
Under review as submission to TMLR

Lempel-Ziv Penalty: An information-theoretic repetition
penalty for autoregressive language models

Anonymous authors
Paper under double-blind review

Abstract

We introduce the Lempel-Ziv (LZ) penalty, a penalty specialized for reducing degenerate
repetitions in autoregressive language models without loss of capability. The penalty is based
on the codelengths in the LZ77 universal lossless compression algorithm. Through the lens
of the prediction-compression duality, decoding with the LZ penalty has the interpretation
of sampling from the residual distribution after removing the information that is highly
compressible. We demonstrate the LZ penalty enables open-source reasoning models to
operate with greedy decoding without loss of capability and without instances of degenerate
repetition. In contrast, the industry-standard frequency penalty and repetition penalty are
ine!ective, incurring degenerate repetition rates of up to 4% or more.

1 Introduction

In recent months, there has been an advent in reasoning models1, 2 34. Reasoning models are a class of
large, autoregressive foundation models that achieve impressive capability gains in certain domains by scaling
chain-of-thought reasoning sequences at inference time. While reasoning models are a promising approach for
scaling inference-time compute, open-source reasoning models currently su!er from some friction points that
make their use problematic for downstream application developers due to a lack of determinism around the
reasoning traces. This lack of determinism is rooted in the fact that reasoning models do not run well at low
temperatures because the sampling distribution can mode collapses into degenerate repetitions.

Enabling deterministic algorithms for generation is useful for debugging and may, in fact, be explicit desiderata
for some deployments. Furthermore, even at higher temperatures, even frontier models can still fall into
degenerate repetitions in real-world deployments, such as within Cursor5.

There are two industry-standard penalties aimed at reducing repetition. First, the repetition penalty (Keskar
et al., 2019) applies a fixed logit penalty that encourages the model to use new tokens. The frequency
penalty, is more subtle, and applies a logit penalty proportional to the token count in context. Neither
penalty consistently stops degenerate repetitions without degrading the sample quality. First, the repetition
penalty does not actually succeed in preventing degenerate repetitions because it applies a naive, binary
modal penalty which does not take into account the number of times a token has appeared. Furthermore, if
the repetition penalty is set too high in an e!ort to minimize this mode collapse, the sampler becomes unable
to use fundamental, necessary, but frequent tokens, such as spaces or periods, resulting in poor completions.
Thus, merely increasing the repetition penalty is not a viable solution either.

On the other hand, the frequency penalty is more adaptive. The logit penalty grows proportionally with the
token count in context. However, ir still fails, because it produces an (interesting) degenerate cycle6 e!ect,

1https://www.anthropic.com/news/claude-4
2https://openai.com/index/introducing-gpt-5/
3https://qwenlm.github.io/blog/qwen3/
4https://api-docs.deepseek.com/news/news250120
5See Appendix. www.cursor.com.
6We refer to this as a cycle, because, in principle, the model would eventually run out of new tokens and be forced to circle

back to a previously used token.

1

Under review as submission to TMLR

where a token repeats until it incurs too high a penalty, at which point the sampler picks a new token to
repeat. This is an excerpt from such a generation from an AIME question.

Excerpt from QwQ-32B using a frequency penalty of 0.3 and temperature of 0.

Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! Non! nono! This! This!

This! This! This! This! This! This! This! This! This! This! This! This! This! This! This! This! This! Third! Third! Third!

Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Third! Tenth! Tenth!

Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! Tenth! tenth!

tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! tenth! Okay! We! We!

We! We! We! We! We! We! We! We! We! We! We! We! We! We! We! We!

The main reason this occurs is because reasoning traces used by reasoning models such as QwQ-32B can
become quite long, but the frequency penalty does not actually do anything to normalize or take this into
account. Therefore, important and common tokens eventually become banned by the penalty, which degrades
the completion, and eventually, results in catastrophic degeneration as seen in the excerpt.

