm that injectively maps sequences over an input alphabet set A to binary codes {0, 1}∗.
Definition 5. Single-Token Data Compressor. A single-token data compressor, C : A → {0, 1}∗ maps
literal single-tokens to binary codes. We will assume single-token data compressors are complete prefix codes
(Cover & Thomas, 2006).

Single-token data compressors can be iteratively composed to operate over full sequences. Generally speaking,
they incur a small additional overhead due to being unable to amortize over longer code blocks. Practical
data compressors, however, do not encode on a single-token basis. They often operate over blocks of the full
sequence.

4

Published in Transactions on Machine Learning Research (02/2026)

Definition 6. Compression Rate. The compression rate, |C̄|, for a data compressor C over sequence x is
given by |C̄|(x) = |C(x)|

|x| .

LZ Sliding Window Compression Algorithm The state of an LZ sliding window compressor is
comprised of a sliding lookback window w and a buffer b. LZ compressors work by encoding length-distance
pairs for the buffer with respect to the lookback window. In asymptotic analysis these windows have max
sizes which are allowed to grow sub-linearly in the length of the data sequence. In real implementations, they
are fixed to a constant that is long enough to work practically.
Definition 7. We define findLongestMatch as the following objective over input strings y and z. d, l =
arg maxj

(
maxk≤|y|

{
k | y≤k = zj+k

j

})
Definition 8. Lempel-Ziv (LZ) Sliding Window Compressor.

Let w and b be sequences with |w| > |b|.

Let (D, L)← findLongestMatch(b, w) denote the length of the longest match to the buffer and the distance
back from the end of the lookback window. Let C′C′′ denote string-wise concatenation of codes C′ and C′′.
Then, the LZ compressor for buffer b and window w is given by:

CLZ(b|w) =


C(d, l) if l ≥ 1 and l = |b|
C(d, l)CLZ(b>l|w) if l ≥ 1 and l < |b|
C(b1)CLZ(b>1|w) if l = 0

Proposition 1. (Storer & Szymanski, 1982) LZSS can encode a match of length L occurring D tokens in
the past using |CLZ(L, D)| = log L + log D + 1 bits.

On the other hand, if no match is found, we require more bits to encode a token literal.
Proposition 2. (Storer & Szymanski, 1982) LZSS requires |CLZ(a)| = log |A|+ 1 bits to encode token literals
a ∈ A.

Note that the encoding scheme and algorithm state alone do not fully dictate how the LZ data compression
algorithm operates in practice over a data stream. Def. 8 strictly refers to the code for a buffer sequence given
a lookback window. In practice, there is some implementation-specific basic control logic used to, obviously,
slide the window but also flush the buffer when codeblocks are emitted and appended to the compressed
sequence. However, for the sake of simplicity, we can always simulate a fully populated buffer and window for
a given context xt

0 by setting:

b(x) = xt
t−|b| w(x) = x

t−|b|−1
t−|b|−1−|w| (2)

By always simulating a maximal buffer size, we can abstract away edge effects and the details of the
implementation-specific control logic while focusing on the codelengths.

Finally, it will be helpful to define the marginal compression of context sequence x with respect to a next
token a.
Definition 9. Marginal Compression: ∆a|C|(x) := |C(ax)| − |C(x)| where ax denotes the concatenation
of a and x.

We write ∆|C|(x) ∈ R|A| to denote a marginal compression vector indexed over the alphabet.

2.3 The Prediction-Compression Duality

We review the well-established duality between language modeling and data compression. The prediction-
compression duality principle has numerous possible formalizations depending on the treatment of the subject,
but for our purposes, we are most interested in the theme of equivalence between logits in language models

5

Published in Transactions on Machine Learning Research (02/2026)

and codelengths in data compressors. We refer the reader to (Delétang et al., 2024) for a modern, in-depth
treatment of prediction-compression duality.

