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ABSTRACT

Neural Ordinary Differential Equations (NODEs) have proven to be a powerful
modeling tool for approximating (interpolation) and forecasting (extrapolation)
irregularly sampled time series data. However, their performance degrades sub-
stantially when applied to real-world data, especially long-term data with complex
behaviors (e.g., long-term trend across years, mid-term seasonality across months,
and short-term local variation across days). To address the modeling of such com-
plex data with different behaviors at different frequencies (time spans), we propose
a novel progressive learning paradigm of NODEs for long-term time series fore-
casting. Specifically, following the principle of curriculum learning, we gradually
increase the complexity of data and network capacity as training progresses. Our
experiments with both synthetic data and real traffic data (PeMS Bay Area traffic
data) show that our training methodology consistently improves the performance
of vanilla NODEs by over 64%.

1 INTRODUCTION
Time series analysis is critical in a number of domains such as stock prices analysis, weather anal-
ysis, business planning, resource allocation, etc. One major aspect of such time series analysis is
dealing with irregularly sampled data. Prior approaches tackle this issue by mapping such data
onto equally spaced intervals (Lipton et al., 2016). However, this approximation introduces error,
especially at the local maxima and minima of seasonal fluctuations.

Several approaches have been proposed to improve approximation accuracy. Mei & Eisner (2016)
uses exponential decay to model state between observations. Neural Ordinary Differential Equations
(NODEs) Chen et al. (2018) model continuous states between observations using a continuous depth
black box ODE solver parameterized by a neural network. NODEs have proven to be promising for
forecasting problems with irregular samples (Rubanova et al., 2019). However, they are brittle when
tasked with forecasting functions containing long-term trends (yearly) and short-term seasonalities
(monthly or daily).

To address the above mentioned issue, we propose novel networks based on Progressive Neural
Ordinary Equations (PODEs). Specifically, we follow a curriculum learning approach in which
we gradually increase the data complexity as well as network complexity as training progresses.
The key idea is that the network learns low frequency and easier to learn trends first and then the
high frequency and more complex seasonalities. Such a breakdown of task enables the network to
gradually learn these complex curves, which is, otherwise, too difficult to learn.

We summarize the contribution of the paper as follows:

• We propose novel Progressive Neural ODEs (PODEs) for the analysis of irregularly sam-
pled complex time series containing trends and seasonalities.

• We demonstrate empirical evidence of the superiority of our approach as compared to
vanilla NODEs on both synthetic and real-world data.

2 RELATED WORK
Time Series Modeling Compared with the extensive body of work on time series forecasting of
regularly sampled (i.e., equally-spaced) data (Box et al. (2015); Brockwell & Davis (2016)), fewer
methods exist for irregularly sampled (i.e., unevenly-spaced) data. Analysis of such data becomes
a critical challenge associated with complex real-world applications such as economics (Harvey &
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Figure 1: Overview of our approach. Following curriculum learning approach, data complexity and
network complexity is gradually increased (from k1 to k3) as training progresses.

Todd (1983)), healthcare (Li & Marlin (2016)), and astronomy (Scargle (1982)), to name a few. One
major line of methods transform irregularly spaced samples into equally spaced ones and then apply
existing methods for equally spaced data (Zhang (2003)). For instance, Gaussian Process combined
with learned neural networks is recently applied for interpolating irregularly sampled data (Li &
Marlin (2016); Shukla & Marlin (2018)). However, such methods suffer from a number of biases
(Rehfeld et al. (2011)), which significantly degrades the overall performance, especially for highly
irregular observations. Classical exponential smoothing methods such as Holt and Winters (Gard-
ner Jr (1985); Holt (2004)) are applied to irregularly-sampled time series mainly for the estimation
of trends and seasonals. With the significant development in deep learning, learned networks in a
data-driven manner (e.g., NODEs) also find promising applications to analysis of irregularly sam-
pled data.
Curriculum Learning The idea that humans learn in an organized manner, leveraging previous
experience/knowledge to learn more complex tasks, originates from cognitive science. Elman (1993)
first explored whether this idea can be used to train neural networks. He showed how curriculum
learning can be used to learn simple language grammar. Bengio et al. (2009) extended this idea
and showed it’s effectiveness in language modeling and geometric shape recognition task. More re-
cently, this idea of progressive learning has been explored in many contexts. Zaremba & Sutskever
(2014) use this approach for evaluating short computer programs. Matiisen et al. (2017) apply cur-
riculum learning in reinforcement learning regime, where a student learns a complex task following
a teacher’s direction of learning subtasks. Karras et al. (2017) show impressive performance in gen-
erating human faces using Generative Adversarial Networks (GANs) following the same learning
strategy. Inspired by this line of works, we plan to apply progressive learning strategy to NODE-
based time series forecasting in order to improve its performance on complex real-world data with
trends and seasonalities.

3 OUR APPROACH
To illustrate the advantages of PODEs, we choose to use the same network design originally pro-
posed in Rubanova et al. (2019) as our backbone architecture. This architecture consists of an
encoder, a NODE, and a decoder as shown in fig. 1. The encoder maps the input data into a fixed
length embedding. The NODE network models the temporal dynamics of the data using irregularly
spaced samples and make prediction of future values. Finally, the decoder transforms the prediction
represented in the latent embedding space to actual output.

The fact that this architecture, despite it’s theoretical advantage, failed to model complex time-
series functions containing trends and seasonalities (section 4.1 and 4.2), prompted us to employ a
progressive learning approach. Under this scheme, we reorganize network layers into groups and
train each group of layers progressively using data with gradually increasing complexity. The key
idea is that we divide the complex task of learning functions containing trends and seasonalities into
much easier to learn sub-tasks.