The fundamental improvement in the LZ penalty relative to the repetition or frequency penalty is that the
LZ penalty, borrowing from the sliding window matching techniques pioneered in the LZ77 (Lempel & Ziv,
1977) and LZSS (Storer & Szymanski, 1982) lossless compression algorithms, depends on the repetition
of n-grams over a long but fixed-length sliding window. By penalizing as a function of length-normalized
n-gram statistics as opposed to single token statistics, the penalty can be significantly more surgical in how it
modulates the sampling distribution.

While there may be numerous reasonable ways to convert n-gram statistics into serviceable sampling penalties,
we opt to base our penalty in the prediction-compression duality principle, which has various formulations,
but essentially states that for every autoregressive language model, there is a dual data compression algorithm
(and vice-versa). More precisely, the duality states that logits in a language model are equivalent, in various
ways that can be formalized, to codelengths in a data compressor.

Following the principle, we give a quick gist of the proposed LZ penalty:

1. Simulate a universal LZ sliding window compression over the causal token sequence to compute the
code: C → {0, 1}→

2. Compute the change in codelength over the vocabulary for each next-token: !|C| → RV

3. Apply the change in codelengths as a penalty the model’s logits (denoted ω): ω ↑ ω + !|C|

Informally speaking, the interpretation of this penalty is that we are extracting the residual information in
the language model after removing the information that is easily compressible by a universal lossless data
compressor.

Limitations While the LZ penalty substantially improves resistance to degenerate repetition, several
limitations remain:

Algorithmic complexity. Compared to industry-standard penalties, the LZ penalty introduces additional
complexity. Three hyperparameters must be set: two intrinsic to the LZ compressor (window length and
bu!er length) and the standard penalty strength parameter. However, similar to how the LZ hyperparameters
do not need to be tuned in gzip, we find that they do not need to be tuned here.

Compute overhead. The penalty requires simulating an LZ-style compression step at each decoding step to
compute codelength di!erentials for every token in vocabulary. While the overhead is minor compared to the
full forward pass of a modern large language model, and can be e"ciently parallelized on GPU using operations
such as PyTorch’s torch.unfold, it is still worth consideration, especially as naive implementations can
become burdensome during inference.

2

Under review as submission to TMLR

2 Background and Related Works

2.1 Language Modeling and Sampling

Language model traces its origins back to Shannon’s testament (Shannon, 1948), where he trained a causal
language model by computing the n-gram frequencies over an English text corpus. Modern language models
are predominantly based on the transformer architecture (Vaswani et al., 2017). Completions from transformer
language models are generated by autoregressive sampling of the next-token distribution. The development
of transformer language models has been accompanied by significant advancements in sampling techniques
that govern text generation. Early explorations of language modeling employed top-k sampling (Jozefowicz
et al., 2016) to constrain the output distribution to the k most probable tokens, a technique later refined
in (Welleck et al., 2019), which paired it with unlikelihood training to mitigate repetition. Concurrently,
temperature sampling (Bowman et al., 2016) emerged as a method to control randomness. Later, nucleus
sampling was introduced as a proposed improvement over top-k sampling (Holtzman et al., 2020).

These sampling strategies evolved alongside e!orts to address text degeneration and repetition. GPT-2’s
implementation (Radford et al., 2019) implicitly utilized frequency penalties to enhance output fluency, and,
concurrently the repetition penalty (Keskar et al., 2019) was devised to prevent repetitions and encourage
diversity in completions. Later, LaMDA (Thoppilan et al., 2022) applied repetition penalties to improve
dialog coherence, reflecting a growing emphasis on balancing creativity and quality in LLM outputs. Together,
these contributions and others eventually led to an industry-standard sampler which supports a temperature,
a top-k, a top-p and a frequency or repetition penalty, all of which can be used in tandem to transform the raw
next token logits into a final distribution for sampling. These mechanisms are related to the theory of intrinsic
motivation, which defines curiosity and creativity as progress in prediction or compression (Schmidhuber,
2010).