ℓ ∼ |C| (3)

We will review one such formal treatment of the duality principle.
Proposition 3 (Prediction–Compression Duality). Fix an alphabet A and a token sequence x = x1 . . . xn ∈
An.

Compressor ⇒ Language-model:

Let DC be a single-token compressor. Define the logits of a dual language model as:

ℓDC
(
xi | x<i

)
:=

∣∣CDC
(
xi | x<i

)∣∣ (bits)

by the codelength it assigns to xi conditioned on the history x<i.

Define the causal probability assignment pDC = softmax(ℓDC) as usual.

Then the compression rate of DC equals the per-token cross-entropy of the induced language model:

∣∣C̄DC
∣∣(x) = 1

n

n∑
i=1

ℓDC
(
xi | x<i

)
= − 1

n

n∑
i=1

log pDC
(
xi | x<i

)
= HDC(x) bits/token.

Language-model ⇒ Compressor:

Let LM be any causal language model that outputs pLM
(
· | x<i

)
.

Then, the Arithmetic coding construction ((Cover & Thomas, 2006; Witten et al., 1987)) produces a sequential
prefix-free compressor CLM satisfying, for every x ∈n,

∣∣C̄LM
∣∣(x) = 1

n

n∑
i=1

∣∣CLM
(
xi | x<i

)∣∣ ≤ − 1
n

n∑
i=1

log2 pLM
(
xi | x<i

)
+ 2

n
= HLM(x) + O

(
1/n

)
bits/token.

Hence, up to an asymptotically negligible O(1
n) redundancy,∣∣C̄DC

∣∣(x) = HDC(x),
∣∣C̄LM

∣∣(x) = HLM(x).

Given a language model, we also have a data compressor that compresses as well as the language model
predicts, and given a data compressor, we have a language model that predicts as well as that data compressor
can compress. The Arithmetic code (and other codes such as the Huffman code (Huffman, 1952; Cover &
Thomas, 2006)), employ the prediction-compression duality to assign codelengths based on log-probabilities.

The situation is more complex for constructing causal language models from online data compressors such
as LZ sliding window algorithms. This is because causal language models must be able to generate a valid
next-token pmf at every step whereas data compressors often buffer tokens together into a single code.
Practically, this means data compressors do not necessarily produce a codelength for every next-token. We
address this issue by simulating a full buffer and lookback window at each next-token. Similar ideas have
been explored in (Ryabko, 2007).

3 LZ Penalty

The core essence of the LZ penalty is to use the prediction-compression duality to construct a compressor’s
dual language model (in this case, LZSS)3. We can then apply the following logit update to the language
model we wish to penalize, for some penalty strength 0 ≤ α:

3Refer to Fig. 1 for an architecture diagram of the LZ penalty.

6

Published in Transactions on Machine Learning Research (02/2026)

ℓLM ← ℓLM + α∆|CLZ | (4)

where ∆|CLZ | is the marginal compression under a simulated LZ sliding window compressor due to each
potential next-token. Note that adding a redundant token can actually shorten the full codelength under the
LZ compressor, which results in a negative marginal codelength to penalize overly redundant tokens.

Figure 1: An architecture diagram detailing the flow of an autoregressive sampling loop using the LZ penalty.

Let x denote the current context. We simulate the LZ sliding window w(x) and buffer b(x) as in (2). We
can then compute the incremental change in codelength due to each possible next-token a ∈ A relative to the
simulated buffer and window. We can then compute the simulated marginal compression for LZSS for all
a ∈ A:

∆|CLZ |(x) := ∆|CLZ | (b(x)|w(x)) = |CLZ(ab(x)|w(x))| − |CLZ(b(x)|w(x))| (5)

Since we are operating in the log-domain under softmax affine invariance:

∆|CLZ |(x) ∝ |CLZ(ab(x)|w(x))| (6)

Going forward, we omit explicit dependence on x and LZ when it is obvious.

