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Abstract
This paper studies the multi-agent performative
prediction (Multi-PP) games over multiplex net-
works. We consider a distributed learning setting
where agents partially cooperate on an agent net-
work, while during learning, the data samples
drawn depend on the prediction models of the
agent itself and neighboring agents on a popula-
tion network. The dynamics of Multi-PP games
is hence affected by the interplay between both
networks. This paper concentrates on this Multi-
PP game with the following contributions. Firstly,
we analyze sufficient conditions for the existence
of the performative stable equilibrium (PSE) and
Nash equilibrium (NE) of the Multi-PP games.
Secondly, we analyze the changes to the equilib-
rium induced by perturbed data distributions, and
derive the closed-form solutions where the net-
work topologies are explicit. Our results connect
the existence of PSE/NE with strengths of agents’
cooperation, and the changes of equilibrium so-
lutions across agents with their node centrality,
etc. Lastly, we show that a stochastic gradient de-
scent (SGD) based distributed learning procedure
finds the PSE under the said sufficient condition.
Numerical illustrations on the network effects in
Multi-PP games corroborate our findings.

1. Introduction
A recent trend in machine learning is to study distributed
learning where prediction models are trained on multiple
agents from local and privacy-sensitive data (Konečnỳ et al.,
2016). In the general setting, the learning process on these
agents are applied locally and can be aided by neighbor
agents on an agent network GA. This is motivated by the
scenario when the agents wish to utilize joint experience to
improve generalization performance, especially when the

1Department of Systems Engineering and Engineering Manage-
ment, The Chinese University of Hong Kong, Hong Kong, China.
Correspondence to: Hoi-To Wai <htwai@se.cuhk.edu.hk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1: Overview of the Multi-PP game on a multiplex
network. Each node consists of an agent-population pair.
The agent cooperation network GA and the population in-
fluence network GP share the same set of nodes V while
have different edge sets EA and EP, respectively. The agent
i’s risk depends on its own prediction model θi and its in-
coming neighbors’ models θMi

in GA. The agent i’s local
population Di depends on θi and its incoming neighbors’
models θNi

in GP. (See Section 2 for a detailed description.)

local data distributions are heterogeneous. Variants of this
scenario have been considered, e.g., personalized learning
with graph regularization (Liu et al., 2017; Vanhaesebrouck
et al., 2017; Bellet et al., 2018; Nassif et al., 2020), dis-
tributed learning with consensus (Nedic & Ozdaglar, 2009;
Lian et al., 2017), etc.

Meanwhile, a salient challenge in optimizing prediction
models deployed to real world is that the models themselves
may influence the future outcomes/samples observed by
the agent. These outcomes will influence the training of
the future prediction models, creating a feedback dynamics
between the agent who decides the model and the popula-
tion who decides the outcomes/samples. This paradigm is
known as the performative prediction as studied in Perdomo
et al. (2020). An exemplar setting is when the population
consists of strategic users who optimize their own outcomes
according to a utility function parameterized by the predic-
tion model. Applying standard algorithms such as stochastic
gradient descent (SGD) results in a dynamics between the
agent and the population. This has motivated recent works to
analyze the existence and stability of a fixed point to the dy-
namics (Perdomo et al., 2020; Drusvyatskiy & Xiao, 2022),
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the algorithms for finding the fixed point (Mendler-Dünner
et al., 2020), and the optimal solution to the performative
prediction formulation (Miller et al., 2021; Izzo et al., 2021).

In this paper, we concentrate on the multi-agent performa-
tive prediction (Multi-PP) setting where each agent uses
samples from a (local) population for training the agent’s
personal prediction model. As in the (single-agent) perfor-
mative prediction (Perdomo et al., 2020), each population
will react to the prediction models deployed by the agents.
Specifically, we account for a practical scenario where the
effects of prediction models are localized, i.e., each pop-
ulation is influenced by a subset of the prediction models
deployed by the neighbor agents on a population network GP.
For example, when the population network is induced by ge-
ographical proximity. Together with the agent network GA,
the two networks (which can have different topologies) are
coupled to form a multiplex network system (De Domenico
et al., 2013). Figure 1 presents an illustrative example of
the Multi-PP game.

The above Multi-PP setting results in a game among agents
over a multiplex network, coupled with a feedback dynamics
between the agents and the populations. Under this network
game-theoretic framework, this paper inquires the following
questions—How will the network structures (topologies)
affect the game’s equilibrium? If the data distribution at a
local population/agent is perturbed, how will the perturba-
tion affect the equilibrium solution at other agents on the
network? Addressing these questions are important steps
towards understanding the role of network structures in dis-
tributed learning.

Quite recently, several related Multi-PP settings have been
studied in the literature, yet they are different from the cur-
rent paper. For example, Narang et al. (2022); Piliouras
& Yu (2022) studied a setting for the local population
whose outcomes/samples generated depend on the mod-
els deployed by all agents who are not directly influenced
by other agents; Li et al. (2022) considered a setting where
each local population is affected only by the model de-
ployed by the local (consensus-seeking) agent. These are
special cases of the multiplex network considered in this
paper. More specifically, let n be the number of agents:
Narang et al. (2022); Piliouras & Yu (2022) consider GA and
GP as a graph with n disconnected nodes and a complete
graph, respectively; Li et al. (2022) considers GA and GP as
a complete graph and a graph with n disconnected nodes, re-
spectively; Narang et al. (2022) also considers a case when
both GA and GP are complete graphs.

Departing from existing works whose results are restricted
to either complete graphs or disconnected graphs, the cur-
rent paper conducts the first study on Multi-PP games that
focuses on the effects of the multiplex network structures
on the resulting learning dynamics. Our contributions are

summarized as:

• We conduct the first study on Multi-PP games with gen-
eral network structures. Our formulation is inspired by
recent popular works on personalized learning, e.g., (Van-
haesebrouck et al., 2017), and accounts for the interplay
between the cooperation among agents on GA and the
influences of agents on local populations on GP.

• We consider two concepts of equilibrium solution in
Multi-PP games, namely the performative stable equilib-
rium (PSE) and the Nash equilibrium (NE). We first derive
the sufficient conditions for the existence and uniqueness
of these equilibrium solutions in relation to the multiplex
network topology, and provide a SGD-based learning pro-
cedure for finding the PSE. Interestingly, when the agent
cooperation network is asymmetric, we show that increas-
ing the strength of agents’ cooperation may destabilize
the PSE solution to Multi-PP game by adopting a repeated
minimization procedure.

• By specializing the Multi-PP games with simple loss func-
tions and sample distributions, we provide exact charac-
terizations for the PSE and NE. Our results include nec-
essary and sufficient conditions for their existence and
uniqueness based on a repeated minimization procedure,
and the closed form solutions of the equilibriums featur-
ing explicit dependence on the network structure. We
observe that the stability of Multi-PP games can have non-
monotonic dependence on the strength of the agents’ co-
operation involving the network structures, and the form
of equilibrium solutions is related to node centrality of
the multiplex network.

Lastly, our result reveals the intricate effects of enabling
cooperation among agents while accounting for the reaction
of population to models deployed on a Multi-PP game over
a multiplex network. This gives a new perspective to the
study of distributed learning.

Related Works: This paper is related to works on network
games (Galeotti et al., 2010; Parise & Ozdaglar, 2019). Par-
ticularly, characterizing the equilibrium in network games is
important to consumer networks (Candogan et al., 2012), fi-
nancial networks (Acemoglu et al., 2015), and interventions
in economic networks (Bramoullé et al., 2014), etc., and
distributed algorithms for reaching these equilibrium have
been studied (Mazumdar et al., 2020). Besides, the perfor-
mative prediction setup includes strategic classification as a
special case, which can be studied through the Stackelberg
game framework (Hardt et al., 2016; Zrnic et al., 2021).

In this light, our results can be regarded as an extension of
the above works to multiplex games. Note that most prior
results in the multiplex setting are empirical (Allen et al.,
2018; De Domenico et al., 2013; Gómez-Gardenes et al.,
2012), with focus on social and economical networks.
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2. Problem Setup
This section describes the n-agent Multi-PP games over
multiplex networks. The agent network GA (resp. the pop-
ulation network GP) is a directed graph represented by the
adjacency matrix A ∈ Rn×n

+ (resp. P ∈ Rn×n
+ ). We

follow the convention that if Aij > 0 (resp. Pij > 0),
then there is an edge from j to i in GA (resp. GP). In-
tuitively, Aij (resp. Pij) represents the influence from
node j in the agent (resp. population) network on node
i. Define Mi := {j : j ̸= i and Aij > 0} (resp.
Ni := {j : j ̸= i and Pij > 0}) as the set of incoming
neighbors of node i in GA (resp. GP).

Let p1, . . . , pn ∈ Z++ be the dimensions of the prediction
models and p =

∑n
i=1 pi. We also define θMi

:= [θj ]j∈Mi

and θNi
:= [θj ]j∈Ni

. We consider a Multi-PP game where
agent i seeks to minimize a local risk function:

min
θi∈Rpi

Fi(θi, [θj ]j∈Mi∪Ni
)

:= EZi∼Di(θi,θNi
) [fi(θi,θMi

;Zi)] ,
(1)

where [θj ]j∈Mi∪Ni
is given. The local performative risk

function Fi depends on the joint prediction model θ :=
[θ1, . . . ,θn] ∈ Rp in two ways. First, fi(θi,θMi ;Zi) is
the sampled risk function that evaluates the prediction mod-
els deployed by agent i and its incoming neighbors in GA,
i.e., θi,θMi

, with respect to (w.r.t.) a sample Zi on some
metric space Zi. Second, the distribution of Zi is given by
the distribution mapping Di(θi,θNi

) that is a probability
measure on Zi and it encodes how the samples generated
from the i-th population reacts to the models deployed by
agent i and its incoming neighbors in GP. Observing that
the risk function Fi depends on the two graphs GA,GP, Prob-
lem (1) yields a multiplex network game (Gómez-Gardenes
et al., 2012; Allen et al., 2018).

In (1), each agent aims to minimize its individual perfor-
mative risk Fi(θi, [θj ]j∈Mi∪Ni

) that depends on the joint
prediction model [θj ]j∈{i}∪Mi∪Ni

. Inspired by the studies
on personalized learning (Vanhaesebrouck et al., 2017; Bel-
let et al., 2018), we consider risk function of the following
form:

fi(θi,θMi
;Zi) := ℓi(θi;Zi)+

ρi
2

∑
j∈Mi

Aij∥θi−θj∥22, (2)

where ℓi : Rpi ×Zi 7→ R is the loss function that depends
only on the local model θi and the second term is the so
called graph regularization term with ρi ∈ [0,∞) that pro-
motes similarity between θi and θj , j ∈ Mi. If GA is
a connected graph, then the equilibrium solution of mini-
mizing (2) with ρi → 0 provides purely local prediction
models while ρi → ∞ provides the common (i.e., consen-
sual) prediction model. Note that in personalized learning,
it is common for Mi to include agents with similar target

models as agent i (e.g., the agents are close in terms of their
geographical locations) to maximize performance.

In the sequel, we set without loss of generality that A
is row stochastic with zero diagonal, i.e., Aii = 0 and∑n

j=1 Aij = 1 for i ∈ [n] := {1, . . . , n}.1 We also make
the following assumptions that are common in the perfor-
mative prediction literature, e.g., Perdomo et al. (2020);
Mendler-Dünner et al. (2020); Drusvyatskiy & Xiao (2022);
Li et al. (2022); Narang et al. (2022)

Assumption 2.1. For each i ∈ [n], the following hold:

i) There exist a constant µi ≥ 0, such that for any given
Zi ∈ Zi, ℓi(·;Zi) is µi-strongly convex;

ii) ℓi(·;Zi) is C1-smooth for any Zi ∈ Zi and there exists
a constant Li > 0 such that for any θi,θ

′
i ∈ Rpi and

Zi,Z
′
i ∈ Zi, it holds that

∥∇ℓi(θi;Zi)−∇ℓi(θ
′
i;Z

′
i)∥2

≤ Li(∥θi − θ′
i∥2 + ∥Zi −Z ′

i∥2).