Recent frontier chat models have significantly improved in addressing repetition issues through advancements
in training and largely no longer require a repetition penalty even for greedy decoding. Nevertheless,
specialized reasoning models continue to exhibit challenges related to repetitive outputs, particularly during
complex inference tasks or extended reasoning chains. While visibility is limited into closed-source reasoning
models, open-source reasoning models such as DeepSeek’s R1 and Qwen’s QwQ both require high-temperature
sampling (generally, at least 0.5 to 0.7 is recommended) in order to prevent degenerate repetitions.
Definition 1. Data Sequence. A data sequence of tokens will generally be denoted by x over some
vocabulary V .

We will write xi to refer to the i-th token in the sequence, and we will write x↑t to denote the head of the
sequence (x1, ..., xt) and x<t to denote (x1, ..., xt↓1). We write xt

i to denote the slice (xi, ..., xt). We will also
write x>i to denote the tail of a sequence.
Definition 2. Causal Language Model. A causal language model, LM is an algorithm that maps sequences
x to a probability mass function (pmf) over V .
Definition 3. Cross entropy. Let HLM(x) denote the average cross-entropy loss of causal language model
LM on a data sequence x.

We will generally be working in the log-domain, so we write ωLM (x) to denote the log-probabilities (or
logits) and pLM to denote the corresponding pmf generated by the model given the sequence x: pLM =
softmax(ωLM).

2.2 Data Compression

Data compression algorithms go back to the turn of the 20th century. In Shannon’s testament (Shannon,
1948), he describes the first provably optimal compressor. Later, many entropy-optimal compressors achieved
practical computational complexity assuming known data distributions. Later still, in 1977 and 1978, the first
universal compressors were launched, LZ77 and LZ78, that could, asymptotically, achieve the entropy-rate of
any stationary, ergodic data source (Lempel & Ziv, 1977; 1978; Wyner & Ziv, 1994; Morita & Kobayashi,

3

Under review as submission to TMLR

1993). Since then, a whole family of LZ-style compressors has emerged (Fiala & Greene, 1989; Miller &
Wegman, 1985; Pavlov, 2007; Oberhumer, 1997; Yoshizaki, 1988; Storer & Szymanski, 1982; Welch, 1984).
Definition 4. Data Compression Algorithm. A data compression algorithm, or data compressor, C is
an algorithm that injectively maps sequences over an input vocabulary set V to binary codes {0, 1}→.
Definition 5. Single-Token Data Compressor. A single-token data compressor, C : V ↓ {0, 1}→ maps
literal single-tokens to binary codes. We will assume single-token data compressors are complete prefix codes
(Cover & Thomas, 2006).

Single-token data compressors can be iteratively composed to operate over full sequences. Generally speaking,
they incur a small additional overhead due to being unable to amortize over longer code blocks. Practical
data compressors, however, do not encode on a single-token basis. They often operate over blocks of the full
sequence.
Definition 6. Compression Rate. The compression rate, |C̄|, for a data compressor C over sequence x is
given by |C̄|(x) = |C(x)|

|x| .

LZ77 and LZ78 both operate on the principle of adaptively building data structures based on previously seen
tokens. Imagine a scenario in which you want to train your language model from scratch while doing inference.
The model updates as each new token arrives, but you also care about the model’s average cross-entropy
loss over the entire sequence, from start to finish, since you care about the overall compression rate. LZ
algorithms are not only theoretically universal in the sense they are provably optimal for stationary ergodic
data, but they are practically universal in that they generally work well on real data too, even without any
prior statistical assumptions.

In this work, we will only focus on the LZ77 family, which we refer to herein as the LZ sliding window
compression algorithm, which uses string matching from a bu!er over a lookback window. This contrasts
the LZ78 family, which favors tree-style dictionaries. Sliding windows are more convenient for GPUs (for
example, by using PyTorch’s (Paszke et al., 2019) unfold operation) whereas tree-based dictionary methods
are more inherently sequential.