The network architecture and training procedure is illustrated in fig. 1. We divide the training stages
into k steps. At each step, we add a group of layers to the encoder, NODE and decoder. Con-
currently, at each step we increase the complexity of input data. All the network layers - both the
previously trained and the newly added ones - remain trainable throughout training. To alleviate
instability introduced by adding new layers, we use alpha blending - gradual addition of the new
layer controlled by the parameter α. We prepare the input data for the 1, ..., k − 1 steps using k − 1
low pass filters. Note that the original data is used as the input for the kth step.
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Figure 2: Forecasting performance at different training stages. Left: k = 1. Middle: k = 2. Right:
k = 3. As training progresses, data complexity along with network complexity increases enabling
the learning of complex time series.Green dots: irregularly sampled observations. Orange dots:
ground truth. Purple curve: prediction.

Figure 3: Forecasting performance comparison between NODE (top) and PODE (bottom) on syn-
thetic data - exp(cx)+sin(t1x)+sin(t2x). Each column shows samples with different c for trends
and t1, t2 for seasonal fluctuations. Overall speaking, NODE can capture trend (c) and one seasonal
component with lower frequency (t1) whereas PODE can capture not only trend (c) but also both
seasonalities (t1 and t2). Green dots: irregularly sampled observations. Orange dots: ground truth.
Purple curve: prediction.

4 EXPERIMENTS
We use a Gated Recurrent Unit as encoder and a feed forward network as the decoder. We train our
network in k = 3 steps. At each step, we add a layer. Therefor, we have three layers in total in each
of our sub networks. To be consistent with NODEs, we use the same hyperparameters as described
in Rubanova et al. (2019) - an initial learning rate of 1e-2 with an exponentially decaying schedule
and a batch size of 50.

We compare the performance of PODE with respect to the original NODE Rubanova et al. (2019)
using two datasets: a synthetic datasets for experiments with controlled parameters such as trend
rate and seasonal frequencies and a real-world dataset - the PeMS-Bay traffic datasets, a commonly
used dataset for time series forecasting. We also compare our model to traditional approaches: (1)
Static Model: predicts the same value as encountered p time steps before, (2) Historical Average
(HA): predicts weighted average of past seasons as its forecast, and (3) ARIMA: Auto-Regressive
Integrated Moving Average which is an auto-regressive model popularly used for time series predic-
tion.

4.1 SYNTHETIC DATA
We generate synthetic data of the form exp(cx) + sin(t1x) + sin(t2x), where c, t1, t2 control the
global trend and local seasonals. This is a simplified version of real-world data with trends (i.e.,
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Dataset
Models

Static HA ARIMA NODE PODE

Synthetic 36.43 35.74 29.69 15.56 0.81
PEMS-BAY (+E03) 17.58 40.45 47.78 13.80 4.87

Table 1: MSE on synthetic and PEMS-BAY datasets.

Figure 4: Forecasting performance PODE on PeMS-BAY. Each column shows samples from differ-
ent sensors. Green dots: irregularly sampled observations. Orange dots: ground truth. Purple curve:
prediction. Purple shaded area: prediction uncertainty.

the exp function) and multiple seasonalities (i.e., the two sin functions). We vary the exp and
sin constants (c, t1, t2) and add Gaussian noise to the sampled points. In total, we generate 1000
example and use 80%-20% train-test split. For each example, we irregularly sample 200 points-
showing the network a fraction of these points (i.e., the first 100 samples) and asking it to forecast
the rest (i.e., the remaining 100 samples).

Figure 2 illustrates the prediction performance at different training stages with increased data and
network complexity. We can see that by breaking down the complex curve into simpler curves, our
PODE can learn complex functions incrementally. Figure 3 compares the forecasting performance
between NODEs and PODEs. NODEs fail to represent the complex dynamics of our synthetic
curves, yielding a mean squared error (MSE) of 15.56. In comparison, PODEs are capable of cap-
turing both trend and seasonalities, producing an MSE Of 0.81, a substantial improvement. Table 1
compares the MSE of PODE against other baselines.

4.2 PEMS BAY AREA TRAFFIC DATA
This dataset is collected by California Department of Transportation (Caltrans) using Caltrans Per-
formance Measurement System (PeMS). We use the traffic flow readings - average vehicles on per
unit time - aggregated in five minutes interval. This dataset incorporates both trend and seasonalities
(including weekly and daily changes) and, therefore, is commonly used for time series forecasting.
It also contains sufficient equally-spaced samples, which allow us to conduct experiments on the
effect of irregular spacing with different sampling strategy (e.g., maximum/minimum spaces).

We randomly select one of the sensor data to be used, over a three year period from January, 2014
to December, 2017. Each sample in our data is a daily measurement of flow readings. This gives us
932 samples, after cleaning up days on which the sensor didn’t collect any data, and 288 data points
in each sample. As with synthetic data, we divide the dataset in 80%-20% train-test split ratio. We
input half of 288 points to the network and ask it to forecast the latter half. Table 1 shows that PODE
improves over NODE by more than 64%. Qualitative samples are visualized in fig. 4.

5 CONCLUSION
We proposed a novel progressive learning approach for modeling irregularly sampled time series
data with complex trends and seasonalities. We demonstrated substantial improvements over state-
of-the-art NODEs on both synthetic and real-world data. Our empirical study suggests that with the
same architecture, network performance can be further improved by appropriate design of training
procedure, such as curriculum learning, especially for complex tasks such as the forecasting of
irregularly sampled time series with trends and seasonalities.
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