Assumption 2.1 imposes the convexity and smoothness prop-
erties on the loss function. It is worth noting that in Assump-
tion 2.1(i), we allow µi = 0, in which case ℓi(·;Zi) is
convex but not strongly convex. In spite of the convexity of
ℓi, Fi can be generally non-convex in the first argument θi.
We remark that in Assumption 2.1(ii), the Lipschitz conti-
nuity w.r.t. the first argument of ∇ℓi(·; ·) is not required in
some of our results.

We also require the following condition on the distribution
mapping. Let W1(D,D′) denote the Wasserstein 1-distance
between two probability measures D, D′, we impose the
following Lipschitz-like property:

Assumption 2.2. For i ∈ [n], there exists εi ≥ 0 such that

W1

(
Di(θi,θNi

),Di(θ
′
i,θ

′
Ni

)
)
≤εi

√∑n
j=1Pij

∥∥θj−θ′
j

∥∥2
2

for all (θi,θNi), (θ
′
i,θ

′
Ni

) ∈ Rpi × R
∑

j∈Ni
pj .

The parameter εi is the bound on the sensitivity of the i-th
population w.r.t. the shift of the deployed prediction models.
Note that for each i ∈ [n], Pij can be viewed as the weight
on the shift of the j-th prediction model. Similar to A in
(2), some forms of normalization are often imposed to avoid
ambiguity with the parameter εi. Among others, we may
consider the special case when Pij ∈ {0, 1} and Pii = 1 for
all i, j ∈ [n], i.e., the model shifts in the neighbour nodes
are assigned with equal weights, then Assumption 2.2 is
in line with the other multi-agent performative prediction
literature, e.g., (Narang et al., 2022).

1Note that even if
∑n

j=1 Aij = bi ̸= 1, we can simply scale
ρi by bi and Aij by 1/bi, and obtain an equivalent formulation
with normalized weights, i.e.,

∑n
j=1(Aij/bi) = 1.
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We conclude this section by describing a motivating example
for the Multi-PP game under the above settings.
Example 2.3. Consider a multi-agent classification game,
where there are n agents that represent banks aiming to pre-
dict whether the loan applicants are creditworthy. Each bank
trains a personalized logistic regression model according to
(2) with the loss function

ℓi(θi;Zi) = −yiθ
⊤
i xi + log

(
1 + eθ

⊤
i xi

)
, (3)

where Zi = (xi, yi) ∈ Rpi × {0, 1} is the feature-label
pair of the i-th applicant. On the one hand, banks located
in regions near to each other tend to deploy similar loan
policies, while banks that are far away from each other tend
to make independent decisions. This gives rises to a inter-
bank cooperation network GA formed according to their
geographical distances, and thus the risk function given by
(2). On the other hand, each applicant in some region may
be affected by neighboring banks’ policies and strategically
manipulate their features to increase the chances of suc-
cessfully applying for the loan. Specifically, suppose that
Z̄i = (x̄i, ȳi) ∈ Rpi ×{0, 1} follow some base distribution
Di, then each data sample Zi ∼ Di(θi,θNi) is generated
by perturbing Di as follows:

xi =

{
x̄i + ε̄i

∑n
j=1 Pijθj , if ȳi = 0,

x̄i, if ȳi = 1,
(4)

yi = ȳi, (5)

where ε̄i ∈ R. Thus, the applicant population network arises
from the bank-applicant influences. Note that when n = 1,
this setting reduces to the strategic classification problem
studied in Hardt et al. (2016); Dong et al. (2018); Perdomo
et al. (2020); Zrnic et al. (2021). It is worth mentioning
that this example satisfies Assumptions 2.1 and 2.2; see
Appendix A for detailed verification.

3. Equilibrium(s) of the Multi-PP Game
This section presents the main results on the equilibrium(s)
of the game (1) resulted from the cooperation/competition
among agents and the agent-population pairs. Compared to
prior works on Multi-PP (Narang et al., 2022; Piliouras &
Yu, 2022; Li et al., 2022), we notice that (1) depends on the
graph structure of GA and GP where the interactions between
agents occur simultaneously on both graphs.

The first focus of our study is on the existence of equi-
librium(s) to (1). Our results shall highlight the contribu-
tions of graph structure to the existence condition of equi-
librium(s). When the latter condition holds, we also suggest
a stochastic gradient based procedure to finding an equilib-
rium solution.

Similar to Narang et al. (2022), we concentrate on two
concepts of equilibrium solution for (1) below.

Definition 3.1. A vector θpse = [θpse
1 ; . . . ;θpse

n ] ∈ Rp is
called a performative stable equilibrium (PSE) of the game
(1) if it holds for all i ∈ [n] that

θpse
i ∈ argmin

θi∈Rpi

{
EZi∼Di(θ

pse
i ,θpse

Ni
)

[
fi(θi,θ

pse
Mi

;Zi)
]}

.

Definition 3.2. A vector θne = [θne
1 ; . . . ;θne

n ] ∈ Rp is
called a Nash equilibrium (NE) of the game (1) if it holds
for all i ∈ [n] that

θne
i ∈ argmin

θi∈Rpi

{
EZi∼Di(θi,θne

Ni
)

[
fi(θi,θ

ne
Mi

;Zi)
]}

.

A subtle yet important difference between θpse and θne lies
in the observation that θne

i is a global minimizer of the per-
formative risk Fi(θi,

[
θne
j

]
j∈Mi∪Ni

) that jointly optimizes
the sampled risk and the decision-dependent distribution.

3.1. Perfomative Stable Equilibrium (PSE)

We first derive a sufficient condition for the existence of PSE
by construction. In particular, to facilitate our analysis, we
consider the strategy of repeated risk minimization (RRM),
which is an iterative mechanism such that each agent re-
peatedly minimizes its own expected risk while fixing all
other agents’ decisions and the induced data distribution. In
iteration t, agent i does

θt+1
i = Ti

([
θt
j

]
j∈{i}∪Mi∪Ni

)
:= argmin

θi∈Rpi

{
EZi∼Di(θt

i ,θ
t
Ni

)

[
fi(θi,θ

t
Mi

;Zi)
]}

(6)

and compete with other agents to minimize the local risk
upon deploying the current prediction model. From an
optimization perspective, the RRM (6) is a Jacobi-type co-
ordinate descent method. With the sampled risk function
fi(·) defined in (2), the mechanism is similar to the coordi-
nate descent method in Bellet et al. (2018) when the data
distribution Di is independent of θi,θNi

.

Observe that the fixed point(s) of (6) leads to a PSE solu-
tion. Hence, studying the convergence of (6) results in the
following sufficient condition that implies the existence of
PSE, whose proof can be found in Appendix C:

Theorem 3.3. Suppose that
∑n

j=1 Aij = 1 and µi+ρi > 0

for all i ∈ [n], Assumptions 2.1 and 2.2 hold. Let µ :=
[µi]

n
i=1 and ρ := [ρi]

n
i=1. Under the condition√√√√max

j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

(µi + ρi)2

}
+

∥∥∥∥Diag

(
ρ

µ+ ρ

)
A

∥∥∥∥
2

< 1, (7)

where ρ/(µ+ ρ) stands for an element-wise division, then
we have: (i) the game (1) admits a unique PSE, and (ii) the
RRM (6) converges linearly to the PSE.
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In the above theorem, (7) gives a sufficient condition for the
existence of PSE in terms of the distributional sensitivity
w.r.t. the prediction models ({εi}ni=1). This is a general
result with loss functions satisfying Assumption 2.1 and
decision-dependent distributions satisfying Assumption 2.2.
Moreover, the condition is directly determined by properties
of the graphs GA and GP.

Condition (7) subsumes several results in the literature as
special cases. For instance, when n = 1, ρ1 = 0, and
µ1 > 0, then (7) reduces to the condition ε1 < µ1/L1,
which coincides with the result for single-agent performative
prediction (Perdomo et al., 2020, Theorem 3.5). For the
special case with a fully connected population network in the
absence of the graph regularization in (2), i.e., P = 1n1

⊤
n ,

and ρi = 0, µi > 0 for all i ∈ [n],2 then condition (7) can
be simplified to ∑n

i=1 L
2
i ε

2
i /µ

2
i < 1, (8)

which coincides with Narang et al. (2022, Theorem 2). As
a special case, if εi = ε, Li = L, µi = µ, this condi-
tion reduces to ε < µ/(

√
nL), showing that the sensitivity

requirement becomes more stringent by a factor of
√
n.

Next, we consider the effects of incorporating cooperation
in (2), i.e., when ρi > 0. We highlight that the situation
under consideration differs from that in Li et al. (2022)
which enforces exact consensus in their algorithm and shows
a relaxed condition for the existence of performative stable
solution akin to Perdomo et al. (2020). Here, we do not
enforce exact consensus where ρi < ∞ and the equilibrium
results from the competition among agents.

To analyze this situation using Theorem 3.3, we shall adopt
some simplifications by setting µi = µ and ρi = ρ for all
i ∈ [n]. In this case, (7) can be implied by

maxj∈[n]

√∑n
i=1 PijL2

i ε
2
i < µ− ρ(∥A∥2 − 1), (9)

where the above condition can be further simplified into
L
√

∥P ∥∞ maxi∈[n] εi < µ − ρ(∥A∥2 − 1) if Li = L,
such that ∥P ∥∞ = maxj∈[n]

∑n
i=1 Pij corresponds to the

maximum weighted out-degree of the graph GP.

The left hand side of (9) extends from the previously dis-
cussed case in (8) by incorporating the population network
GP. In fact, it relaxes the sensitivity requirement factor from√
n to

√
∥P ∥∞, showing that a more localized population

network with less edges can be beneficial.

Meanwhile, the right hand side of (9) reveals an intrigu-
ing property on the role of cooperation in Multi-PP (1) and
agent network GA. Notice that if A is further assumed to
be symmetric, i.e., A is a doubly stochastic matrix, one has

2In this setting, A can be arbitrary since ρi = 0 for all i ∈ [n].

Algorithm 1 Stochastic Gradient Greedy Deployment

1: Input: θ0
i for i ∈ [n], step size γt > 0 for t ≥ 1.

2: for t = 0, 1, . . . do
3: Deploy the models {θt

i}ni=1 at the population.
4: for i = 1 to n do {executed in parallel}
5: Sample Zt+1

i ∼ Di(θ
t
i ,θ

t
Ni

)

6: Set gt=∇ℓi(θ
t
i ;Z

t+1
i )+ρi

∑n
j=1 Aij

(
θt
i − θt

j

)
7: Set θt+1

i = θt
i − γt+1g

t

8: end for
9: end for

∥A∥2 = 1.3 As a consequence, the condition (9) is inde-
pendent of the parameter ρ. However, in general, one has
∥A∥2 ≥ 1. In the latter case, increasing ρ may lead to viola-
tion of (7) and destabilize the RRM dynamics. We observe
that while increasing ρ promotes cooperation among agents
and thus better generalization performance of the trained
model, in the presence of performativity in population, it
may lead to undesirable outcomes in the training procedure.