Even though all LZ sliding window algorithms work on the same basic principle of computing n-gram
repetitions within a sliding window, they can vary in how they encode their compressed data and how they
manage lookback bu!ers.

Concretely, LZSS (Storer & Szymanski, 1982) modifies LZ77 by using a 1-bit flag to indicate whether the
next chunk of data is a literal or a length-distance pair and uses literals if a length–distance pair is below a
given minimum length. Since we do not actually need to encode or decode the token sequence, the details
of the encoding subroutine are not particularly important for our purposes. Instead, we should focus on
how many bits are required for the encodings — the codelengths of the resulting codes. We take LZSS as
our reference compressor herein, and use the LZSS encoding scheme in the LZ penalty. When we refer to a
generic LZ sliding window algorithm, we will mean the LZSS variant.

LZ Sliding Window Compression Algorithm The state of an LZ sliding window compressor is
comprised of a sliding lookback window w and a bu!er b. LZ compressors work by encoding length-distance
pairs for the bu!er with respect to the lookback window. In asymptotic analysis these windows have max
sizes which are allowed to grow sub-linearly in the length of the data sequence. In real implementations, they
are fixed ton a constant that is long enough to work practically.
Definition 7. We define findLongestMatch as the following objective over input strings y and z. d, l =
arg maxj

(
maxk↑|y|

{
k | y↑k = zj+k

j

})

Definition 8. Lempel-Ziv (LZ) Sliding Window Compressor.
Let w and b be sequences with |w| > |b|.

Let (L, D) ↑ findLongestMatch(b, w) denote the length of the longest match to the bu!er and the distance
back from the end of the lookback window. Let C↔C↔↔ denote string-wise concatenation of codes C↔ and C↔↔.

4

Under review as submission to TMLR

Then, the LZ compressor for bu!er b and window w is given by:

CLZ(b|w) =






C(d, l) if l ↔ 1 and l = |b|
C(d, l)CLZ(b>l|w) if l ↔ 1 and l < |b|
C(b1)CLZ(b>1|w) if l = 0

Proposition 1. (Storer & Szymanski, 1982) LZSS can encode a match of length L occurring D tokens in
the past using |CLZ(L, D)| = log L + log D + 1 bits.

On the other hand, if no match is found, we require more bits to encode a token literal.
Proposition 2. (Storer & Szymanski, 1982) LZSS requires |CLZ(a)| = log V + 1 bits to encode token literals
a → V .

Note that the encoding scheme and algorithm state alone do not fully dictate how the LZ data compression
algorithm operates in practice over a data stream. Def. 8 strictly refers to the code for a bu!er sequence given
a lookback window. In practice, there is some implementation-specific basic control logic used to, obviously,
slide the window but also flush the bu!er when codeblocks are emitted and appended to the compressed
sequence. However, for the sake of simplicity, we can always simulate a fully populated bu!er and window for
a given context xt

0
by setting:

b(x) = xt
t↓|b| w(x) = xt↓|b|↓1

t↓|b|↓1↓|w| (1)

By always simulating a maximal bu!er size, we can abstract away edge e!ects and the details of the
implementation-specific control logic while focusing on the codelengths.

Finally, it will be helpful to define the marginal compression of context sequence x with respect to a next
token a.
Definition 9. Marginal Compression: !a|C|(x) := |C(ax)| ↗ |C(x)| where ax denotes the concatenation
of a and x.

We write !|C|(x) → RV to denote a marginal compression vector indexed over the vocabulary.

2.3 The Prediction-Compression Duality

We review the well-established duality between language modeling and data compression. The prediction-
compression duality principle has numerous possible formalizations depending on the treatment of the subject,
but for our purposes, we are most interested in the theme of equivalence between logits in language models
and codelengths in data compressors.