Let d, l← findLongestMatch(b(x), w(x)) and δ, λ← findLongestMatch(ab, w).

If l = 0, we know the virtual next-token a comes after a literal in the encoding. This implies that:

λ(a) =
{

1 if a ∈ w(x) and l = 0
0 if a /∈ w(x) and l = 0

with δ giving the distance of the match (if present).

If l ≥ 1, then the virtual next token might extend a match. In the case that it does so, then δ = d− 1 and
λ = l + 1, because the match location shifts one spot to the right and the length increases by one. If it does
not extend the match, then λ ≤ 1.

We proceed with a case-by-case calculation of |CLZ(ab|w)|. Recall we are working in the log-domain, and
that because l, d are independent of a, due to softmax affine invariance, we can ignore terms that only depend
on l, d but are constant with respect to the choice of a.

7

Published in Transactions on Machine Learning Research (02/2026)

Case I: (l = 0)

CI(ab|w) = C(a|w)C(b|w) =⇒ |CI(ab|w)| = |C(a|w)|+ |C(b|w)| ∝ |C(a|w)| (7)

Furthermore, as discussed above:

CI = C(a|w) =
{
C(1, δ) if λ = 1
C(a) if λ = 0

(8)

Where C(1, δ) encodes a singleton match at distance δ and C(a) encodes a as a literal. This gives us our first
case: CI ∝ |C(a|w)|.

Recalling Prop. 1 and 2 and removing constants due to softmax affine invariance, we obtain simple expressions:

|CI| =
{

log δ if λ = 1
log |A| if λ = 0

(9)

Case II: (l ≥ 1)

CII(ab|w) = C(ab≤l|w)C(b>l|w) =⇒ |CII| = |C(ab≤l|w)|+ |C(b>l|w)| ∝ |C(ab≤l|w)| (10)

Furthermore:

CII = C(ab≤l|w) =
{
C(a|w)C(b≤l|w) = C(a|w)C(l, d) if λ ≤ 1
C(ab≤l|w) = C(λ, δ) if λ = l + 1

(11)

Recall that, as discussed above λ ≤ 1 if and only if a does not extend the match of length l. If a does extend
the match, then λ = l + 1. Reusing 8, we can further simplify:

CII =


C(a)C(l, d) if λ = 0
C(1, δ)C(l, d) if λ = 1
C(λ, δ) if λ = l + 1

(12)

Again reusing Prop. 1 and 2:

|CII| =


|C(a)C(l, d)| = |C(a)|+ |C(l, d)| = log |A|+ log(ld) + 1 if λ = 0
|C(1, δ)|+ |C(l, d)| = log(δ) + log(ld) + 1 if λ = 1
|C(λ, δ)| = log(λδ) if λ = l + 1

(13)

It is expedient and permissible (due to affine invariance) to subtract the log(ld) + 1 term.

|CII| =


log |A| if λ = 0
log(δ) if λ = 1
log(1− d−l+1

ld)− 1 if λ = l + 1
(14)

where log(1− d−l+1
ld) = log(λδ)− log(ld) follow from λ = l + 1 and δ = d− 1.

8

Published in Transactions on Machine Learning Research (02/2026)

LZ Penalty Formula Combining cases I and II above yields a complete formula for the LZ penalty
adjustment:

∆|CLZ | =


log |A| if λ = 0
log(δ) if λ = 1
log(1− d−l+1

ld)− 1 if λ = l + 1
(15)

Assuming |A| > |w|, then this provides a dynamic range of [log(2/|b|)− 1, log |A|]. For an alphabet of size
128k, a lookback window of size 512, and a buffer of size 32, using binary logarithms, this yields an adjustment
range from −5 to +17, with a −5 adjustment going to a token that would complete an immediate repetition
of length 32 and a +17 going to a token that does not appear in the previous 512 tokens.