Stochastic Algorithm for PSE. We conclude our discus-
sions on the PSE solution to (1) through studying a stochas-
tic gradient based algorithm. Our algorithm design follows
from Mendler-Dünner et al. (2020); Drusvyatskiy & Xiao
(2022) with greedy deployment, i.e., the prediction models
under training are directly deployed, then a sample (batch)
is drawn to compute the stochastic gradient estimate for (2)
that is used to inform the update of θt; see Algorithm 1. No-
tice that except for line 5, the algorithm describes a natural
implementation of personalized learning (Bellet et al., 2018)
based on stochastic gradients.

To analyze the convergence of the stochastic-gradient
greedy-deployment (SG-GD) mechanism described in Al-
gorithm 1, we consider the following assumption on the
variance of the stochastic gradient.

Assumption 3.4. There exists σ0, σ1 ≥ 0 such that for any
given θ ∈ Rp, it holds

E[∥∇ℓ(θ;Z)−E[∇ℓ(θ;Z)]∥22]≤σ2
0+σ2

1∥θ−θpse∥22,

where ∇ℓ(θ;Z) = [∇ℓ1(θ1;Z1); · · · ;∇ℓi(θn;Zn)] con-
catenates the local stochastic gradients, and the expectations
are taken w.r.t. Z = (Zi)

n
i=1 with Zi ∼ Di(θi,θNi).

This is a standard assumption on the stochastic gradient
estimates with a growth condition. The following theorem
establishes the convergence of SG-GD to θpse:

Theorem 3.5. Under the same conditions in Theorem 3.3
3On the one hand, ∥A∥2 = supv ̸=0

∥Av∥2
∥v∥2

≥ ∥A1n∥2
∥1n∥2

= 1 by

row-stochasticity. On the other hand, ∥A∥2 ≤
√

∥A∥1∥A∥∞ =
1 due to both row-stochasticity and symmetry.
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with Li = L, µi = µ, εi = ε, ρi = ρ. Let

µ̃ := µ+ ρ(1− ∥A∥2)− Lε
√
∥P ∥∞,

σ̃2 := σ2
1 + 2

(
L2ε2∥P ∥∞ + (L+ ρ∥In −A∥2)2

)
.

Suppose that Assumption 3.4 and condition (7) hold, and
the step sizes satisfy

sup
t≥1

γt ≤ min

{
µ̃

2σ̃2
,
2

µ̃

}
and

γt
γt+1

≤ 1 +
µ̃γt+1

2
∀t≥1.

Then, the iterates generated by Algorithm 1 satisfy that for
all t ≥ 1,

E[∥θt − θpse∥22] ≤
t∏

s=0

(1−µ̃γs+1)∆0+
4σ2

0

µ̃
γt+1, (10)

where ∆0 := ∥θ0 − θpse∥22 is the initial gap.

See the proof in Appendix D. The step size conditions are
general, e.g., they can be satisfied with a constant step size,
or with a standard diminishing rule such as γt = a0

a1+t with
appropriate a0, a1 > 0. In the latter case, (10) shows that
the convergence behavior of Algorithm 1 towards θpse is
similar to that of SGD applied to strongly convex objective
functions, i.e., at the rate of O(1/t) (Moulines & Bach,
2011). However, we observe that the convergence depends
on the graph regularization parameter and the sensitivity
of the population to model shifts, thus SG-GD may not
converge even if µ > 0.

Lastly, we remark that besides including the graph regular-
ization term, our result extends over Narang et al. (2022) by
the use of diminishing step sizes; and Bellet et al. (2018)
by incorporating stochastic samples and the performative
effects for interaction with the population network.

3.2. Nash Equilibrium (NE)

Lastly, we discuss the existence and uniqueness of the NE
for the Multi-PP game (1). We focus on the case when (1)
is a C1-smooth convex game, i.e., for all i ∈ [n], ∇iFi(θ)
(the partial gradient w.r.t. θi) is C1-smooth and Fi(θ) is
convex w.r.t. θi for any fixed [θj ]j∈Mi∪Ni

.

We first impose the following regularity condition:
Assumption 3.6. For each i ∈ [n] and θ ∈ Rp, the mapping
EZi∼Di(·,θNi

) [fi(θi,θMi
;Zi)] is differentiable at θi and

its derivative is continuous in [θi;θNi
].

Under Assumption 3.6, we can define the following map-
ping: for any θ, δ ∈ Rp,

Hi
δi,δNi

(θi,θMi
)

:=
d

dui
EZi∼Di(ui,δNi

) [fi(θi,θMi
;Zi)]

∣∣∣
ui=δi

,

Hδ(θ) := [Hi
δi,δNi

(θi,θMi)]
n
i=1.

Then, we consider the following assumption:

Assumption 3.7. For any i ∈ [n] and θ, δ ∈ Rp, the map-
ping Hδ(θ) is monotone w.r.t. δ, i.e.,

⟨Hθ(θ)−Hδ(θ),θ − δ⟩ ≥ 0.

Moreover, we define the decoupled expected gradients

Gi
δi,δNi

(θi,θMi) := EZi∼Di(δi,δNi
) [∇ifi(θi,θMi

;Zi)] ,

Gδ(θ) := [Gi
δi,δNi

(θi,θMi
)]ni=1

for θ, δ ∈ Rp. Using the product rule of derivatives, we
obtain

∇iFi(θ) = Gi
θi,θNi

(θi,θMi) +Hi
θi,θNi

(θi,θMi). (11)

To study the NE of (1), we rely on a classical result that
a strongly monotone game over a non-empty, closed and
convex set admits a unique NE; see, e.g., Facchinei &
Pang (2003, Theorem 2.3.3(b)). Specifically, let ΦF (θ) :=
[∇1F1(θ), . . . ,∇nFn(θ)], then the Multi-PP game (1) is
called strongly monotone if there exists β > 0 such that

⟨ΦF (θ)− ΦF (δ),θ − δ⟩ ≥ β∥θ − δ∥22 (12)

for all θ, δ ∈ Rp. In view of (11), we have

ΦF (θ) = Gθ(θ) +Hθ(θ). (13)

Below, we show that the strong monotonicity property (12)
can be satisfied under appropriate conditions on the sensi-
tivity and graph regularization parameters.

Theorem 3.8. Suppose that
∑n

j=1 Aij = 1 for all i ∈ [n]
and Assumptions 2.1, 2.2, 3.6, and 3.7 hold. Let µmin :=
mini∈[n]{µi} and ρmin := mini∈[n]{ρi}. If it holds that√√√√max

j∈[n]

{
n∑

i=1

(
PijLiεi

µmin + ρmin

)2
}
+

∥∥∥∥Diag

(
ρ

µmin+ρmin

)
A

∥∥∥∥
2

< 1−
maxi∈[n] {Liεi}
µmin + ρmin

, (14)

then the Multi-PP game (1) is strongly monotone and admits
a unique NE.

The proof of the above theorem is provided in Appendix E.

It is worthwhile to note that for Multi-PP games with fully
connected population network (i.e., P = 1n1

⊤
n ) and non-

cooperating agents (i.e., ρi = 0 for all i ∈ [n]), Theorem
3.8 yields a weaker sufficient condition than Narang et al.
(2022, Theorem 5). Specifically, suppose that µi = µ > 0
for all i ∈ [n], then the condition (14) can be reduced to√∑n

i=1 L
2
i ε

2
i +maxi∈[n]{Liεi} ≤ µ. (15)

Since maxi∈[n]{Liεi} ≤
√∑n

i=1 L
2
i ε

2
i , our condition is

strictly weaker than the condition 2
√∑n

i=1 L
2
i ε

2
i ≤ µ re-

quired by Narang et al. (2022, Theorem 5).
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The NE can be found with the best response (BR) dynamics,
i.e., in iteration t, each agent i does

θt+1
i = Bi

([
θt
j

]
j∈Mi∪Ni

)
(16)

:= argmin
θi∈Rpi

EZi∼Di(θi,θt
Ni

)

[
fi(θi,θ

t
Mi

;Zi)
]
.

We remark that the stochastic algorithms for finding θne

can be readily extended from existing works (Narang et al.,
2022; Izzo et al., 2021; Miller et al., 2021). For example,
the NE can be found by adapting the algorithms suggested
in Narang et al. (2022, Section 6), where the derivative
free algorithm exhibits a convergence rate of O(1/

√
t). The

detailed discussion is omitted due to space limitation.

4. Case Studies & Numerical Illustrations
This section presents the case studies on Multi-PP game
(1) and analyze their equilibrium solution(s). Notice that
Theorems 3.3 and 3.8 only give the sufficient conditions for
the existence and uniqueness of PSE and NE, respectively.
Here, we will tighten these results to necessary and sufficient
conditions for specific examples. We also derive the closed-
form solutions of the PSE and NE, where the effects of
network structure are explicit. Lastly, we provide numerical
examples to illustrate our findings.

4.1. Mean Squared Error Minimization

We first consider the following special case of (1). Let the
model dimension be pi = p̄ ∈ Z++ and Zi = Rp̄ for all
i ∈ [n]. The loss function of agent i is

ℓi(θi;Zi) =
1

2
∥θi −Zi∥22. (17)

Therefore, the local risk function corresponds to the mean
squared error (MSE) in estimating the mean of Zi. The
graph regularization parameters takes ρi = ρ for all i ∈
[n] for some ρ ≥ 0. Next, a sample Zi drawn from the
distribution Di(θi,θNi

) satisfies

Zi = Z̄i + ε̄
∑n

j=1 Pijθj , (18)

where ε̄ ∈ R is the sensitivity parameter, Z̄i is a random
variable with mean mi and covariance σIp̄. We remark
that this distribution mapping is motivated by a scenario
when the i-th population generates samples by maximizing
a linear utility. For brevity, we denote m = [m1; · · · ;mn].

The Multi-PP game (1) considered under this setting extends
the full-information revenue maximization game in Narang
et al. (2022) and the multi-agent mean estimation problem
in Li et al. (2022) by taking into account the multiplex
network structure. The following proposition provides an
exact characterization of the PSE and NE:

Proposition 4.1. Consider the Multi-PP game (1) instanti-
ated by (17) and (18). Suppose that

∑n
j=1 Aij = 1 for all

i ∈ [n]. Then, the following hold:

i) There exists a unique PSE with closed form

θpse =
(
[(1 + ρ)In − ρA− ε̄P ]−1 ⊗ Ip̄

)
m, (19)

if and only if (1+ρ)In−ρA− ε̄P is invertible. More-
over, the RRM dynamics (6) converges to the PSE if
and only if

χ

(
ρ

1 + ρ
A+

ε̄

1 + ρ
P

)
< 1, (20)

where χ(·) denotes the spectral radius (i.e., the maxi-
mum absolute eigenvalue) of a matrix.

ii) There exists a unique NE with closed form

θne=

([(
1 +

ρ

1− ε̄

)
In−

ρ

1− ε̄
A− ε̄P

]−1

⊗ Ip̄

)
m,

if and only if
(
1 + ρ

1−ε̄

)
In− ρ

1−ε̄A− ε̄P is invertible.
Moreover, the BR dynamics (16) converges to the NE if
and only if

χ

(
ρ

(1− ε̄)2+ρ
A+

(1− ε̄)ε̄

(1− ε̄)2 + ρ
P

)
< 1. (21)

We remark that the necessary and sufficient conditions for
the existence of the PSEs and NEs can be found along with
the proof in Appendix F.1.

Proposition 4.1 reveals that the agent and population net-
works collaboratively contribute to the properties of the PSE
and NE with different weights. Furthermore, (20) and (21)
provide tight conditions for the stability of the PSE and NE.
Below, we illustrate Proposition 4.1 under proper simplifi-
cations. For simplicity, we let p̄ = 1 and focus on the PSE
solution.