ω ↘ |C| (2)

We will review one such formal treatment of the duality principle.
Proposition 3 (Prediction–Compression Duality). Fix a vocabulary V and a token sequence x = x1 . . . xn →
V n.

Compressor ≃ Language-model:
Let DC be a single-token compressor. Define the logits of a dual language model as:

ωDC
(
xi | x<i

)
:=

∣∣CDC
(
xi | x<i

)∣∣ (bits)

by the codelength it assigns to xi conditioned on the history x<i.

Define the causal probability assignment pDC = softmax(ωDC) as usual.

5

Under review as submission to TMLR

Then the compression rate of DC equals the per-token cross-entropy of the induced language model:

∣∣C̄DC
∣∣(x) = 1

n

n∑

i=1

ωDC
(
xi | x<i

)
= ↗ 1

n

n∑

i=1

log pDC
(
xi | x<i

)
= HDC(x) bits/token.

Language-model ≃ Compressor:
Let LM be any causal language model that outputs pLM

(
· | x<i

)
.

Then, the Arithmetic coding construction ((Cover & Thomas, 2006; Witten et al., 1987)) produces a sequential
prefix-free compressor CLM satisfying, for every x → V n,

∣∣C̄LM
∣∣(x) = 1

n

n∑

i=1

∣∣CLM
(
xi | x<i

)∣∣ ⇐ ↗ 1
n

n∑

i=1

log2 pLM
(
xi | x<i

)
+ 2

n
=

HLM(x) + O
(
1/n

)
bits/token.

Hence, up to an asymptotically negligible O(1

n) redundancy,
∣∣C̄DC

∣∣(x) = HDC(x),
∣∣C̄LM

∣∣(x) = HLM(x).

Given a language model, we also have a data compressor that compresses as well as the language model
predicts, and given a data compressor, we have a language model that predicts as well as that data compressor
can compress. The Arithmetic code (and other codes such as the Hu!man code (Hu!man, 1952; Cover &
Thomas, 2006)), employ the prediction-compression duality to assign codelengths based on log-probabilities.

The situation is more complex for constructing causal language models from online data compressors such
as LZ sliding window algorithms. This is because causal language models must be able to generate a valid
next-token pmf at every step whereas data compressors often bu!er tokens together into a single code.
Practically, this means data compressors do not necessarily produce a codelength for every next-token. We
address this issue by simulating a full bu!er and lookback window at each next-token. Similar ideas have
been explored in (Ryabko, 2007).

3 LZ Penalty

The core essence of the LZ penalty is to use the prediction-compression duality to construct a compressor’s
dual language model (in this case, LZSS). We can then apply the following logit update to the language
model we wish to penalize, for some penalty strength 0 ⇐ ε:

ωLM ↑ ωLM + ε!|CLZ | (3)

where !|CLZ | is the marginal compression under a simulated LZ sliding window compressor due to each
potential next-token. Note that adding a redundant token can actually shorten the full codelength under the
LZ compressor, which results in a negative marginal codelength to penalize overly redundant tokens.

Let x denote the current context. We simulate the LZ sliding window w(x) and bu!er b(x) as in (1). We
can then compute the incremental change in codelength due to each possible next-token a → V relative to a
the simulated bu!er and window. We can then compute the simulated marginal compression for LZSS for all
a → V :

!|CLZ |(x) := !|CLZ | (b(x)|w(x)) = |CLZ(ab(x)|w(x))| ↗ |CLZ(b(x)|w(x))| (4)

Since we are operating in the log-domain under softmax a"ne invariance:

!|CLZ |(x) ⇒ |CLZ(ab(x)|w(x))| (5)

6

Under review as submission to TMLR

Figure 1: An architecture diagram detailing the flow of an autoregressive sampling loop using the LZ penalty.

Going forward, we omit explicit dependence on x and LZ when it is obvious.

Let d, l ↑ findLongestMatch(b(x), w(x)) and ϑ, ϖ ↑ findLongestMatch(ab, w).