4 Results

We perform an empirical study of how the LZ penalty affects repetition and capability in reasoning benchmarks
and a performance study of the SGLang reference implementation.

4.1 Repetition and Capability Benchmarks

We apply the LZ penalty to QwQ-32B4 and R1-Distill-14B5. We run GPQA and AIME benchmarks
(averaging scores and computing std. dev. over 5 runs). We set a max token limit of 24k. We fixed the
top-p to 0.95 and the top-k to 40 for all runs.6 For all runs also using the LZ penalty, we fix the penalty
strength α to 0.15, the window size to 512 and the buffer size to 32. We found that this configuration of
hyperparameters seemed to work well across both models and both datasets with minimal tuning required.7
We detect degenerate repetitions via dual verification of a GPT-4o based judge and a naive search for exact
repetitions.8

Baselines We compare the LZ penalty against two industry-standard penalties: the repetition penalty and
the frequency penalty. In both cases, we finely sweep small values up until getting to large values. For the
results of the full sweep of penalty values, refer to the Appendix.

Discussion Based on Fig. 2, we observe that neither penalty is a reliable solution. The frequency penalty
fails dramatically even for low values. We suspect that this is because of the length of the generations.
Reasoning models produce reasoning traces that can be several thousand tokens long, which simply overwhelms
the frequency penalty on common but essential tokens. The repetition penalty works significantly better
than the frequency penalty and does seem to provide some modest relief. However, it is far from a complete
solution, with low temperature degenerate repetition rates up to about ∼ 4% depending on model and task
domain. This would be disqualifying for any kind of serious application. On the other hand, the LZ penalty
achieves effectively zero degenerate repetitions without affecting top-line benchmark scores. The LZ penalty
works because it adaptively penalizes based on both the length of the match as well as how far back the
match occurs. LZ penalty’s strength increases quickly in match length and attenuates gradually with distance.
Neither the repetition penalty nor the frequency penalty can forget tokens, whereas the LZ penalty quickly
and then gradually weakens as the token becomes less recent, until it moves beyond the lookback window
altogether.

9

Published in Transactions on Machine Learning Research (02/2026)

Figure 2: Line charts showing the accuracy and repetition percentage for a baseline (repetition penalty of 1, frequency
penalty of 0), the LZ penalty, the repetition penalty, and the frequency penalty. Accuracy error bars indicate the
empirical std. dev. over 5 runs. We feature the best performing choice of repetition penalty and frequency penalty
strengths.

10

Published in Transactions on Machine Learning Research (02/2026)

Model Size Med. Latency (ms) Med. Throughput (tok/s) Slowdown (%)
1.5B 4.43 14449.88 –
1.5B + LZ 4.45 14370.98 0.55
7B 7.96 4020.06 –
7B + LZ 7.97 4014.29 0.14
32B 26.71 299.55 –
32B + LZ 26.71 299.47 0.03

Table 1: Median latency, throughput, and LZ penalty’s throughput slowdown for Qwen-2.5 architecture using SGLang’s
default benchmarking script. Context length: 1024, generation length: 64. Batch sizes: 64 (1.5B), 32 (7B), 8 (32B).

4.2 Latency and Throughput Benchmark

Although our SGLang reference implementation is not fully optimized, it is vectorized and batched. We run
SGLang’s built-in benchmark script on an 8×H100 node and compare the effect of adding non-zero LZ penalty.
While the LZ penalty adds an ultimately negligible amount of computation, it still is significantly more than,
say, the repetition penalty, so it is worthwhile to confirm that we can maintain inference performance.

We see that for larger models, the LZ penalty’s overhead is increasingly negligible. Even for models as small
as 1.5B, the penalty overhead is a tolerable 0.55% throughput slowdown. For latency, the overhead is more
trivial and is not even measurable at the 32B size.