Structure of the PSE Solution. We first focus on the
structure of the PSE solutions. With p̄ = 1, the PSE solution
(19) reduces to

θpse = ((1 + ρ)In − ε̄P − ρA)−1m. (22)

Observe that if ε̄ > 0, then the PSE solution at agent i,
i.e., θpse

i , is the weighted Katz-Bonacich centrality (Jackson,
2010; Jackson & Zenou, 2015) of node i in a weighted graph
GW with adjacency matrix W (ε̄, ρ) := ρ

1+ρA+ ε̄
1+ρP , i.e.,

GW is a weighted combination of GA and GP.

Moreover, we study how the PSE solution of each agent
will be affected if the local data distribution is perturbed.
Specifically, suppose that the j-th mean mj is perturbed by
κ and let θ̃pse(j) ∈ Rn be the new PSE. Then,

θ̃pse(j)− θpse =
κ

1 + ρ
(In −W (ε̄, ρ))

−1
ej . (23)
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Figure 2: Illustrating the magnitude of perturbation
|θ̃pse(j) − θpse(j)| for the PSE of mean estimation prob-
lem (17) when the mean of one of the local populations
(‘Mover’) is perturbed. (GA: red, GP: blue.)

The changes in the PSE solution at agent i after perturbing
the j-th population is given by

∆ij := θ̃pse
i (j)− θpse

i =
κ

1 + ρ
[(In −W (ε̄, ρ))−1]ij

=
κ

1 + ρ

∞∑
k=1

[(W (ε̄, ρ))k]ij . (24)

If ε̄ > 0 and ρ = 0, then W (ε̄, ρ) = ε̄P and ∆ij represents
the total number of walks from node i to node j in GP.
Note that even when ρ = 0, i.e., the graph regularization is
ignored in (2) and the agents are not directly cooperating,
such a distribution shift at the local population of another
agent can still affect the PSE and NE solutions across the
network.

In Figure 2, we illustrate (24) on a simple configuration
with GA being an undirected complete graph and GP being
an undirected star graph. The weights on A are assigned
such that Aij = 1/deg(i) if (i, j) is an edge in GA. In the
figure, we compute (24) at different combinations of (ε̄, ρ)
and perturb population j (denoted as ‘Mover’ in the figure).
Observe that the pattern of changes {|∆ij |}i∈[n] depends
on the location of the perturbed population j, i.e., |∆ij |
increases if agent i is closer to agent j on the combined
graph GW, corroborating the calculation (24). Moreover,
increasing ρ has the effect of making the variations of |∆ij |
more uniform across the network. This is reasonable due to
the consensus inducing effect of graph regularization.

Effects of Cooperation on Stability of PSE. We notice that
(20) provides a necessary and sufficient condition for the
RRM to converge to the PSE. The condition is tight such
that if (20) is violated, the RRM may diverge and the PSE
solution becomes unstable. Our focus below is to investigate
the satisfaction of (20) under different settings of A,P and
the cooperation strength ρ via numerical illustrations.
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Figure 3: Evaluating the necessary and sufficient condition
(20) for stability of RRM on Multi-PP game with (17), (18).

Intuitively, it may seem that increasing the strength of reg-
ularization ρ would promote stability (of PSE) as it forces
agents to reach consensus while optimizing for the local
risk in (6). However, we also recall from our discussions
on Theorem 3.3 that our sufficient condition for stability
(cf. (9)) maybe violated for ρ ≫ 1 when A is asymmetric4.

This motivated us to investigate the above phenomena by
evaluating the tight condition (20) with different combina-
tions of A,P and parameters ε̄, ρ. Our results are shown
in Figure 3. We set GA as either a complete graph or a star
graph. The weighted adjacency matrix A follows the same
design as in Figure 2. Note that A ̸= A⊤ if GA is not regular.
From the figure, we observe that for small (resp. large) sensi-
tivity parameter, ε̄ = 0.1 (resp. ε̄ = 0.5), the condition (20)
is always satisfied (resp. violated) irrespective of the value
of ρ. However, at ε̄ = 0.3, we note that increasing ρ would
lead to violation of (20) for the case when both GA,GP are
star graphs. This coincides with the previous observation
that ρ ≫ 1 can destabilize the PSE when A is asymmetric.
On the other hand, at ε̄ = −0.5, increasing ρ can stabilize
the PSE, i.e., satisfying (20). Our results indicate that the
stability of PSE depends jointly on the multiplex network
structure. Additional results are available in Appendix G.

4.2. Logistic Regression

Our second case study focuses on a multi-agent logistic
regression game under performative data. The problem
setup has been described in Example 2.3. Particularly, we
set ρi = ρ, Zi = Rp̄ for all i ∈ [n] and consider the loss
function given by (3). Suppose that Z̄i = (x̄i, ȳi) ∈ Rp̄ ×
{0, 1} follows the base distribution Di satisfying P(ȳi =
0) = q ∈ (0, 1), E[ x̄i | ȳi = 0 ] = m0

i ∈ Rp̄, and
E[ x̄1

i | ȳi = 0 ] = m1
i ∈ Rp̄. Meanwhile, sample Zi =

(xi, yi) ∈ Rp̄ × {0, 1} from the i-th population follows

4We remark that as χ(A) = 1, a sufficient condition for (20)
is |ε̄| < 1/χ(P ), which is slightly weaker than (9).
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Figure 4: Learning dynamics of Multi-PP logistic regression
game using SG-GD. (GA: complete, GP: star)

distribution Di(θi,θNi) as described in (4) and (5).

Since the logistic loss is highly nonlinear, we do not expect
to obtain closed-form solutions for the PSE and NE. As a
preliminary investigation, our remedy is to study an approx-
imate equilibrium using Taylor expansion and investigate
the latter’s dependence on the network structure. Denote
m̄i = (1 − q)m1

i − qm0
i and m̄ = 1

2 [m̄1; · · · ; m̄n]. Fo-
cusing on the PSE, we apply Taylor approximation for the
logistic loss (3) around 0 and linearize the latter. If the
true PSE solution is close to 0, then it can be shown (see
Appendix F.2) that the approximate PSE θ̂pse satisfies

1

2
m̄i +

qε̄i
2

n∑
j=1

Pij θ̂
pse
j + ρi

n∑
j=1

Aij(θ̂
pse
i − θ̂pse

j ) = 0,

for i ∈ [n], and thus

θ̂pse =
([

(Diag(ρ)(In −A) + Diag
( q

2
ε̄
)
P )

]−1 ⊗ Ip̄
)
m̄.

The above expression illustrates that the PSE for the logistic
regression game admits a similar dependence on the network
structure as the MSE game in Section 4.1, with the exception
that the effect of P will be weighted by q. Nonetheless, we
should mention that this is only a crude characterization of
the PSE when the latter is close to 0. In fact, extending
the analysis by approximation around other points such as
θ̃0 ̸= 0 reveals further nonlinear dependence on P .

Numerical Illustration. We examine the network effects
on the multi-agent logistic regression game via simulating
the SG-GD algorithm. We first describe the data generation
process with n = 5 agents. Similar to Bellet et al. (2018),
each agent holds a training dataset of size 1 ≤ Si ≤ 100
and a testing dataset of size 100. For each i ∈ [n], a tar-
get hyperplane is first generated as m⋆

i ∼ N(m⋆, 10−1I)
for some fixed m⋆, Si random feature-label pairs are then
generated with xs

i ∼ N(0, I) and ysi =
sign(⟨xs

im
⋆
i ⟩)+1

2 for
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Figure 5: Learning dynamics of Multi-PP logistic regression
game using SG-GD on Kaggle Give Me Some Credit dataset.
(GA: complete, GP: star)

s = 1, . . . , Si as the training set, and the testing set samples
{(x̄s

i , ȳ
s
i )}100s=1 are generated in a similar manner.

We apply the SG-GD procedure for the distributed learn-
ing task. To account for the performative effect in Exam-
ple 2.3, for any deployed θt, the drawn sample, (Xi, Yi) ∼
Di(θ

t
i ,θ

t
Ni

), follows the generation rule Yi = ysi , Xi =
xs
i +(1−ysi )ε̄i

∑n
j=1 Pijθ

t
j with s ∼ U{1, . . . , Si}. Mean-

while, the prediction model is evaluated with the performa-
tive effect on the testing data, i.e., the samples are modified
by similar rule as above except for taking (x̄s

i , ȳ
s
i ) instead.

From Figure 4, we observe that while enabling graph regu-
larization (with ρ = 1) allows the agents to maintain a high
accuracy in classification in general (ε̄ ∈ {0, 0.1}), under
large distribution shifts (ε̄ = 10) of negative samples, it may
lead to degraded performance.

Finally, we validate the results of this paper in a semi-
realistic setting by sampling from a Kaggle dataset (Give Me
Some Credit5). Similar to the previous experiment, we ob-
serve from Figure 5 that when the distribution shift is large
(ε̄ = 0.1), there is a significant degradation of classification
accuracy from ρ = 0 to ρ = 0.1.

Conclusions. We have studied a new setting for Multi-PP
games over multiplex networks. We analyze the existence
and uniqueness of the equilibriums to the game, and provide
insights on the role of network structures to these equilib-
riums. Our results also indicate an issue that increased
strength of cooperation may destabilize the Multi-PP game
for some topology configurations, which deserves future
investigation.
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Hong Kong RGC Project #24203520.
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M., Moreno, Y., Porter, M. A., Gómez, S., and Arenas,
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A. Verifying Assumptions 2.1 and 2.2 for Example 2.3
Indeed, Assumption 2.1 has been verified in Perdomo et al. (2020, Section G). Here, we only provide the verification of
Assumption 2.2. Suppose that Zi = (xi, yi) ∼ Di(θi,θNi) and Z ′

i = (x′
i, y

′
i) ∼ Di(θ

′
i,θ

′
Ni

). Let 1A denotes the indicator
random variable for some event A. Then, it is implied by (4) and (5) that

xi =

x̄i + ε̄i

n∑
j=1

Pijθj

1{ȳi=0} + x̄i1{ȳi=1} and yi = ȳi,

x′
i =

x̄′
i + ε̄i

n∑
j=1

Pijθ
′
j

1{ȳ′
i=0} + x̄′

i1{ȳ′
i=1} and y′i = ȳ′i,

for some Z̄i = (x̄i, ȳi) ∼ Di and Z̄ ′
i = (x̄′

i, ȳ
′
i) ∼ Di. Thus, we have

∥Zi −Z ′
i∥2 =

∥∥∥∥[xi

yi

]
−
[
x′
i

y′i

]∥∥∥∥
2

=

∥∥∥∥∥
[(

x̄i + ε̄i
∑n

j=1 Pijθj

)
1{ȳi=0} + x̄i1{ȳi=1}

ȳi

]
−

[(
x̄′
i + ε̄i

∑n
j=1 Pijθ

′
j

)
1{ȳ′

i=0} + x̄′
i1{ȳ′

i=1}

ȳ′i

]∥∥∥∥∥
2

≤
∥∥∥∥[x̄i1{ȳi=0}−x̄′

i1{ȳ′
i=0} + x̄i1{ȳi=1}−x̄′

i1{ȳ′
i=1}

ȳi− ȳ′i

]∥∥∥∥
2

+

∥∥∥∥∥
[(

ε̄i
∑n

j=1Pijθj

)
1{ȳi=0}−

(
ε̄i
∑n

j=1 Pijθ
′
j

)
1{ȳ′

i=0}

ȳi − ȳ′i

]∥∥∥∥∥
2

.