If l = 0, we know the virtual next-token a comes after a literal in the encoding. This implies that:

ϖ(a) =
{

1 if a → w(x) and l = 0
0 if a /→ w(x) and l = 0

with ϑ giving the distance of the match (if present).

If l ↔ 1, then the virtual next token might extend a match. In the case that it does so, then ϑ = d ↗ 1 and
ϖ = l + 1, because the match location shifts one spot to the right and the length increases by one. If it does
not extend the match, then ϖ ⇐ 1.

We proceed with a case-by-case calculation of |CLZ(ab|w)|. Recall we are working in the log-domain, and
that because l, d are independent of a, due to softmax a"ne invariance, we can ignore terms that only depend
on l, d but are constant with respect to the choice of a.

Case I: (l = 0)

CI(ab|w = C(a|w)C(b|w) =≃ |CI(ab|w)| = |C(a|w)| + |C(b|w)| ⇒ |C(a|w)| (6)

Furthermore, as discussed above:

CI = C(a|w) =
{

C(1, ϑ) if ϖ = 1
C(a) if ϖ = 0

(7)

Where C(1, ϑ) encodes a singleton match at distance ϑ and C(a) encodes a as a literal. This gives us our first
case: CI ⇒ |C(a|w)|.

Recalling Prop. 1 and 2 and removing constants due to softmax a"ne invariance, we obtain simple expressions:

|CI| =
{

log ϑ if ϖ = 1
log V if ϖ = 0

(8)

7

Under review as submission to TMLR

Case II: (l ↔ 1)

CII(ab|w) = C(ab↑l|w)C(b>l|w) =≃ |CII| = |C(ab↑l|w)| + |C(b>l|w)| ⇒ |C(ab↑l|w)| (9)

Furthermore:

CII = C(ab↑l|w) =
{

C(a|w)C(b↑l|w) = C(a|w)C(l, d) if ϖ ⇐ 1
C(ab↑l|w) = C(ϖ, ϑ) if ϖ = l + 1

(10)

Recall that, as discussed above ϖ ⇐ 1 if and only if a does not extend the match of length l. If a does extend
the match, then ϖ = l + 1. Reusing 7, we can further simplify:

CII =






C(a)C(l, d) if ϖ = 0
C(1, ϑ)C(l, d) if ϖ = 1
C(ϖ, ϑ) if ϖ = l + 1

(11)

Again reusing Prop. 1 and 2:

|CII| =






|C(a)C(l, d)| = |C(a)| + |C(l, d)| = log V + log(ld) + 1 if ϖ = 0
|C(1, ϑ)| + |C(l, d)| = log(ϑ) + log(ld) + 1 if ϖ = 1
|C(ϖ, ϑ)| = log(ϖϑ) if ϖ = l + 1

(12)

It is expedient and permissible (due to a"ne invariance) to subtract the log(ld) + 1 term.

|CII| =






log V if ϖ = 0
log(ϑ) if ϖ = 1
log(1 ↗ d↓l+1

ld) ↗ 1 if ϖ = l + 1
(13)

where log(1 ↗ d↓l+1

ld) = log(ϖϑ) ↗ log(ld) follow from ϖ = l + 1 and ϑ = d ↗ 1.

LZ Penalty Formula Combining cases I and II above yields a complete formula for the LZ penalty
adjustment:

!|CLZ | =






log V if ϖ = 0
log(ϑ) if ϖ = 1
log(1 ↗ d↓l+1

ld) ↗ 1 if ϖ = l + 1
(14)

Assuming V > |w|, then this provides a dynamic range of [log(2/|b|)↗1, log V]. For a vocabulary of size 128k,
a lookback window of size 512, and a bu!er of size 32, using binary logarithms, this yields on adjustment
range from ↗5 to +17, with a ↗5 adjustment going to a token that would complete an immediate repetition
of length 32 and a +17 going to a token that does not appear in the previous 512 tokens.