5 Conclusion

We presented the Lempel-Ziv (LZ) penalty, an information-theoretic decoding strategy that suppresses
degenerate repetitions in autoregressive language models by leveraging the prediction–compression duality.
Unlike frequency and repetition penalties, the LZ penalty adaptively accounts for both match length and
recency, enabling reasoning models to decode deterministically without loss of capability. Empirical studies
show that the LZ penalty eliminates degenerate loops while preserving reasoning benchmark accuracy,
with negligible computational overhead. These findings suggest that compression-informed penalties offer a
principled and practical path toward more reliable language model decoding.

References
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy Bengio.

Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, pp. 10–21, 2016.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, Hoboken, NJ, 2
edition, 2006.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher Mattern,
Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus Hutter, and Joel Veness.
Language modeling is compression, 2024. URL https://arxiv.org/abs/2309.10668.

Edward R. Fiala and Daniel H. Greene. Data compression with finite windows. Communications of the ACM,
32(4):490–505, 1989.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu Zhang,
Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu
Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong
4Qwen/QwQ-32B
5deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
6These are the recommended sampling parameters by the Qwen team
7We only tested other penalty strengths in an original sweep of 0.1, 0.2, and 0.3. We found that 0.2 was sometimes too high

and 0.1 was sometimes too low. Thus 0.15 seemed to be a sweet spot. The window and buffer sizes were selected on intuition
and did not seem to require changing.

8Any substring repeated at least 20 times.

11

https://arxiv.org/abs/2309.10668

Published in Transactions on Machine Learning Research (02/2026)

Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Honghui Ding, Huazuo
Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jingchang Chen, Jingyang Yuan, Jinhao Tu, Junjie Qiu,
Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaichao You, Kaige Gao, Kang
Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei
Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingxu Zhou, Meng Li, Miaojun Wang,
Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang
Zhou, Shaoqing Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang
Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan
Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong
Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying
He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan
Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang
Zhou, Y. X. Zhu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang
Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1 incentivizes
reasoning in llms through reinforcement learning. Nature, 645(8081):633–638, September 2025. ISSN
1476-4687. doi: 10.1038/s41586-025-09422-z. URL http://dx.doi.org/10.1038/s41586-025-09422-z.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.
In International Conference on Learning Representations, 2020.

David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410, 2016.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl: A
conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019.

Abraham Lempel and Jacob Ziv. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23(3):337–343, 1977.

Abraham Lempel and Jacob Ziv. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978.

Victor S. Miller and Mark N. Wegman. Variations on a theme by ziv and lempel. Combinatorial Algorithms
on Words, pp. 131–140, 1985. NATO ASI Series, Volume F12.

H. Morita and K. Kobayashi. On asymptotic optimality of a sliding window variation of lempel-ziv codes.
IEEE Transactions on Information Theory, 39(6):1840–1846, 1993. doi: 10.1109/18.265494.

Markus F. X. J. Oberhumer. Lzo: A real-time data compression library. Available at https://www.oberhumer.
com/opensource/lzo/, 1997. First released in 1997, Accessed: March 26, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library, 2019. URL
https://pytorch.org/.

Igor Pavlov. Lzma sdk (software development kit). Available at https://www.7-zip.org/sdk.html, 2007.
Accessed: March 26, 2025.

12

http://dx.doi.org/10.1038/s41586-025-09422-z
https://www.oberhumer.com/opensource/lzo/
https://www.oberhumer.com/opensource/lzo/
https://pytorch.org/
https://www.7-zip.org/sdk.html

Published in Transactions on Machine Learning Research (02/2026)

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI Blog, 2019. Technical report.