This, together with the definition of Wasserstein 1-distance, gives

W1(Di(θi,θNi),Di(θ
′
i,θ

′
Ni

)) = inf
π∈Π(Di(θi,θNi

),Di(θ′
i,θ

′
Ni

))
E(Zi,Z′

i)∼π[∥Zi −Z ′
i∥2]

≤ inf
π∈Π(Di,Di)

E(Z̄i,Z̄′
i)∼π

∥∥∥∥[x̄i1{ȳi=0} − x̄′
i1{ȳ′

i=0} + x̄i1{ȳi=1} − x̄′
i1{ȳ′

i=1}
ȳi − ȳ′i

]∥∥∥∥
2

+ inf
π∈Π(Di,Di)

E(Z̄i,Z̄′
i)∼π

∥∥∥∥∥
[(

ε̄i
∑n

j=1 Pijθj

)
1{ȳi=0} −

(
ε̄i
∑n

j=1 Pijθ
′
j

)
1{ȳ′

i=0}

ȳi − ȳ′i

]∥∥∥∥∥
2

≤ E(Z̄i,Z̄′
i)∼π0

∥∥∥∥[x̄i1{ȳi=0} − x̄′
i1{ȳ′

i=0} + x̄i1{ȳi=1} − x̄′
i1{ȳ′

i=1}
ȳi − ȳ′i

]∥∥∥∥
2

+ E(Z̄i,Z̄′
i)∼π0

∥∥∥∥∥
[(

ε̄i
∑n

j=1 Pijθj

)
1{ȳi=0} −

(
ε̄i
∑n

j=1 Pijθ
′
j

)
1{ȳ′

i=0}

ȳi − ȳ′i

]∥∥∥∥∥
2

where Π(D,D′) denotes the set of joint distributions with marginals D and D′ on the first and second factors, respectively
and π0 is an arbitrary joint distribution in Π(Di,Di). Taking π0 be a joint distribution satisfying

(Z̄i, Z̄
′
i) ∼ π0 ⇒ x̄i = x̄′

i and ȳi = ȳ′i,

then the above can be further bounded as follows:

W1(Di(θi,θNi
),Di(θ

′
i,θ

′
Ni

)) ≤ 0 +

∥∥∥∥∥∥ε̄i
n∑

j=1

Pij(θj − θ′
j)

∥∥∥∥∥∥
2

≤ ε̄i
√
|Ni|

√√√√ n∑
j=1

Pij ∥θj − δj∥22,

where the second inequality follows from the fact that ∥
∑m

i=1 ai∥
2

2
≤ m

∑m
i=1 ∥ai∥22 for vectors a1, . . . ,am ̸= 0.

Therefore, Assumption 2.2 is satisfied by Example 2.3 with εi = ε̄i
√
|Ni|.

B. Auxiliary Lemmas
We first introduce the following technical lemma, which is adapted from Perdomo et al. (2020, Lemma D.4).
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Lemma B.1. Suppose that Assumption 2.1 ii) holds. Then, for any θi ∈ Rpi and two probability measures P,P ′ on Zi, we
have ∥∥EZi∼P [∇ℓi(θi;Zi)]− EZ′

i∼P′ [∇ℓi(θi;Z
′
i)]
∥∥
2
≤ LiW1 (P,P ′) .

Next, for θ = [δ1; . . . ; δn] ∈ Rp, we define

J i
δi,δNi

(θi) := EZi∼Di(δi,δNi
) [∇ℓi(θi;Zi)] and Jδ(θ) := [J i

δ1,δN1
(θ1); . . . ; J

i
δn,δNn

(θn)].

Then, we introduce the following lemma that will be used multiple times in our analysis.

Lemma B.2. Suppose that Assumptions 2.1 and 2.2 hold. Then, for any θ, δ, δ′ ∈ Rp and α := (α1, . . . , αn) ∈ Rn, we
have

∥α⊙ (Jθ(δ
′)− Jδ(δ

′))∥2 ≤

√√√√max
j∈[n]

{
n∑

i=1

Pijα2
iL

2
i ε

2
i

}
∥θ − δ∥2 .

Proof. It follows from Lemma B.1 that

∥α⊙ (Jθ(δ
′)− Jδ(δ

′))∥22 =

n∑
i=1

∥∥∥αi

(
J i
θi,θNi

(δ′i)− J i
δi,δNi

(δ′i)
)∥∥∥2

2

=

n∑
i=1

α2
i

∥∥∥EZi∼Di(θi,θNi
) [∇ℓi(δ

′
i;Zi)]− EZi∼Di(δi,δNi

) [∇ℓi(δ
′
i;Zi)]

∥∥∥2
2

≤
n∑

i=1

α2
iL

2
iW

2
1 (Di(θi,θNi

),Di(δi, δNi
)) .

Further using the Lipchitzness property of the distribution mapping Di(·) according to Assumption 2.2, we obtain

∥α⊙ (Jθ(δ
′)− Jδ(δ

′))∥22 ≤
n∑

i=1

αiL
2
i ε

2
i

n∑
j=1

Pij ∥θj − δj∥22

=

n∑
j=1

n∑
i=1

PijαiL
2
i ε

2
i ∥θj − δj∥22

≤ max
j∈[n]

{
n∑

i=1

PijαiL
2
i ε

2
i

}
n∑

j=1

∥θj − δj∥22 .

This implies that

∥α⊙ (Jθ(δ
′)− Jδ(δ

′))∥2 ≤

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

(µi + ρi)
2

}
∥θ − δ∥2 ,

as desired.

Lastly, the following lemma adapted from Li et al. (2022, Lemma 6) will be used in the proof of Theorem 3.5.

Lemma B.3. Let {γt}t≥1 be a non-negative sequence and a > 0. Suppose that supt≥1 γt < 2/a and γt/γt+1 ≤ 1+γt+1a/2
for all t ≥ 1. Then, we have

t∑
j=0

γ2
j+1

t∏
k=j+1

(1− aγk+1) ≤
2

a
γt+1.
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C. Proof of Theorem 3.3
Proof. Let θ,θ′, δ, δ′ ∈ Rp be such that θ′ = T (θ) and δ′ = T (δ), i.e., it holds for all i ∈ [n] that

θ′
i = argmin

ui∈Rpi

EZi∼Di(θi,θNi
) [fi(ui,θMi

;Zi)]

= argmin
ui∈Rpi

EZi∼Di(θi,θNi
) [ℓi(ui;Zi)] +

ρi
2

n∑
j=1

Aij∥ui − θj∥22, (25)

and

δ′i = argmin
ui∈Rpi

EZi∼Di(δi,δNi
) [fi(ui, δMi

;Zi)]

= argmin
ui∈Rpi

EZi∼Di(δi,δNi
) [ℓi(ui;Zi)] +

ρi
2

n∑
j=1

Aij∥ui − δj∥22. (26)

Since fi is convex for i ∈ [n] according to Assumption 2.1, then the first-order optimality conditions for Problems (25) and
(26) read

J i
θi,θNi

(θ′
i) + ρi

n∑
j=1

Aij (θ
′
i − θj) = 0,

J i
δi,δNi

(δ′i) + ρi

n∑
j=1

Aij (δ
′
i − δj) = 0.

These, together with the fact that ℓi(·;Zi) is µi-strongly convex according to Assumption 2.1, imply

µi ∥θ′
i − δ′i∥

2
2 ≤

〈
J i
θi,θNi

(θ′
i)− J i

θi,θNi
(δ′i),θ

′
i − δ′i

〉
=

〈J i
θi,θNi

(θ′
i) + ρi

n∑
j=1

Aij (θ
′
i − θj)

−

J i
θi,θNi

(δ′i) + ρi

n∑
j=1

Aij (δ
′
i − δj)

 ,θ′
i − δ′i

〉

+

〈
ρi

n∑
j=1

Aij (δ
′
i − δj)− ρi

n∑
j=1

Aij (θ
′
i − θj) ,θ

′
i − δ′i

〉

=

〈J i
δi,δNi

(δ′i) + ρi

n∑
j=1

Aij (δ
′
i − δj)

−

J i
θi,θNi

(δ′i) + ρi

n∑
j=1

Aij (δ
′
i − δj)

 ,θ′
i − δ′i

〉

+

〈
ρi

n∑
j=1

Aij (δ
′
i − δj)− ρi

n∑
j=1

Aij (θ
′
i − θj) ,θ

′
i − δ′i

〉
.

Further simplifying gives

µi ∥θ′
i − δ′i∥

2
2

≤
〈
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

〉
+

〈
ρi

n∑
j=1

Aij (δ
′
i − δj)− ρi

n∑
j=1

Aij (θ
′
i − θj) ,θ

′
i − δ′i

〉

=
〈
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

〉
+

〈
ρi

n∑
j=1

Aij(θj − δj),θ
′
i − δ′i

〉
−

〈
ρi

n∑
j=1

Aij(θ
′
i − δ′i),θ

′
i − δ′i

〉

=
〈
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

〉
+

〈
ρi

n∑
j=1

Aij(θj − δj),θ
′
i − δ′i

〉
−

ρi

n∑
j=1

Aij

 ∥θ′
i − δ′i∥

2
2 ,

=
〈
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

〉
+

〈
ρi

n∑
j=1

Aij(θj − δj),θ
′
i − δ′i

〉
− ρi ∥θ′

i − δ′i∥
2
2 , (27)
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where equality (27) holds due to the fact that
∑n

j=1 Aij = 1. Let µ+ ρ := (τ1, . . . , τn) with τi := µi + ρi for i ∈ [n], then
it follows from (27) that

(µi + ρi) ∥θ′
i − δ′i∥

2
2 ≤

〈
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

〉
+

〈
ρi

n∑
j=1

Aij(θj − δj),θ
′
i − δ′i

〉

⇐⇒ ∥θ′
i − δ′i∥

2
2 ≤

〈
1

µi + ρi

(
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

)〉
+

〈
ρi

µi + ρi

n∑
j=1

Aij(θj − δj),θ
′
i − δ′i

〉
(28)

Let ϕ := (ϕ1, . . . , ϕn) with ϕi :=
∑n

j=1 Aij(θj − δj) for i ∈ [n], µ := (µ1, . . . , µn), and ρ := (ρi, . . . , ρn). Then, (28)
implies that

∥θ′ − δ′∥22 =

n∑
i=1

∥θ′
i − δ′i∥22

≤
n∑

i=1

〈
1

µi + ρi

(
J i
δi,δNi

(δ′i)− J i
θi,θNi

(δ′i),θ
′
i − δ′i

)〉
+

n∑
i=1

〈
ρi

µi + ρi

n∑
j=1

Aij(θj − δj),θ
′
i − δ′i

〉

=

〈
1n

µ+ ρ
⊙ (Jδ(δ

′)− Jθ(δ
′)) ,θ′ − δ′

〉
+

〈
ρ

µ+ ρ
⊙ ϕ,θ′ − δ′

〉
=

∥∥∥∥ 1n

µ+ ρ
⊙ (Jδ(δ

′)− Jθ(δ
′))

∥∥∥∥
2

∥θ′ − δ′∥2 +
∥∥∥∥ ρ

µ+ ρ
⊙ ϕ

∥∥∥∥
2

∥θ′ − δ′∥2, (29)

where ⊙ denote Hadamard product.