4 Results

We perform an empirical study of how the LZ penalty a!ects repetition and capability in reasoning benchmarks
and a performance study of the SGLang reference implementation.

8

Under review as submission to TMLR

Figure 2: Line charts showing the accuracy and repetition percentage for a baseline (repetition penalty of 1, frequency

penalty of 0), the LZ penalty, the repetition penalty, and the frequency penalty. Accuracy error bars indicate the

empirical std. dev. over 5 runs. We feature the best performing choice of repetition penalty and frequency penalty

strengths.

9

Under review as submission to TMLR

4.1 Repetition and Capability Benchmarks

We apply the LZ penalty to QwQ-32B7 and R1-Distill-14B8. We run GPQA and AIME benchmarks
(averaging scores and computing std. dev. over 5 runs). We set a max token limit of 24k. We fixed the
top-p to 0.95 and the top-k to 40 for all runs.9 For all runs also using the LZ penalty, we fix the penalty
strength ε to 0.15, the window size to 512 and the bu!er size to 32. We found that this configuration of
hyperparameters seemed to work well across both models and both datasets with minimal tuning required.10

We detect degenerate repetitions via dual verification of a GPT-4o based judge and a naive search for exact
repetitions.11

Baselines We compare the LZ penalty against two industry-standard penalties: the repetition penalty and
the frequency penalty. In both cases, we finely sweep small values up until getting to large values. For the
results of the full sweep of penalty values, refer to the Appendix.

Discussion Based on Fig. 4, we observe that neither penalty is a reliable solution. The frequency penalty
fails dramatically even for low values. We suspect that this is because of the length of the generations.
Reasoning models produce reasoning traces that can be several thousand tokens long, which simply overwhelms
the frequency penalty on common but essential tokens. The repetition penalty works significantly better
than the frequency penalty and does seem to provide some modest relief. However, it is far from a complete
solution, with low temperature degenerate repetition rates up to about ↘ 4% depending on model and task
domain. This would be disqualifying for any kind of serious application. On the other hand, the LZ penalty
achieves e!ectively zero degenerate repetitions without a!ecting top-line benchmark scores. The LZ penalty
works because it adaptively penalizes based on both the length of the match as well as how far back the
match occurs. LZ penalty’s strength increases quickly in match length and attenuates gradually with distance.
Neither the repetition penalty nor the frequency penalty can forget tokens, whereas the LZ penalty quickly
and then gradually weakens as the token becomes less recent, until it moves beyond the lookback window
altogether.

4.2 Latency and Throughput Benchmark

Model Size Med. Latency (ms) Med. Throughput (tok/s) Slowdown (%)
1.5B 4.43 14449.88 –

1.5B + LZ 4.45 14370.98 0.55

7B 7.96 4020.06 –

7B + LZ 7.97 4014.29 0.14

32B 26.71 299.55 –

32B + LZ 26.71 299.47 0.03

Table 1: Median latency, throughput, and LZ penalty’s throughput slowdown for Qwen-2.5 architecture using SGLang’s

default benchmarking script. Context length: 1024, generation length: 64. Batch sizes: 64 (1.5B), 32 (7B), 8 (32B).

While our SGLang reference implementation is not fully optimized, it it is vectorized and batched. We run
SGLang’s built-in benchmark script on an 8⇑H100 node and compare the e!ect of adding non-zero LZ penalty.
While the LZ penalty adds an ultimately negligible amount of computation, it still is significantly more than,
say, the repetition penalty, so this it is worthwhile to confirm that we can maintain inference performance.

We see that for larger models, the LZ penalty’s overhead is increasingly negligble. Even for models as small
as 1.5B, the penalty overhead is a tolerable 0.55% throughput slowdown. For latency, the overhead is more
trivial, and is not even measurable at the 32B size.