Boris Ryabko. Compression-based methods for nonparametric density estimation, on-line prediction, regression
and classification for time series, 2007. URL https://arxiv.org/abs/cs/0701036.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Transac-
tions on Autonomous Mental Development, 2(3):230–247, 2010.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–423,
July 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Aaditya Singh, Adam Fry, Adam Perelman, Adam Tart, Adi Ganesh, Ahmed El-Kishky, Aidan McLaughlin,
Aiden Low, AJ Ostrow, Akhila Ananthram, Akshay Nathan, Alan Luo, Alec Helyar, Aleksander Madry,
Aleksandr Efremov, Aleksandra Spyra, Alex Baker-Whitcomb, Alex Beutel, Alex Karpenko, Alex Makelov,
Alex Neitz, Alex Wei, Alexandra Barr, Alexandre Kirchmeyer, Alexey Ivanov, Alexi Christakis, Alistair
Gillespie, Allison Tam, Ally Bennett, Alvin Wan, Alyssa Huang, Amy McDonald Sandjideh, Amy Yang,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrei Gheorghe, Andres Garcia Garcia, Andrew
Braunstein, Andrew Liu, Andrew Schmidt, Andrey Mereskin, Andrey Mishchenko, Andy Applebaum,
Andy Rogerson, Ann Rajan, Annie Wei, Anoop Kotha, Anubha Srivastava, Anushree Agrawal, Arun
Vijayvergiya, Ashley Tyra, Ashvin Nair, Avi Nayak, Ben Eggers, Bessie Ji, Beth Hoover, Bill Chen, Blair
Chen, Boaz Barak, Borys Minaiev, Botao Hao, Bowen Baker, Brad Lightcap, Brandon McKinzie, Brandon
Wang, Brendan Quinn, Brian Fioca, Brian Hsu, Brian Yang, Brian Yu, Brian Zhang, Brittany Brenner,
Callie Riggins Zetino, Cameron Raymond, Camillo Lugaresi, Carolina Paz, Cary Hudson, Cedric Whitney,
Chak Li, Charles Chen, Charlotte Cole, Chelsea Voss, Chen Ding, Chen Shen, Chengdu Huang, Chris
Colby, Chris Hallacy, Chris Koch, Chris Lu, Christina Kaplan, Christina Kim, CJ Minott-Henriques, Cliff
Frey, Cody Yu, Coley Czarnecki, Colin Reid, Colin Wei, Cory Decareaux, Cristina Scheau, Cyril Zhang,
Cyrus Forbes, Da Tang, Dakota Goldberg, Dan Roberts, Dana Palmie, Daniel Kappler, Daniel Levine,
Daniel Wright, Dave Leo, David Lin, David Robinson, Declan Grabb, Derek Chen, Derek Lim, Derek
Salama, Dibya Bhattacharjee, Dimitris Tsipras, Dinghua Li, Dingli Yu, DJ Strouse, Drew Williams, Dylan
Hunn, Ed Bayes, Edwin Arbus, Ekin Akyurek, Elaine Ya Le, Elana Widmann, Eli Yani, Elizabeth Proehl,
Enis Sert, Enoch Cheung, Eri Schwartz, Eric Han, Eric Jiang, Eric Mitchell, Eric Sigler, Eric Wallace,