To upper bound the first term in (29), we apply Lemma B.2 with α = 1n/(µ+ ρ) and obtain∥∥∥∥ 1n

µ+ ρ
⊙ (Jθ(δ

′)− Jδ(δ
′))

∥∥∥∥
2

≤

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

(µi + ρi)
2

}
∥θ − δ∥2 . (30)

To upper bound the second term in (29), we let Ã be given by Ãij =
ρiAij

µi+ρi
for i, j ∈ [n], then we obtain

∥∥∥∥ ρ

µ+ ρ
⊙ ϕ

∥∥∥∥2
2

=

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

ρiAij

µi + ρi
(θj − δj)

∥∥∥∥∥∥
2

2

= ∥(Ã⊗ In)(θ − δ)∥22
≤ ∥Ã∥22∥θ − δ∥22,

which implies that ∥∥∥∥ ρ

µ+ ρ
⊙ ϕ

∥∥∥∥
2

≤ ∥Ã∥2∥θ − δ∥2. (31)

Plugging (30) and (31) back into (29) and then dividing both sides by ∥θ′ − δ′∥2 give

∥θ′ − δ′∥2 ≤

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

(µi + ρi)
2

}
∥θ − δ∥2 + ∥Ã∥2∥θ − δ∥2

=


√√√√max

j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

(µi + ρi)
2

}
+

∥∥∥∥Diag

(
ρ

µ+ ρ

)
A

∥∥∥∥
2

 ∥θ − δ∥2.

Hence, T is a contraction mapping provided that√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

(µi + ρi)
2

}
+

∥∥∥∥Diag

(
ρ

µ+ ρ

)
A

∥∥∥∥
2

< 1.

Therefore, if the above condition holds, then game (1) admits a unique PSE according to the Banach fixed-point theorem.
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D. Proof of Theorem 3.5
Proof. We recall that the SG-GD iteration reads as follows:

θt+1
i = θt

i − γt+1

∇ℓi(θ
t
i ;Z

t+1
i ) + ρ

n∑
j=1

Aij(θ
t
i − θt

j)

 ,

where Zt+1
i ∼ D(θt

i ,θ
t
Ni

). As we have defined θt = [θt
1;θ

t
2; · · · ;θt

n], the above can be written compactly as

θt+1 = θt − γt+1

(
∇ℓ(θt;Zt+1) + ρ

(
(In −A)⊗ Ip

)
θt
)
.

Let Et[·] denote the expectation conditioning on the filtration Ft := σ(θs, 0 ≤ s ≤ t), then we have

Et[∇ℓ(θt;Zt+1)] = Jθt(θt). (32)

We proceed with the proof by observing that

Et[∥θt+1 − θpse∥22] = ∥θt − θpse∥22 − 2γt+1Et[⟨∇ℓ(θt;Zt+1) + ρ
(
(In −A)⊗ Ip

)
θt,θt − θpse⟩]

+ γ2
t+1Et[∥∇ℓ(θt;Zt+1) + ρ

(
(In −A)⊗ Ip

)
θt∥22]

= ∥θt − θpse∥22 − 2γt+1⟨Jθt(θt) + ρ
(
(In −A)⊗ Ip

)
θt,θt − θpse⟩

+ γ2
t+1Et[∥∇ℓ(θt;Zt+1) + ρ

(
(In −A)⊗ Ip

)
θt∥22]. (33)

Notice that the PSE solution θpse satisfies

Jθpse(θpse) + ρ((In −A)⊗ Ip)θ
pse = 0. (34)

We observe the following lower bound on the inner product:

⟨Jθt(θt) + ρ((In −A)⊗ Ip)θ
t,θt − θpse⟩

= ⟨Jθt(θt)− Jθpse(θt),θt − θpse⟩+ ⟨Jθpse(θt)− Jθpse(θpse),θt − θpse⟩+ ⟨ρ((In −A)⊗ Ip)(θ
t − θpse),θt − θpse⟩

≥ ⟨Jθt(θt)− Jθpse(θt),θt − θpse⟩+ µ∥θt − θpse∥22 + ρ∥θt − θpse∥22 − ρ∥A∥2∥θt − θpse∥22
= ⟨Jθt(θt)− Jθpse(θt),θt − θpse⟩+ (µ+ ρ(1− ∥A∥2))∥θt − θpse∥22. (35)

Moreover, applying Lemma B.2 with α = 1n, we have

∥Jθt(θt)− Jθpse(θt)∥2 ≤

√√√√max
j∈[n]

n∑
i=1

PijL2ε2 ∥θt − θpse∥2

= Lε
√
∥P ∥∞ ∥θt − θpse∥2, (36)

which, together with the Cauchy-Schwarz inequality, implies that

|⟨Jθt(θt)− Jθpse(θt),θt − θpse⟩| ≤ ∥Jθt(θt)− Jθpse(θt)∥2∥θt − θpse∥2
≤ Lε

√
∥P ∥∞ ∥θt − θpse∥22.

Plugging this back in to (35) gives

⟨Jθt(θt) + ρ
(
(In −A)⊗ Ip

)
θt,θt − θpse⟩ ≥

(
µ+ ρ(1− ∥A∥2)− Lε

√
∥P ∥∞

)
∥θt − θpse∥22

= µ̃∥θt − θpse∥22, (37)

where µ̃ = µ+ ρ(1− ∥A∥2)− Lε
√
∥P ∥∞. Note that µ̃ > 0 under condition (7) in Theorem 3.3. We further observe that

by (32), the last term in (33) can be decomposed as

Et[∥∇ℓ(θt;Zt+1) + ρ((In −A)⊗ Ip)θ
t∥22]

= 2Et[∥∇ℓ(θt;Zt+1)− Jθt(θt)∥22] + 2∥Jθt(θt) + ρ((In −A)⊗ Ip)θ
t∥22

≤ 2σ2
0 + 2σ2

1∥θt − θpse∥2 + 2∥Jθt(θt) + ρ((In −A)⊗ Ip)θ
t∥22, (38)

16
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where the inequality follows from Assumption 3.4. Moreover,

∥Jθt(θt) + ρ((In −A)⊗ Ip)θ
t∥22

= ∥Jθt(θt)− Jθpse(θt) + Jθpse(θt) + ρ((In −A)⊗ Ip)θ
t∥22

≤ 2∥Jθt(θt)− Jθpse(θt)∥22 + 2∥Jθpse(θt) + ρ((In −A)⊗ Ip)θ
t∥22

= 2∥Jθt(θt)− Jθpse(θt)∥22 + 2∥Jθpse(θt) + ρ((In −A)⊗ Ip)θ
t − (Jθpse(θpse) + ρ

(
(In −A)⊗ Ip

)
θpse)∥22

≤ 2L2ε2∥P ∥∞∥θt − θpse∥22 + 2
(
L∥θt − θpse∥2 + ρ∥In −A∥2∥θt − θpse∥2

)2
= 2

(
L2ε2∥P ∥∞ + (L+ ρ∥In −A∥2)2

)
∥θt − θpse∥22, (39)

where the second equality uses (34) and the second inequality follows from (36) and Assumption 2.1 ii). Substituting (39)
back to (38) gives

Et[∥∇ℓ(θt;Zt+1) + ρ((In −A)⊗ Ip)θ
t∥22]

≤ 2σ2
0 + 2σ2

1∥θt − θpse∥2 + 4
(
L2ε2∥P ∥∞ + (L+ ρ∥In −A∥2)2

)
∥θt − θpse∥2

= 2σ2
0 + 2σ̃2∥θt − θpse∥2, (40)

where σ̃2 = σ2
1 + 2

(
L2ε2∥P ∥∞ + (L+ ρ∥In −A∥2)2

)
. Combining (37) and (40) with (33) yields

Et[∥θt+1 − θpse∥22] ≤ ∥θt − θpse∥22 − 2γt+1µ̃∥θt − θpse∥22 + 2γ2
t+1σ

2
0 + 2γ2

t+1σ̃
2∥θt − θpse∥2

= (1− 2µ̃γt+1 + 2σ̃2γ2
t+1)∥θt − θpse∥22 + 2σ2

0γ
2
t+1

≤ (1− µ̃γt+1)∥θt − θpse∥22 + 2σ2
0γ

2
t+1,

where the last inequality holds due to supt≥1 γt ≤ µ̃/(2σ̃2). Solving the above recursion gives

E[∥θt+1 − θpse∥22] ≤
t∏

s=0

(1− µ̃γs+1)∥θ0 − θpse∥22 + 2σ2
0

t∑
j=0

γ2
j+1

t∏
k=j+1

(1− µ̃γk+1)

≤
t∏

s=0

(1− µ̃γs+1)∥θ0 − θpse∥22 +
4σ2

0

µ̃
γt+1,

where the last inequality follows from supt≥1 γt < 2/µ̃ and γt/γt+1 ≤ 1 + µ̃γt+1/2 for all t ≥ 1, and then applying
Lemma B.3.

E. Proof of Theorem 3.8
E.1. Useful Technical Results

In this subsection, we provide some technical results that are used in the proof of Theorem 3.8.
Lemma E.1. Suppose that Assumptions 2.1, 2.2, and 3.6 hold. Then, for any θ, δ ∈ Rp, we have

⟨Gδ(θ)−Gδ(δ),θ − δ⟩ ≥
(
min
i∈[n]

{µi}+ min
i∈[n]

{ρi} − ∥Diag(ρ)A∥2
)
∥θ − δ∥22.

Proof. By Assumption 2.1 (i), we have

⟨Gδ(θ)−Gδ(δ),θ − δ⟩

=

n∑
i=1

〈
Gi

δi,δNi
(θi,θMi

)−Gi
δi,δNi

(δi, δMi
),θi − δi

〉

=

n∑
i=1

〈J i
δi,δNi

(θi) + ρi

n∑
j=1

Aij(θi − θj)

−

J i
δi,δNi

(δi) + ρi

n∑
j=1

Aij(δi − δj)

 ,θi − δi

〉

=

n∑
i=1

⟨J i
δi,δNi

(θi)− J i
δi,δNi

(δi),θi − δi⟩+

〈
ρi

n∑
j=1

Aij(θi − θj)− ρi

n∑
j=1

Aij(δi − δj),θi − δi

〉 . (41)

17
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For each i ∈ [n], the strongly convexity of ℓi(·,Zi) implies that

⟨J i
δi,δNi

(θi)− J i
δi,δNi

(δi),θi − δi⟩ ≥ µi∥θi − δi∥22. (42)

Besides, for each i ∈ [n], we have〈
ρi

n∑
j=1

Aij(θi − θj)− ρi

n∑
j=1

Aij(δi − δj),θi − δi

〉

=

〈
ρi

n∑
j=1

Aij(θi − δi)− ρi

n∑
j=1

Aij(θj − δj),θi − δi

〉

=

ρi

n∑
j=1

Aij

 ∥θi − δi∥22 − ρi

n∑
j=1

Aij ⟨θj − δj ,θi − δi⟩

≥

ρi

n∑
j=1

Aij

 ∥θi − δi∥22 − ρi

n∑
j=1

Aij∥θj − δj∥2∥θi − δi∥2

= ρi∥θi − δi∥22 −
n∑

j=1

ρiAij∥θj − δj∥2∥θi − δi∥2, (43)

where (43) follows from the fact that
∑n

j=1 Aij = 1. Plugging (42) and (43) back into (41) gives

⟨Gδ(θ)−Gδ(δ),θ − δ⟩

≥
n∑

i=1

µi∥θi − δi∥22 + ρi∥θi − δi∥22 −
n∑

j=1

ρiAij∥θj − δj∥2∥θi − δi∥2

≥ min
i∈[n]

{µi}∥θ − δ∥22 + min
i∈[n]

{ρi}∥θ − δ∥22 −
n∑

i=1

n∑
j=1

ρiAij∥θi − δi∥2∥θj − δj∥2. (44)

To proceed, we further bound the last term in (44). Let Ā ∈ Rn×n be a matrix given by Āij = ρiAij for i, j ∈ [n] and
w ∈ Rn be a vector with wi := ∥θi − δi∥2 for i ∈ [n], then we have

n∑
i=1

n∑
j=1

ρiAij∥θi − δi∥2∥θj − δj∥2 = w⊤Āw ≤ ∥Ā∥2∥w∥22 = ∥Diag(ρ)A∥2∥θ − δ∥22, (45)

where the inequality follows from the definition of matrix spectral norm. Plugging (45) back into (44) gives

⟨Gδ(θ)−Gδ(δ),θ − δ⟩
≥ min

i∈[n]
{µi}∥θ − δ∥22 + min

i∈[n]
{ρi}∥θ − δ∥22 −max

i∈[n]
{ρi}∥A∥2∥θ − δ∥22

=

(
min
i∈[n]

{µi}+ min
i∈[n]

{ρi} − ∥Diag(ρ)A∥2
)
∥θ − δ∥22,

as desired.