7Qwen/QwQ-32B
8deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
9These are the recommended sampling parameters by the Qwen team

10We only tested other penalty strengths in an original sweep of 0.1, 0.2, and 0.3. We found that 0.2 was sometimes too high
and 0.1 was sometimes too low. Thus 0.15 seemed to be a sweet spot. The window and bu!er sizes were selected on intuition
and did not seem to require changing.

11Any substring repeated at least 20 times.

10

Under review as submission to TMLR

5 Conclusion

We presented the Lempel-Ziv (LZ) penalty, an information-theoretic decoding strategy that suppresses
degenerate repetitions in autoregressive language models by leveraging the prediction–compression duality.
Unlike the frequency and repetition penalties, the LZ penalty adaptively accounts for both match length
and recency, enabling reasoning models to decode deterministically without loss of capability. Empirical
study show that the LZ penalty eliminates degenerate loops while preserving reasoning benchmark accuracy,
with negligible computational overhead. These findings suggest that compression-informed penalties o!er a
principled and practical path toward more reliable language model decoding.

References
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy Bengio.

Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, pp. 10–21, 2016.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, Hoboken, NJ, 2
edition, 2006.

Edward R. Fiala and Daniel H. Greene. Data compression with finite windows. Communications of the ACM,
32(4):490–505, 1989.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.
In International Conference on Learning Representations, 2020.

David A. Hu!man. A method for the construction of minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410, 2016.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl: A
conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019.

Abraham Lempel and Jacob Ziv. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23(3):337–343, 1977.

Abraham Lempel and Jacob Ziv. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978.

Victor S. Miller and Mark N. Wegman. Variations on a theme by ziv and lempel. Combinatorial Algorithms
on Words, pp. 131–140, 1985. NATO ASI Series, Volume F12.

H. Morita and K. Kobayashi. On asymptotic optimality of a sliding window variation of lempel-ziv codes.
IEEE Transactions on Information Theory, 39(6):1840–1846, 1993. doi: 10.1109/18.265494.

Markus F. X. J. Oberhumer. Lzo: A real-time data compression library. Available at https://www.oberhumer.
com/opensource/lzo/, 1997. First released in 1997, Accessed: March 26, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library, 2019. URL
https://pytorch.org/.

Igor Pavlov. Lzma sdk (software development kit). Available at https://www.7-zip.org/sdk.html, 2007.
Accessed: March 26, 2025.

Alec Radford, Je!rey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI Blog, 2019. Technical report.

11

https://www.oberhumer.com/opensource/lzo/
https://www.oberhumer.com/opensource/lzo/
https://pytorch.org/
https://www.7-zip.org/sdk.html

Under review as submission to TMLR

Boris Ryabko. Compression-based methods for nonparametric density estimation, on-line prediction, regression
and classification for time series, 2007. URL https://arxiv.org/abs/cs/0701036.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Transac-
tions on Autonomous Mental Development, 2(3):230–247, 2010.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–423,
July 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

James A. Storer and Thomas G. Szymanski. Data compression via textual substitution. Journal of the ACM,
29(4):928–951, 1982.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulikov, Ameet Prasad, Sharan
Narang, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, #ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pp.
5998–6008, 2017.

Terry Welch. A technique for high-performance data compression. Computer, 17(6):8–19, 1984.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural text
generation with unlikelihood training, 2019. URL https://arxiv.org/abs/1908.04319.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression. Communications
of the ACM, 30(6):520–540, 1987.

A.D. Wyner and J. Ziv. The sliding-window lempel-ziv algorithm is asymptotically optimal. Proceedings of
the IEEE, 82(6):872–877, 1994. doi: 10.1109/5.286191.

Haruyasu Yoshizaki. Lha: A data compression and archiving tool. Software implementation, no formal
publication, 1988. First released in 1988, combines LZSS with Hu!man coding.

12

https://arxiv.org/abs/cs/0701036
https://arxiv.org/abs/1908.04319