Erik Ritter, Erin Kavanaugh, Evan Mays, Evgenii Nikishin, Fangyuan Li, Felipe Petroski Such, Filipe
de Avila Belbute Peres, Filippo Raso, Florent Bekerman, Foivos Tsimpourlas, Fotis Chantzis, Francis Song,
Francis Zhang, Gaby Raila, Garrett McGrath, Gary Briggs, Gary Yang, Giambattista Parascandolo, Gildas
Chabot, Grace Kim, Grace Zhao, Gregory Valiant, Guillaume Leclerc, Hadi Salman, Hanson Wang, Hao
Sheng, Haoming Jiang, Haoyu Wang, Haozhun Jin, Harshit Sikchi, Heather Schmidt, Henry Aspegren,
Honglin Chen, Huida Qiu, Hunter Lightman, Ian Covert, Ian Kivlichan, Ian Silber, Ian Sohl, Ibrahim
Hammoud, Ignasi Clavera, Ikai Lan, Ilge Akkaya, Ilya Kostrikov, Irina Kofman, Isak Etinger, Ishaan
Singal, Jackie Hehir, Jacob Huh, Jacqueline Pan, Jake Wilczynski, Jakub Pachocki, James Lee, James
Quinn, Jamie Kiros, Janvi Kalra, Jasmyn Samaroo, Jason Wang, Jason Wolfe, Jay Chen, Jay Wang, Jean
Harb, Jeffrey Han, Jeffrey Wang, Jennifer Zhao, Jeremy Chen, Jerene Yang, Jerry Tworek, Jesse Chand,
Jessica Landon, Jessica Liang, Ji Lin, Jiancheng Liu, Jianfeng Wang, Jie Tang, Jihan Yin, Joanne Jang,
Joel Morris, Joey Flynn, Johannes Ferstad, Johannes Heidecke, John Fishbein, John Hallman, Jonah
Grant, Jonathan Chien, Jonathan Gordon, Jongsoo Park, Jordan Liss, Jos Kraaijeveld, Joseph Guay,
Joseph Mo, Josh Lawson, Josh McGrath, Joshua Vendrow, Joy Jiao, Julian Lee, Julie Steele, Julie Wang,
Junhua Mao, Kai Chen, Kai Hayashi, Kai Xiao, Kamyar Salahi, Kan Wu, Karan Sekhri, Karan Sharma,
Karan Singhal, Karen Li, Kenny Nguyen, Keren Gu-Lemberg, Kevin King, Kevin Liu, Kevin Stone, Kevin
Yu, Kristen Ying, Kristian Georgiev, Kristie Lim, Kushal Tirumala, Kyle Miller, Lama Ahmad, Larry
Lv, Laura Clare, Laurance Fauconnet, Lauren Itow, Lauren Yang, Laurentia Romaniuk, Leah Anise,
Lee Byron, Leher Pathak, Leon Maksin, Leyan Lo, Leyton Ho, Li Jing, Liang Wu, Liang Xiong, Lien
Mamitsuka, Lin Yang, Lindsay McCallum, Lindsey Held, Liz Bourgeois, Logan Engstrom, Lorenz Kuhn,
Louis Feuvrier, Lu Zhang, Lucas Switzer, Lukas Kondraciuk, Lukasz Kaiser, Manas Joglekar, Mandeep
Singh, Mandip Shah, Manuka Stratta, Marcus Williams, Mark Chen, Mark Sun, Marselus Cayton, Martin
Li, Marvin Zhang, Marwan Aljubeh, Matt Nichols, Matthew Haines, Max Schwarzer, Mayank Gupta,
Meghan Shah, Melody Huang, Meng Dong, Mengqing Wang, Mia Glaese, Micah Carroll, Michael Lampe,