Lemma E.2. Suppose that Assumptions 2.1, 2.2, and 3.6 hold. Then, for any θ,θ′, δ ∈ Θ and i ∈ [n], we have

Hδ(θ)−Hδ(θ
′) ≤ max

i∈[n]
{Liεi} ∥θ − θ′∥2 .

18



Network Effects in Performative Prediction Games

Proof. Suppose that θ,θ′, δ. For each i ∈ [n], we have

Hi
δi,δNi

(θi,θMi
)−Hi

δi,δNi
(θ′

i,θ
′
Mi

)

=
d

dui
EZi∼Di(ui,δNi

)

[
fi(θi,θMi

;Zi)− fi(θ
′
i,θ

′
Mi

;Zi)
] ∣∣∣∣

ui=δi

=
d

dui
EZi∼Di(ui,δNi

)

[
ℓi(θi;Zi)− ℓi(θ

′
i;Zi) +

ρ

2

n∑
i=1

Aij∥θi − θj∥22 −
ρ

2

n∑
i=1

Aij∥θ′
i − θ′

j∥22

] ∣∣∣∣∣
ui=δi

=
d

dui
EZi∼Di(ui,δNi

) [ℓi(θi;Zi)− ℓi(θ
′
i;Zi)]

∣∣∣∣
ui=δi

. (46)

For each i ∈ [n], we let hi(s) = θ′
i + s (θi − θ′

i) for s ∈ (0, 1). Then, we have

ℓi(θi;Zi)− ℓi(θ
′
i;Zi) =

∫ 1

0

⟨∇ℓi (θ
′
i + s(θi − θ′

i);Zi) ,θi − θ′
i⟩ ds

=

∫ 1

0

⟨∇ℓi(hi(s);Zi),θi − θ′
i⟩ ds. (47)

Plugging (47) into (46) gives

Hi
δi,δNi

(θi,θMi)−Hi
δi,δNi

(θ′
i,θ

′
Mi

) =
d

dui
EZi∼Di(ui,δNi

)

[∫ 1

0

⟨∇ℓi(hi(s);Zi),θi − θ′
i⟩ ds

] ∣∣∣∣
ui=δi

=

∫ 1

0

d
dui

EZi∼Di(ui,δNi
) [⟨∇ℓi(hi(s);Zi),θi − θ′

i⟩]
∣∣∣∣
ui=δi

ds. (48)

Lemma B.1 implies that the function EZi∼Di(·,δNi
) [∇ℓi(hi(s);Zi)] is Liεi-Lipschitz continuous, thus its gradient satisfies

∥∥∥∥∥ d
dui

EZi∼Di(ui,δNi
) [∇ℓi(hi(s);Zi)]

∣∣∣∣
ui=δi

∥∥∥∥∥
2

≤ Liεi. (49)

Hence, combing (48) and (49), we have

∥∥∥Hi
δi,δNi

(θi,θMi
)−Hi

δi,δNi
(θ′

i,θ
′
Mi

)
∥∥∥
2
≤
∫ 1

0

∥∥∥∥∥ d
dui

EZi∼Di(ui,δNi
) [∇ℓi(hi(s);Zi)]

∣∣∣∣
ui=δi

∥∥∥∥∥
2

∥θi − θ′
i∥2 ds

≤ Liεi ∥θi − θ′
i∥2 ,

where the first inequality holds due to the Cauchy-Schwartz inequality. This further implies that

∥Hδ(θ)−Hδ(θ
′)∥2 =

√√√√ n∑
i=1

∥∥∥Hi
δi,δNi

(θi,θMi)−Hi
δi,δNi

(θ′
i,θ

′
Mi

)
∥∥∥2
2

≤

√√√√ n∑
i=1

L2
i ε

2
i ∥θi − θ′

i∥
2
2

≤ max
i∈[n]

{Liεi} ∥θ − θ′∥2 ,

as desired.
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E.2. Proving Theorem 3.8

Proof. For i ∈ [n], since ∇ifi(θi,θMi ;Zi) = ∇ℓi(θi;Zi) + ρi
∑n

j=1(θi − θj), then we have

∥∥∥Gi
θi,θNi

(θi,θMi
)−Gi

δi,δNi
(θi,θMi

)
∥∥∥
2

=
∥∥∥EZi∼Di(θi,θNi

) [∇ifi(θi,θMi
;Zi)]− EZ′

i∼Di(δi,δNi
) [∇ifi(θi,θMi

;Z ′
i)]
∥∥∥
2

=
∥∥∥EZi∼Di(θi,θNi

) [∇ℓi(θi;Zi)]− EZ′
i∼Di(δi,δNi

) [∇ℓi(θi;Z
′
i)]
∥∥∥
2

=
∥∥Jθi,θNi

(θi)− Jδi,δNi
(θi)

∥∥
2
.

Then, we have

|⟨Gθ(θ)−Gδ(θ),θ − δ⟩| ≤ ∥Gθ(θ)−Gδ(θ)∥2 ∥θ − δ∥2
= ∥Jθ(θ)− Jδ(θ)∥2 ∥θ − δ∥2

≤

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

}
∥θ − δ∥2 ,

where the last inequality follows from Lemma B.2 with α = 1n. This, together with Lemma E.1, yields

⟨Gθ(θ)−Gδ(δ),θ − δ⟩
= ⟨Gδ(θ)−Gδ(δ),θ − δ⟩+ ⟨Gθ(θ)−Gδ(θ),θ − δ⟩

≥ (µmin + ρmin − ∥Diag(ρ)A∥2) ∥θ − δ∥22 −

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

}
∥θ − δ∥22,

=

µmin + ρmin − ∥Diag(ρ)A∥2 −

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

} ∥θ − δ∥22. (50)

Moreover, we have

⟨Hθ(θ)−Hδ(θ)),θ − δ⟩ = ⟨Hδ(θ)−Hδ(θ)),θ − δ⟩+ ⟨Hθ(θ)−Hδ(θ),θ − δ⟩
≥ ⟨Hδ(θ)−Hδ(θ)),θ − δ⟩
≥ −∥Hδ(θ)−Hδ(θ))∥2 ∥θ − δ∥2
≥ −max

i∈[n]
{Liεi} ∥θ − δ∥22, (51)

where the first inequality due to ⟨Hθ(θ)−Hδ(θ),θ − δ⟩ ≥ 0 by Assumption 3.7 and (51) follows from Lemma E.2. Then,
combining (50) and (51) gives

⟨ΦF (θ)− ΦF (δ)⟩ = ⟨Gθ(θ)−Gδ(δ),θ − δ⟩+ ⟨Hθ(θ)−Hδ(θ)),θ − δ⟩

≥

µmin + ρmin − ∥Diag(ρ)A∥2 −

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

} ∥θ − δ∥22 −max
i∈[n]

{Liεi} ∥θ − δ∥22

=

µmin + ρmin −max
i∈[n]

{Liεi} − ∥Diag(ρ)A∥2 −

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

} ∥θ − δ∥22,
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where the first equality follows from (13). Thus, according to (12), the Multi-PP game (1) is strongly monotone if

µmin + ρmin −max
i∈[n]

{Liεi} − ∥Diag(ρ)A∥2 −

√√√√max
j∈[n]

{
n∑

i=1

PijL2
i ε

2
i

}
> 0

⇐⇒

√√√√max
j∈[n]

{
n∑

i=1

(
PijLiεi

µmin + ρmin

)2
}

+

∥∥∥∥Diag

(
ρ

µmin + ρmin

)
A

∥∥∥∥
2

< 1−
maxi∈[n] {Liεi}
µmin + ρmin

.

Lastly, the strong monotonicity property implies that the Multi-PP game (1) admits a unique NE (Facchinei & Pang,
2003).

F. Missing Proofs in Section 4
F.1. Proof of Proposition 4.1

Proof. Let Z ′
i := Zi −mi − ε

∑n
j=1 Aijθj , then E[Z ′

i] = 0 and Var[Z ′
i] = p̄σ2. We compute the following expectation

w.r.t. distribution D(δi, δNi) for some given δi and δNi :

EZi∼Di(δi,δNi
)

[
1

2
∥Zi − θi∥22

]

=
1

2
E


∥∥∥∥∥∥Z ′

i + µi + ε

n∑
j=1

Aijδj − θi

∥∥∥∥∥∥
2

2


=

1

2
Var

Z ′
i + µi + ε

n∑
j=1

Aijδj − θi

+
1

2

∥∥∥∥∥∥E
Z ′

i +mi + ε

n∑
j=1

Aijδj − θi

∥∥∥∥∥∥
2

2

=
p̄σ2

2
+

1

2

∥∥∥∥∥∥mi + ε̄

n∑
j=1

Pijδj − θi

∥∥∥∥∥∥
2

2

.

i) The PSE satisfies

θpse
i = argmin

θi∈Rp̄

1

2

∥∥∥∥∥∥mi + ε̄

n∑
j=1

Pijθ
pse
j − θi

∥∥∥∥∥∥
2

2

+
ρ

2

n∑
j=1

Aij∥θi − θpse
j ∥22


⇐⇒ θpse

i −mi − ε̄

n∑
j=1

Pijθ
pse
j + ρ

n∑
j=1

Aij

(
θpse
i − θpse

j

)
= 0

⇐⇒

1 + ρ

n∑
j=1

Aij − ε̄Pii

θpse
i −

∑
j ̸=i

ρAijθ
pse
j −

∑
j ̸=i

ε̄Pijθ
pse
j = mi

⇐⇒ (Ip̄n + ρ(In −A)⊗ Ip̄ − ε̄P ⊗ Ip̄)θ
pse = m.

Then, there exists a unique PSE if and only if (1 + ρ)In − ρA− ε̄P is invertible (note that the PSE exists if and only if
m ∈ range (Ip̄n + ρ(In −A)⊗ Ip̄ − ε̄P ⊗ Ip̄)). Moreover, the closed-form solution of PSE reads

θpse = (Ip̄n + ρ(In −A)⊗ Ip̄ − ε̄P ⊗ Ip̄)
−1

m

=
(
[(1 + ρ)In − ρA− ε̄P ]−1 ⊗ Ip̄

)
m.

Moreover, suppose that θt+1 = T (θt), then we have for all i ∈ [n],

θt+1
i = argmin

θi∈Rp̄

1

2

∥∥∥∥∥∥mi + ε̄

n∑
j=1

Pijθ
t
j − θi

∥∥∥∥∥∥
2

2

+
ρ

2

n∑
j=1

Aij∥θi − θt
j∥22

 . (52)
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The first-order optimality condition for (52) reads

θt+1
i −mi − ε̄

n∑
j=1

Pijθ
t
j + ρ

n∑
j=1

Aij

(
θt+1
i − θt

j

)
= 0

⇐⇒

1 + ρ

n∑
j=1

Aij

θt+1
i = mi + ρ

n∑
j=1

Aijθ
t
j + ε̄

n∑
j=1

Pijθ
t
j

⇐⇒ (1 + ρ)θt+1
i = mi + ρ

n∑
j=1

Aijθ
t
j + ε̄

n∑
j=1

Pijθ
t
j ,

for all i ∈ [n], which can be further written in the following compact form:

θt+1 = m+

(
ρ

1 + ρ
A⊗ Ip̄ +

ε̄

1 + ρ
P ⊗ Ip̄

)
θt.

Thus, the RRM converges to the PSE if and only if

max
i∈[n]

{∣∣∣∣λi

(
ρ

1 + ρ
A+

ε̄

1 + ρ
P

)∣∣∣∣} < 1.

ii) The Nash equilibrium satisfies

θne
i = argmin

θi∈Rp̄

1

2

∥∥∥∥∥∥mi − (1− ε̄)θi + ε̄
∑
j ̸=i

Pijθ
ne
j

∥∥∥∥∥∥
2

2

+
ρ

2

n∑
j=1

Aij∥θi − θne
j ∥22


⇐⇒ − (1− ε̄)

mi − (1− ε̄)θne
i + ε̄

∑
j ̸=i

Pijθ
ne
j

+ ρ

n∑
j=1

Aij

(
θne
i − θne

j

)
= 0

⇐⇒
(
1− ε̄+

ρ

1− ε̄

)
θne
i − ρ

1− ε̄

∑
j ̸=i

Aijθ
ne
j − ε̄

∑
j ̸=i

Pijθ
ne
j = mi,

which can be written in the following compact form:[(
1 +

ρ

1− ε̄

)
In ⊗ Ip̄ −

ρ

1− ε̄
A⊗ Ip̄ − ε̄P ⊗ Ip̄

]
θne = m.

Thus, there exists a unique NE if and only if
(
1 + ρ

1−ε̄

)
In − ρ

1−ε̄A− ε̄P is invertible (note that the NE exists if and only

if m ∈ range
((

1 + ρ
1−ε̄

)
In − ρ

1−ε̄A− ε̄P
)

). Moreover, the closed-form solution of NE reads

θne =

([(
1 +

ρ

1− ε̄

)
In − ρ

1− ε̄
A− ε̄P

]−1

⊗ Ip̄

)
m.

Moreover, suppose that θt+1
i = Bi

([
θt
j

]
j∈Mi∪Ni

)
, then we have for all i ∈ [n],

θt+1
i = argmin

θi∈Rp̄

1

2

∥∥∥∥∥∥mi − (1− ε̄)θi + ε̄
∑
j ̸=i

Pijθ
t
j

∥∥∥∥∥∥
2

2

+
ρ

2

n∑
j=1

Aij∥θi − θt
j∥22

 . (53)

Then, the first-order optimality condition for (53) reads

− (1− ε̄)

mi − (1− ε̄)θt+1
i + ε̄

∑
j ̸=i

Pijθ
t
j

+ ρ

n∑
j=1

Aij

(
θt+1
i − θt

j

)
= 0

⇐⇒
(
1− ε̄+

ρ

1− ε̄

)
θt+1
i = mi + ε̄

∑
j ̸=i

Pijθ
t
j +

ρ

1− ε̄

n∑
j=1

Aijθ
t
j ,
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for all i ∈ [n], which can be further written in the following compact form:(
1− ε̄− ρ

1− ε̄

)
θt+1 = m+ ε̄(P ⊗ Ip̄)θ

t +
ρ

1− ε
(A⊗ Ip̄)θ

t

⇐⇒ θt+1 =
1− ε̄

(1− ε̄)2 + ρ
m+

([
(1− ε̄)ε̄

(1− ε̄)2 + ρ
P +

ρ

(1− ε̄)2 + ρ
A

]
⊗ Ip̄

)
θt.

Thus, the BR dynamics converges to the NE if and only if

max
i∈[n]

{∣∣∣∣λi

(
(1− ε̄)ε̄

(1− ε̄)2 + ρ
P +

ρ

(1− ε̄)2 + ρ
A

)∣∣∣∣} < 1,

as desired.

F.2. Derivations for the Approximations in Section 4.2

Proof. Computing the following expectation w.r.t. distribution D(δi, δNi
) for some (δi, δNi

):

E(xi,yi)∼Di(δi,δNi
) [ℓi(θi;xi, yi)]

= E(xi,yi)∼Di(δi,δNi
)

[
−yiθ

⊤
i xi + log

(
1 + eθ

⊤
i xi

)]
= E

[
log
(
1 + eθ

⊤
i xi

) ∣∣∣ yi = 0
]
Pr(yi = 0) + E

[
−θ⊤

i xi + log
(
1 + eθ

⊤
i xi

) ∣∣∣ yi = 1
]
Pr(yi = 1). (54)

Let g(θi;xi) = log
(
1 + eθ

⊤
i xi

)
, whose gradient is

∇g(θi;xi) =
xi

1 + e−θ⊤
i xi

.

The first-order approximations of g(θi;xi), around 0 yields

g(θi;xi) ≈ g(0;xi) +∇g(0;xi)
⊤θi = log(2) +

1

2
θ⊤
i xi.

Plugging this into (54) and using Pr(yi = 0) = q, Pr(yi = 1) = 1− q yield

E(xi,yi)∼Di(δi,δNi
) [ℓi(θi;xi, yi)]

≈ q E
[
1

2
θ⊤
i xi

∣∣∣∣ yi = 0

]
+ (1− q)E

[
−θ⊤

i xi +
1

2
θ⊤
i xi

∣∣∣∣ yi = 1

]
+ constant

= q E

1
2
θ⊤
i

x̄0
i + ε̄i

n∑
j=1

Pijδj

− (1− q)E
[
1

2
θ⊤
i x̄

1
i

]
+ constant

=
q

2
θ⊤
i

m0
i + ε̄i

n∑
j=1

Pijδj

− (1− q)

2
θ⊤
i m

1
i + constant

=
q

2
θ⊤
i m

0
i −

1− q

2
θ⊤
i m

1
i +

qε̄i
2

θ⊤
i

n∑
j=1

Pijδj + constant. (55)

The PSE of multi-agent logistic regression satisfies the following system for i ∈ [n]:

θpse
i = argmin

θi∈Rp̄

E(xi,yi)∼D(θpse
i ,θpse

Ni
)

ℓi(θi;xi, yi) +
ρi
2

n∑
j=1

Aij

∥∥θi − θpse
j

∥∥2
2

 .
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In view of the first-order approximation of the expected risk in (55), the approximate PSE solution to system (55) satisfies

θ̂pse
i = argmin

θi∈Rp̄

q

2
θ⊤
i m

0
i −

1− q

2
θ⊤
i m

1
i +

qε̄i
2

θ⊤
i

n∑
j=1

Pij θ̂
pse
j +

ρi
2

n∑
j=1

Aij

∥∥∥θi − θ̂pse
j

∥∥∥2
2


⇐⇒ q

2
m0

i −
1− q

2
m1

i +
qε̄i
2

n∑
j=1

Pij θ̂
pse
j + ρi

n∑
j=1

Aij

(
θ̂pse
i − θ̂pse

j

)
= 0

⇐⇒

 n∑
j=1

ρiAij

 θ̂pse
i −

n∑
j=1

ρiAij θ̂
pse
j +

n∑
j=1

qε̄i
2

Pij θ̂
pse
j =

1− q

2
m1

i −
q

2
m0

i

⇐⇒ 2ρiθ̂
pse
i −

n∑
j=1

2ρiAij θ̂
pse
j +

n∑
j=1

qε̄iPij θ̂
pse
j = (1− q)m1

i − qm0
i .

Since θ̂pse = [θ̂pse
1 ; . . . ; θ̂pse

n ] and m = [m1; . . . ;mn], we have

[(2Diag(ρ)(In −A) + Diag (qε̄)P )⊗ Ip] θ̂
pse = (1− q)m1 − qm0.

Then, if 2Diag(ρ)(In −A) + Diag (qε̄)P is invertible, we have

θ̂pse =
(
[(2Diag(ρ)(In −A) + Diag (qε̄)P )]

−1 ⊗ Ip

) (
(1− q)m1

i − qm0
i

)
,

as stated in the main paper.

By the way, we can also give the approximate NE using a similar approximation strategy. Specifically, the NE of multi-agent
logistic regression can also be derived. The latter satisfies the following system for i ∈ [n]:

θne
i = argmin

θi∈Rp̄

E(xi,yi)∼D(θi,θne
Ni

)

ℓi(θi;xi, yi) +
ρi
2

n∑
j=1

Aij

∥∥θi − θne
j

∥∥2
2

 . (56)

Based on the first-order approximation of the expected risk (55), the approximate NE solution to system (56) satisfies

θ̂ne
i = argmin

θi∈Rp̄

q

2
θ⊤
i m

0
i −

1− q

2
θ⊤
i m

1
i +

qε̄i
2

∥θi∥22 +
qε̄i
2

θ⊤
i

∑
j∈Ni

Pij θ̂
ne
j +

ρ

2

∑
j∈Mi

Aij

∥∥∥θi − θ̂ne
j

∥∥∥2
2


⇐⇒ q

2
m0

i −
1− q

2
m1

i + qε̄iθ̂
ne
i +

qε̄i
2

∑
j∈Ni

Pij θ̂
ne
j + ρi

∑
j∈Mi

Aij

(
θ̂ne
i − θ̂ne

j

)
= 0

⇐⇒

qε̄i +

n∑
j=1

ρiAij

 θ̂ne
i −

∑
j ̸=i

ρiAij θ̂
ne
j +

∑
j ̸=i

qε̄i
2

Pij θ̂
ne
j =

1− q

2
m1

i −
q

2
m0

i ,

for i ∈ [n]. Thus, we have((
Diag(qε̄) + Diag(ρ)(In −A) + Diag

(q
2
ε̄
)
(P − In)

)
⊗ Ip

)
θ̂ne =

1− q

2
m1

i −
q

2
m0

i .

If Diag(qε̄) + Diag(ρ)(In −A) + Diag
(
q
2 ε̄
)
(P − In) is invertible, we have

θ̂ne =
(
[(Diag(2qε̄) + Diag(2ρ)(In −A)−Diag (qε̄) (In − P )]

−1 ⊗ Ip

) (
(1− q)m1

i − qm0
i

)
.
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G. Additional Numerical Results
In the following, we present several additional numerical results for Section 4. Unless otherwise specified, we follow the
same settings as described in the main paper, yet different network topology configurations and/or additional results will be
used as described in the captions.
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Figure 6: Stability of PSE solution for MSE game (17), (18). Evaluating the condition (20) for different configurations of
network topology with ε = 0.2, n = 10.
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Figure 7: Stability of PSE solution for the MSE game (17), (18). We take GA as the Golomb graph (shown on the left), GP

as the star graph, and evaluate (20) against ρ when the center node of GP is placed at different locations. Notice that when
the center node of GP is ‘10’, the PSE is never stabilized.
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Figure 8: Stability of PSE Solution for MSE Game (17), (18). We take GA as the star graph, GP as the Golomb graph
(shown in Figure 7), and evaluate (20) against ρ when the center node of GA is placed at different locations. Notice that
when the center node of GA is ‘5’ or ‘7’ or ‘9’, the PSE becomes unstable for a certain interval of ρ.
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Figure 9: Logistic regression game on synthetic dataset. Learning dynamics of SG-GD in logistic regression problem
with an ℓ2-regularization λ

2 ∥θi∥
2 and λ = 10−4. (GA: complete, GP: star.)
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Figure 10: Logistic Regression Game on the Kaggle Dataset. Learning dynamics of RSGD for logistic regression on
Kaggle Give Me Some Credit dataset in logistic regression problem with an ℓ2-regularization λ

2 ∥θi∥
2 and λ = 10−4. (GA:

complete, GP: star.)
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