13

https://arxiv.org/abs/cs/0701036

Published in Transactions on Machine Learning Research (02/2026)

Michael Malek, Michael Sharman, Michael Zhang, Michele Wang, Michelle Pokrass, Mihai Florian, Mikhail
Pavlov, Miles Wang, Ming Chen, Mingxuan Wang, Minnia Feng, Mo Bavarian, Molly Lin, Moose Abdool,
Mostafa Rohaninejad, Nacho Soto, Natalie Staudacher, Natan LaFontaine, Nathan Marwell, Nelson Liu,
Nick Preston, Nick Turley, Nicklas Ansman, Nicole Blades, Nikil Pancha, Nikita Mikhaylin, Niko Felix,
Nikunj Handa, Nishant Rai, Nitish Keskar, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia
Watkins, Oona Gleeson, Pamela Mishkin, Patryk Lesiewicz, Paul Baltescu, Pavel Belov, Peter Zhokhov,
Philip Pronin, Phillip Guo, Phoebe Thacker, Qi Liu, Qiming Yuan, Qinghua Liu, Rachel Dias, Rachel
Puckett, Rahul Arora, Ravi Teja Mullapudi, Raz Gaon, Reah Miyara, Rennie Song, Rishabh Aggarwal,
RJ Marsan, Robel Yemiru, Robert Xiong, Rohan Kshirsagar, Rohan Nuttall, Roman Tsiupa, Ronen Eldan,
Rose Wang, Roshan James, Roy Ziv, Rui Shu, Ruslan Nigmatullin, Saachi Jain, Saam Talaie, Sam Altman,
Sam Arnesen, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Sarah Yoo, Savannah Heon,
Scott Ethersmith, Sean Grove, Sean Taylor, Sebastien Bubeck, Sever Banesiu, Shaokyi Amdo, Shengjia
Zhao, Sherwin Wu, Shibani Santurkar, Shiyu Zhao, Shraman Ray Chaudhuri, Shreyas Krishnaswamy,
Shuaiqi, Xia, Shuyang Cheng, Shyamal Anadkat, Simón Posada Fishman, Simon Tobin, Siyuan Fu, Somay
Jain, Song Mei, Sonya Egoian, Spencer Kim, Spug Golden, SQ Mah, Steph Lin, Stephen Imm, Steve
Sharpe, Steve Yadlowsky, Sulman Choudhry, Sungwon Eum, Suvansh Sanjeev, Tabarak Khan, Tal Stramer,
Tao Wang, Tao Xin, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Degry,
Thomas Shadwell, Tianfu Fu, Tianshi Gao, Timur Garipov, Tina Sriskandarajah, Toki Sherbakov, Tomer
Kaftan, Tomo Hiratsuka, Tongzhou Wang, Tony Song, Tony Zhao, Troy Peterson, Val Kharitonov, Victoria
Chernova, Vineet Kosaraju, Vishal Kuo, Vitchyr Pong, Vivek Verma, Vlad Petrov, Wanning Jiang, Weixing
Zhang, Wenda Zhou, Wenlei Xie, Wenting Zhan, Wes McCabe, Will DePue, Will Ellsworth, Wulfie Bain,
Wyatt Thompson, Xiangning Chen, Xiangyu Qi, Xin Xiang, Xinwei Shi, Yann Dubois, Yaodong Yu, Yara
Khakbaz, Yifan Wu, Yilei Qian, Yin Tat Lee, Yinbo Chen, Yizhen Zhang, Yizhong Xiong, Yonglong Tian,
Young Cha, Yu Bai, Yu Yang, Yuan Yuan, Yuanzhi Li, Yufeng Zhang, Yuguang Yang, Yujia Jin, Yun
Jiang, Yunyun Wang, Yushi Wang, Yutian Liu, Zach Stubenvoll, Zehao Dou, Zheng Wu, and Zhigang
Wang. Openai gpt-5 system card, 2025. URL https://arxiv.org/abs/2601.03267.

James A. Storer and Thomas G. Szymanski. Data compression via textual substitution. Journal of the ACM,
29(4):928–951, 1982.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulikov, Ameet Prasad, Sharan
Narang, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pp.
5998–6008, 2017.

Terry Welch. A technique for high-performance data compression. Computer, 17(6):8–19, 1984.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural text
generation with unlikelihood training, 2019. URL https://arxiv.org/abs/1908.04319.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression. Communications
of the ACM, 30(6):520–540, 1987.

A.D. Wyner and J. Ziv. The sliding-window lempel-ziv algorithm is asymptotically optimal. Proceedings of
the IEEE, 82(6):872–877, 1994. doi: 10.1109/5.286191.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei,
Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou,
Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng
Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao
Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan,
Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang,
Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

14

https://arxiv.org/abs/2601.03267
https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/2505.09388

Published in Transactions on Machine Learning Research (02/2026)

Haruyasu Yoshizaki. Lha: A data compression and archiving tool. Software implementation, no formal
publication, 1988. First released in 1988, combines LZSS with Huffman coding.

15

